151
|
Pérez-Pérez ME, Mauriès A, Maes A, Tourasse NJ, Hamon M, Lemaire SD, Marchand CH. The Deep Thioredoxome in Chlamydomonas reinhardtii: New Insights into Redox Regulation. MOLECULAR PLANT 2017; 10:1107-1125. [PMID: 28739495 DOI: 10.1016/j.molp.2017.07.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/04/2017] [Accepted: 07/11/2017] [Indexed: 05/20/2023]
Abstract
Thiol-based redox post-translational modifications have emerged as important mechanisms of signaling and regulation in all organisms, and thioredoxin plays a key role by controlling the thiol-disulfide status of target proteins. Recent redox proteomic studies revealed hundreds of proteins regulated by glutathionylation and nitrosylation in the unicellular green alga Chlamydomonas reinhardtii, while much less is known about the thioredoxin interactome in this organism. By combining qualitative and quantitative proteomic analyses, we have comprehensively investigated the Chlamydomonas thioredoxome and 1188 targets have been identified. They participate in a wide range of metabolic pathways and cellular processes. This study broadens not only the redox regulation to new enzymes involved in well-known thioredoxin-regulated metabolic pathways but also sheds light on cellular processes for which data supporting redox regulation are scarce (aromatic amino acid biosynthesis, nuclear transport, etc). Moreover, we characterized 1052 thioredoxin-dependent regulatory sites and showed that these data constitute a valuable resource for future functional studies in Chlamydomonas. By comparing this thioredoxome with proteomic data for glutathionylation and nitrosylation at the protein and cysteine levels, this work confirms the existence of a complex redox regulation network in Chlamydomonas and provides evidence of a tremendous selectivity of redox post-translational modifications for specific cysteine residues.
Collapse
Affiliation(s)
- María Esther Pérez-Pérez
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Adeline Mauriès
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Alexandre Maes
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Nicolas J Tourasse
- Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FRC550, CNRS, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Marion Hamon
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France; Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FRC550, CNRS, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Stéphane D Lemaire
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Christophe H Marchand
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France; Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FRC550, CNRS, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
152
|
Wang J, Wang Y, Lv Q, Wang L, Du J, Bao F, He YK. Nitric oxide modifies root growth by S-nitrosylation of plastidial glyceraldehyde-3-phosphate dehydrogenase. Biochem Biophys Res Commun 2017; 488:88-94. [DOI: 10.1016/j.bbrc.2017.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 01/11/2023]
|
153
|
Keech O, Gardeström P, Kleczkowski LA, Rouhier N. The redox control of photorespiration: from biochemical and physiological aspects to biotechnological considerations. PLANT, CELL & ENVIRONMENT 2017; 40:553-569. [PMID: 26791824 DOI: 10.1111/pce.12713] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/28/2015] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Photorespiration is a complex and tightly regulated process occurring in photosynthetic organisms. This process can alter the cellular redox balance, notably via the production and consumption of both reducing and oxidizing equivalents. Under certain circumstances, these equivalents, as well as reactive oxygen or nitrogen species, can become prominent in subcellular compartments involved in the photorespiratory process, eventually promoting oxidative post-translational modifications of proteins. Keeping these changes under tight control should therefore be of primary importance. In order to review the current state of knowledge about the redox control of photorespiration, we primarily performed a careful description of the known and potential redox-regulated or oxidation sensitive photorespiratory proteins, and examined in more details two interesting cases: the glycerate kinase and the glycine cleavage system. When possible, the potential impact and subsequent physiological regulations associated with these changes have been discussed. In the second part, we reviewed the extent to which photorespiration contributes to cellular redox homeostasis considering, in particular, the set of peripheral enzymes associated with the canonical photorespiratory pathway. Finally, some recent biotechnological strategies to circumvent photorespiration for future growth improvements are discussed in the light of these redox regulations.
Collapse
Affiliation(s)
- Olivier Keech
- Department of Plant Physiology, UPSC, Umeå University, S-90187, Umeå, Sweden
| | - Per Gardeström
- Department of Plant Physiology, UPSC, Umeå University, S-90187, Umeå, Sweden
| | | | - Nicolas Rouhier
- INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy Lorraine, 54280, Champenoux, France
- Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, 54506, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
154
|
Mioto PT, Rodríguez-Ruiz M, Mot AC, Zuccarelli R, Corpas FJ, Freschi L, Mercier H. Alternative fluorimetric-based method to detect and compare total S-nitrosothiols in plants. Nitric Oxide 2017; 68:7-13. [PMID: 28274830 DOI: 10.1016/j.niox.2017.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/18/2017] [Accepted: 03/03/2017] [Indexed: 01/07/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule occurring in virtually all organisms, whose mechanism of action relies mainly on its interaction with proteins or peptides by nitrosylation, forming compounds such as S-nitrosothiols (SNO). The Saville reaction and the ozone-based chemiluminescence method are the main techniques used for nitrosylated protein quantification. While the Saville assay is not very sensitive, the ozone-based chemiluminescence is expensive and time-consuming. Here we propose a method in which the protein-bound NO groups are exposed to UV light, cleaving the bond and allowing the quantification of the derived NO molecules by diamino-rhodamine (DAR) dyes. The DAR-based method was shown to be specific in plant tissues by pre-treatment of the samples with reducing agents and parallel EPR analysis. Spike-and-recovery assays revealed 72% recovery after a GSNO spike. Moreover, the method was significantly more sensitive than the Saville reaction, and this increase in sensitivity was crucial for detecting the reduced levels of nitrosylated proteins in plant species other than Arabidopsis. The method presented here is a suitable alternative to compare plant samples, allowing simple and fast detection of nitrosylated proteins.
Collapse
Affiliation(s)
- Paulo Tamaso Mioto
- Department of Botany, Biological Sciences Center, Universidade Federal de Santa Catarina, Campus Reitor João David Ferreira Lima, s/n, 88040-900, Florianópolis, Brazil.
| | - Marta Rodríguez-Ruiz
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008, Granada, Spain
| | - Augustin Catalin Mot
- Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 1 Mihail Kogălniceanu, 400084, Cluj Napoca, Romania
| | - Rafael Zuccarelli
- Department of Botany, Institute of Biosciences, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008, Granada, Spain
| | - Luciano Freschi
- Department of Botany, Institute of Biosciences, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Helenice Mercier
- Department of Botany, Institute of Biosciences, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| |
Collapse
|
155
|
Xu Q, Liu F, Chen P, Jez JM, Krishnan HB. β-N-Oxalyl-l-α,β-diaminopropionic Acid (β-ODAP) Content in Lathyrus sativus: The Integration of Nitrogen and Sulfur Metabolism through β-Cyanoalanine Synthase. Int J Mol Sci 2017; 18:ijms18030526. [PMID: 28264526 PMCID: PMC5372542 DOI: 10.3390/ijms18030526] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/06/2017] [Accepted: 02/21/2017] [Indexed: 11/16/2022] Open
Abstract
Grass pea (Lathyrus sativus L.) is an important legume crop grown mainly in South Asia and Sub-Saharan Africa. This underutilized legume can withstand harsh environmental conditions including drought and flooding. During drought-induced famines, this protein-rich legume serves as a food source for poor farmers when other crops fail under harsh environmental conditions; however, its use is limited because of the presence of an endogenous neurotoxic nonprotein amino acid β-N-oxalyl-l-α,β-diaminopropionic acid (β-ODAP). Long-term consumption of Lathyrus and β-ODAP is linked to lathyrism, which is a degenerative motor neuron syndrome. Pharmacological studies indicate that nutritional deficiencies in methionine and cysteine may aggravate the neurotoxicity of β-ODAP. The biosynthetic pathway leading to the production of β-ODAP is poorly understood, but is linked to sulfur metabolism. To date, only a limited number of studies have been conducted in grass pea on the sulfur assimilatory enzymes and how these enzymes regulate the biosynthesis of β-ODAP. Here, we review the current knowledge on the role of sulfur metabolism in grass pea and its contribution to β-ODAP biosynthesis. Unraveling the fundamental steps and regulation of β-ODAP biosynthesis in grass pea will be vital for the development of improved varieties of this underutilized legume.
Collapse
Affiliation(s)
- Quanle Xu
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Plant Genetics Research Unit, USDA-Agricultural Research Service, 108 Curtis Hall, University of Missouri, Columbia, MO 65211, USA.
| | - Fengjuan Liu
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Peng Chen
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Hari B Krishnan
- Plant Genetics Research Unit, USDA-Agricultural Research Service, 108 Curtis Hall, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
156
|
Grabsztunowicz M, Koskela MM, Mulo P. Post-translational Modifications in Regulation of Chloroplast Function: Recent Advances. FRONTIERS IN PLANT SCIENCE 2017; 8:240. [PMID: 28280500 PMCID: PMC5322211 DOI: 10.3389/fpls.2017.00240] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/08/2017] [Indexed: 05/08/2023]
Abstract
Post-translational modifications (PTMs) of proteins enable fast modulation of protein function in response to metabolic and environmental changes. Phosphorylation is known to play a major role in regulating distribution of light energy between the Photosystems (PS) I and II (state transitions) and in PSII repair cycle. In addition, thioredoxin-mediated redox regulation of Calvin cycle enzymes has been shown to determine the efficiency of carbon assimilation. Besides these well characterized modifications, recent methodological progress has enabled identification of numerous other types of PTMs in various plant compartments, including chloroplasts. To date, at least N-terminal and Lys acetylation, Lys methylation, Tyr nitration and S-nitrosylation, glutathionylation, sumoylation and glycosylation of chloroplast proteins have been described. These modifications impact DNA replication, control transcriptional efficiency, regulate translational machinery and affect metabolic activities within the chloroplast. Moreover, light reactions of photosynthesis as well as carbon assimilation are regulated at multiple levels by a number of PTMs. It is likely that future studies will reveal new metabolic pathways to be regulated by PTMs as well as detailed molecular mechanisms of PTM-mediated regulation.
Collapse
Affiliation(s)
| | | | - Paula Mulo
- Molecular Plant Biology, Department of Biochemistry, University of TurkuTurku, Finland
| |
Collapse
|
157
|
Castella C, Mirtziou I, Seassau A, Boscari A, Montrichard F, Papadopoulou K, Rouhier N, Puppo A, Brouquisse R. Post-translational modifications of Medicago truncatula glutathione peroxidase 1 induced by nitric oxide. Nitric Oxide 2017; 68:125-136. [PMID: 28193486 DOI: 10.1016/j.niox.2017.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 11/29/2022]
Abstract
Plant glutathione peroxidases (Gpx) catalyse the reduction of various peroxides, such as hydrogen peroxide (H2O2), phospholipid hydroperoxides and peroxynitrite, but at the expense of thioredoxins rather than glutathione. A main function of plant Gpxs is the protection of biological membranes by scavenging phospholipid hydroperoxides, but some Gpxs have also been associated with H2O2 sensing and redox signal transduction. Nitric oxide (NO) is not only known to induce the expression of Gpx family members, but also to inhibit Gpx activity, presumably through the S-nitrosylation of conserved cysteine residues. In the present study, the effects of NO-donors on both the activity and S-nitrosylation state of purified Medicago truncatula Gpx1 were analyzed using biochemical assay measurements and a biotin-switch/mass spectrometry approach. MtGpx1 activity was only moderately inhibited by the NO-donors diethylamine-NONOate and S-nitrosoglutathione, and the inhibition may be reversed by DTT. The three conserved Cys of MtGpx1 were found to be modified through S-nitrosylation and S-glutathionylation, although to different extents, by diethylamine-NONOate and S-nitrosoglutathione, or by a combination of diethylamine-NONOate and reduced glutathione. The regulation of MtGpx1 and its possible involvement in the signaling process is discussed in the light of these results.
