151
|
Pou A, Jeanguenin L, Milhiet T, Batoko H, Chaumont F, Hachez C. Salinity-mediated transcriptional and post-translational regulation of the Arabidopsis aquaporin PIP2;7. PLANT MOLECULAR BIOLOGY 2016; 92:731-744. [PMID: 27671160 DOI: 10.1007/s11103-016-0542-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 09/08/2016] [Indexed: 05/23/2023]
Abstract
Salt stress triggers a simultaneous transcriptional repression and aquaporin internalization to modify root cell water conductivity. Plasma membrane intrinsic proteins (PIPs) are involved in the adjustment of plant water balance in response to changing environmental conditions. In this study, Arabidopsis wild-type (Col-0) and transgenic lines overexpressing PIP2;7 were used to investigate and compare their response to salt stress. Hydraulic conductivity measurements using a high-pressure flowmeter (HPFM) revealed that overexpression of PIP2;7 induced a sixfold increase in root hydraulic conductivity of four week-old Arabidopsis thaliana plants compared to WT. Exposure to a high salt stress (150 mM NaCl) triggered a rapid repression of overall aquaporin activity in both genotypes. Response to salt stress was also investigated in 8 day-old seedlings. Exposure to salt led to a repression of PIP2;7 promoter activity and a significant decrease in PIP2;7 mRNA abundance within 2 h. Concomitantly, a rapid internalization of fluorescently-tagged PIP2;7 proteins was observed but removal from the cell membrane was not accompanied by further degradation of the protein within 4 h of exposure to salinity stress. These data suggest that PIP transcriptional repression and channel internalization act in concert during salt stress conditions to modulate aquaporin activity, thereby significantly altering the plant hydraulic parameters in the short term.
Collapse
Affiliation(s)
- Alicia Pou
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Linda Jeanguenin
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Thomas Milhiet
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Henri Batoko
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, 1348, Louvain-la-Neuve, Belgium.
| | - Charles Hachez
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
152
|
Rodrigues MI, Takeda AAS, Bravo JP, Maia IG. The Eucalyptus Tonoplast Intrinsic Protein (TIP) Gene Subfamily: Genomic Organization, Structural Features, and Expression Profiles. FRONTIERS IN PLANT SCIENCE 2016; 7:1810. [PMID: 27965702 PMCID: PMC5127802 DOI: 10.3389/fpls.2016.01810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Plant aquaporins are water channels implicated in various physiological processes, including growth, development and adaptation to stress. In this study, the Tonoplast Intrinsic Protein (TIP) gene subfamily of Eucalyptus, an economically important woody species, was investigated and characterized. A genome-wide survey of the Eucalyptus grandis genome revealed the presence of eleven putative TIP genes (referred as EgTIP), which were individually assigned by phylogeny to each of the classical TIP1-5 groups. Homology modeling confirmed the presence of the two highly conserved NPA (Asn-Pro-Ala) motifs in the identified EgTIPs. Residue variations in the corresponding selectivity filters, that might reflect differences in EgTIP substrate specificity, were observed. All EgTIP genes, except EgTIP5.1, were transcribed and the majority of them showed organ/tissue-enriched expression. Inspection of the EgTIP promoters revealed the presence of common cis-regulatory elements implicated in abiotic stress and hormone responses pointing to an involvement of the identified genes in abiotic stress responses. In line with these observations, additional gene expression profiling demonstrated increased expression under polyethylene glycol-imposed osmotic stress. Overall, the results obtained suggest that these novel EgTIPs might be functionally implicated in eucalyptus adaptation to stress.
