151
|
Tang Y, Poustovoitov MV, Zhao K, Garfinkel M, Canutescu A, Dunbrack R, Adams PD, Marmorstein R. Structure of a human ASF1a-HIRA complex and insights into specificity of histone chaperone complex assembly. Nat Struct Mol Biol 2006; 13:921-9. [PMID: 16980972 PMCID: PMC2933817 DOI: 10.1038/nsmb1147] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 08/28/2006] [Indexed: 12/20/2022]
Abstract
Human HIRA, ASF1a, ASF1b and CAF-1 are evolutionally conserved histone chaperones that form multiple functionally distinct chromatin-assembly complexes, with roles linked to diverse nuclear process, such as DNA replication and formation of heterochromatin in senescent cells. We report the crystal structure of an ASF1a-HIRA heterodimer and a biochemical dissection of ASF1a's mutually exclusive interactions with HIRA and the p60 subunit of CAF-1. The HIRA B domain forms an antiparallel beta-hairpin that binds perpendicular to the strands of the beta-sandwich of ASF1a, via beta-sheet, salt bridge and van der Waals contacts. The N- and C-terminal regions of ASF1a and ASF1b determine the different affinities of these two proteins for HIRA, by contacting regions outside the HIRA B domain. CAF-1 p60 also uses B domain-like motifs for binding to ASF1a, thereby competing with HIRA. Together, these studies begin to define the molecular determinants of assembly of functionally diverse macromolecular histone chaperone complexes.
Collapse
Affiliation(s)
- Yong Tang
- The Wistar Institute, Philadelphia, PA, 19104 USA
| | - Maxim V. Poustovoitov
- The Fox Chase Cancer Center, Philadelphia PA 19111, USA
- Russian State Medical University, Moscow 117 869, Russia
| | - Kehao Zhao
- The Wistar Institute, Philadelphia, PA, 19104 USA
| | | | | | | | - Peter D. Adams
- The Fox Chase Cancer Center, Philadelphia PA 19111, USA
- Correspondence should be addressed to R.M. or P.D.A., Ronen Marmorstein, Tel: (215) 898-5006, FAX: (215) 898-0381, , Peter D. Adams, Tel: (215)728-7108, FAX: (215) 728 3616,
| | - Ronen Marmorstein
- The Wistar Institute, Philadelphia, PA, 19104 USA
- Correspondence should be addressed to R.M. or P.D.A., Ronen Marmorstein, Tel: (215) 898-5006, FAX: (215) 898-0381, , Peter D. Adams, Tel: (215)728-7108, FAX: (215) 728 3616,
| |
Collapse
|
152
|
Houlard M, Berlivet S, Probst AV, Quivy JP, Héry P, Almouzni G, Gérard M. CAF-1 is essential for heterochromatin organization in pluripotent embryonic cells. PLoS Genet 2006; 2:e181. [PMID: 17083276 PMCID: PMC1630711 DOI: 10.1371/journal.pgen.0020181] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 09/11/2006] [Indexed: 01/08/2023] Open
Abstract
During mammalian development, chromatin dynamics and epigenetic marking are important for genome reprogramming. Recent data suggest an important role for the chromatin assembly machinery in this process. To analyze the role of chromatin assembly factor 1 (CAF-1) during pre-implantation development, we generated a mouse line carrying a targeted mutation in the gene encoding its large subunit, p150CAF-1. Loss of p150CAF-1 in homozygous mutants leads to developmental arrest at the 16-cell stage. Absence of p150CAF-1 in these embryos results in severe alterations in the nuclear organization of constitutive heterochromatin. We provide evidence that in wild-type embryos, heterochromatin domains are extensively reorganized between the two-cell and blastocyst stages. In p150CAF-1 mutant 16-cell stage embryos, the altered organization of heterochromatin displays similarities to the structure of heterochromatin in two- to four-cell stage wild-type embryos, suggesting that CAF-1 is required for the maturation of heterochromatin during preimplantation development. In embryonic stem cells, depletion of p150CAF-1 using RNA interference results in the mislocalization, loss of clustering, and decondensation of pericentric heterochromatin domains. Furthermore, loss of CAF-1 in these cells results in the alteration of epigenetic histone methylation marks at the level of pericentric heterochromatin. These alterations of heterochromatin are not found in p150CAF-1-depleted mouse embryonic fibroblasts, which are cells that are already lineage committed, suggesting that CAF-1 is specifically required for heterochromatin organization in pluripotent embryonic cells. Our findings underline the role of the chromatin assembly machinery in controlling the spatial organization and epigenetic marking of the genome in early embryos and embryonic stem cells.
Collapse
Affiliation(s)
- Martin Houlard
- Epigenetic Regulation and Cancer Group, Service de Biologie Moléculaire Systémique, Département de Biologie Joliot-Curie, Direction des Sciences du Vivant, Commissariat à l'Energie Atomique, CEA Saclay, Gif-sur-Yvette, France
- Section de Recherche, Institut Curie, UMR218 du Centre National de la Recherche Scientifique, Paris, France
| | - Soizik Berlivet
- Epigenetic Regulation and Cancer Group, Service de Biologie Moléculaire Systémique, Département de Biologie Joliot-Curie, Direction des Sciences du Vivant, Commissariat à l'Energie Atomique, CEA Saclay, Gif-sur-Yvette, France
| | - Aline V Probst
- Section de Recherche, Institut Curie, UMR218 du Centre National de la Recherche Scientifique, Paris, France
| | - Jean-Pierre Quivy
- Section de Recherche, Institut Curie, UMR218 du Centre National de la Recherche Scientifique, Paris, France
| | - Patrick Héry
- Epigenetic Regulation and Cancer Group, Service de Biologie Moléculaire Systémique, Département de Biologie Joliot-Curie, Direction des Sciences du Vivant, Commissariat à l'Energie Atomique, CEA Saclay, Gif-sur-Yvette, France
| | - Geneviève Almouzni
- Section de Recherche, Institut Curie, UMR218 du Centre National de la Recherche Scientifique, Paris, France
| | - Matthieu Gérard
- Epigenetic Regulation and Cancer Group, Service de Biologie Moléculaire Systémique, Département de Biologie Joliot-Curie, Direction des Sciences du Vivant, Commissariat à l'Energie Atomique, CEA Saclay, Gif-sur-Yvette, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
153
|
Linger J, Tyler JK. Global replication-independent histone H4 exchange in budding yeast. EUKARYOTIC CELL 2006; 5:1780-7. [PMID: 16936140 PMCID: PMC1595336 DOI: 10.1128/ec.00202-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The eukaryotic genome is packaged together with histone proteins into chromatin following DNA replication. Recent studies have shown that histones can also be assembled into chromatin independently of DNA replication and that this dynamic exchange of histones may be biased toward sites undergoing transcription. Here we show that epitope-tagged histone H4 can be incorporated into nucleosomes throughout the budding yeast (Saccharomyces cerevisiae) genome regardless of the phase of the cell cycle, the transcriptional status, or silencing of the region. Direct comparisons reveal that the amount of histone incorporation that occurs in G(1)-arrested cells is similar to that occurring in cells undergoing DNA replication. Additionally, we show that this histone incorporation is not dependent on the histone H3/H4 chaperones CAF-1, Asf1, and Hir1 individually. This study demonstrates that DNA replication and transcription are not necessary prerequisites for histone exchange in budding yeast, indicating that chromatin is more dynamic than previously thought.
Collapse
Affiliation(s)
- Jeffrey Linger
- UCHSC at Fitzsimons, Mail stop 8101, P.O. Box 6511, Aurora, CO 80045, USA.
| | | |
Collapse
|
154
|
Dohrmann PR, Sclafani RA. Novel role for checkpoint Rad53 protein kinase in the initiation of chromosomal DNA replication in Saccharomyces cerevisiae. Genetics 2006; 174:87-99. [PMID: 16816422 PMCID: PMC1569810 DOI: 10.1534/genetics.106.060236] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A novel role for Rad53 in the initiation of DNA replication that is independent of checkpoint or deoxynucleotide regulation is proposed. Rad53 kinase is part of a signal transduction pathway involved in the DNA damage and replication checkpoints, while Cdc7-Dbf4 kinase (DDK) is important for the initiation of DNA replication. In addition to the known cdc7-rad53 synthetic lethality, rad53 mutations suppress mcm5-bob1, a mutation in the replicative MCM helicase that bypasses DDK's essential role. Rad53 kinase activity but neither checkpoint FHA domain is required. Conversely, Rad53 kinase can be activated without DDK. Rad53's role in replication is independent of both DNA and mitotic checkpoints because mutations in other checkpoint genes that act upstream or downstream of RAD53 or in the mitotic checkpoint do not exhibit these phenotypes. Because Rad53 binds an origin of replication mainly through its kinase domain and rad53 null mutants display a minichromosome loss phenotype, Rad53 is important in the initiation of DNA replication, as are DDK and Mcm2-7 proteins. This unique requirement for Rad53 can be suppressed by the deletion of the major histone H3/H4 gene pair, indicating that Rad53 may be regulating initiation by controlling histone protein levels and/or by affecting origin chromatin structure.