Collapse
Affiliation(s)
- Claude Castella
- UMR INRA 1355, CNRS 7254, Université Nice Sophia Antipolis, Institut Sophia Agrobiotech, 06903 Sophia Antipolis Cedex, France
| | - Ioanna Mirtziou
- Department of Biochemistry & Biotechnology, Laboratory of Plant & Environmental Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Aurélie Seassau
- UMR INRA 1355, CNRS 7254, Université Nice Sophia Antipolis, Institut Sophia Agrobiotech, 06903 Sophia Antipolis Cedex, France
| | - Alexandre Boscari
- UMR INRA 1355, CNRS 7254, Université Nice Sophia Antipolis, Institut Sophia Agrobiotech, 06903 Sophia Antipolis Cedex, France
| | - Françoise Montrichard
- IRHS, Université d'Angers, INRA, AGROCAMPUS-Ouest, SFR 4207 QUASAV, 42 rue Georges Morel, 49071 Beaucouzé cedex, France
| | - Kalliopi Papadopoulou
- Department of Biochemistry & Biotechnology, Laboratory of Plant & Environmental Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Nicolas Rouhier
- UMR 1136 Interactions Arbres-Microorganismes, Université de Lorraine/INRA, F-54500 Vandoeuvre-lès-Nancy, France
| | - Alain Puppo
- UMR INRA 1355, CNRS 7254, Université Nice Sophia Antipolis, Institut Sophia Agrobiotech, 06903 Sophia Antipolis Cedex, France
| | - Renaud Brouquisse
- UMR INRA 1355, CNRS 7254, Université Nice Sophia Antipolis, Institut Sophia Agrobiotech, 06903 Sophia Antipolis Cedex, France.
| |
Collapse
|
158
|
Hancock JT. Harnessing Evolutionary Toxins for Signaling: Reactive Oxygen Species, Nitric Oxide and Hydrogen Sulfide in Plant Cell Regulation. FRONTIERS IN PLANT SCIENCE 2017; 8:189. [PMID: 28239389 PMCID: PMC5301010 DOI: 10.3389/fpls.2017.00189] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/30/2017] [Indexed: 05/09/2023]
Abstract
During the early periods of evolution, as well as in niche environments today, organisms have had to learn to tolerate the presence of many reactive compounds, such as reactive oxygen species, nitric oxide, and hydrogen sulfide. It is now known that such compounds are instrumental in the signaling processes in plant cells. There are enzymes which can make them, while downstream of their signaling pathways are coming to light. These include the production of cGMP, the activation of MAP kinases and transcription factors, and the modification of thiol groups on many proteins. However, organisms have also had to tolerate other reactive compounds such as ammonia, methane, and hydrogen gas, and these too are being found to have profound effects on signaling in cells. Before a holistic view of how such signaling works, the full effects and interactions of all such reactive compounds needs to be embraced. A full understanding will be beneficial to both agriculture and future therapeutic strategies.
Collapse
Affiliation(s)
- John T. Hancock
- Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of EnglandBristol, UK
| |
Collapse
|
159
|
Woźniak A, Formela M, Bilman P, Grześkiewicz K, Bednarski W, Marczak Ł, Narożna D, Dancewicz K, Mai VC, Borowiak-Sobkowiak B, Floryszak-Wieczorek J, Gabryś B, Morkunas I. The Dynamics of the Defense Strategy of Pea Induced by Exogenous Nitric Oxide in Response to Aphid Infestation. Int J Mol Sci 2017; 18:E329. [PMID: 28165429 PMCID: PMC5343865 DOI: 10.3390/ijms18020329] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/12/2017] [Accepted: 01/19/2017] [Indexed: 01/24/2023] Open
Abstract
The aim of this study was to investigate the effect of exogenous nitric oxide (NO), i.e., S-nitrosoglutathione (GSNO) and sodium nitroprusside (SNP), on the metabolic status of Pisum sativum L. cv. Cysterski leaves infested by Acyrthosiphon pisum Harris, population demographic parameters and A. pisum feeding activity. A reduction in the level of semiquinone radicals in pea seedling leaves pretreated with exogenous NO occurred 24 h after A. pisum infestation, which was earlier than in non-pretreated leaves. A decrease in the level of O₂•- was observed in leaves pretreated with GSNO and infested by aphids at 48 and 72 h post-infestation (hpi). Directly after the pretreatment with GSNO, an increase in the level of metal ions was recorded. NO considerably induced the relative mRNA levels for phenylalanine ammonia-lyase in 24-h leaves pretreated with NO donors, both non-infested and infested. NO stimulated the accumulation of pisatin in leaves until 24 h. The Electrical Penetration Graph revealed a reduction in the feeding activity of the pea aphid on leaves pretreated with NO. The present study showed that foliar application of NO donors induced sequentially defense reactions of pea against A. pisum and had a deterrent effect on aphid feeding and limited the population growth rate.
Collapse
Affiliation(s)
- Agnieszka Woźniak
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Magda Formela
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Piotr Bilman
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Katarzyna Grześkiewicz
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Waldemar Bednarski
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland.
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| | - Dorota Narożna
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland.
| | - Katarzyna Dancewicz
- Department of Botany and Ecology, University of Zielona Góra, Prof. Z. Szafrana 1, 65-516 Zielona Góra, Poland.
| | - Van Chung Mai
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Beata Borowiak-Sobkowiak
- Department of Entomology and Environmental Protection, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland.
| | | | - Beata Gabryś
- Department of Botany and Ecology, University of Zielona Góra, Prof. Z. Szafrana 1, 65-516 Zielona Góra, Poland.
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| |
Collapse
|
160
|
Mengel A, Ageeva A, Georgii E, Bernhardt J, Wu K, Durner J, Lindermayr C. Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases. PLANT PHYSIOLOGY 2017; 173:1434-1452. [PMID: 27980017 PMCID: PMC5291017 DOI: 10.1104/pp.16.01734] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/13/2016] [Indexed: 05/17/2023]
Abstract
Histone acetylation, which is an important mechanism to regulate gene expression, is controlled by the opposing action of histone acetyltransferases and histone deacetylases (HDACs). In animals, several HDACs are subjected to regulation by nitric oxide (NO); in plants, however, it is unknown whether NO affects histone acetylation. We found that treatment with the physiological NO donor S-nitrosoglutathione (GSNO) increased the abundance of several histone acetylation marks in Arabidopsis (Arabidopsis thaliana), which was strongly diminished in the presence of the NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. This increase was likely triggered by NO-dependent inhibition of HDAC activity, since GSNO and S-nitroso-N-acetyl-dl-penicillamine significantly and reversibly reduced total HDAC activity in vitro (in nuclear extracts) and in vivo (in protoplasts). Next, genome-wide H3K9/14ac profiles in Arabidopsis seedlings were generated by chromatin immunoprecipitation sequencing, and changes induced by GSNO, GSNO/2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or trichostatin A (an HDAC inhibitor) were quantified, thereby identifying genes that display putative NO-regulated histone acetylation. Functional classification of these genes revealed that many of them are involved in the plant defense response and the abiotic stress response. Furthermore, salicylic acid, which is the major plant defense hormone against biotrophic pathogens, inhibited HDAC activity and increased histone acetylation by inducing endogenous NO production. These data suggest that NO affects histone acetylation by targeting and inhibiting HDAC complexes, resulting in the hyperacetylation of specific genes. This mechanism might operate in the plant stress response by facilitating the stress-induced transcription of genes.
Collapse
Affiliation(s)
- Alexander Mengel
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich/Neuherberg, Germany (A.M., A.A., E.G., J.D., C.L.)
- Institute for Microbiology, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald, Germany (J.B.)
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (K.W.); and
- Department of Biochemical Plant Pathology, Technische Universität München, 85354 Freising, Germany (J.D.)
| | - Alexandra Ageeva
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich/Neuherberg, Germany (A.M., A.A., E.G., J.D., C.L.)
- Institute for Microbiology, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald, Germany (J.B.)
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (K.W.); and
- Department of Biochemical Plant Pathology, Technische Universität München, 85354 Freising, Germany (J.D.)
| | - Elisabeth Georgii
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich/Neuherberg, Germany (A.M., A.A., E.G., J.D., C.L.)
- Institute for Microbiology, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald, Germany (J.B.)
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (K.W.); and
- Department of Biochemical Plant Pathology, Technische Universität München, 85354 Freising, Germany (J.D.)
| | - Jörg Bernhardt
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich/Neuherberg, Germany (A.M., A.A., E.G., J.D., C.L.)
- Institute for Microbiology, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald, Germany (J.B.)
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (K.W.); and
- Department of Biochemical Plant Pathology, Technische Universität München, 85354 Freising, Germany (J.D.)
| | - Keqiang Wu
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich/Neuherberg, Germany (A.M., A.A., E.G., J.D., C.L.)
- Institute for Microbiology, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald, Germany (J.B.)
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (K.W.); and
- Department of Biochemical Plant Pathology, Technische Universität München, 85354 Freising, Germany (J.D.)
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich/Neuherberg, Germany (A.M., A.A., E.G., J.D., C.L.)
- Institute for Microbiology, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald, Germany (J.B.)
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (K.W.); and
- Department of Biochemical Plant Pathology, Technische Universität München, 85354 Freising, Germany (J.D.)
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich/Neuherberg, Germany (A.M., A.A., E.G., J.D., C.L.);
- Institute for Microbiology, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald, Germany (J.B.);
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (K.W.); and
- Department of Biochemical Plant Pathology, Technische Universität München, 85354 Freising, Germany (J.D.)
| |
Collapse
|
161
|
O’Leary BM, Plaxton WC. Mechanisms and Functions of Post-translational Enzyme Modifications in the Organization and Control of Plant Respiratory Metabolism. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2017. [DOI: 10.1007/978-3-319-68703-2_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
162
|
Ni M, Zhang L, Shi YF, Wang C, Lu Y, Pan J, Liu JZ. Excessive Cellular S-nitrosothiol Impairs Endocytosis of Auxin Efflux Transporter PIN2. FRONTIERS IN PLANT SCIENCE 2017; 8:1988. [PMID: 29218054 PMCID: PMC5704370 DOI: 10.3389/fpls.2017.01988] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/03/2017] [Indexed: 05/20/2023]
Abstract
S-nitrosoglutathione reductase (GSNOR1) is the key enzyme that regulates cellular levels of S-nitrosylation across kingdoms. We have previously reported that loss of GSNOR1 resulted in impaired auxin signaling and compromised auxin transport in Arabidopsis, leading to the auxin-related morphological phenotypes. However, the molecular mechanism underpinning the compromised auxin transport in gsnor1-3 mutant is still unknown. Endocytosis of plasma-membrane (PM)-localized efflux PIN proteins play critical roles in auxin transport. Therefore, we investigate whether loss of GSNOR1 function has any effects on the endocytosis of PIN-FORMED (PIN) proteins. It was found that the endocytosis of either the endogenous PIN2 or the transgenically expressed PIN2-GFP was compromised in the root cells of gsnor1-3 seedlings relative to Col-0. The internalization of PM-associated PIN2 or PIN2-GFP into Brefeldin A (BFA) bodies was significantly reduced in gsnor1-3 upon BFA treatment in a manner independent of de novo protein synthesis. In addition, the exogenously applied GSNO not only compromised the endocytosis of PIN2-GFP but also inhibited the root elongation in a concentration-dependent manner. Taken together, our results indicate that, besides the reduced PIN2 level, one or more compromised components in the endocytosis pathway could account for the reduced endocytosis of PIN2 in gsnor1-3.