Collapse
Affiliation(s)
- Marcela I. Rodrigues
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State UniversityBotucatu, Brazil
| | - Agnes A. S. Takeda
- Department of Physics and Biophysics, Institute of Biosciences of Botucatu, São Paulo State UniversityBotucatu, Brazil
- Institute of Biotechnology, São Paulo State UniversityBotucatu, Brazil
| | - Juliana P. Bravo
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State UniversityBotucatu, Brazil
| | - Ivan G. Maia
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State UniversityBotucatu, Brazil
| |
Collapse
|
153
|
Bellati J, Champeyroux C, Hem S, Rofidal V, Krouk G, Maurel C, Santoni V. Novel Aquaporin Regulatory Mechanisms Revealed by Interactomics. Mol Cell Proteomics 2016; 15:3473-3487. [PMID: 27609422 PMCID: PMC5098044 DOI: 10.1074/mcp.m116.060087] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/31/2016] [Indexed: 12/22/2022] Open
Abstract
PIP1;2 and PIP2;1 are aquaporins that are highly expressed in roots and bring a major contribution to root water transport and its regulation by hormonal and abiotic factors. Interactions between cellular proteins or with other macromolecules contribute to forming molecular machines. Proteins that molecularly interact with PIP1;2 and PIP2;1 were searched to get new insights into regulatory mechanisms of root water transport. For that, a immuno-purification strategy coupled to protein identification and quantification by mass spectrometry (IP-MS) of PIPs was combined with data from the literature, to build thorough PIP1;2 and PIP2;1 interactomes, sharing about 400 interacting proteins. Such interactome revealed PIPs to behave as a platform for recruitment of a wide range of transport activities and provided novel insights into regulation of PIP cellular trafficking by osmotic and oxidative treatments. This work also pointed a role of lipid signaling in PIP function and enhanced our knowledge of protein kinases involved in PIP regulation. In particular we show that 2 members of the receptor-like kinase (RLK) family (RKL1 (At1g48480) and Feronia (At3g51550)) differentially modulate PIP activity through distinct molecular mechanisms. The overall work opens novel perspectives in understanding PIP regulatory mechanisms and their role in adjustment of plant water status.
Collapse
Affiliation(s)
- Jorge Bellati
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Chloé Champeyroux
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Sonia Hem
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Valérie Rofidal
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Gabriel Krouk
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Christophe Maurel
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Véronique Santoni
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| |
Collapse
|
154
|
Calvo-Polanco M, Sánchez-Castro I, Cantos M, García JL, Azcón R, Ruiz-Lozano JM, Beuzón CR, Aroca R. Effects of different arbuscular mycorrhizal fungal backgrounds and soils on olive plants growth and water relation properties under well-watered and drought conditions. PLANT, CELL & ENVIRONMENT 2016; 39:2498-2514. [PMID: 27448529 DOI: 10.1111/pce.12807] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 05/21/2023]
Abstract
The adaptation capacity of olive trees to different environments is well recognized. However, the presence of microorganisms in the soil is also a key factor in the response of these trees to drought. The objective of the present study was to elucidate the effects of different arbuscular mycorrhizal (AM) fungi coming from diverse soils on olive plant growth and water relations. Olive plants were inoculated with native AM fungal populations from two contrasting environments, that is, semi-arid - Freila (FL) and humid - Grazalema (GZ) regions, and subjected to drought stress. Results showed that plants grew better on GZ soil inoculated with GZ fungi, indicating a preference of AM fungi for their corresponding soil. Furthermore, under these conditions, the highest AM fungal diversity was found. However, the highest root hydraulic conductivity (Lpr ) value was achieved by plants inoculated with GZ fungi and growing in FL soil under drought conditions. So, this AM inoculum also functioned in soils from different origins. Nine novel aquaporin genes were also cloned from olive roots. Diverse correlation and association values were found among different aquaporin expressions and abundances and Lpr , indicating how the interaction of different aquaporins may render diverse Lpr values.
Collapse
Affiliation(s)
- Monica Calvo-Polanco
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), C/Profesor Albareda, Granada, 18008, Spain
- Biochimie et Physiologie Moléculaire des Plantes, SupAgro/INRA UMR 5004. 2, Place Viala, Montpellier, Cedex 2 34060, France
| | - Iván Sánchez-Castro
- Department of Microbiology, University of Granada, Av. Fuentenueva s/n, Granada, 18071, Spain
| | - Manuel Cantos
- Department of Plant Biotechnology, Instituto de Recursos Naturales y Agrobiología (CSIC), Av. Reina Mercedes, 10, Sevilla, 41012, Spain
| | - José Luis García
- Department of Plant Biotechnology, Instituto de Recursos Naturales y Agrobiología (CSIC), Av. Reina Mercedes, 10, Sevilla, 41012, Spain
| | - Rosario Azcón
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), C/Profesor Albareda, Granada, 18008, Spain
| | - Juan Manuel Ruiz-Lozano
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), C/Profesor Albareda, Granada, 18008, Spain
| | - Carmen R Beuzón
- Department of Cellular Biology, Genetics and Physiology, Campus de Teatinos, University of Málaga, Málaga, 29010, Spain
| | - Ricardo Aroca
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), C/Profesor Albareda, Granada, 18008, Spain.