Collapse
Affiliation(s)
- Paul R Dohrmann
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045, USA
| | | |
Collapse
|
155
|
Green EM, Antczak AJ, Bailey AO, Franco AA, Wu KJ, Yates JR, Kaufman PD. Replication-independent histone deposition by the HIR complex and Asf1. Curr Biol 2006; 15:2044-9. [PMID: 16303565 PMCID: PMC2819815 DOI: 10.1016/j.cub.2005.10.053] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 10/05/2005] [Accepted: 10/07/2005] [Indexed: 01/08/2023]
Abstract
The orderly deposition of histones onto DNA is mediated by conserved assembly complexes, including chromatin assembly factor-1 (CAF-1) and the Hir proteins . CAF-1 and the Hir proteins operate in distinct but functionally overlapping histone deposition pathways in vivo . The Hir proteins and CAF-1 share a common partner, the highly conserved histone H3/H4 binding protein Asf1, which binds the middle subunit of CAF-1 as well as to Hir proteins . Asf1 binds to newly synthesized histones H3/H4 , and this complex stimulates histone deposition by CAF-1 . In yeast, Asf1 is required for the contribution of the Hir proteins to gene silencing . Here, we demonstrate that Hir1, Hir2, Hir3, and Hpc2 comprise the HIR complex, which copurifies with the histone deposition protein Asf1. Together, the HIR complex and Asf1 deposit histones onto DNA in a replication-independent manner. Histone deposition by the HIR complex and Asf1 is impaired by a mutation in Asf1 that inhibits HIR binding. These data indicate that the HIR complex and Asf1 proteins function together as a conserved eukaryotic pathway for histone replacement throughout the cell cycle.
Collapse
Affiliation(s)
- Erin M. Green
- Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA 94720
| | - Andrew J. Antczak
- Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA 94720
| | - Aaron O. Bailey
- Department of Cell Biology The Scripps Research Institute La Jolla, CA 92037
| | - Alexa A. Franco
- Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA 94720
| | - Kevin J. Wu
- Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA 94720
| | - John R. Yates
- Department of Cell Biology The Scripps Research Institute La Jolla, CA 92037
| | - Paul D. Kaufman
- Program in Gene Function and Expression University of Massachusetts Medical School Worcester, MA 01605-2324
| |
Collapse
|
156
|
Mersfelder EL, Parthun MR. The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Nucleic Acids Res 2006; 34:2653-62. [PMID: 16714444 PMCID: PMC1464108 DOI: 10.1093/nar/gkl338] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Histone post-translational modifications occur, not only in the N-terminal tail domains, but also in the core domains. While modifications in the N-terminal tail function largely through the regulation of the binding of non-histone proteins to chromatin, based on their location in the nucleosome, core domain modifications may also function through distinct mechanisms involving structural alterations to the nucleosome. This article reviews the recent developments in regards to these novel histone modifications and discusses their important role in the regulation of chromatin structure.
Collapse
Affiliation(s)
| | - Mark R. Parthun
- To whom correspondence should be addressed. Tel: +1 614 292 6215; Fax: +1 614 292 4118;
| |
Collapse
|
157
|
Caesar R, Warringer J, Blomberg A. Physiological importance and identification of novel targets for the N-terminal acetyltransferase NatB. EUKARYOTIC CELL 2006; 5:368-78. [PMID: 16467477 PMCID: PMC1405896 DOI: 10.1128/ec.5.2.368-378.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The N-terminal acetyltransferase NatB in Saccharomyces cerevisiae consists of the catalytic subunit Nat3p and the associated subunit Mdm20p. We here extend our present knowledge about the physiological role of NatB by a combined proteomics and phenomics approach. We found that strains deleted for either NAT3 or MDM20 displayed different growth rates and morphologies in specific stress conditions, demonstrating that the two NatB subunits have partly individual functions. Earlier reported phenotypes of the nat3Delta strain have been associated with altered functionality of actin cables. However, we found that point mutants of tropomyosin that suppress the actin cable defect observed in nat3Delta only partially restores wild-type growth and morphology, indicating the existence of functionally important acetylations unrelated to actin cable function. Predicted NatB substrates were dramatically overrepresented in a distinct set of biological processes, mainly related to DNA processing and cell cycle progression. Three of these proteins, Cac2p, Pac10p, and Swc7p, were identified as true NatB substrates. To identify N-terminal acetylations potentially important for protein function, we performed a large-scale comparative phenotypic analysis including nat3Delta and strains deleted for the putative NatB substrates involved in cell cycle regulation and DNA processing. By this procedure we predicted functional importance of the N-terminal acetylation for 31 proteins.
Collapse
Affiliation(s)
- Robert Caesar
- Department of Cell and Molecular Biology, Lundberg Laboratory, Göteborg University, Medicinaregatan 9c, 413 90 Göteborg, Sweden.
| | | | | |
Collapse
|
158
|
Sanematsu F, Takami Y, Barman HK, Fukagawa T, Ono T, Shibahara KI, Nakayama T. Asf1 Is Required for Viability and Chromatin Assembly during DNA Replication in Vertebrate Cells. J Biol Chem 2006; 281:13817-13827. [PMID: 16537536 DOI: 10.1074/jbc.m511590200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Asf1 (anti-silencing function 1), a well conserved protein from yeast to humans, acts as a histone chaperone and is predicted to participate in a variety of chromatin-mediated cellular processes. To investigate the physiological role of vertebrate Asf1 in vivo, we generated a conditional Asf1-deficient mutant from chicken DT40 cells. Induction of Asf1 depletion resulted in the accumulation of cells in S phase with decreased DNA replication and increased mitotic aberrancy forming multipolar spindles, leading to cell death. In addition, nascent chromatin in Asf1-depleted cells showed increased nuclease sensitivity, indicating impaired nucleosome assembly during DNA replication. Complementation analyses revealed that the functional domain of Asf1 for cell viability was confined to the N-terminal core domain (amino acids 1-155) that is a binding platform for histones H3/H4, CAF-1p60, and HIRA, whereas Asf1 mutant proteins, abolishing binding abilities with both p60 and HIRA, exhibit no effect on viability. These results together indicate that the vertebrate Asf1 plays a crucial role in replication-coupled chromatin assembly, cell cycle progression, and cellular viability and provide a clue of a possible role in a CAF-1- and HIRA-independent chromatin-modulating process for cell proliferation.
Collapse
Affiliation(s)
- Fumiyuki Sanematsu
- Section of Biochemistry and Molecular Biology, Department of Medical Sciences, Miyazaki Medical College, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Yasunari Takami
- Section of Biochemistry and Molecular Biology, Department of Medical Sciences, Miyazaki Medical College, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Hirak Kumar Barman
- Section of Biochemistry and Molecular Biology, Department of Medical Sciences, Miyazaki Medical College, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Tatsuo Fukagawa
- Department of Molecular Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Tatsuya Ono
- Department of Integrated Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Kei-Ichi Shibahara
- Department of Integrated Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Tatsuo Nakayama
- Section of Biochemistry and Molecular Biology, Department of Medical Sciences, Miyazaki Medical College, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan; Department of Life Science, Frontier Science Research Center, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| |
Collapse
|
159
|
Tamburini BA, Carson JJ, Linger JG, Tyler JK. Dominant mutants of the Saccharomyces cerevisiae ASF1 histone chaperone bypass the need for CAF-1 in transcriptional silencing by altering histone and Sir protein recruitment. Genetics 2006; 173:599-610. [PMID: 16582440 PMCID: PMC1526541 DOI: 10.1534/genetics.105.054783] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcriptional silencing involves the formation of specialized repressive chromatin structures. Previous studies have shown that the histone H3-H4 chaperone known as chromatin assembly factor 1 (CAF-1) contributes to transcriptional silencing in yeast, although the molecular basis for this was unknown. In this work we have identified mutations in the nonconserved C terminus of antisilencing function 1 (Asf1) that result in enhanced silencing of HMR and telomere-proximal reporters, overcoming the requirement for CAF-1 in transcriptional silencing. We show that CAF-1 mutants have a drastic reduction in DNA-bound histone H3 levels, resulting in reduced recruitment of Sir2 and Sir4 to the silent loci. C-terminal mutants of another histone H3-H4 chaperone Asf1 restore the H3 levels and Sir protein recruitment to the silent loci in CAF-1 mutants, probably as a consequence of the weakened interaction between these Asf1 mutants and histone H3. As such, these studies have identified the nature of the molecular defect in the silent chromatin structure that results from inactivation of the histone chaperone CAF-1.
Collapse
Affiliation(s)
- Beth A Tamburini
- Department of Biology Graduate Program, University of Colorado Health Sciences Center, Aurora, Colorado 80045, USA
| | | | | | | |
Collapse
|
160
|
Kats ES, Albuquerque CP, Zhou H, Kolodner RD. Checkpoint functions are required for normal S-phase progression in Saccharomyces cerevisiae RCAF- and CAF-I-defective mutants. Proc Natl Acad Sci U S A 2006; 103:3710-5. [PMID: 16501045 PMCID: PMC1533778 DOI: 10.1073/pnas.0511102103] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The chromatin-assembly factor I (CAF-I) and the replication-coupling assembly factor (RCAF) complexes function in chromatin assembly during DNA replication and repair and play a role in the maintenance of genome stability. Here, we have investigated their role in checkpoints and S-phase progression. FACS analysis of mutants lacking Asf1 or Cac1 as well as various checkpoint proteins indicated that normal rates of S-phase progression in asf1 mutants have a strong requirement for replication checkpoint proteins, whereas normal S-phase progression in cac1 mutants has only a weak requirement for either replication or DNA-damage checkpoint proteins. Furthermore, asf1 mutants had high levels of Ddc2.GFP foci that were further increased in asf1 dun1 double mutants consistent with a requirement for checkpoint proteins in S-phase progression in asf1 mutants, whereas cac1 mutants had much lower levels of Ddc2.GFP foci that were not increased by a dun1 mutation. Our data suggest that RCAF defects lead to unstable replication forks that are then stabilized by replication checkpoint proteins, whereas CAF-I defects likely cause different types of DNA damage.