Collapse
Affiliation(s)
- Min Ni
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Lei Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Ya-Fei Shi
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Chao Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yiran Lu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jianwei Pan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jian-Zhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
- *Correspondence: Jian-Zhong Liu
| |
Collapse
|
163
|
Hashiguchi A, Komatsu S. Impact of Post-Translational Modifications of Crop Proteins under Abiotic Stress. Proteomes 2016; 4:proteomes4040042. [PMID: 28248251 PMCID: PMC5260974 DOI: 10.3390/proteomes4040042] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 11/30/2016] [Accepted: 12/16/2016] [Indexed: 12/15/2022] Open
Abstract
The efficiency of stress-induced adaptive responses of plants depends on intricate coordination of multiple signal transduction pathways that act coordinately or, in some cases, antagonistically. Protein post-translational modifications (PTMs) can regulate protein activity and localization as well as protein-protein interactions in numerous cellular processes, thus leading to elaborate regulation of plant responses to various external stimuli. Understanding responses of crop plants under field conditions is crucial to design novel stress-tolerant cultivars that maintain robust homeostasis even under extreme conditions. In this review, proteomic studies of PTMs in crops are summarized. Although the research on the roles of crop PTMs in regulating stress response mechanisms is still in its early stage, several novel insights have been retrieved so far. This review covers techniques for detection of PTMs in plants, representative PTMs in plants under abiotic stress, and how PTMs control functions of representative proteins. In addition, because PTMs under abiotic stresses are well described in soybeans under submergence, recent findings in PTMs of soybean proteins under flooding stress are introduced. This review provides information on advances in PTM study in relation to plant adaptations to abiotic stresses, underlining the importance of PTM study to ensure adequate agricultural production in the future.
Collapse
Affiliation(s)
- Akiko Hashiguchi
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan.
| | - Setsuko Komatsu
- National Institute of Crop Science, NARO, Tsukuba 305-8518, Japan.
| |
Collapse
|
164
|
Fuseler JW, Valarmathi MT. Nitric Oxide Modulates Postnatal Bone Marrow-Derived Mesenchymal Stem Cell Migration. Front Cell Dev Biol 2016; 4:133. [PMID: 27933292 PMCID: PMC5122209 DOI: 10.3389/fcell.2016.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/01/2016] [Indexed: 01/06/2023] Open
Abstract
Nitric oxide (NO) is a small free-radical gas molecule, which is highly diffusible and can activate a wide range of downstream effectors, with rapid and widespread cellular effects. NO is a versatile signaling mediator with a plethora of cellular functions. For example, NO has been shown to regulate actin, the microfilament, dependent cellular functions, and also acts as a putative stem cell differentiation-inducing agent. In this study, using a wound-healing model of cellular migration, we have explored the effect of exogenous NO on the kinetics of movement and morphological changes in postnatal bone marrow-derived mesenchymal stem cells (MSCs). Cellular migration kinetics and morphological changes of the migrating MSCs were measured in the presence of an NO donor (S-Nitroso-N-Acetyl-D,L-Penicillamine, SNAP), especially, to track the dynamics of single-cell responses. Two experimental conditions were assessed, in which SNAP (200 μM) was applied to the MSCs. In the first experimental group (SN-1), SNAP was applied immediately following wound formation, and migration kinetics were determined for 24 h. In the second experimental group (SN-2), MSCs were pretreated for 7 days with SNAP prior to wound formation and the determination of migration kinetics. The generated displacement curves were further analyzed by non-linear regression analysis. The migration displacement of the controls and NO treated MSCs (SN-1 and SN-2) was best described by a two parameter exponential functions expressing difference constant coefficients. Additionally, changes in the fractal dimension (D) of migrating MSCs were correlated with their displacement kinetics for all the three groups. Overall, these data suggest that NO may evidently function as a stop migration signal by disordering the cytoskeletal elements required for cell movement and proliferation of MSCs.
Collapse
Affiliation(s)
- John W Fuseler
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina Columbia, SC, USA
| | - Mani T Valarmathi
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign Urbana, IL, USA
| |
Collapse
|
165
|
Imran QM, Falak N, Hussain A, Mun BG, Sharma A, Lee SU, Kim KM, Yun BW. Nitric Oxide Responsive Heavy Metal-Associated Gene AtHMAD1 Contributes to Development and Disease Resistance in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:1712. [PMID: 27917181 PMCID: PMC5116471 DOI: 10.3389/fpls.2016.01712] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/31/2016] [Indexed: 05/29/2023]
Abstract
Exposure of plants to different biotic and abiotic stress condition instigates significant change in the cellular redox status; resulting in the elevation of reactive nitrogen species that play signaling role in mediating defense responses. Heavy metal associated (HMA) domain containing genes are required for spatio-temporal transportation of metal ions that bind with various enzymes and co-factors within the cell. To uncover the underlying mechanisms mediated by AtHMA genes, we identified 14 Arabidopsis HMA genes that were differentially expressed in response to nitrosative stress through RNA-seq analysis. Of those 14 genes, the expression of eight HMA genes was significantly increased, whereas that of six genes was significantly reduced. We further validated the RNA-seq results through quantitative real-time PCR analysis. Gene ontology analysis revealed the involvement of these genes in biological processes such as hemostasis and transport. The majority of these nitric oxide (NO)-responsive AtHMA gene products are carrier/transport proteins. AtHMAD1 (At1g51090) showed the highest fold change to S-nitrosocystein. We therefore, further investigated its role in oxidative and nitrosative mediated stress conditions and found that AtHMAD1 has antagonistic role in shoot and root growth. Characterization of AtHMAD1 through functional genomics showed that the knock out mutant athmad1 plants were resistant to virulent Pseudomonas syringae (DC3000) and showed early induction and high transcript accumulation of pathogenesis related gene. Furthermore, inoculation of athamd1 with avirulent strain of the same bacteria showed negative regulation of R-gene mediated resistance. These results were supported by hypersensitive cell death response and cell death induced electrolyte leakage. AtHMAD1 was also observed to negatively regulate systemic acquired resistance SAR as the KO mutant showed induction of SAR marker genes. Overall, these results imply that NO-responsive AtHMA domain containing genes may play an important role in plant development and immunity.
Collapse
Affiliation(s)
- Q. Muhammad Imran
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Noreen Falak
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Adil Hussain
- Department of Agriculture, Abdul Wali Khan UniversityMardan, Pakistan
| | - Bong-Gyu Mun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Arti Sharma
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Sang-Uk Lee
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Kyung-Min Kim
- Laboratory of Plant Molecular Breeding, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| |
Collapse
|
166
|
Hashiguchi A, Komatsu S. Posttranslational Modifications and Plant-Environment Interaction. Methods Enzymol 2016; 586:97-113. [PMID: 28137579 DOI: 10.1016/bs.mie.2016.09.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Posttranslational modifications (PTMs) of proteins such as phosphorylation and ubiquitination are crucial for controlling protein stability, localization, and conformation. Genetic information encoded in DNA is transcribed, translated, and increases its complexity by multiple PTMs. Conformational change introduced by PTMs affects interacting partners of each proteins and their downstream signaling; therefore, PTMs are the major level of modulations of total outcome of living cells. Plants are living in harsh environment that requires unremitting physiological modulation to survive, and the plant response to various environment stresses is regulated by PTMs of proteins. This review deals with the novel knowledge of PTM-focused proteomic studies on various life conditions. PTMs are focused that mediate plant-environment interaction such as stress perception, protein homeostasis, control of energy shift, and defense by immune system. Integration of diverse signals on a protein via multiple PTMs is discussed as well, considering current situation where signal integration became an emerging area approached by systems biology into account.
Collapse
Affiliation(s)
- A Hashiguchi
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - S Komatsu
- National Institute of Crop Science, NARO, Tsukuba, Japan.
| |
Collapse
|
167
|
Bègue H, Jeandroz S, Blanchard C, Wendehenne D, Rosnoblet C. Structure and functions of the chaperone-like p97/CDC48 in plants. Biochim Biophys Acta Gen Subj 2016; 1861:3053-3060. [PMID: 27717811 DOI: 10.1016/j.bbagen.2016.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The chaperone-like p97 is a member of the AAA+ ATPase enzyme family that contributes to numerous cellular activities. P97 has been broadly studied in mammals (VCP/p97) and yeasts (CDC48: Cell Division Cycle 48/p97) and numerous investigations highlighted that this protein is post-translationally regulated, is structured in homohexamer and interacts with partners and cofactors that direct it to distinct cellular signalization pathway including protein quality control and degradation, cell cycle regulation, genome stability, vesicular trafficking, autophagy and immunity. SCOPE OF REVIEW p97 is also conserved in plants (CDC48) but its functions are less understood. In the present review we intended to present the state of the art of the structure, regulation and functions of CDC48 in plants. MAJOR CONCLUSIONS Evidence accumulated underline that CDC48 plays a crucial role in development, cell cycle regulation and protein turnover in plants. Furthermore, its involvement in plant immunity has recently emerged and first interacting partners have been identified, shedding light on its putative cellular activities. GENERAL SIGNIFICANCE Identification of emerging functions of CDC48 in plants opens new roads of research in immunity and provides new insights into the mechanisms of protein quality control.
Collapse
Affiliation(s)
- Hervé Bègue
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Sylvain Jeandroz
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Cécile Blanchard
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Claire Rosnoblet
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
168
|
Testard A, Da Silva D, Ormancey M, Pichereaux C, Pouzet C, Jauneau A, Grat S, Robe E, Brière C, Cotelle V, Mazars C, Thuleau P. Calcium- and Nitric Oxide-Dependent Nuclear Accumulation of Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase in Response to Long Chain Bases in Tobacco BY-2 Cells. PLANT & CELL PHYSIOLOGY 2016; 57:2221-2231. [PMID: 27585463 DOI: 10.1093/pcp/pcw137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/31/2016] [Indexed: 05/03/2023]
Abstract
Sphinganine or dihydrosphingosine (d18:0, DHS), one of the most abundant free sphingoid long chain bases (LCBs) in plants, is known to induce a calcium-dependent programmed cell death (PCD) in plants. In addition, in tobacco BY-2 cells, it has been shown that DHS triggers a rapid production of H2O2 and nitric oxide (NO). Recently, in analogy to what is known in the animal field, plant cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC), a ubiquitous enzyme involved in glycolysis, has been suggested to fulfill other functions associated with its oxidative post-translational modifications such as S-nitrosylation on cysteine residues. In particular, in mammals, stress signals inducing NO production promote S-nitrosylation of GAPC and its subsequent translocation into the nucleus where the protein participates in the establishment of apoptosis. In the present study, we investigated the behavior of GAPC in tobacco BY-2 cells treated with DHS. We found that upon DHS treatment, an S-nitrosylated form of GAPC accumulated in the nucleus. This accumulation was dependent on NO production. Two genes encoding GAPCs, namely Nt(BY-2)GAPC1 and Nt(BY-2)GAPC2, were cloned. Transient overexpression of Nt(BY-2)GAPC-green fluorescent protein (GFP) chimeric constructs indicated that both proteins localized in the cytoplasm as well as in the nucleus. Mutating into serine the two cysteine residues thought to be S-nitrosylated in response to DHS did not modify the localization of the proteins, suggesting that S-nitrosylation of GAPCs was probably not necessary for their nuclear relocalization. Interestingly, using Förster resonance energy transfer experiments, we showed that Nt(BY-2)GAPCs interact with nucleic acids in the nucleus. When GAPCs were mutated on their cysteine residues, their interaction with nucleic acids was abolished, suggesting a role for GAPCs in the protection of nucleic acids against oxidative stress.