| |
Collapse
|
155
|
Bilska-Kos A, Szczepanik J, Sowiński P. Cold induced changes in the water balance affect immunocytolocalization pattern of one of the aquaporins in the vascular system in the leaves of maize (Zea mays L.). JOURNAL OF PLANT PHYSIOLOGY 2016; 205:75-79. [PMID: 27626884 DOI: 10.1016/j.jplph.2016.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/19/2016] [Accepted: 08/14/2016] [Indexed: 05/21/2023]
Abstract
Chilling stress is known to affect the water balance in plants, which often manifests itself in the decrease of the water potential in different organs. Relationships between chilling, assimilate transport and water balance are far from being understood. Although aquaporins play a key role in regulating water balance in plants, especially under stress conditions, the role of individual aquaporins in stress response remains unclear. In this report we show the specific localization within plasma membranes of one of the aquaporins (PIP2;3) in the leaves of two maize inbred lines differing in their chilling-sensitivity. This form of aquaporin has been also observed in thick-walled sieve elements - an additional type of sieve tubes of unclear function found only in monocotyledons. Moderate chilling (about 15°C) caused significant reduction of labelling in these cells accompanied by a steep decrease in the water potential in leaves of chilling-sensitive maize line. Our results suggest that both PIP2;3 and thick-walled sieve tubes may be an unknown element of the mechanism of the response of maize to cold stress.
Collapse
Affiliation(s)
- Anna Bilska-Kos
- Plant Breeding and Acclimatization Institute - National Research Institute, Department of Plant Biochemistry and Physiology, Radzików, 05-870 Błonie, Poland.
| | - Jarosław Szczepanik
- Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, 02-096 Warsaw, Miecznikowa 1, Poland
| | - Paweł Sowiński
- Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, 02-096 Warsaw, Miecznikowa 1, Poland
| |
Collapse
|
156
|
Martínez-Ballesta MDC, Carvajal M. Mutual Interactions between Aquaporins and Membrane Components. FRONTIERS IN PLANT SCIENCE 2016; 7:1322. [PMID: 27625676 PMCID: PMC5003842 DOI: 10.3389/fpls.2016.01322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/18/2016] [Indexed: 05/08/2023]
Abstract
In recent years, a number of studies have been focused on the structural evaluation of protein complexes in order to get mechanistic insights into how proteins communicate at the molecular level within the cell. Specific sites of protein-aquaporin interaction have been evaluated and new forms of regulation of aquaporins described, based on these associations. Heterotetramerizations of aquaporin isoforms are considered as novel regulatory mechanisms for plasma membrane (PIPs) and tonoplast (TIPs) proteins, influencing their intrinsic permeability and trafficking dynamics in the adaptive response to changing environmental conditions. However, protein-protein interaction is an extensive theme that is difficult to tackle and new methodologies are being used to study the physical interactions involved. Bimolecular fluorescence complementation and the identification of cross-linked peptides based on tandem mass spectra, that are complementary to other methodologies such as heterologous expression, co-precipitation assays or confocal fluorescence microscopy, are discussed in this review. The chemical composition and the physical characteristics of the lipid bilayer also influence many aspects of membrane aquaporins, including their functionality. The molecular driving forces stabilizing the positions of the lipids around aquaporins could define their activity, thereby altering the conformational properties. Therefore, an integrative approach to the relevance of the membrane-aquaporin interaction to different processes related to plant cell physiology is provided. Finally, it is described how the interactions between aquaporins and copolymer matrixes or biological compounds offer an opportunity for the functional incorporation of aquaporins into new biotechnological advances.