Collapse
Affiliation(s)
- Ellen S. Kats
- Ludwig Institute for Cancer Research, Departments of Medicine and Cellular and Molecular Medicine, and Cancer Center, University of California at San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0669
| | - Claudio P. Albuquerque
- Ludwig Institute for Cancer Research, Departments of Medicine and Cellular and Molecular Medicine, and Cancer Center, University of California at San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0669
| | - Huilin Zhou
- Ludwig Institute for Cancer Research, Departments of Medicine and Cellular and Molecular Medicine, and Cancer Center, University of California at San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0669
| | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, Departments of Medicine and Cellular and Molecular Medicine, and Cancer Center, University of California at San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0669
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
161
|
Schönrock N, Exner V, Probst A, Gruissem W, Hennig L. Functional genomic analysis of CAF-1 mutants in Arabidopsis thaliana. J Biol Chem 2006; 281:9560-8. [PMID: 16452472 DOI: 10.1074/jbc.m513426200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Duplication of chromatin following DNA replication requires spatial reorganization of chromatin domains assisted by chromatin assembly factor CAF-1. Here, we tested the genomic consequences of CAF-1 loss and the function of chromatin assembly factor CAF-1 in heterochromatin formation. Genes located in heterochromatic regions are usually silent, and we found that this transcriptional repression persists in the absence of CAF-1 in Arabidopsis. However, using microarrays we observed that genes that are active during late S-phase, when heterochromatin is duplicated, were up-regulated in CAF-1 mutants. Arabidopsis CAF-1 mutants also have reduced cytological heterochromatin content; however, DNA methylation of pericentromeric repeats was normal, demonstrating that CAF-1 is not required for maintenance of DNA methylation. Instead, hypomethylation of the genome, which has only mild effects on the development of wild-type plants, completely arrested development of CAF-1 mutants. These results suggest that CAF-1 functions in heterochromatin formation. CAF-1 and DNA methylation, which is also needed for heterochromatin formation, have partially redundant functions that are essential for cell proliferation. Interestingly, transcriptional repression and heterochromatin compaction can be genetically separated, and CAF-1 is required only for the complete compaction of heterochromatin but not to maintain transcriptional repression of heterochromatic genes.
Collapse
Affiliation(s)
- Nicole Schönrock
- Institute of Plant Sciences, ETH Zurich and Zurich-Basel Plant Science Center, CH-8092 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
162
|
Abstract
There has been remarkable progress in the last 20 years in defining the molecular mechanisms that regulate initiation of DNA synthesis in eukaryotic cells. Replication origins in the DNA nucleate the ordered assembly of protein factors to form a prereplication complex (preRC) that is poised for DNA synthesis. Transition of the preRC to an active initiation complex is regulated by cyclin-dependent kinases and other signaling molecules, which promote further protein assembly and activate the mini chromosome maintenance helicase. We will review these mechanisms and describe the state of knowledge about the proteins involved. However, we will also consider an additional layer of complexity. The DNA in the cell is packaged with histone proteins into chromatin. Chromatin structure provides an additional layer of heritable information with associated epigenetic modifications. Thus, we will begin by describing chromatin structure, and how the cell generally controls access to the DNA. Access to the DNA requires active chromatin remodeling, specific histone modifications, and regulated histone deposition. Studies in transcription have revealed a variety of mechanisms that regulate DNA access, and some of these are likely to be shared with DNA replication. We will briefly describe heterochromatin as a model for an epigenetically inherited chromatin state. Next, we will describe the mechanisms of replication initiation and how these are affected by constraints of chromatin. Finally, chromatin must be reassembled with appropriate modifications following passage of the replication fork, and our third major topic will be the reassembly of chromatin and its associated epigenetic marks. Thus, in this chapter, we seek to bring together the studies of replication initiation and the studies of chromatin into a single holistic narrative.
Collapse
Affiliation(s)
- Angel P Tabancay
- Molecular and Computational Biology Section University of Southern California Los Angeles, California 90089, USA
| | | |
Collapse
|
163
|
Schwartz BE, Ahmad K. 2. Chromatin assembly with H3 histones: full throttle down multiple pathways. Curr Top Dev Biol 2006; 74:31-55. [PMID: 16860664 DOI: 10.1016/s0070-2153(06)74002-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The typical eukaryotic genome packages roughly 6 feet of DNA into a nucleus about 5 mum in diameter, yet this compaction blocks access to the DNA. At the first level of compaction, DNA is wrapped around octamers of core histone proteins to form arrays of nucleosomes. Nucleosomes are sufficient to block access to DNA, and cells must therefore manipulate nucleosomes in the course of activating the genome. Dramatic progress has been made in understanding the mechanisms by which nucleosomes are manipulated. In addition to the major core histones, most eukaryotic genomes also encode additional variant histones, which have some structural similarity. These are targeted to specific loci by coupling specialized nucleosome assembly pathways to DNA replication, transcription, or to developmental processes. We review evidence that nucleosome assembly pathways are interlinked with histone-modification systems, and may thereby perpetuate epigenetic chromatin states.
Collapse
Affiliation(s)
- Brian E Schwartz
- Department of BCMP, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
164
|
Abstract
Chromatin can be differentiated by the deposition of variant histones at centromeres, active genes, and silent loci. Variant histones are assembled into nucleosomes in a replication-independent manner, in contrast to assembly of bulk chromatin that is coupled to replication. Recent in vitro studies have provided the first glimpses of protein machines dedicated to building and replacing alternative nucleosomes. They deposit variant H2A and H3 histones and are targeted to particular functional sites in the genome. Differences between variant and canonical histones can have profound consequences, either for delivery of the histones to sites of assembly or for their function after incorporation into chromatin. Recent studies have also revealed connections between assembly of variant nucleosomes, chromatin remodeling, and histone post-translational modification. Taken together, these findings indicate that chromosome architecture can be highly dynamic at the most fundamental level, with epigenetic consequences.
Collapse
Affiliation(s)
- Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | |
Collapse
|
165
|
Huang S, Zhou H, Katzmann D, Hochstrasser M, Atanasova E, Zhang Z. Rtt106p is a histone chaperone involved in heterochromatin-mediated silencing. Proc Natl Acad Sci U S A 2005; 102:13410-5. [PMID: 16157874 PMCID: PMC1224646 DOI: 10.1073/pnas.0506176102] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epigenetic inheritance of heterochromatin structure is an important cellular process whose mechanism remains elusive. In this article, we describe the identification of nine enhancers of the silencing defect of a Saccharomyces cerevisiae-PCNA mutant by screening a library of approximately 4,700 viable yeast deletion mutants. Of the nine mutants identified, six (hir1, hir3, sas2, sas4, sas5, and sir1) were previously known to reduce silencing synergistically with a mutation in Cac1p, the large subunit of chromatin assembly factor 1 (CAF-1). The predicted gene products that are affected in three other mutants (nam7, msh2, and rtt106) have not been implicated previously in silencing. Characterization of the rtt106Delta allele revealed that it synergistically reduced heterochromatin silencing when combined with a mutation in Cac1p but not with a mutation in Asf1p (a histone H3 and H4 chaperone). Moreover, Rtt106p interacted with histones H3 and H4 both in vitro and in vivo, and it displayed a nucleosome assembly activity in vitro. Furthermore, Rtt106p interacts with CAF-1 physically through Cac1p. These biochemical and genetic data indicate that Rtt106p is a previously uncharacterized histone chaperone connecting S phase to epigenetic inheritance.
Collapse
Affiliation(s)
- Shengbing Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
166
|
Linger J, Tyler JK. The yeast histone chaperone chromatin assembly factor 1 protects against double-strand DNA-damaging agents. Genetics 2005; 171:1513-22. [PMID: 16143623 PMCID: PMC1456080 DOI: 10.1534/genetics.105.043000] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The removal of histones from DNA and their subsequent replacement is likely to be necessary for all processes that require access to the DNA sequence in eukaryotic cells. The histone chaperone chromatin assembly factor 1 (CAF-1) mediates histone H3-H4 assembly during DNA replication and nucleotide excision repair in vitro. We have found that budding yeast deleted for the genes encoding CAF-1 are highly sensitive to double-strand DNA-damaging agents. Our genetic analyses indicate that CAF-1 plays a role in both homologous recombination and nonhomologous end-joining pathways and that the function of CAF-1 during double-strand repair is distinct from that of another histone H3-H4 chaperone, anti-silencing function 1 (ASF1). CAF-1 does not protect the genome by assembling it into a damage-resistant chromatin structure, because induction of CAF-1 after DNA damage is sufficient to restore viability. Furthermore, CAF-1 is not required for repair of the DNA per se or for DNA damage checkpoint function. CAF-1-mediated resistance to DNA damage is dependent on the ability of CAF-1 to bind PCNA, indicating that PCNA may recruit CAF-1 to sites of double-strand DNA repair. We propose that CAF-1 has an essential role in assembling chromatin during double-strand-DNA repair.
Collapse
Affiliation(s)
- Jeffrey Linger
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center at Fitzsimons, Aurora, CO 80045, USA
| | | |
Collapse
|
167
|
Varga-Weisz P. Chromatin remodeling factors and DNA replication. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 38:1-30. [PMID: 15881889 DOI: 10.1007/3-540-27310-7_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chromatin structures have to be precisely duplicated during DNA replication to maintain tissue-specific gene expression patterns and specialized domains, such as the centromeres. Chromatin remodeling factors are key components involved in this process and include histone chaperones, histone modifying enzymes and ATP-dependent chromatin remodeling complexes. Several of these factors interact directly with components of the replication machinery. Histone variants are also important to mark specific chromatin domains. Because chromatin remodeling factors render chromatin dynamic, they may also be involved in facilitating the DNA replication process through condensed chromatin domains.