Collapse
Affiliation(s)
- Ambroise Testard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
- These authors contributed equally to this work
| | - Daniel Da Silva
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
- These authors contributed equally to this work
| | - Mélanie Ormancey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
| | - Carole Pichereaux
- Institut de Pharmacologie et de Biologie Structurale IPBS CNRS, Fédération de Recherche 3450 Agrobiosciences Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi Pyrénées, Toulouse, France
| | - Cécile Pouzet
- Institut Fédératif de Recherche 3450, Plateforme Imagerie-Microscopie, Pôle de Biotechnologie Végétale, 31326, Castanet-Tolosan, France
| | - Alain Jauneau
- Institut Fédératif de Recherche 3450, Plateforme Imagerie-Microscopie, Pôle de Biotechnologie Végétale, 31326, Castanet-Tolosan, France
| | - Sabine Grat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
| | - Eugénie Robe
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
| | - Christian Brière
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
| | - Valérie Cotelle
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
| | - Christian Mazars
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
| | - Patrice Thuleau
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
| |
Collapse
|
169
|
Skelly MJ, Frungillo L, Spoel SH. Transcriptional regulation by complex interplay between post-translational modifications. CURRENT OPINION IN PLANT BIOLOGY 2016; 33:126-132. [PMID: 27450430 DOI: 10.1016/j.pbi.2016.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 05/25/2023]
Abstract
Transcriptional reprogramming in response to developmental changes or environmental inputs is regulated by a wide variety of transcription factors and cofactors. In plants, the stability of many transcriptional regulators is mediated by the ubiquitin-mediated proteasome. Recent reports suggest that additional post-translational modifications modulate the ubiquitination and thus stability of transcriptional regulators. In addition to well-recognized phosphorylative control, particularly conjugation to the ubiquitin-like protein SUMO as well as thiol modification by nitric oxide to yield S-nitrosothiols, are emerging as key regulatory steps for governing protein ubiquitination in the nucleus. Complex interplay between these different post-translational modifications may provide robust control mechanisms to fine tune developmental and stress-responsive transcriptional programs.
Collapse
Affiliation(s)
- Michael J Skelly
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom
| | - Lucas Frungillo
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom.
| |
Collapse
|
170
|
Tichá T, Luhová L, Petřivalský M. Functions and Metabolism of S-Nitrosothiols and S-Nitrosylation of Proteins in Plants: The Role of GSNOR. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-40713-5_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
171
|
Chen Y, Zou T, McCormick S. S-Adenosylmethionine Synthetase 3 Is Important for Pollen Tube Growth. PLANT PHYSIOLOGY 2016; 172:244-53. [PMID: 27482079 PMCID: PMC5074607 DOI: 10.1104/pp.16.00774] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/30/2016] [Indexed: 05/03/2023]
Abstract
S-Adenosylmethionine is widely used in a variety of biological reactions and participates in the methionine (Met) metabolic pathway. In Arabidopsis (Arabidopsis thaliana), one of the four S-adenosylmethionine synthetase genes, METHIONINE ADENOSYLTRANSFERASE3 (MAT3), is highly expressed in pollen. Here, we show that mat3 mutants have impaired pollen tube growth and reduced seed set. Metabolomics analyses confirmed that mat3 pollen and pollen tubes overaccumulate Met and that mat3 pollen has several metabolite profiles, such as those of polyamine biosynthesis, which are different from those of the wild type. Additionally, we show that disruption of Met metabolism in mat3 pollen affected transfer RNA and histone methylation levels. Thus, our results suggest a connection between metabolism and epigenetics.
Collapse
Affiliation(s)
- Yuan Chen
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, and Department of Plant and Microbial Biology, University of California Berkeley, Albany, California 94710
| | - Ting Zou
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, and Department of Plant and Microbial Biology, University of California Berkeley, Albany, California 94710
| | - Sheila McCormick
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, and Department of Plant and Microbial Biology, University of California Berkeley, Albany, California 94710
| |
Collapse
|
172
|
Sharma S, Sehrawat A, Deswal R. Asada-Halliwell pathway maintains redox status in Dioscorea alata tuber which helps in germination. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:20-29. [PMID: 27457980 DOI: 10.1016/j.plantsci.2016.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/04/2016] [Accepted: 05/18/2016] [Indexed: 06/06/2023]
Abstract
Reactive Oxygen Species (ROS) are important regulatory molecules governing physiological processes. In the present study a biochemical and proteome level comparison of two contrasting growth stages of Dioscorea alata tuber namely germinating and mature tuber was performed in order to understand the tuber physiology and biochemistry. Existence of all the component enzymes [APx (ascorbate peroxidase), GR (glutathione reductase), DHAR (dehydroascorbate reductase), MDHAR (mono-dehydroascorbate reductase)] and major products [ascorbate (ASC) and glutathione (GSH)] of the cycle showed an operational Asada-Halliwell cycle in the tuber. A 2.65 fold increase in ASC content & a 3.8 fold increase in GR activity fortified the redox milieu during germination. In contrast a 5 fold higher H2O2 content (due to 3.08 fold lower APx activity) and accumulation of reactive nitrogen species (RNS) such as nitric oxide (NO, 2.4-fold) and S-nitrosothiol (SNO, 2.08 fold) contributed to overall oxidative conditions in the mature tuber. The carbonic anhydrase (CA, 7.5 fold), DHAR (5.31 fold) and MDHAR (7 fold) activities were higher in the germinating tuber in comparison with the mature tuber. GSNO negatively regulated the CA (3.6 & 3.95 fold), MDHAR (7.5 & 1.5 fold) and APx (2.3 & 1.81 fold) while another NO donor, CysNO negatively regulated the DHAR (2.24 & 1.32 fold) activity in the mature and germinating stages respectively indicating again that the lesser inhibition by NO (via nitrosylation) may be because of overall reducing environment in the germinating tuber. Increased SNO leading to S-nitrosylation of dioscorin was confirmed by Biotin switch assay. This is the first report showing dioscorin nitrosylation. The present analysis showed differential redox regulation and also suggests the physiological relevance of CA, DHAR, MDHAR, APx & GR in tuber germination for the first time. These enzymes may be used as potential markers of tuber germination in future.
Collapse
Affiliation(s)
- Shruti Sharma
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, India
| | - Ankita Sehrawat
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, India
| | - Renu Deswal
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, India.
| |
Collapse
|
173
|
Silveira NM, Frungillo L, Marcos FCC, Pelegrino MT, Miranda MT, Seabra AB, Salgado I, Machado EC, Ribeiro RV. Exogenous nitric oxide improves sugarcane growth and photosynthesis under water deficit. PLANTA 2016; 244:181-90. [PMID: 27002974 DOI: 10.1007/s00425-016-2501-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/03/2016] [Indexed: 05/08/2023]
Abstract
Nitric oxide (NO)-mediated redox signaling plays a role in alleviating the negative impact of water stress in sugarcane plants by improving root growth and photosynthesis. Drought is an environmental limitation affecting sugarcane growth and yield. The redox-active molecule nitric oxide (NO) is known to modulate plant responses to stressful conditions. NO may react with glutathione (GSH) to form S-nitrosoglutathione (GSNO), which is considered the main reservoir of NO in cells. Here, we investigate the role of NO in alleviating the effects of water deficit on growth and photosynthesis of sugarcane plants. Well-hydrated plants were compared to plants under drought and sprayed with mock (water) or GSNO at concentrations ranging from 10 to 1000 μM. Leaf GSNO sprayed plants showed significant improvement of relative water content and leaf and root dry matter under drought compared to mock-sprayed plants. Additionally, plants sprayed with GSNO (≥ 100 μM) showed higher leaf gas exchange and photochemical activity as compared to mock-sprayed plants under water deficit and after rehydration. Surprisingly, a raise in the total S-nitrosothiols content was observed in leaves sprayed with GSH or GSNO, suggesting a long-term role of NO-mediated responses to water deficit. Experiments with leaf discs fumigated with NO gas also suggested a role of NO in drought tolerance of sugarcane plants. Overall, our data indicate that the NO-mediated redox signaling plays a role in alleviating the negative effects of water stress in sugarcane plants by protecting the photosynthetic apparatus and improving shoot and root growth.
Collapse
Affiliation(s)
- Neidiquele M Silveira
- Laboratory of Plant Physiology "Coaracy M. Franco", Center R&D in Ecophysiology and Biophysics, Agronomic Institute (IAC), Campinas, SP, Brazil
| | - Lucas Frungillo
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
| | - Fernanda C C Marcos
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Milena T Pelegrino
- Department of Exact and Earth Sciences, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil
| | - Marcela T Miranda
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Amedea B Seabra
- Department of Exact and Earth Sciences, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil
| | - Ione Salgado
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Eduardo C Machado
- Laboratory of Plant Physiology "Coaracy M. Franco", Center R&D in Ecophysiology and Biophysics, Agronomic Institute (IAC), Campinas, SP, Brazil
| | - Rafael V Ribeiro
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
174
|
Mitochondrial Proteome Studies in Seeds during Germination. Proteomes 2016; 4:proteomes4020019. [PMID: 28248229 PMCID: PMC5217346 DOI: 10.3390/proteomes4020019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/09/2016] [Accepted: 06/16/2016] [Indexed: 01/25/2023] Open
Abstract
Seed germination is considered to be one of the most critical phases in the plant life cycle, establishing the next generation of a plant species. It is an energy-demanding process that requires functioning mitochondria. One of the earliest events of seed germination is progressive development of structurally simple and metabolically quiescent promitochondria into fully active and cristae-containing mitochondria, known as mitochondrial biogenesis. This is a complex and tightly regulated process, which is accompanied by sequential and dynamic gene expression, protein synthesis, and post-translational modifications. The aim of this review is to give a comprehensive summary of seed mitochondrial proteome studies during germination of various plant model organisms. We describe different gel-based and gel-free proteomic approaches used to characterize mitochondrial proteomes of germinating seeds as well as challenges and limitations of these proteomic studies. Furthermore, the dynamic changes in the abundance of the mitochondrial proteomes of germinating seeds are illustrated, highlighting numerous mitochondrial proteins involved in respiration, tricarboxycylic acid (TCA) cycle, metabolism, import, and stress response as potentially important for seed germination. We then review seed mitochondrial protein carbonylation, phosphorylation, and S-nitrosylation as well as discuss the possible link between these post-translational modifications (PTMs) and the regulation of seed germination.
Collapse
|
175
|
Donaldson L, Meier S, Gehring C. The arabidopsis cyclic nucleotide interactome. Cell Commun Signal 2016; 14:10. [PMID: 27170143 PMCID: PMC4865018 DOI: 10.1186/s12964-016-0133-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. METHODS An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. RESULTS A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. CONCLUSIONS We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.
Collapse
Affiliation(s)
- Lara Donaldson
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag × 3, Rondebosch, 7701, South Africa.
| | - Stuart Meier
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Christoph Gehring
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
176
|
Moore M, Gossmann N, Dietz KJ. Redox Regulation of Cytosolic Translation in Plants. TRENDS IN PLANT SCIENCE 2016; 21:388-397. [PMID: 26706442 DOI: 10.1016/j.tplants.2015.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/31/2015] [Accepted: 11/05/2015] [Indexed: 05/19/2023]
Abstract
Control of protein homeostasis is crucial for environmental acclimation of plants. In this context, translational control is receiving increasing attention, particularly since post-translational modifications of the translational apparatus allow very fast and highly effective control of protein synthesis. Reduction and oxidation (redox) reactions decisively control translation by modifying initiation, elongation, and termination of translation. This opinion article compiles information on the redox sensitivity of cytosolic translation factors and the significance of redox regulation as a key modulator of translation for efficient acclimation to changing environmental conditions.