Collapse
Affiliation(s)
| | - Micaela Carvajal
- Plant Nutrition Department, Aquaporins Group, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC)Murcia, Spain
| |
Collapse
|
157
|
Ferrández-Ayela A, Sánchez-García AB, Martínez-Andújar C, Kevei Z, Gifford ML, Thompson AJ, Pérez-Alfocea F, Pérez-Pérez JM. Identification of novel stress-responsive biomarkers from gene expression datasets in tomato roots. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:783-796. [PMID: 32480503 DOI: 10.1071/fp15385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/18/2016] [Indexed: 06/11/2023]
Abstract
Abiotic stresses such as heat, drought or salinity have been widely studied individually. Nevertheless, in the nature and in the field, plants and crops are commonly exposed to a different combination of stresses, which often result in a synergistic response mediated by the activation of several molecular pathways that cannot be inferred from the response to each individual stress. By screening microarray data obtained from different plant species and under different stresses, we identified several conserved stress-responsive genes whose expression was differentially regulated in tomato (Solanum lycopersicum L.) roots in response to one or several stresses. We validated 10 of these genes as reliable biomarkers whose expression levels are related to different signalling pathways involved in adaptive stress responses. In addition, the genes identified in this work could be used as general salt-stress biomarkers to rapidly evaluate the response of salt-tolerant cultivars and wild species for which sufficient genetic information is not yet available.
Collapse
Affiliation(s)
| | | | | | - Zoltan Kevei
- Cranfield Soil and AgriFood Institute, School of Energy, Environment and Agrifood, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Miriam L Gifford
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Andrew J Thompson
- Cranfield Soil and AgriFood Institute, School of Energy, Environment and Agrifood, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
| | | | | |
Collapse
|
158
|
Yaaran A, Moshelion M. Role of Aquaporins in a Composite Model of Water Transport in the Leaf. Int J Mol Sci 2016; 17:E1045. [PMID: 27376277 PMCID: PMC4964421 DOI: 10.3390/ijms17071045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 01/02/2023] Open
Abstract
Water-transport pathways through the leaf are complex and include several checkpoints. Some of these checkpoints exhibit dynamic behavior that may be regulated by aquaporins (AQPs). To date, neither the relative weight of the different water pathways nor their molecular mechanisms are well understood. Here, we have collected evidence to support a putative composite model of water pathways in the leaf and the distribution of water across those pathways. We describe how water moves along a single transcellular path through the parenchyma and continues toward the mesophyll and stomata along transcellular, symplastic and apoplastic paths. We present evidence that points to a role for AQPs in regulating the relative weight of each path in the overall leaf water-transport system and the movement of water between these paths as a result of the integration of multiple signals, including transpiration demand, water potential and turgor. We also present a new theory, the hydraulic fuse theory, to explain effects of the leaf turgor-loss-point on water paths alternation and the subsequent reduction in leaf hydraulic conductivity. An improved understating of leaf water-balance management may lead to the development of crops that use water more efficiently, and responds better to environmental changes.
Collapse
Affiliation(s)
- Adi Yaaran
- Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Menachem Moshelion
- Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
159
|
Salt stress induces internalization of plasma membrane aquaporin into the vacuole in Arabidopsis thaliana. Biochem Biophys Res Commun 2016; 474:742-746. [DOI: 10.1016/j.bbrc.2016.05.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 11/22/2022]
|
160
|
Ma J, Cheng Z, Chen J, Shen J, Zhang B, Ren Y, Ding Y, Zhou Y, Zhang H, Zhou K, Wang JL, Lei C, Zhang X, Guo X, Gao H, Bao Y, Wan JM. Phosphatidylserine Synthase Controls Cell Elongation Especially in the Uppermost Internode in Rice by Regulation of Exocytosis. PLoS One 2016; 11:e0153119. [PMID: 27055010 PMCID: PMC4824389 DOI: 10.1371/journal.pone.0153119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/23/2016] [Indexed: 11/18/2022] Open
Abstract
The uppermost internode is one of the fastest elongating organs in rice, and is expected to require an adequate supply of cell-wall materials and enzymes to the cell surface to enhance mechanical strength. Although it has been reported that the phenotype of shortened uppermost internode 1 (sui1) is caused by mutations in PHOSPHATIDYLSERINE SYNTHASE (OsPSS), the underlying mechanism remains unclear. Here we show that the OsPSS-1, as a gene expressed predominantly in elongating cells, regulates post-Golgi vesicle secretion to intercellular spaces. Mutation of OsPSS-1 leads to compromised delivery of CESA4 and secGFP towards the cell surface, resulting in weakened intercellular adhesion and disorganized cell arrangement in parenchyma. The phenotype of sui1-4 is caused largely by the reduction in cellulose contents in the whole plant and detrimental delivery of pectins in the uppermost internode. We found that OsPSS-1 and its potential product PS (phosphatidylserine) localized to organelles associated with exocytosis. These results together suggest that OsPSS-1 plays a potential role in mediating cell expansion by regulating secretion of cell wall components.