Collapse
|
168
|
Lewis LK, Karthikeyan G, Cassiano J, Resnick MA. Reduction of nucleosome assembly during new DNA synthesis impairs both major pathways of double-strand break repair. Nucleic Acids Res 2005; 33:4928-39. [PMID: 16141196 PMCID: PMC1197131 DOI: 10.1093/nar/gki806] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 08/15/2005] [Indexed: 11/23/2022] Open
Abstract
Assembly of new chromatin during S phase requires the histone chaperone complexes CAF-1 (Cac2p, Msi1p and Rlf2p) and RCAF (Asf1p plus acetylated histones H3 and H4). Cells lacking CAF-1 and RCAF are hypersensitive to DNA-damaging agents, such as methyl methanesulfonate and camptothecin, suggesting a possible defect in double-strand break (DSB) repair. Assays developed to quantitate repair of defined, cohesive-ended break structures revealed that DSB-induced plasmid:chromosome recombination was reduced approximately 10-fold in RCAF/CAF-1 double mutants. Recombination defects were similar with both chromosomal and plasmid targets in vivo, suggesting that inhibitory chromatin structures were not involved. Consistent with these observations, ionizing radiation-induced loss of heterozygosity was abolished in the mutants. Nonhomologous end-joining (NHEJ) repair proficiency and accuracy were intermediate between wild-type levels and those of NHEJ-deficient yku70 and rad50 mutants. The defects in NHEJ, but not homologous recombination, could be rescued by deletion of HMR-a1, a component of the a1/alpha2 transcriptional repressor complex. The findings are consistent with the observation that silent mating loci are partially derepressed. These results demonstrate that defective assembly of nucleosomes during new DNA synthesis compromises each of the known pathways of DSB repair and that the effects can be indirect consequences of changes in silenced chromatin structure.
Collapse
Affiliation(s)
- L Kevin Lewis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | | | | | | |
Collapse
|
169
|
Sharp JA, Rizki G, Kaufman PD. Regulation of histone deposition proteins Asf1/Hir1 by multiple DNA damage checkpoint kinases in Saccharomyces cerevisiae. Genetics 2005; 171:885-99. [PMID: 16020781 PMCID: PMC1456847 DOI: 10.1534/genetics.105.044719] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
CAF-1, Hir proteins, and Asf1 are histone H3/H4 binding proteins important for chromatin-mediated transcriptional silencing. We explored genetic and physical interactions between these proteins and S-phase/DNA damage checkpoint kinases in the budding yeast Saccharomyces cerevisiae. Although cells lacking checkpoint kinase Mec1 do not display defects in telomeric gene silencing, silencing was dramatically reduced in cells lacking both Mec1 and the Cac1 subunit of CAF-1. Silencing was restored in cac1Delta and cac1Delta mec1Delta cells upon deletion of Rad53, the kinase downstream of Mec1. Restoration of silencing to cac1Delta cells required both Hir1 and Asf1, suggesting that Mec1 counteracts functional sequestration of the Asf1/Hir1 complex by Rad53. Consistent with this idea, the degree of suppression of silencing defects by rad53 alleles correlated with effects on Asf1 binding. Furthermore, deletion of the Dun1 kinase, a downstream target of Rad53, also suppressed the silencing defects of cac1Delta cells and reduced the levels of Asf1 associated with Rad53 in vivo. Loss of Mec1 and Rad53 did not alter telomere lengths or Asf1 protein levels, nuclear localization, or chromosome association. We conclude that the Mec1 and Dun1 checkpoint kinases regulate the Asf1-Rad53 interaction and therefore affect the activity of the Asf1/Hir complex in vivo.
Collapse
Affiliation(s)
- Judith A Sharp
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | |
Collapse
|
170
|
Schermer UJ, Korber P, Hörz W. Histones Are Incorporated in trans during Reassembly of the Yeast PHO5 Promoter. Mol Cell 2005; 19:279-85. [PMID: 16039596 DOI: 10.1016/j.molcel.2005.05.028] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 04/27/2005] [Accepted: 05/31/2005] [Indexed: 11/27/2022]
Abstract
In yeast, remodeling of PHO5 promoter chromatin upon activation is accompanied by transient hyperacetylation and subsequent eviction of histones from the promoter in trans. In the course of rerepression, nucleosomes have to be reassembled on the promoter. We have analyzed where the histones for reassembly of the inactive promoter chromatin come from. The use of a strain with two differently tagged and differently regulated versions of histone H3 allowed us to discriminate between histones originating from the chromatin fraction and histones arising from the soluble histone pool. In this way, we show that the incorporated histones originate from a source in trans. Promoter closure occurs very rapidly, and the histone chaperones Asf1 and Hir1 as well as the SWI/SNF nucleosome remodeling complex appear to be important for rapid reassembly of nucleosomes at the PHO5 promoter.
Collapse
|
171
|
Hennig L, Bouveret R, Gruissem W. MSI1-like proteins: an escort service for chromatin assembly and remodeling complexes. Trends Cell Biol 2005; 15:295-302. [PMID: 15953547 DOI: 10.1016/j.tcb.2005.04.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 04/04/2005] [Accepted: 04/20/2005] [Indexed: 10/25/2022]
Abstract
MSI1-like WD40 repeat proteins are subunits of many protein complexes controlling chromatin dynamics. These proteins do not have any catalytic activity, but several recent studies using loss-of-function mutants established specific functions during development. Here, we review the current knowledge of MSI1-like proteins, including their phylogenetic history, expression patterns, biochemical interactions and mutant phenotypes. MSI1-like proteins, which are often targets or partners of tumor-suppressor proteins, are required during cell proliferation and differentiation in flies, nematodes and plants. We discuss the possibility that MSI1-like proteins could function to maintain epigenetic memory during development by targeting silencing complexes to chromatin during nucleosome assembly.
Collapse
Affiliation(s)
- Lars Hennig
- Institute of Plant Sciences, Swiss Federal Institute of Technology and Zürich-Basel Plant Science Center, ETH Center, CH-8092 Zürich.
| | | | | |
Collapse
|
172
|
Franco AA, Lam WM, Burgers PM, Kaufman PD. Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C. Genes Dev 2005; 19:1365-75. [PMID: 15901673 PMCID: PMC1142559 DOI: 10.1101/gad.1305005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chromatin assembly and DNA replication are temporally coupled, and DNA replication in the absence of histone synthesis causes inviability. Here we demonstrate that chromatin assembly factor Asf1 also affects DNA replication. In budding yeast cells lacking Asf1, the amounts of several DNA replication proteins, including replication factor C (RFC), proliferating cell nuclear antigen (PCNA), and DNA polymerase epsilon (Pol epsilon), are reduced at stalled replication forks. In contrast, DNA polymerase alpha (Pol alpha) accumulates to higher than normal levels at stalled forks in asf1Delta cells. Using purified, recombinant proteins, we demonstrate that RFC directly binds Asf1 and can recruit Asf1 to DNA molecules in vitro. We conclude that histone chaperone protein Asf1 maintains a subset of replication elongation factors at stalled replication forks and directly interacts with the replication machinery.
Collapse
Affiliation(s)
- Alexa A Franco
- Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley, 94720, USA
| | | | | | | |
Collapse
|
173
|
Ye J, Ai X, Eugeni EE, Zhang L, Carpenter LR, Jelinek MA, Freitas MA, Parthun MR. Histone H4 lysine 91 acetylation a core domain modification associated with chromatin assembly. Mol Cell 2005; 18:123-30. [PMID: 15808514 PMCID: PMC2855496 DOI: 10.1016/j.molcel.2005.02.031] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 01/27/2005] [Accepted: 02/25/2005] [Indexed: 10/25/2022]
Abstract
The acetylation of the NH2-terminal tail of histone H4 by type B histone acetyltransferases (HATs) is involved in the process of chromatin assembly. Histone H4 associated with a nuclear type B HAT complex contains modifications in its globular core domain as well. In particular, acetylation was found at lysine 91. A mutation that alters this residue, which lies in the interface between histone H3/H4 tetramers and H2A/H2B dimers, confers phenotypes consistent with defects in chromatin assembly such as sensitivity to DNA damaging agents and derepression and alteration of silent chromatin structure. In addition, this mutation destabilizes the histone octamer, leading to defects in chromatin structure. These results indicate an important role for histone modifications outside the NH2-tail domains in the processes of chromatin assembly, DNA repair, and transcriptional silencing.
Collapse
Affiliation(s)
- Jianxin Ye
- Department of Molecular and Cellular Biochemistry, The Ohio State University Columbus, Ohio 43210
| | - Xi Ai
- Department of Molecular and Cellular Biochemistry, The Ohio State University Columbus, Ohio 43210
| | - Ericka E. Eugeni
- Department of Molecular and Cellular Biochemistry, The Ohio State University Columbus, Ohio 43210
| | - Liwen Zhang
- Department of Chemistry, The Ohio State University Columbus, Ohio 43210
| | | | | | | | - Mark R. Parthun
- Department of Molecular and Cellular Biochemistry, The Ohio State University Columbus, Ohio 43210
- Correspondence:
| |
Collapse
|
174
|
Loeillet S, Palancade B, Cartron M, Thierry A, Richard GF, Dujon B, Doye V, Nicolas A. Genetic network interactions among replication, repair and nuclear pore deficiencies in yeast. DNA Repair (Amst) 2005; 4:459-68. [PMID: 15725626 DOI: 10.1016/j.dnarep.2004.11.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Accepted: 11/25/2004] [Indexed: 10/25/2022]
Abstract
The yeast RAD27 gene encodes a functional homolog of the mammalian FEN1 protein, a structure-specific endo/exonuclease which plays an important role in DNA replication and repair. Previous genetic interaction studies, including a synthetic genetic array (SGA) analysis, showed that the survival of rad27Delta cells requires several DNA metabolic processes, in particular those mediated by all members of the Rad52-dependent recombinational repair pathway. Here, we report the results of our SGA analysis of the collection of non-essential yeast genes against the rad27Delta mutation, which resulted in the identification of a novel synthetic lethal interaction conferred by mutations affecting the Nup84 nuclear pore subcomplex (nup133Delta, nup120Delta and nup84Delta). Additional screens showed that all Rad52 group genes are required for the survival of the nup133Delta and nup120Delta mutants, which are defective in nuclear pore distribution and mRNA export, but not of the nup133DeltaN mutant, which is solely defective in pore distribution. This requirement for the DNA double-strand break (DSB) repair pathway is consistent with the observation that, like rad27Delta, the nup133Delta, nup120Delta and nup84Delta mutants are sensitive to methyl methanesulfonate (MMS). Furthermore, nup133Delta cells exhibit an increased number of spontaneous DNA repair foci containing Rad52. Altogether, these data suggest that the pathological interactions between the rad27Delta and specific nupDelta mutations result from the accumulation of unrepaired DNA damages.