Collapse
Affiliation(s)
- Marten Moore
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| | - Nikolaj Gossmann
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany.
| |
Collapse
|
177
|
Vanzo E, Merl-Pham J, Velikova V, Ghirardo A, Lindermayr C, Hauck SM, Bernhardt J, Riedel K, Durner J, Schnitzler JP. Modulation of Protein S-Nitrosylation by Isoprene Emission in Poplar. PLANT PHYSIOLOGY 2016; 170:1945-61. [PMID: 26850277 PMCID: PMC4825136 DOI: 10.1104/pp.15.01842] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/04/2016] [Indexed: 05/18/2023]
Abstract
Researchers have been examining the biological function(s) of isoprene in isoprene-emitting (IE) species for two decades. There is overwhelming evidence that leaf-internal isoprene increases the thermotolerance of plants and protects them against oxidative stress, thus mitigating a wide range of abiotic stresses. However, the mechanisms of abiotic stress mitigation by isoprene are still under debate. Here, we assessed the impact of isoprene on the emission of nitric oxide (NO) and the S-nitroso-proteome of IE and non-isoprene-emitting (NE) gray poplar (Populus × canescens) after acute ozone fumigation. The short-term oxidative stress induced a rapid and strong emission of NO in NE compared with IE genotypes. Whereas IE and NE plants exhibited under nonstressful conditions only slight differences in their S-nitrosylation pattern, the in vivo S-nitroso-proteome of the NE genotype was more susceptible to ozone-induced changes compared with the IE plants. The results suggest that the nitrosative pressure (NO burst) is higher in NE plants, underlining the proposed molecular dialogue between isoprene and the free radical NO Proteins belonging to the photosynthetic light and dark reactions, the tricarboxylic acid cycle, protein metabolism, and redox regulation exhibited increased S-nitrosylation in NE samples compared with IE plants upon oxidative stress. Because the posttranslational modification of proteins via S-nitrosylation often impacts enzymatic activities, our data suggest that isoprene indirectly regulates the production of reactive oxygen species (ROS) via the control of the S-nitrosylation level of ROS-metabolizing enzymes, thus modulating the extent and velocity at which the ROS and NO signaling molecules are generated within a plant cell.
Collapse
Affiliation(s)
- Elisa Vanzo
- Helmholtz Zentrum München, Research Unit Environmental Simulation (E.V., V.V., A.G., J.-P.S.), Institute of Biochemical Plant Pathology (C.L., J.D.), and Research Unit Protein Science (J.M.-P., S.M.H.), D-85764 Neuherberg, Germany;Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (V.V.); andInstitute for Microbiology, Ernst-Moritz-Arndt University, 17487 Greifswald, Germany (J.B., K.R.)
| | - Juliane Merl-Pham
- Helmholtz Zentrum München, Research Unit Environmental Simulation (E.V., V.V., A.G., J.-P.S.), Institute of Biochemical Plant Pathology (C.L., J.D.), and Research Unit Protein Science (J.M.-P., S.M.H.), D-85764 Neuherberg, Germany;Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (V.V.); andInstitute for Microbiology, Ernst-Moritz-Arndt University, 17487 Greifswald, Germany (J.B., K.R.)
| | - Violeta Velikova
- Helmholtz Zentrum München, Research Unit Environmental Simulation (E.V., V.V., A.G., J.-P.S.), Institute of Biochemical Plant Pathology (C.L., J.D.), and Research Unit Protein Science (J.M.-P., S.M.H.), D-85764 Neuherberg, Germany;Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (V.V.); andInstitute for Microbiology, Ernst-Moritz-Arndt University, 17487 Greifswald, Germany (J.B., K.R.)
| | - Andrea Ghirardo
- Helmholtz Zentrum München, Research Unit Environmental Simulation (E.V., V.V., A.G., J.-P.S.), Institute of Biochemical Plant Pathology (C.L., J.D.), and Research Unit Protein Science (J.M.-P., S.M.H.), D-85764 Neuherberg, Germany;Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (V.V.); andInstitute for Microbiology, Ernst-Moritz-Arndt University, 17487 Greifswald, Germany (J.B., K.R.)
| | - Christian Lindermayr
- Helmholtz Zentrum München, Research Unit Environmental Simulation (E.V., V.V., A.G., J.-P.S.), Institute of Biochemical Plant Pathology (C.L., J.D.), and Research Unit Protein Science (J.M.-P., S.M.H.), D-85764 Neuherberg, Germany;Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (V.V.); andInstitute for Microbiology, Ernst-Moritz-Arndt University, 17487 Greifswald, Germany (J.B., K.R.)
| | - Stefanie M Hauck
- Helmholtz Zentrum München, Research Unit Environmental Simulation (E.V., V.V., A.G., J.-P.S.), Institute of Biochemical Plant Pathology (C.L., J.D.), and Research Unit Protein Science (J.M.-P., S.M.H.), D-85764 Neuherberg, Germany;Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (V.V.); andInstitute for Microbiology, Ernst-Moritz-Arndt University, 17487 Greifswald, Germany (J.B., K.R.)
| | - Jörg Bernhardt
- Helmholtz Zentrum München, Research Unit Environmental Simulation (E.V., V.V., A.G., J.-P.S.), Institute of Biochemical Plant Pathology (C.L., J.D.), and Research Unit Protein Science (J.M.-P., S.M.H.), D-85764 Neuherberg, Germany;Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (V.V.); andInstitute for Microbiology, Ernst-Moritz-Arndt University, 17487 Greifswald, Germany (J.B., K.R.)
| | - Katharina Riedel
- Helmholtz Zentrum München, Research Unit Environmental Simulation (E.V., V.V., A.G., J.-P.S.), Institute of Biochemical Plant Pathology (C.L., J.D.), and Research Unit Protein Science (J.M.-P., S.M.H.), D-85764 Neuherberg, Germany;Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (V.V.); andInstitute for Microbiology, Ernst-Moritz-Arndt University, 17487 Greifswald, Germany (J.B., K.R.)
| | - Jörg Durner
- Helmholtz Zentrum München, Research Unit Environmental Simulation (E.V., V.V., A.G., J.-P.S.), Institute of Biochemical Plant Pathology (C.L., J.D.), and Research Unit Protein Science (J.M.-P., S.M.H.), D-85764 Neuherberg, Germany;Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (V.V.); andInstitute for Microbiology, Ernst-Moritz-Arndt University, 17487 Greifswald, Germany (J.B., K.R.)
| | - Jörg-Peter Schnitzler
- Helmholtz Zentrum München, Research Unit Environmental Simulation (E.V., V.V., A.G., J.-P.S.), Institute of Biochemical Plant Pathology (C.L., J.D.), and Research Unit Protein Science (J.M.-P., S.M.H.), D-85764 Neuherberg, Germany;Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (V.V.); andInstitute for Microbiology, Ernst-Moritz-Arndt University, 17487 Greifswald, Germany (J.B., K.R.)
| |
Collapse
|
178
|
Gaupels F, Furch ACU, Zimmermann MR, Chen F, Kaever V, Buhtz A, Kehr J, Sarioglu H, Kogel KH, Durner J. Systemic Induction of NO-, Redox-, and cGMP Signaling in the Pumpkin Extrafascicular Phloem upon Local Leaf Wounding. FRONTIERS IN PLANT SCIENCE 2016; 7:154. [PMID: 26904092 PMCID: PMC4751408 DOI: 10.3389/fpls.2016.00154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/29/2016] [Indexed: 05/29/2023]
Abstract
Cucurbits developed the unique extrafascicular phloem (EFP) as a defensive structure against herbivorous animals. Mechanical leaf injury was previously shown to induce a systemic wound response in the EFP of pumpkin (Cucurbita maxima). Here, we demonstrate that the phloem antioxidant system and protein modifications by NO are strongly regulated during this process. Activities of the central antioxidant enzymes dehydroascorbate reductase, glutathione reductase and ascorbate reductase were rapidly down-regulated at 30 min with a second minimum at 24 h after wounding. As a consequence levels of total ascorbate and glutathione also decreased with similar bi-phasic kinetics. These results hint toward a wound-induced shift in the redox status of the EFP. Nitric oxide (NO) is another important player in stress-induced redox signaling in plants. Therefore, we analyzed NO-dependent protein modifications in the EFP. Six to forty eight hours after leaf damage total S-nitrosothiol content and protein S-nitrosylation were clearly reduced, which was contrasted by a pronounced increase in protein tyrosine nitration. Collectively, these findings suggest that NO-dependent S-nitrosylation turned into peroxynitrite-mediated protein nitration upon a stress-induced redox shift probably involving the accumulation of reactive oxygen species within the EFP. Using the biotin switch assay and anti-nitrotyrosine antibodies we identified 9 candidate S-nitrosylated and 6 candidate tyrosine-nitrated phloem proteins. The wound-responsive Phloem Protein 16-1 (PP16-1) and Cyclophilin 18 (CYP18) as well as the 26.5 kD isoform of Phloem Protein 2 (PP2) were amenable to both NO modifications and could represent important redox-sensors within the cucurbit EFP. We also found that leaf injury triggered the systemic accumulation of cyclic guanosine monophosphate (cGMP) in the EFP and discuss the possible function of this second messenger in systemic NO and redox signaling within the EFP.
Collapse
Affiliation(s)
- Frank Gaupels
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | - Alexandra C. U. Furch
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-UniversityJena, Germany
| | - Matthias R. Zimmermann
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-UniversityJena, Germany
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical SchoolHannover, Germany
| | - Anja Buhtz
- Department Lothar Willmitzer, Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Julia Kehr
- Biocenter Klein Flottbek, University HamburgHamburg, Germany
| | - Hakan Sarioglu
- Department of Protein Science, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | - Karl-Heinz Kogel
- Research Center for BioSystems, Land Use and Nutrition, Institute of Phytopathology, Justus Liebig University GiessenGiessen, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| |
Collapse
|
179
|
Zaffagnini M, De Mia M, Morisse S, Di Giacinto N, Marchand CH, Maes A, Lemaire SD, Trost P. Protein S-nitrosylation in photosynthetic organisms: A comprehensive overview with future perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:952-66. [PMID: 26861774 DOI: 10.1016/j.bbapap.2016.02.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/15/2016] [Accepted: 02/04/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND The free radical nitric oxide (NO) and derivative reactive nitrogen species (RNS) play essential roles in cellular redox regulation mainly through protein S-nitrosylation, a redox post-translational modification in which specific cysteines are converted to nitrosothiols. SCOPE OF VIEW This review aims to discuss the current state of knowledge, as well as future perspectives, regarding protein S-nitrosylation in photosynthetic organisms. MAJOR CONCLUSIONS NO, synthesized by plants from different sources (nitrite, arginine), provides directly or indirectly the nitroso moiety of nitrosothiols. Biosynthesis, reactivity and scavenging systems of NO/RNS, determine the NO-based signaling including the rate of protein nitrosylation. Denitrosylation reactions compete with nitrosylation in setting the levels of nitrosylated proteins in vivo. GENERAL SIGNIFICANCE Based on a combination of proteomic, biochemical and genetic approaches, protein nitrosylation is emerging as a pervasive player in cell signaling networks. Specificity of protein nitrosylation and integration among different post-translational modifications are among the major challenges for future experimental studies in the redox biology field. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- M Zaffagnini
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - M De Mia
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - S Morisse
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - N Di Giacinto
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - C H Marchand
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - A Maes
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - S D Lemaire
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| | - P Trost
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
180
|
Du S, Zhang R, Zhang P, Liu H, Yan M, Chen N, Xie H, Ke S. Elevated CO2-induced production of nitric oxide (NO) by NO synthase differentially affects nitrate reductase activity in Arabidopsis plants under different nitrate supplies. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:893-904. [PMID: 26608644 DOI: 10.1093/jxb/erv506] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
CO2 elevation often alters the plant's nitrate reductase (NR) activity, the first enzyme acting in the nitrate assimilation pathway. However, the mechanism underlying this process remains unknown. The association between elevated CO2-induced alterations of NR activity and nitric oxide (NO) was examined in Col-0 Arabidopsis fed with 0.2-10 mM nitrate, using NO donors, NO scavenger, and NO synthase (NOS) inhibitor. The noa1 mutant, in which most NOS activity was lost, and the NR activity-null mutant nia1 nia2 were also used to examine the above association. In response to CO2 elevation, NR activity increased in low-nitrate Col-0 plants but was inhibited in high-nitrate Col-0 plants. NO scavenger and NOS inhibitor could eliminate these two responses, whereas the application of NO donors mimicked these distinct responses in ambient CO2-grown Col-0 plants. Furthermore, in both low- and high-nitrate conditions, elevated CO2 increased NOS activity and NO levels in Col-0 and nia1 nia2 plants but had little effect on NO level and NR activity in noa1 plants. Considering all of these findings, this study concluded that, in response to CO2 elevation, either the NR activity induction in low-nitrate plants or the NR activity inhibition in high-nitrate plants is regulated by NOS-generated NO.