Collapse
Affiliation(s)
- Sophie Loeillet
- Institut Curie, Section de Recherche, UMR144 Centre National de la Recherche Scientifique, Génétique Moléculaire de la Recombinaison, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Harkness TAA, Arnason TG, Legrand C, Pisclevich MG, Davies GF, Turner EL. Contribution of CAF-I to anaphase-promoting-complex-mediated mitotic chromatin assembly in Saccharomyces cerevisiae. EUKARYOTIC CELL 2005; 4:673-84. [PMID: 15821127 PMCID: PMC1087812 DOI: 10.1128/ec.4.4.673-684.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Accepted: 01/21/2005] [Indexed: 11/20/2022]
Abstract
The anaphase-promoting complex (APC) is required for mitotic progression and genomic stability. Recently, we demonstrated that the APC is also required for mitotic chromatin assembly and longevity. Here, we investigated the role the APC plays in chromatin assembly. We show that apc5(CA) mutations genetically interact with the CAF-I genes as well as ASF1, HIR1, and HIR2. When present in multiple copies, the individual CAF-I genes, CAC1, CAC2, and MSI1, suppress apc5(CA) phenotypes in a CAF-1- and Asf1p-independent manner. CAF-I and the APC functionally overlap, as cac1delta cac2delta msi1delta (caf1delta) cells expressing apc5(CA) exhibit a phenotype more severe than that of apc5(CA) or caf1delta. The Ts- phenotypes observed in apc5(CA) and apc5(CA) caf mutants may be rooted in compromised histone metabolism, as coexpression of histones H3 and H4 suppressed the Ts- defects. Synthetic genetic interactions were also observed in apc5(CA) asf1delta cells. Furthermore, increased expression of genes encoding Asf1p, Hir1p, and Hir2p suppressed the apc5(CA) Ts- defect in a CAF-I-dependent manner. Together, these results suggest the existence of a complex molecular mechanism controlling APC-dependent chromatin assembly. Our data suggest the APC functions with the individual CAF-I subunits, Asf1p, and the Hir1p and Hir2p proteins. However, Asf1p and an intact CAF-I complex are dispensable for CAF-I subunit suppression, whereas CAF-I is necessary for ASF1, HIR1, and HIR2 suppression of apc5(CA) phenotypes. We discuss the implications of our observations.
Collapse
Affiliation(s)
- Troy A A Harkness
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | | | | | | | | | | |
Collapse
|
176
|
Zabaronick SR, Tyler JK. The histone chaperone anti-silencing function 1 is a global regulator of transcription independent of passage through S phase. Mol Cell Biol 2005; 25:652-60. [PMID: 15632066 PMCID: PMC543432 DOI: 10.1128/mcb.25.2.652-660.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the function of the histone H3/H4 chaperones anti-silencing function 1 (Asf1p) and chromatin assembly factor 1 (CAF-1) in global transcriptional regulation in budding yeast. Deletion of ASF1 or CAF-1 components led to global transcriptional misregulation, both activation and repression, of genes scattered throughout the 16 yeast chromosomes. To investigate direct effects on gene regulation, we developed an approach to destabilize Asf1p that results in its rapid degradation within minutes of transcriptional repression. Upon degradation of Asf1p, rapid global changes in gene expression occur without the requirement for passage through S phase or de novo protein synthesis. In particular, we demonstrate that the previously reported influence of Asf1p on histone gene expression is not a direct effect of loss of Asf1p. These data indicate that the histone chaperones CAF-1 and Asf1p regulate the gene expression of a broad array of genes in yeast and, in the case of Asf1p, this is likely to be due to a direct role in chromatin modulation during transcriptional regulation.
Collapse
Affiliation(s)
- Susan R Zabaronick
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, 12801 East 17th Ave., Aurora, CO 80010, USA
| | | |
Collapse
|
177
|
Shia WJ, Osada S, Florens L, Swanson SK, Washburn MP, Workman JL. Characterization of the yeast trimeric-SAS acetyltransferase complex. J Biol Chem 2005; 280:11987-94. [PMID: 15659401 DOI: 10.1074/jbc.m500276200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast SAS2 (Something About Silencing 2) gene encodes a member of the MYST protein family of histone acetyltransferases (HATs) and is involved in transcriptional silencing at all silent loci (HML, HMR, telomeres, and rDNA) in Saccharomyces cerevisiae. Sas2 is the catalytic subunit of a yeast histone acetyltransferase complex termed SAS complex. The enzymatic activity of SAS complex on free histones has been reported, but nucleosomal HAT activity has not yet been documented. Here we show that the native yeast SAS complex is a small trimeric protein complex composed solely of Sas2, Sas4, and Sas5 with a molecular mass of about 125 kDa. It is capable of acetylating both free histones and nucleosomes, although the nucleosomal HAT activity of SAS complex is very weak when compared with that of NuA4, the other member of MYST HAT complex. We also demonstrate that the putative acetyl CoA binding motif in Sas2 is essential for both the in vivo silencing function and the enzymatic activity of SAS complex. Unlike NuA4, which acetylates all four available lysines at the N-terminal tail of histone H4, SAS complex exclusively acetylates lysine 16 of histone H4 in vitro and is required for the bulk of H4 lysine 16 acetylation in vivo. This specific lysine preference corresponds to the role of SAS complex in antagonizing the spreading of Sir proteins at silent loci in S. cerevisiae.
Collapse
Affiliation(s)
- Wei-Jong Shia
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | | | | | | | |
Collapse
|
178
|
Ramey CJ, Howar S, Adkins M, Linger J, Spicer J, Tyler JK. Activation of the DNA damage checkpoint in yeast lacking the histone chaperone anti-silencing function 1. Mol Cell Biol 2005; 24:10313-27. [PMID: 15542840 PMCID: PMC529054 DOI: 10.1128/mcb.24.23.10313-10327.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The packaging of the eukaryotic genome into chromatin is likely to be important for the maintenance of genomic integrity. Chromatin structures are assembled onto newly synthesized DNA by the action of chromatin assembly factors, including anti-silencing function 1 (ASF1). To investigate the role of chromatin structure in the maintenance of genomic integrity, we examined budding yeast lacking the histone chaperone Asf1p. We found that yeast lacking Asf1p accumulate in metaphase of the cell cycle due to activation of the DNA damage checkpoint. Furthermore, yeast lacking Asf1p are highly sensitive to mutations in DNA polymerase alpha and to DNA replicational stresses. Although yeast lacking Asf1p do complete DNA replication, they have greatly elevated rates of DNA damage occurring during DNA replication, as indicated by spontaneous Ddc2p-green fluorescent protein foci. The presence of elevated levels of spontaneous DNA damage in asf1 mutants is due to increased DNA damage, rather than the failure to repair double-strand DNA breaks, because asf1 mutants are fully functional for double-strand DNA repair. Our data indicate that the altered chromatin structure in asf1 mutants leads to elevated rates of spontaneous recombination, mutation, and DNA damage foci formation arising during DNA replication, which in turn activates cell cycle checkpoints that respond to DNA damage.
Collapse
Affiliation(s)
- Christopher Josh Ramey
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center at Fitzsimons, P.O. Box 6511, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
179
|
Glowczewski L, Waterborg JH, Berman JG. Yeast chromatin assembly complex 1 protein excludes nonacetylatable forms of histone H4 from chromatin and the nucleus. Mol Cell Biol 2005; 24:10180-92. [PMID: 15542829 PMCID: PMC529027 DOI: 10.1128/mcb.24.23.10180-10192.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In yeast, the establishment and maintenance of a transcriptionally silent chromatin state are dependent upon the acetylation state of the N terminus of histone proteins. Histone H4 proteins that contain mutations in N-terminal lysines disrupt heterochromatin and result in yeast that cannot mate. Introduction of a wild-type copy of histone H4 restores mating, despite the presence of the mutant protein, suggesting that mutant H4 protein is either excluded from, or tolerated in, chromatin. To understand how the cell differentiates wild-type histone and mutant histone in which the four N-terminal lysines were replaced with alanine (H4-4A), we analyzed silencing, growth phenotypes, and the histone composition of chromatin in yeast strains coexpressing equal amounts of wild-type and mutant H4 proteins (histone H4 heterozygote). We found that histone H4 heterozygotes have defects in heterochromatin silencing and growth, implying that mutations in H4 are not completely recessive. Nuclear preparations from histone H4 heterozygotes contained less mutant H4 than wild-type H4, consistent with the idea that cells exclude some of the mutant histone. Surprisingly, the N-terminal nuclear localization signal of H4-4A fused to green fluorescent protein was defective in nuclear localization, while a mutant in which the four lysines were replaced with arginine (H4-4R) appeared to have normal nuclear import, implying a role for the charged state of the acetylatable lysines in the nuclear import of histones. The biased partial exclusion of H4-4A was dependent upon Cac1p, the largest subunit of yeast chromatin assembly factor 1 (CAF-1), as well as upon the karyopherin Kap123p, but was independent of Cac2p, another CAF-1 component, and other chromatin assembly proteins (Hir3p, Nap1p, and Asf1p). We conclude that N-terminal lysines of histone H4 are important for efficient histone nuclear import. In addition, our data support a model whereby Cac1p and Kap123 cooperate to ensure that only appropriately acetylated histone H4 proteins are imported into the nucleus.
Collapse
Affiliation(s)
- Lynn Glowczewski
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-170 MCB Building, 420 Washington Ave. SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
180
|
Abstract
During the development of a multicellular organism, cell differentiation involves activation and repression of transcription programs that must be stably maintained during subsequent cell divisions. Chromatin remodeling plays a crucial role in regulating chromatin states that conserve transcription programs and provide a mechanism for chromatin states to be maintained as cells proliferate, a process referred to as epigenetic inheritance. A large number of factors and protein complexes are now known to be involved in regulating the dynamic states of chromatin structure. Their biological functions and molecular mechanisms are beginning to be revealed.
Collapse
Affiliation(s)
- Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA.
| | | |
Collapse
|
181
|
Silverstein RA, Ekwall K. Sin3: a flexible regulator of global gene expression and genome stability. Curr Genet 2004; 47:1-17. [PMID: 15565322 DOI: 10.1007/s00294-004-0541-5] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 10/05/2004] [Accepted: 10/10/2004] [Indexed: 10/26/2022]
Abstract
SIN3 was first identified genetically as a global regulator of transcription. Sin3 is a large protein composed mainly of protein-interaction domains, whose function is to provide structural support for a heterogeneous Sin3/histone deacetylase (HDAC) complex. The core Sin3/HDAC complex is conserved from yeast to man and consists of eight proteins. In addition to HDACs, Sin3 can sequester other enzymatic functions, including nucleosome remodeling, DNA methylation, N-acetylglucoseamine transferase activity, and histone methylation. Since the Sin3/HDAC complex lacks any DNA-binding activity, it must be targeted to gene promoters by interacting with DNA-binding proteins. Although most research on Sin3 has focused on its role as a corepressor, mounting evidence suggests that Sin3 can also positively regulate transcription. Furthermore, Sin3 is key to the propagation of epigenetically silenced domains and is required for centromere function. Thus, Sin3 provides a platform to deliver multiple combinations modifications to the chromatin, using both sequence-specific and sequence-independent mechanisms.
Collapse
Affiliation(s)
- Rebecca A Silverstein
- Karolinska Institutet, Department of Biosciences, University College Sodertorn, Alfred Nobels Allé 7, 141 89, Huddinge, Sweden
| | | |
Collapse
|
182
|
Adkins MW, Tyler JK. The histone chaperone Asf1p mediates global chromatin disassembly in vivo. J Biol Chem 2004; 279:52069-74. [PMID: 15452122 DOI: 10.1074/jbc.m406113200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The packaging of the eukaryotic genome into chromatin is likely to be mediated by chromatin assembly factors, including histone chaperones. We investigated the function of the histone H3/H4 chaperones anti-silencing function 1 (Asf1p) and chromatin assembly factor 1 (CAF-1) in vivo. Analysis of chromatin structure by accessibility to micrococcal nuclease and DNase I digestion demonstrated that the chromatin from CAF-1 mutant yeast has increased accessibility to these enzymes. In agreement, the supercoiling of the endogenous 2mu plasmid is reduced in yeast lacking CAF-1. These results indicate that CAF-1 mutant yeast globally under-assemble their genome into chromatin, consistent with a role for CAF-1 in chromatin assembly in vivo. By contrast, asf1 mutants globally over-assemble their genome into chromatin, as suggested by decreased accessibility of their chromatin to micrococcal nuclease and DNase I digestion and increased supercoiling of the endogenous 2mu plasmid. Deletion of ASF1 causes a striking loss of acetylation on histone H3 lysine 9, but this is not responsible for the altered chromatin structure in asf1 mutants. These data indicate that Asf1p may have a global role in chromatin disassembly and an unexpected role in histone acetylation in vivo.
Collapse
Affiliation(s)
- Melissa W Adkins
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center at Fitzsimons, Aurora, Colorado 80045, USA
| | | |
Collapse
|
183
|
Polo SE, Theocharis SE, Klijanienko J, Savignoni A, Asselain B, Vielh P, Almouzni G. Chromatin assembly factor-1, a marker of clinical value to distinguish quiescent from proliferating cells. Cancer Res 2004; 64:2371-81. [PMID: 15059888 DOI: 10.1158/0008-5472.can-03-2893] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histone synthesis and chromatin assembly are mainly associated with DNA replication and are thus intimately involved in cell cycle regulation. The expression of key components involved in these events in human cells was studied in relation to cell-proliferative status. Among several chromatin assembly factors, chromatin assembly factor (CAF)-1 stood out as the most discriminating marker of the proliferative state. We show, using both immunofluorescence and Western blot analysis, that the expression of both CAF-1 large subunits, p150 and p60, is massively down-regulated during quiescence in several cell lines. Upon exit from the quiescent state, the CAF-1 subunits are re-expressed early, before DNA replication. The amounts of either total or chromatin-associated pools of CAF-1 proteins correlate directly with cell proliferation. Regulation of CAF-1 expression is partly controlled at the RNA level, as shown by quantitative reverse transcription-PCR and Northern blot experiments. Biological material from benign and malignant human breast tumors analyzed by immunocytochemistry and immunohistochemistry exhibits a strong positive correlation between CAF-1 p60 expression and the following proliferation markers: S-phase fraction (r = 0.84, P < 0.0001); Ki-67 (r = 0.94, P < 0.0001); and proliferating cell nuclear antigen (r = 0.95, P = 0.0001). We discuss the advantages of using CAF-1 to assess cell proliferation. High CAF-1 p60 levels are also shown to be associated with various prognostic factors. Our data highlight the precise association of CAF-1 expression with the proliferative state and validate the use of this factor as a useful proliferation marker and prognostic indicator in malignant and benign breast lesions.
Collapse
MESH Headings
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/physiology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Division/physiology
- Cell Line, Tumor
- Chromatin/metabolism
- Chromatin Assembly Factor-1
- Chromosomal Proteins, Non-Histone/biosynthesis
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomal Proteins, Non-Histone/physiology
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Female
- Gene Expression Regulation, Neoplastic
- HeLa Cells
- Humans
- Immunohistochemistry
- Middle Aged
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Resting Phase, Cell Cycle/physiology
- S Phase/physiology
- Transcription Factors
Collapse
Affiliation(s)
- Sophie E Polo
- Laboratories of Nuclear Dynamics and Genome Plasticity, Curie Institute/CNRS, Paris, France
| | | | | | | | | | | | | |
Collapse
|
184
|
Takeda S, Tadele Z, Hofmann I, Probst AV, Angelis KJ, Kaya H, Araki T, Mengiste T, Mittelsten Scheid O, Shibahara KI, Scheel D, Paszkowski J. BRU1, a novel link between responses to DNA damage and epigenetic gene silencing in Arabidopsis. Genes Dev 2004; 18:782-93. [PMID: 15082530 PMCID: PMC387418 DOI: 10.1101/gad.295404] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
DNA repair associated with DNA replication is important for the conservation of genomic sequence information, whereas reconstitution of chromatin after replication sustains epigenetic information. We have isolated and characterized mutations in the BRU1 gene of Arabidopsis that suggest a novel link between these underlying maintenance mechanisms. Bru1 plants are highly sensitive to genotoxic stress and show stochastic release of transcriptional gene silencing. They also show increased intrachromosomal homologous recombination and constitutively activated expression of poly (ADP-ribose) polymerase-2 (AtPARP-2), the induction of which is associated with elevated DNA damage. Bru1 mutations affect the stability of heterochromatin organization but do not interfere with genome-wide DNA methylation. BRU1 encodes a novel nuclear protein with two predicted protein-protein interaction domains. The developmental abnormalities characteristic of bru1 mutant plants resemble those triggered by mutations in genes encoding subunits of chromatin assembly factor (CAF-1), the condensin complex, or MRE11. Comparison of bru1 with these mutants indicates cooperative roles in the replication and stabilization of chromatin structure, providing a novel link between chromatin replication, epigenetic inheritance, S-phase DNA damage checkpoints, and the regulation of meristem development.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Chromatin Assembly Factor-1
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Cloning, Molecular
- Comet Assay
- DNA Damage
- DNA Methylation
- DNA Replication
- DNA, Plant/genetics
- DNA, Plant/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Endodeoxyribonucleases/genetics
- Endodeoxyribonucleases/metabolism
- Epigenesis, Genetic/genetics
- Exodeoxyribonucleases/genetics
- Exodeoxyribonucleases/metabolism
- Gene Expression Regulation, Plant
- Gene Silencing
- Genes, Plant/physiology
- Heterochromatin/chemistry
- Heterochromatin/genetics
- Heterochromatin/metabolism
- In Situ Hybridization, Fluorescence
- Meristem/growth & development
- Mutation/genetics
- Plants, Genetically Modified
- Protein Interaction Mapping
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombination, Genetic
- Reverse Transcriptase Polymerase Chain Reaction
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Shin Takeda
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Nabatiyan A, Krude T. Silencing of chromatin assembly factor 1 in human cells leads to cell death and loss of chromatin assembly during DNA synthesis. Mol Cell Biol 2004; 24:2853-62. [PMID: 15024074 PMCID: PMC371118 DOI: 10.1128/mcb.24.7.2853-2862.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eukaryotic cells, chromatin serves as the physiological template for gene transcription, DNA replication, and repair. Chromatin assembly factor 1 (CAF-1) is the prime candidate protein to mediate assembly of newly replicated DNA into chromatin. To investigate the physiological role of CAF-1 in vivo, we used RNA interference (RNAi) to silence the 60-kDa subunit of CAF-1 (p60) in human cells. Transfection of a small interfering RNA (siRNA) directed against p60 resulted in efficient silencing of p60 expression within 24 h. This silencing led to an induction of programmed cell death in proliferating but not in quiescent human cells. Concomitantly, proliferating cells lacking p60 accumulated DNA double-strand breaks and increased levels of the phosphorylated histone H2A.X. Nuclear extracts from cells lacking p60 exhibited a 10-fold reduction of nucleosome assembly activity during DNA synthesis, which was restored upon addition of recombinant p60 protein. Nascent chromatin in cell nuclei lacking p60 showed significantly increased nuclease sensitivity, indicating chromatin assembly defects during DNA synthesis in vivo. Collectively, these data identify CAF-1 as an essential factor not only for S-phase-specific chromatin assembly but also for proliferating cell viability.