Collapse
Affiliation(s)
- Shaoting Du
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Ranran Zhang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Peng Zhang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Minggang Yan
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Ni Chen
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Huaqiang Xie
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Shouwei Ke
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| |
Collapse
|
181
|
Mock HP, Dietz KJ. Redox proteomics for the assessment of redox-related posttranslational regulation in plants. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:967-73. [PMID: 26784836 DOI: 10.1016/j.bbapap.2016.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/08/2016] [Indexed: 01/22/2023]
Abstract
The methodological developments of in vivo and in vitro protein labeling and subsequent detection enable sensitive and specific detection of redox modifications. Such methods are presently applied to diverse cells and tissues, subproteomes and developmental as well as environmental conditions. The chloroplast proteome is particularly suitable for such kind of studies, because redox regulation of chloroplast proteins is well established, many plastid proteins are abundant, redox network components have been inventoried in great depth, and functional consequences explored. Thus the repertoire of redox-related posttranslational modifications on the one hand side and their abundance on the other pose a challenge for the near future to understand their contribution to physiological regulation. The various posttranslational redox modifications are introduced, followed by a description of the available proteomics methods. The significance of the redox-related posttranslational modification is exemplarily worked out using established examples from photosynthesis. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Hans-Peter Mock
- Applied Biochemistry, Institute of Plant Genetics and Crop Plant Research, IPK, Corrensstrasse 3, 06466 Gatersleben, Germany.
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology - W5-134, Bielefeld University, 33501 Bielefeld, Germany.
| |
Collapse
|
182
|
Arora D, Jain P, Singh N, Kaur H, Bhatla SC. Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants. Free Radic Res 2016; 50:291-303. [PMID: 26554526 DOI: 10.3109/10715762.2015.1118473] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nitric oxide (NO) acts in a concentration and redox-dependent manner to counteract oxidative stress either by directly acting as an antioxidant through scavenging reactive oxygen species (ROS), such as superoxide anions (O(2)(-)*), to form peroxynitrite (ONOO(-)) or by acting as a signaling molecule, thereby altering gene expression. NO can interact with different metal centres in proteins, such as heme-iron, zinc-sulfur clusters, iron-sulfur clusters, and copper, resulting in the formation of a stable metal-nitrosyl complex or production of varied biochemical signals, which ultimately leads to modification of protein structure/function. The thiols (ferrous iron-thiol complex and nitrosothiols) are also involved in the metabolism and mobilization of NO. Thiols bind to NO and transport it to the site of action whereas nitrosothiols release NO after intercellular diffusion and uptake into the target cells. S-nitrosoglutathione (GSNO) also has the ability to transnitrosylate proteins. It is an NO˙ reservoir and a long-distance signaling molecule. Tyrosine nitration of proteins has been suggested as a biomarker of nitrosative stress as it can lead to either activation or inhibition of target proteins. The exact molecular mechanism(s) by which exogenous and endogenously generated NO (or reactive nitrogen species) modulate the induction of various genes affecting redox homeostasis, are being extensively investigated currently by various research groups. Present review provides an in-depth analysis of the mechanisms by which NO interacts with and modulates the activity of various ROS scavenging enzymes, particularly accompanying ROS generation in plants in response to varied abiotic stress.
Collapse
Affiliation(s)
- Dhara Arora
- a Laboratory of Plant Physiology and Biochemistry, Department of Botany , University of Delhi , Delhi , India
| | - Prachi Jain
- a Laboratory of Plant Physiology and Biochemistry, Department of Botany , University of Delhi , Delhi , India
| | - Neha Singh
- a Laboratory of Plant Physiology and Biochemistry, Department of Botany , University of Delhi , Delhi , India
| | - Harmeet Kaur
- a Laboratory of Plant Physiology and Biochemistry, Department of Botany , University of Delhi , Delhi , India
| | - Satish C Bhatla
- a Laboratory of Plant Physiology and Biochemistry, Department of Botany , University of Delhi , Delhi , India
| |
Collapse
|
183
|
Goswami S, Kumar RR, Dubey K, Singh JP, Tiwari S, Kumar A, Smita S, Mishra DC, Kumar S, Grover M, Padaria JC, Kala YK, Singh GP, Pathak H, Chinnusamy V, Rai A, Praveen S, Rai RD. SSH Analysis of Endosperm Transcripts and Characterization of Heat Stress Regulated Expressed Sequence Tags in Bread Wheat. FRONTIERS IN PLANT SCIENCE 2016; 7:1230. [PMID: 27582756 PMCID: PMC4988357 DOI: 10.3389/fpls.2016.01230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/02/2016] [Indexed: 05/11/2023]
Abstract
Heat stress is one of the major problems in agriculturally important cereal crops, especially wheat. Here, we have constructed a subtracted cDNA library from the endosperm of HS-treated (42°C for 2 h) wheat cv. HD2985 by suppression subtractive hybridization (SSH). We identified ~550 recombinant clones ranging from 200 to 500 bp with an average size of 300 bp. Sanger's sequencing was performed with 205 positive clones to generate the differentially expressed sequence tags (ESTs). Most of the ESTs were observed to be localized on the long arm of chromosome 2A and associated with heat stress tolerance and metabolic pathways. Identified ESTs were BLAST search using Ensemble, TriFLD, and TIGR databases and the predicted CDS were translated and aligned with the protein sequences available in pfam and InterProScan 5 databases to predict the differentially expressed proteins (DEPs). We observed eight different types of post-translational modifications (PTMs) in the DEPs corresponds to the cloned ESTs-147 sites with phosphorylation, 21 sites with sumoylation, 237 with palmitoylation, 96 sites with S-nitrosylation, 3066 calpain cleavage sites, and 103 tyrosine nitration sites, predicted to sense the heat stress and regulate the expression of stress genes. Twelve DEPs were observed to have transmembrane helixes (TMH) in their structure, predicted to play the role of sensors of HS. Quantitative Real-Time PCR of randomly selected ESTs showed very high relative expression of HSP17 under HS; up-regulation was observed more in wheat cv. HD2985 (thermotolerant), as compared to HD2329 (thermosusceptible) during grain-filling. The abundance of transcripts was further validated through northern blot analysis. The ESTs and their corresponding DEPs can be used as molecular marker for screening or targeted precision breeding program. PTMs identified in the DEPs can be used to elucidate the thermotolerance mechanism of wheat-a novel step toward the development of "climate-smart" wheat.
Collapse
Affiliation(s)
- Suneha Goswami
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
- *Correspondence: Suneha Goswami
| | - Ranjeet R. Kumar
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
- Ranjeet R. Kumar
| | - Kavita Dubey
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Jyoti P. Singh
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Sachidanand Tiwari
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Ashok Kumar
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Shuchi Smita
- Centre for Agricultural Bio-Informatics, Indian Agricultural Statistics Research InstituteNew Delhi, India
| | - Dwijesh C. Mishra
- Centre for Agricultural Bio-Informatics, Indian Agricultural Statistics Research InstituteNew Delhi, India
| | - Sanjeev Kumar
- Centre for Agricultural Bio-Informatics, Indian Agricultural Statistics Research InstituteNew Delhi, India
| | - Monendra Grover
- Centre for Agricultural Bio-Informatics, Indian Agricultural Statistics Research InstituteNew Delhi, India
| | | | - Yugal K. Kala
- Division of Genetics, Indian Agricultural Research InstituteNew Delhi, India
| | - Gyanendra P. Singh
- Division of Genetics, Indian Agricultural Research InstituteNew Delhi, India
| | - Himanshu Pathak
- Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research InstituteNew Delhi, India
| | | | - Anil Rai
- Centre for Agricultural Bio-Informatics, Indian Agricultural Statistics Research InstituteNew Delhi, India
| | - Shelly Praveen
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Raj D. Rai
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| |
Collapse
|
184
|
Barroso JB, Valderrama R, Carreras A, Chaki M, Begara-Morales JC, Sánchez-Calvo B, Corpas FJ. Quantification and Localization of S-Nitrosothiols (SNOs) in Higher Plants. Methods Mol Biol 2016; 1424:139-47. [PMID: 27094417 DOI: 10.1007/978-1-4939-3600-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
S-nitrosothiols (SNOs) are a family of molecules produced by the reaction of nitric oxide (NO) with -SH thiol groups present in the cysteine residues of proteins and peptides caused by a posttranslational modification (PTM) known as S-nitrosylation (strictly speaking S-nitrosation) that can affect the cellular function of proteins. These molecules are a relatively more stable form of NO and consequently can act as a major intracellular NO reservoir and, in some cases, as a long-distance NO signal. Additionally, SNOs can be transferred between small peptides and protein thiol groups through S-transnitrosylation mechanisms. Thus, detection and cellular localization of SNOs in plant cells can be useful tools to determine how these molecules are modulated under physiological and adverse conditions and to determine their importance as a mechanism for regulating different biochemical pathways. Using a highly sensitive chemiluminescence ozone technique and a specific fluorescence probe (Alexa Fluor 488 Hg-link phenylmercury), the methods described in this chapter enable us to determine SNOs in an nM range as well as their cellular distribution in the tissues of different plant species.
Collapse
Affiliation(s)
- Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Biochemistry and Molecular Biology, University of Jaén, Campus "Las Lagunillas", 23071, Jaén, Spain.
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Biochemistry and Molecular Biology, University of Jaén, Campus "Las Lagunillas", 23071, Jaén, Spain
| | - Alfonso Carreras
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Biochemistry and Molecular Biology, University of Jaén, Campus "Las Lagunillas", 23071, Jaén, Spain
| | - Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Biochemistry and Molecular Biology, University of Jaén, Campus "Las Lagunillas", 23071, Jaén, Spain
| | - Juan C Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Biochemistry and Molecular Biology, University of Jaén, Campus "Las Lagunillas", 23071, Jaén, Spain
| | - Beatriz Sánchez-Calvo
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Biochemistry and Molecular Biology, University of Jaén, Campus "Las Lagunillas", 23071, Jaén, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080, Granada, Spain.
| |
Collapse
|
185
|
Corpas FJ. Reactive Nitrogen Species (RNS) in Plants Under Physiological and Adverse Environmental Conditions: Current View. PROGRESS IN BOTANY 2016:97-119. [PMID: 0 DOI: 10.1007/124_2016_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
186
|
Romero-Puertas MC, Sandalio LM. Nitric Oxide Level Is Self-Regulating and Also Regulates Its ROS Partners. FRONTIERS IN PLANT SCIENCE 2016; 7:316. [PMID: 27014332 PMCID: PMC4795008 DOI: 10.3389/fpls.2016.00316] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/29/2016] [Indexed: 05/17/2023]
|
187
|
Zhao F, Elkelish A, Durner J, Lindermayr C, Winkler JB, Ruёff F, Behrendt H, Traidl-Hoffmann C, Holzinger A, Kofler W, Braun P, von Toerne C, Hauck SM, Ernst D, Frank U. Common ragweed (Ambrosia artemisiifolia L.): allergenicity and molecular characterization of pollen after plant exposure to elevated NO2. PLANT, CELL & ENVIRONMENT 2016; 39:147-64. [PMID: 26177592 DOI: 10.1111/pce.12601] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 05/27/2023]
Abstract
Ragweed pollen is the main cause of allergenic diseases in Northern America, and the weed has become a spreading neophyte in Europe. Climate change and air pollution are speculated to affect the allergenic potential of pollen. The objective of this study was to investigate the effects of NO2 , a major air pollutant, under controlled conditions, on the allergenicity of ragweed pollen. Ragweed was exposed to different levels of NO2 throughout the entire growing season, and its pollen further analysed. Spectroscopic analysis showed increased outer cell wall polymers and decreased amounts of pectin. Proteome studies using two-dimensional difference gel electrophoresis and liquid chromatography-tandem mass spectrometry indicated increased amounts of several Amb a 1 isoforms and of another allergen with great homology to enolase Hev b 9 from rubber tree. Analysis of protein S-nitrosylation identified nitrosylated proteins in pollen from both conditions, including Amb a 1 isoforms. However, elevated NO2 significantly enhanced the overall nitrosylation. Finally, we demonstrated increased overall pollen allergenicity by immunoblotting using ragweed antisera, showing a significantly higher allergenicity for Amb a 1. The data highlight a direct influence of elevated NO2 on the increased allergenicity of ragweed pollen and a direct correlation with an increased risk for human health.