Collapse
Affiliation(s)
- Arman Nabatiyan
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | | |
Collapse
|
186
|
Daganzo SM, Erzberger JP, Lam WM, Skordalakes E, Zhang R, Franco AA, Brill SJ, Adams PD, Berger JM, Kaufman PD. Structure and function of the conserved core of histone deposition protein Asf1. Curr Biol 2004; 13:2148-58. [PMID: 14680630 DOI: 10.1016/j.cub.2003.11.027] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Asf1 is a ubiquitous eukaryotic histone binding and deposition protein that mediates nucleosome formation in vitro and is required for genome stability in vivo. Studies in a variety of organisms have defined Asf1's role as a histone chaperone during DNA replication through specific interactions with histones H3/H4 and the histone deposition factor CAF-I. In addition to its role in replication, conserved interactions with proteins involved in chromatin silencing, transcription, chromatin remodeling, and DNA repair have also established Asf1 as an important component of a number of chromatin assembly and modulation complexes. RESULTS We demonstrate that the highly conserved N-terminal domain of S. cerevisiae Asf1 (Asf1N) is the core region that mediates all tested functions of the full-length protein. The crystal structure of this core domain, determined to 1.5 A resolution, reveals a compact immunoglobulin-like beta sandwich fold topped by three helical linkers. The surface of Asf1 displays a conserved hydrophobic groove flanked on one side by an area of strong electronegative surface potential. These regions represent potential binding sites for histones and other interacting proteins. The structural model also allowed us to interpret mutagenesis studies of the human Asf1a/HIRA interaction and to functionally define the region of Asf1 responsible for Hir1-dependent telomeric silencing in budding yeast. CONCLUSIONS The evolutionarily conserved, N-terminal 155 amino acids of histone deposition protein Asf1 are functional in vitro and in vivo. This core region of Asf1 adopts a compact immunoglobulin-fold structure with distinct surface characteristics, including a Hir protein binding region required for gene silencing.
Collapse
Affiliation(s)
- Sally M Daganzo
- Lawrence Berkeley National Laboratory, University of California-Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Barbie DA, Kudlow BA, Frock R, Zhao J, Johnson BR, Dyson N, Harlow E, Kennedy BK. Nuclear reorganization of mammalian DNA synthesis prior to cell cycle exit. Mol Cell Biol 2004; 24:595-607. [PMID: 14701733 PMCID: PMC343811 DOI: 10.1128/mcb.24.2.595-607.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In primary mammalian cells, DNA replication initiates in a small number of perinucleolar, lamin A/C-associated foci. During S-phase progression in proliferating cells, replication foci distribute to hundreds of sites throughout the nucleus. In contrast, we find that the limited perinucleolar replication sites persist throughout S phase as cells prepare to exit the cell cycle in response to contact inhibition, serum starvation, or replicative senescence. Proteins known to be involved in DNA synthesis, such as PCNA and DNA polymerase delta, are concentrated in perinucleolar foci throughout S phase under these conditions. Moreover, chromosomal loci are redirected toward the nucleolus and overlap with the perinucleolar replication foci in cells poised to undergo cell cycle exit. These same loci remain in the periphery of the nucleus during replication under highly proliferative conditions. These results suggest that mammalian cells undergo a large-scale reorganization of chromatin during the rounds of DNA replication that precede cell cycle exit.
Collapse
Affiliation(s)
- David A Barbie
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Kuzuhara T, Horikoshi M. A nuclear FK506-binding protein is a histone chaperone regulating rDNA silencing. Nat Struct Mol Biol 2004; 11:275-83. [PMID: 14981505 DOI: 10.1038/nsmb733] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Accepted: 01/23/2004] [Indexed: 01/16/2023]
Abstract
We report a novel chromatin-modulating factor, nuclear FK506-binding protein (FKBP). It is a member of the peptidyl prolyl cis-trans isomerase (PPIase) family, whose members were originally identified as enzymes that assist in the proper folding of polypeptides. The endogenous FKBP gene is required for the in vivo silencing of gene expression at the rDNA locus and FKBP has histone chaperone activity in vitro. Both of these properties depend on the N-terminal non-PPIase domain of the protein. The C-terminal PPIase domain is not essential for the histone chaperone activity in vitro, but it regulates rDNA silencing in vivo. Chromatin immunoprecipitation showed that nuclear FKBP associates with chromatin at rDNA loci in vivo. These in vivo and in vitro findings in nuclear FKBPs reveal a hitherto unsuspected link between PPIases and the alteration of chromatin structure.
Collapse
Affiliation(s)
- Takashi Kuzuhara
- Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | | |
Collapse
|
189
|
Franco AA, Kaufman PD. Histone deposition proteins: links between the DNA replication machinery and epigenetic gene silencing. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 69:201-8. [PMID: 16117650 DOI: 10.1101/sqb.2004.69.201] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- A A Franco
- Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
190
|
Robinson KM, Schultz MC. Replication-independent assembly of nucleosome arrays in a novel yeast chromatin reconstitution system involves antisilencing factor Asf1p and chromodomain protein Chd1p. Mol Cell Biol 2003; 23:7937-46. [PMID: 14585955 PMCID: PMC262415 DOI: 10.1128/mcb.23.22.7937-7946.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromatin assembly in a crude DEAE (CD) fraction from budding yeast is ATP dependent and generates arrays of physiologically spaced nucleosomes which significantly protect constituent DNA from restriction endonuclease digestion. The CD fractions from mutants harboring deletions of the genes encoding histone-binding factors (NAP1, ASF1, and a subunit of CAF-I) and SNF2-like DEAD/H ATPases (SNF2, ISW1, ISW2, CHD1, SWR1, YFR038w, and SPT20) were screened for activity in this replication-independent system. ASF1 deletion substantially inhibits assembly, a finding consistent with published evidence that Asf1p is a chromatin assembly factor. Surprisingly, a strong assembly defect is also associated with deletion of CHD1, suggesting that like other SNF2-related groups of nucleic acid-stimulated ATPases, the chromodomain (CHD) group may contain a member involved in chromatin reconstitution. In contrast to the effects of disrupting ASF1 and CHD1, deletion of SNF2 is associated with increased resistance of chromatin to digestion by micrococcal nuclease. We discuss the possible implications of these findings for current understanding of the diversity of mechanisms by which chromatin reconstitution and remodeling can be achieved in vivo.
Collapse
Affiliation(s)
- Karen M Robinson
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.
| | | |
Collapse
|
191
|
Green CM, Almouzni G. Local action of the chromatin assembly factor CAF-1 at sites of nucleotide excision repair in vivo. EMBO J 2003; 22:5163-74. [PMID: 14517254 PMCID: PMC204462 DOI: 10.1093/emboj/cdg478] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA damage and its repair can cause both local and global rearrangements of chromatin structure. In each case, the epigenetic information contained within this structure must be maintained. Using the recently developed method for the localized UV irradiation of cells, we analysed responses that occur locally to damage sites and global events triggered by local damage recognition. We thus demonstrate that, within a single cell, the recruitment of chromatin assembly factor 1 (CAF-1) to UV-induced DNA damage is a strictly local phenomenon, restricted to damage sites. Concomitantly, proliferating cell nuclear antigen (PCNA) locates to the same sites. This localized recruitment suggests that CAF-1 participates directly in chromatin structural rearrangements that occur in the vicinity of the damage. Use of nucleotide excision repair (NER)-deficient cells shows that the NER pathway--specifically dual incision--is required for recruitment of CAF-1 and PCNA. This in vivo demonstration of the local role of CAF-1, depending directly on NER, supports the hypothesis that CAF-1 ensures the maintenance of epigenetic information by acting locally at repair sites.
Collapse
Affiliation(s)
- Catherine M Green
- UMR218, Institut Curie Section de Recherche, 26 rue d'Ulm, 75248 Paris 05, France
| | | |
Collapse
|
192
|
Abstract
Checkpoint proteins are activated in response to genotoxic insults or replication stress to maintain genome integrity. Their function is believed to depend largely on the detection of the DNA damage or defects occurring during replication fork progression.
Collapse
Affiliation(s)
- Jean-Pierre Quivy
- Institut Curie, Research Section, UMR 218 du CNRS, 75218 Paris cedex 05, France
| | | |
Collapse
|
193
|
van Nocker S. CAF-1 and MSI1-related proteins: linking nucleosome assembly with epigenetics. TRENDS IN PLANT SCIENCE 2003; 8:471-473. [PMID: 14557043 DOI: 10.1016/j.tplants.2003.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Steven van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
194
|
Hoek M, Stillman B. Chromatin assembly factor 1 is essential and couples chromatin assembly to DNA replication in vivo. Proc Natl Acad Sci U S A 2003; 100:12183-8. [PMID: 14519857 PMCID: PMC218733 DOI: 10.1073/pnas.1635158100] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
De novo chromatin assembly maintains histone density on the daughter strands in the wake of the replication fork. The heterotrimer chromatin assembly factor 1 (CAF-1) couples DNA replication to histone deposition in vitro, but is not essential for yeast cell proliferation. Depletion of CAF-1 in human cell lines demonstrated that CAF-1 was required for efficient progression through S-phase. Cells lacking CAF-1 accumulated in early and mid S-phase and replicated DNA slowly. The checkpoint kinase Chk1, but not Chk2, was phosphorylated in response to CAF-1 depletion, consistent with a DNA replication defect. CAF-1-depleted cell extracts completely lacked DNA replication-coupled chromatin assembly activity, suggesting that CAF-1 is required for efficient S-phase progression in human cells. These results indicate that, in contrast to yeast, human CAF-1 is necessary for coupling chromatin assembly with DNA replication.
Collapse
Affiliation(s)
- Maarten Hoek
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
195
|
Livingstone-Zatchej M, Marcionelli R, Möller K, de Pril R, Thoma F. Repair of UV lesions in silenced chromatin provides in vivo evidence for a compact chromatin structure. J Biol Chem 2003; 278:37471-9. [PMID: 12882973 DOI: 10.1074/jbc.m306335200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genes positioned close to telomeres in yeast are silenced by a heterochromatin-like structure containing Sir proteins. To investigate whether silencing also affects DNA repair, we studied removal of UV lesions by photolyase and nucleotide excision repair (NER) in strains containing the URA3 gene inserted 2 kilobases from a telomere. URA3 was transcriptionally active in sir3delta mutants, partially silenced in SIR3 cells, or completely silenced by overexpression of SIR3 or deletion of RPD3. The active URA3 showed efficient repair by both pathways. Fast repair of the promoter and 3' end by photolyase reflected a non-nucleosomal structure. Partial silencing had no remarkable effect on photolyase but reduced repair by NER, indicating differential accessibility for the two repair reactions. Complete silencing inhibits NER and photolyase in the coding region as well as in the promoter and the 3'-end. Conventional nuclease footprinting analyses revealed subtle changes in the promoter proximal nucleosome under partially silenced conditions but a pronounced reorganization of chromatin extending over the whole gene in silenced chromatin. Thus, both repair systems are sensitive to chromatin changes associated with silencing and provide direct evidence for a compact structure of heterochromatin.
Collapse
|
196
|
Köhler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W. Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J 2003; 22:4804-14. [PMID: 12970192 PMCID: PMC212713 DOI: 10.1093/emboj/cdg444] [Citation(s) in RCA: 327] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Seed development in angiosperms initiates after double fertilization, leading to the formation of a diploid embryo and a triploid endosperm. The active repression of precocious initiation of certain aspects of seed development in the absence of fertilization requires the Polycomb group proteins MEDEA (MEA), FERTILIZATION-INDEPENDENT ENDOSPERM (FIE) and FERTILIZATION-INDEPENDENT SEED2. Here we show that the Arabidopsis WD-40 domain protein MSI1 is present together with MEA and FIE in a 600 kDa complex and interacts directly with FIE. Mutant plants heterozygous for msi1 show a seed abortion ratio of 50% with seeds aborting when the mutant allele is maternally inherited, irrespective of a paternal wild-type or mutant MSI1 allele. Further more, msi1 mutant gametophytes initiate endosperm development in the absence of fertilization at a high penetrance. After pollination, only the egg cell becomes fertilized, the central cell starts dividing prior to fertilization, resulting in the formation of seeds containing embryos surrounded by diploid endosperm. Our results establish that MSI1 has an essential function in the correct initiation and progression of seed development.
Collapse
Affiliation(s)
- Claudia Köhler
- Institute of Plant Biology and Zurich-Basel Plant Science Centre, University of Zurich, Zollikerstrasse 107, CH-8050 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
197
|
Abstract
Chromatin assembly is required for the duplication of eukaryotic chromosomes and functions at the interface between cell-cycle progression and gene expression. The central machinery that mediates chromatin assembly consists of histone chaperones, which deliver histones to the DNA, and ATP-utilizing motor proteins, which are DNA-translocating factors that act in conjunction with the histone chaperones to mediate the deposition of histones into periodic nucleosome arrays. Here, we describe these factors and propose possible mechanisms by which DNA-translocating motors might catalyse chromatin assembly.
Collapse
Affiliation(s)
- Karl A Haushalter
- Section of Molecular Biology, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0347, USA
| | | |
Collapse
|
198
|
Hennig L, Taranto P, Walser M, Schönrock N, Gruissem W. Arabidopsis MSI1 is required for epigenetic maintenance of reproductive development. Development 2003; 130:2555-65. [PMID: 12736201 DOI: 10.1242/dev.00470] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
WD40 repeat proteins similar to yeast MSI1 are conserved in animals and plants, in which they participate in complexes involved in chromatin metabolism. Although MSI1-like proteins are well characterised biochemically, their function in the development of multicellular eukaryotes is not well understood. We constructed Arabidopsis plants in which the AtMSI1 protein level was altered. Strong ectopic expression of AtMSI1 produced no visible altered phenotype, but reduction of AtMSI1 dramatically affected development. The primary shoot apical meristem was unable to develop organs after the transition to flowering. Flowers that developed on floral shoots from axillary meristems experienced a progressive loss of floral morphology, including a reduction in size of the petals and stamens and the development of carpel-like sepals. Ovule development was disrupted in all flowers, resulting in complete female sterility. Molecular analysis of the mutant plants revealed that AtMSI1 is required to maintain the correct temporal and organ-specific expression of homeotic genes, including AGAMOUS and APETALA2. In contrast, FAS1 and FAS2, which together with AtMSI1 form the chromatin assembly complex CAF-1, are not required for repression of these genes. Therefore, AtMSI1 has specific functions in addition to CAF-1-mediated chromatin assembly. Efficient formation of heterochromatin, but not methylation of centromeric DNA repeats, depends on AtMSI1 presence demonstrating a key role of AtMSI1 in maintenance of chromatin structure.
Collapse
Affiliation(s)
- Lars Hennig
- Institute of Plant Sciences, Swiss Federal Institute of Technology, ETH Centre, CH-8092 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
199
|
Myung K, Pennaneach V, Kats ES, Kolodner RD. Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability. Proc Natl Acad Sci U S A 2003; 100:6640-5. [PMID: 12750463 PMCID: PMC164500 DOI: 10.1073/pnas.1232239100] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Some spontaneous gross chromosomal rearrangements (GCRs) seem to result from DNA-replication errors. The chromatin-assembly factor I (CAF-I) and replication-coupling assembly factor (RCAF) complexes function in chromatin assembly during DNA replication and repair and could play a role in maintaining genome stability. Inactivation of CAF-I or RCAF increased the rate of accumulating different types of GCRs including translocations and deletion of chromosome arms with associated de novo telomere addition. Inactivation of CAF-I seems to cause damage that activates the DNA-damage checkpoints, whereas inactivation of RCAF seems to cause damage that activates the DNA-damage and replication checkpoints. Both defects result in increased genome instability that is normally suppressed by these checkpoints, RAD52-dependent recombination, and PIF1-dependent inhibition of de novo telomere addition. Treatment of CAF-I- or RCAF-defective cells with methyl methanesulfonate increased the induction of GCRs compared with that seen for a wild-type strain. These results indicate that coupling of chromatin assembly to DNA replication and DNA repair is critical to maintaining genome stability.
Collapse
Affiliation(s)
- Kyungjae Myung
- Ludwig Institute for Cancer Research, Cancer Center and Department of Medicine, University of California at San Diego School of Medicine, La Jolla 92093, USA
| | | | | | | |
Collapse
|
200
|
Sutton A, Shia WJ, Band D, Kaufman PD, Osada S, Workman JL, Sternglanz R. Sas4 and Sas5 are required for the histone acetyltransferase activity of Sas2 in the SAS complex. J Biol Chem 2003; 278:16887-92. [PMID: 12626510 DOI: 10.1074/jbc.m210709200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SAS2 gene is involved in transcriptional silencing in Saccharomyces cerevisiae. Based on its primary sequence, the Sas2 protein is predicted to be a member of the MYST family of histone acetyltransferases (HATs). Sas2 forms a complex with Sas4 and Sas5, which are required for its silencing function. Here we show that recombinant Sas2 has HAT activity that absolutely requires Sas4 and is stimulated by Sas5. The recombinant SAS complex acetylates H4 lysine 16 and H3 lysine 14. Furthermore, a purified SAS complex from yeast shows similar activity and specificity. In contrast to other MYST HATs, neither the recombinant nor the native SAS complex acetylated nucleosomal histones under conditions that were optimum for acetylating free histones. Finally, although the SAS subunits interact genetically and physically with Asf1, a histone deposition factor, association of H3 and H4 with Asf1 blocks their acetylation by the SAS complex, raising the possibility that the SAS HAT complex may acetylate free histones prior to their deposition onto DNA by Asf1 or CAF-I.
Collapse
Affiliation(s)
- Ann Sutton
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215, USA
| | | | | | | | | | | | | |
Collapse
|