Collapse
Affiliation(s)
- Feng Zhao
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Amr Elkelish
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Biochemical Plant Pathology, Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Freising, 85350, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - J Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Franziska Ruёff
- Clinic and Polyclinic for Dermatology and Allergology, Faculty of Medicine, LMU München, Munich, 80337, Germany
| | - Heidrun Behrendt
- Center of Allergy & Environment München (ZAUM), Technische Universität and Helmholtz Zentrum München, Munich, 80802, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
| | - Claudia Traidl-Hoffmann
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
- Institute of Environmental Medicine, UNIKA-T, Technische Universität München, Augsburg, 86156, Germany
| | - Andreas Holzinger
- Institute for Botany, Leopold-Franzens Universität Innsbruck, Innsbruck, 6020, Austria
| | - Werner Kofler
- Institute for Botany, Leopold-Franzens Universität Innsbruck, Innsbruck, 6020, Austria
| | - Paula Braun
- Department of Applied Sciences and Mechanotronics, University of Applied Science Munich, Munich, 80335, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Dieter Ernst
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
| | - Ulrike Frank
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
| |
Collapse
|
188
|
Scuffi D, Lamattina L, García-Mata C. Decoding the Interaction Between Nitric Oxide and Hydrogen Sulfide in Stomatal Movement. GASOTRANSMITTERS IN PLANTS 2016. [DOI: 10.1007/978-3-319-40713-5_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
189
|
Černý M, Novák J, Habánová H, Cerna H, Brzobohatý B. Role of the proteome in phytohormonal signaling. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:1003-15. [PMID: 26721743 DOI: 10.1016/j.bbapap.2015.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/30/2015] [Accepted: 12/16/2015] [Indexed: 02/07/2023]
Abstract
Phytohormones are orchestrators of plant growth and development. A lot of time and effort has been invested in attempting to comprehend their complex signaling pathways but despite success in elucidating some key components, molecular mechanisms in the transduction pathways are far from being resolved. The last decade has seen a boom in the analysis of phytohormone-responsive proteins. Abscisic acid, auxin, brassinosteroids, cytokinin, ethylene, gibberellins, nitric oxide, oxylipins, strigolactones, salicylic acid--all have been analyzed to various degrees. For this review, we collected data from proteome-wide analyses resulting in a list of over 2000 annotated proteins from Arabidopsis proteomics and nearly 500 manually filtered protein families merged from all the data available from different species. We present the currently accepted model of phytohormone signaling, highlight the contributions made by proteomic-based research and describe the key nodes in phytohormone signaling networks, as revealed by proteome analysis. These include ubiquitination and proteasome mediated degradation, calcium ion signaling, redox homeostasis, and phosphoproteome dynamics. Finally, we discuss potential pitfalls and future perspectives in the field. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Martin Černý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Jan Novák
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Hana Habánová
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Hana Cerna
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
190
|
Krasuska U, Dębska K, Otulak K, Bogatek R, Gniazdowska A. Switch from heterotrophy to autotrophy of apple cotyledons depends on NO signal. PLANTA 2015; 242:1221-36. [PMID: 26186967 PMCID: PMC4568022 DOI: 10.1007/s00425-015-2361-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/24/2015] [Indexed: 05/23/2023]
Abstract
NO accelerates transition of germinated embryos from heterotrophy to autotrophy by stimulation of chloroplasts maturation. NO-mediated autotrophy of apple seedlings correlates to increased content of RuBisCO small subunit and improvement of parameters of chlorophyll a fluorescence. Nitric oxide (NO) acts as signaling molecule involved in regulation of various physiological processes in plants, although its involvement in cotyledons greening is poorly recognized. To identify the importance of NO signal for plant growth and development we investigated the effects of short-term application of NO at various developmental stages of seedlings of apple (Malus domestica Borkh.) on cotyledons' chlorophyll a to b ratio, chlorophyll a fluorescence, photosynthetic activity, carbohydrates and RuBisCO both subunits content. NO-dependent biochemical alterations were linked to cytological observation of developing plastids in cotyledons of apple plants. Abnormal plantlets developing from dormant apple embryos are characterized by anatomical malformations of cotyledons. Short-term pre-treatment with NO of isolated embryos or seedlings with developmental anomalies resulted in formation of plants with cotyledons of equal size and chlorophyll content; these responses were blocked by NO scavenger. NO independently of time point of application accelerated embryos transition from heterotrophy to autotrophy by stimulation of photosynthetic activity, improvement of parameters of chlorophyll a fluorescence (F v/F m, F v/F 0) and increased content of RuBisCO small subunit. Further analysis showed that NO application modified glucose and hydrogen peroxide concentration in cotyledons. Beneficial effect of NO on development of seedlings without any abnormalities was manifested at ultrastructural level by decline in amount of proplastids and induction of formation and maturation of chloroplasts. Our data suggest that progress of autotrophy of young seedlings is governed by NO acting as stimulator of chloroplast-to-nucleus signaling.
Collapse
Affiliation(s)
- Urszula Krasuska
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159, 02-776, Warsaw, Poland.
| | - Karolina Dębska
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159, 02-776, Warsaw, Poland.
| | - Katarzyna Otulak
- Department of Botany, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159, 02-776, Warsaw, Poland.
| | - Renata Bogatek
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159, 02-776, Warsaw, Poland.
| | - Agnieszka Gniazdowska
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159, 02-776, Warsaw, Poland.
| |
Collapse
|
191
|
Ziogas V, Tanou G, Belghazi M, Filippou P, Fotopoulos V, Grigorios D, Molassiotis A. Roles of sodium hydrosulfide and sodium nitroprusside as priming molecules during drought acclimation in citrus plants. PLANT MOLECULAR BIOLOGY 2015; 89:433-50. [PMID: 26404728 DOI: 10.1007/s11103-015-0379-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/31/2015] [Indexed: 05/04/2023]
Abstract
Emerging evidence suggests that the gaseous molecules hydrogen sulfide (H2S) and nitric oxide (NO) enhances plant acclimation to stress; however, the underlying mechanism remains unclear. In this work, we explored if pretreatment of citrus roots with NaHS (a H2S donor) or sodium nitroprusside (SNP, a NO donor) for 2 days (d) could elicit long-lasting priming effects to subsequent exposure to PEG-associated drought stress for 21 d following a 5 d acclimation period. Detailed physiological study documented that both pretreatments primed plants against drought stress. Analysis of the level of nitrite, NOx, S-nitrosoglutahione reductase, Tyr-nitration and S-nitrosylation along with the expression of genes involved in NO-generation suggested that the nitrosative status of leaves and roots was altered by NaHS and SNP. Using a proteomic approach we characterized S-nitrosylated proteins in citrus leaves exposed to chemical treatments, including well known and novel S-nitrosylated targets. Mass spectrometry analysis also enabled the identification of 42 differentially expressed proteins in PEG alone-treated plants. Several PEG-responsive proteins were down-regulated, especially photosynthetic proteins. Finally, the identification of specific proteins that were regulated by NaHS and SNP under PEG conditions provides novel insight into long-term drought priming in plants and in a fruit crop such as citrus in particular.
Collapse
Affiliation(s)
- Vasileios Ziogas
- Faculty of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloníki, Greece
| | - Georgia Tanou
- Faculty of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloníki, Greece
| | - Maya Belghazi
- Faculty of Medicine, Proteomics Analysis Center (CAPM), 13916, Marseilles, France
| | - Panagiota Filippou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036, Limassol, Cyprus
| | - Vasileios Fotopoulos
- Faculty of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloníki, Greece
| | - Diamantidis Grigorios
- Faculty of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloníki, Greece
| | - Athanassios Molassiotis
- Faculty of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloníki, Greece.
| |
Collapse
|
192
|
David A, Yadav S, Baluška F, Bhatla SC. Nitric oxide accumulation and protein tyrosine nitration as a rapid and long distance signalling response to salt stress in sunflower seedlings. Nitric Oxide 2015; 50:28-37. [DOI: 10.1016/j.niox.2015.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/10/2015] [Accepted: 08/15/2015] [Indexed: 01/04/2023]
|
193
|
Gelaude A, Marin M, Cailliau K, Jeseta M, Lescuyer‐Rousseau A, Vandame P, Nevoral J, Sedmikova M, Martoriati A, Bodart J. Nitric Oxide Donor
s
‐Nitroso‐
n
‐Acetyl Penicillamine (SNAP) Alters Meiotic Spindle Morphogenesis in
Xenopus
Oocytes. J Cell Biochem 2015; 116:2445-54. [DOI: 10.1002/jcb.25211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/22/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Armance Gelaude
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| | - Matthieu Marin
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| | - Katia Cailliau
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| | - Michal Jeseta
- Veterinary Research InstituteBrno ‐ Genetics and ReproductionBrnoCzech Republic
| | - Arlette Lescuyer‐Rousseau
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| | - Pauline Vandame
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| | - Jan Nevoral
- Czech University of Life Sciences in PragueFaculty of AgrobiologyFood and Natural Resources, Department of Veterinary SciencesPragueCzech Republic
| | - Marketa Sedmikova
- Czech University of Life Sciences in PragueFaculty of AgrobiologyFood and Natural Resources, Department of Veterinary SciencesPragueCzech Republic
| | - Alain Martoriati
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| | - Jean‐François Bodart
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| |
Collapse
|
194
|
Castillo MC, Lozano-Juste J, González-Guzmán M, Rodriguez L, Rodriguez PL, León J. Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Sci Signal 2015; 8:ra89. [PMID: 26329583 DOI: 10.1126/scisignal.aaa7981] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abscisic acid (ABA) is a phytohormone that inhibits growth and enhances adaptation to stress in plants. ABA perception and signaling rely on its binding to receptors of the pyrabactin resistance1/PYR1-like/regulatory components of ABA receptors (PYR/PYL/RCAR) family, the subsequent inhibition of clade A type 2C protein phosphatases (PP2Cs), and the phosphorylation of ion channels and transcription factors by protein kinases of the SnRK2 family. Nitric oxide (NO) may inhibit ABA signaling because NO-deficient plants are hypersensitive to ABA. Regulation by NO often involves posttranslational modification of proteins. Mass spectrometry analysis of ABA receptors expressed in plants and recombinant receptors modified in vitro revealed that the receptors were nitrated at tyrosine residues and S-nitrosylated at cysteine residues. In an in vitro ABA-induced, PP2C inhibition assay, tyrosine nitration reduced receptor activity, whereas S-nitrosylated receptors were fully capable of ABA-induced inhibition of the phosphatase. PYR/PYL/RCAR proteins with nitrated tyrosine, which is an irreversible covalent modification, were polyubiquitylated and underwent proteasome-mediated degradation. We propose that tyrosine nitration, which requires NO and superoxide anions, is a rapid mechanism by which NO limits ABA signaling under conditions in which NO and reactive oxygen species are both produced.
Collapse
Affiliation(s)
- Mari-Cruz Castillo
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), CPI Edificio 8E, Avda. Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Jorge Lozano-Juste
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), CPI Edificio 8E, Avda. Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Miguel González-Guzmán
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), CPI Edificio 8E, Avda. Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Lesia Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), CPI Edificio 8E, Avda. Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), CPI Edificio 8E, Avda. Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - José León
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), CPI Edificio 8E, Avda. Ingeniero Fausto Elio s/n, 46022 Valencia, Spain.
| |
Collapse
|
195
|
Shi YF, Wang DL, Wang C, Culler AH, Kreiser MA, Suresh J, Cohen JD, Pan J, Baker B, Liu JZ. Loss of GSNOR1 Function Leads to Compromised Auxin Signaling and Polar Auxin Transport. MOLECULAR PLANT 2015; 8:1350-65. [PMID: 25917173 DOI: 10.1016/j.molp.2015.04.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 03/30/2015] [Accepted: 04/16/2015] [Indexed: 05/21/2023]
Abstract
Cross talk between phytohormones, nitric oxide (NO), and auxin has been implicated in the control of plant growth and development. Two recent reports indicate that NO promoted auxin signaling but inhibited auxin transport probably through S-nitrosylation. However, genetic evidence for the effect of S-nitrosylation on auxin physiology has been lacking. In this study, we used a genetic approach to understand the broader role of S-nitrosylation in auxin physiology in Arabidopsis. We compared auxin signaling and transport in Col-0 and gsnor1-3, a loss-of-function GSNOR1 mutant defective in protein de-nitrosylation. Our results showed that auxin signaling was impaired in the gsnor1-3 mutant as revealed by significantly reduced DR5-GUS/DR5-GFP accumulation and compromised degradation of AXR3NT-GUS, a useful reporter in interrogating auxin-mediated degradation of Aux/IAA by auxin receptors. In addition, polar auxin transport was compromised in gsnor1-3, which was correlated with universally reduced levels of PIN or GFP-PIN proteins in the roots of the mutant in a manner independent of transcription and 26S proteasome degradation. Our results suggest that S-nitrosylation and GSNOR1-mediated de-nitrosylation contribute to auxin physiology, and impaired auxin signaling and compromised auxin transport are responsible for the auxin-related morphological phenotypes displayed by the gsnor1-3 mutant.
Collapse
Affiliation(s)
- Ya-Fei Shi
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Da-Li Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Chao Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Angela Hendrickson Culler
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Molly A Kreiser
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jayanti Suresh
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jerry D Cohen
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jianwei Pan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Barbara Baker
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jian-Zhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
| |
Collapse
|
196
|
Chaki M, Shekariesfahlan A, Ageeva A, Mengel A, von Toerne C, Durner J, Lindermayr C. Identification of nuclear target proteins for S-nitrosylation in pathogen-treated Arabidopsis thaliana cell cultures. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:115-26. [PMID: 26259180 DOI: 10.1016/j.plantsci.2015.06.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) is a significant signalling molecule involved in the regulation of many different physiological processes in plants. One of the most imperative regulatory modes of action of NO is protein S-nitrosylation--the covalent attachment of an NO group to the sulfur atom of cysteine residues. In this study, we focus on S-nitrosylation of Arabidopsis nuclear proteins after pathogen infection. After treatment of Arabidopsis suspension cell cultures with pathogens, nuclear proteins were extracted and treated with the S-nitrosylating agent S-nitrosoglutathione (GSNO). A biotin switch assay was performed and biotin-labelled proteins were purified by neutravidin affinity chromatography and identified by mass spectrometry. A total of 135 proteins were identified, whereas nuclear localization has been described for 122 proteins of them. 117 of these proteins contain at least one cysteine residue. Most of the S-nitrosylated candidates were involved in protein and RNA metabolism, stress response, and cell organization and division. Interestingly, two plant-specific histone deacetylases were identified suggesting that nitric oxide regulated epigenetic processes in plants. In sum, this work provides a new collection of targets for protein S-nitrosylation in Arabidopsis and gives insight into the regulatory function of NO in the nucleus during plant defense response. Moreover, our data extend the knowledge on the regulatory function of NO in events located in the nucleus.
Collapse
Affiliation(s)
- Mounira Chaki
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Azam Shekariesfahlan
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Alexandra Ageeva
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Alexander Mengel
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Chair of Biochemical Plant Pathology, Technische Universität München, 85354 Freising, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
197
|
Begara-Morales JC, Sánchez-Calvo B, Chaki M, Mata-Pérez C, Valderrama R, Padilla MN, López-Jaramillo J, Luque F, Corpas FJ, Barroso JB. Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5983-96. [PMID: 26116026 PMCID: PMC4566986 DOI: 10.1093/jxb/erv306] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The ascorbate-glutathione cycle is a metabolic pathway that detoxifies hydrogen peroxide and involves enzymatic and non-enzymatic antioxidants. Proteomic studies have shown that some enzymes in this cycle such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), and glutathione reductase (GR) are potential targets for post-translational modifications (PMTs) mediated by nitric oxide-derived molecules. Using purified recombinant pea peroxisomal MDAR and cytosolic and chloroplastic GR enzymes produced in Escherichia coli, the effects of peroxynitrite (ONOO(-)) and S-nitrosoglutathione (GSNO) which are known to mediate protein nitration and S-nitrosylation processes, respectively, were analysed. Although ONOO(-) and GSNO inhibit peroxisomal MDAR activity, chloroplastic and cytosolic GR were not affected by these molecules. Mass spectrometric analysis of the nitrated MDAR revealed that Tyr213, Try292, and Tyr345 were exclusively nitrated to 3-nitrotyrosine by ONOO(-). The location of these residues in the structure of pea peroxisomal MDAR reveals that Tyr345 is found at 3.3 Å of His313 which is involved in the NADP-binding site. Site-directed mutagenesis confirmed Tyr345 as the primary site of nitration responsible for the inhibition of MDAR activity by ONOO(-). These results provide new insights into the molecular regulation of MDAR which is deactivated by nitration and S-nitrosylation. However, GR was not affected by ONOO(-) or GSNO, suggesting the existence of a mechanism to conserve redox status by maintaining the level of reduced GSH. Under a nitro-oxidative stress induced by salinity (150mM NaCl), MDAR expression (mRNA, protein, and enzyme activity levels) was increased, probably to compensate the inhibitory effects of S-nitrosylation and nitration on the enzyme. The present data show the modulation of the antioxidative response of key enzymes in the ascorbate-glutathione cycle by nitric oxide (NO)-PTMs, thus indicating the close involvement of NO and reactive oxygen species metabolism in antioxidant defence against nitro-oxidative stress situations in plants.
Collapse
Affiliation(s)
- Juan C Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Biochemistry and Molecular Biology Division, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain
| | - Beatriz Sánchez-Calvo
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Biochemistry and Molecular Biology Division, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain
| | - Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Biochemistry and Molecular Biology Division, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain
| | - Capilla Mata-Pérez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Biochemistry and Molecular Biology Division, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Biochemistry and Molecular Biology Division, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain
| | - María N Padilla
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Biochemistry and Molecular Biology Division, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain
| | | | - Francisco Luque
- Center for Advanced Studies in Olives and Olive Oil, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, E-18080 Granada, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Biochemistry and Molecular Biology Division, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain Center for Advanced Studies in Olives and Olive Oil, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain
| |
Collapse
|
198
|
Szalonek M, Sierpien B, Rymaszewski W, Gieczewska K, Garstka M, Lichocka M, Sass L, Paul K, Vass I, Vankova R, Dobrev P, Szczesny P, Marczewski W, Krusiewicz D, Strzelczyk-Zyta D, Hennig J, Konopka-Postupolska D. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants. PLoS One 2015; 10:e0132683. [PMID: 26172952 PMCID: PMC4501783 DOI: 10.1371/journal.pone.0132683] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/18/2015] [Indexed: 11/18/2022] Open
Abstract
Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress.
Collapse
Affiliation(s)
- Michal Szalonek
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Barbara Sierpien
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Wojciech Rymaszewski
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | | | - Maciej Garstka
- Department of Metabolic Regulation, University of Warsaw, Warsaw, Poland
| | - Malgorzata Lichocka
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Laszlo Sass
- Laboratory of Molecular Stress and Photobiology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Kenny Paul
- Laboratory of Molecular Stress and Photobiology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Imre Vass
- Laboratory of Molecular Stress and Photobiology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Praha, Czech Republic
| | - Peter Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Praha, Czech Republic
| | - Pawel Szczesny
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Waldemar Marczewski
- Department of Potato Genetics and Parental Lines, Plant Breeding and Acclimatization Institute—National Research Institute, Mlochow, Poland
| | - Dominika Krusiewicz
- Department of Potato Genetics and Parental Lines, Plant Breeding and Acclimatization Institute—National Research Institute, Mlochow, Poland
| | - Danuta Strzelczyk-Zyta
- Department of Potato Genetics and Parental Lines, Plant Breeding and Acclimatization Institute—National Research Institute, Mlochow, Poland
| | - Jacek Hennig
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Dorota Konopka-Postupolska
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
- * E-mail:
| |
Collapse
|
199
|
Lehtimäki N, Koskela MM, Mulo P. Posttranslational Modifications of Chloroplast Proteins: An Emerging Field. PLANT PHYSIOLOGY 2015; 168:768-75. [PMID: 25911530 PMCID: PMC4741338 DOI: 10.1104/pp.15.00117] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/29/2015] [Indexed: 05/19/2023]
Abstract
Posttranslational modifications of proteins are key effectors of enzyme activity, protein interactions, targeting, and turnover rate, but despite their importance, they are still poorly understood in plants. Although numerous reports have revealed the regulatory role of protein phosphorylation in photosynthesis, various other protein modifications have been identified in chloroplasts only recently. It is known that posttranslational N(α)-acetylation occurs in both nuclear- and plastid-encoded chloroplast proteins, but the physiological significance of this acetylation is not yet understood. Lysine acetylation affects the localization and activity of key metabolic enzymes, and it may work antagonistically or cooperatively with lysine methylation, which also occurs in chloroplasts. In addition, tyrosine nitration may help regulate the repair cycle of photosystem II, while N-glycosylation determines enzyme activity of chloroplastic carbonic anhydrase. This review summarizes the progress in the research field of posttranslational modifications of chloroplast proteins and points out the importance of these modifications in the regulation of chloroplast metabolism.
Collapse
Affiliation(s)
- Nina Lehtimäki
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Minna M Koskela
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Paula Mulo
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
200
|
Jain A, Singh A, Singh S, Singh V, Singh HB. Comparative proteomic analysis in pea treated with microbial consortia of beneficial microbes reveals changes in the protein network to enhance resistance against Sclerotinia sclerotiorum. JOURNAL OF PLANT PHYSIOLOGY 2015; 182:79-94. [PMID: 26067380 DOI: 10.1016/j.jplph.2015.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 05/15/2015] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
Microbial consortia may provide protection against pathogenic ingress via enhancing plant defense responses. Pseudomonas aeruginosa PJHU15, Trichoderma harzianum TNHU27 and Bacillus subtilis BHHU100 were used either singly or in consortia in the pea rhizosphere to observe proteome level changes upon Sclerotinia sclerotiorum challenge. Thirty proteins were found to increase or decrease differentially in 2-DE gels of pea leaves, out of which 25 were identified by MALDI-TOF MS or MS/MS. These proteins were classified into several functional categories including photosynthesis, respiration, phenylpropanoid metabolism, protein synthesis, stress regulation, carbohydrate and nitrogen metabolism and disease/defense-related processes. The respective homologue of each protein identified was trapped in Pisum sativum and a phylogenetic tree was constructed to check the ancestry. The proteomic view of the defense response to S. sclerotiorum in pea, in the presence of beneficial microbes, highlights the enhanced protection that can be provided by these microbes in challenged plants.
Collapse
Affiliation(s)
- Akansha Jain
- Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Akanksha Singh
- Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Surendra Singh
- Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Vinay Singh
- Centre for Bioinformatics, Banaras Hindu University, Varanasi 221005, India.
| | - Harikesh Bahadur Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|