Collapse
Affiliation(s)
- Jin Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (ZJC); (JMW)
| | - Jun Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinbo Shen
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Ding
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Kunneng Zhou
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Jiu-Lin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - He Gao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Yiqun Bao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Jian-Min Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
- * E-mail: (ZJC); (JMW)
| |
Collapse
|
161
|
Li G, Tillard P, Gojon A, Maurel C. Dual regulation of root hydraulic conductivity and plasma membrane aquaporins by plant nitrate accumulation and high-affinity nitrate transporter NRT2.1. PLANT & CELL PHYSIOLOGY 2016; 57:733-42. [PMID: 26823528 DOI: 10.1093/pcp/pcw022] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/19/2016] [Indexed: 05/24/2023]
Abstract
The water status and mineral nutrition of plants critically determine their growth and development. Nitrate (NO3(-)), the primary nitrogen source of higher plants, is known to impact the water transport capacity of roots (root hydraulic conductivity, Lpr). To explore the effects and mode of action of NO3(-) on Lpr, we used an extended set of NO3(-) transport (nrt1.1, nrt1.2, nrt1.5 and nrt2.1), signaling (nrt1.1 and nrt2.1) and metabolism (nia) mutants in Arabidopsis, grown under various NO3(-) conditions. First, a strong positive relationship between Lpr and NO3(-) accumulation, in shoots rather than in roots, was revealed. Secondly, a specific 30% reduction of Lpr in nrt2.1 plants unraveled a major role for the high-affinity NO3(-) transporter NRT2.1 in increasing Lpr These results indicate that NO3(-)signaling rather than nitrogen assimilation products governs Lpr in Arabidopsis. Quantitative real-time reverse transcription-PCR and enzyme-linked immunosorbent assays (ELISAs) were used to investigate the effects of NO3(-) availability on plasma membrane aquaporin (plasma membrane intrinsic protein; PIP) expression. Whereas PIP regulation mostly occurs at the post-translational level in wild-type plants, a regulation of PIPs at both the transcriptional and translational levels was uncovered in nrt2.1 plants. In conclusion, this work reveals that control of Arabidopsis Lpr and PIP functions by NO3(-) involves novel shoot to root signaling and NRT2.1-dependent functions.
Collapse
Affiliation(s)
- Guowei Li
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, INRA/CNRS/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Pascal Tillard
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, INRA/CNRS/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Alain Gojon
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, INRA/CNRS/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, INRA/CNRS/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| |
Collapse
|
162
|
Zhang J, Yu H, Zhang Y, Wang Y, Li M, Zhang J, Duan L, Zhang M, Li Z. Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1339-55. [PMID: 26743432 PMCID: PMC4762378 DOI: 10.1093/jxb/erv528] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Abscisic acid (ABA) is a vital cellular signal in plants, and effective ABA signalling is pivotal for stress tolerance. AtLOS5 encoding molybdenum cofactor sulphurase is a key regulator of ABA biosynthesis. Here, transgenic AtLOS5 plants were generated to explore the role of AtLOS5 in salt tolerance in maize. AtLOS5 overexpression significantly up-regulated the expression of ZmVp14-2, ZmAO, and ZmMOCO, and increased aldehyde oxidase activities, which enhanced ABA accumulation in transgenic plants under salt stress. Concurrently, AtLOS5 overexpression induced the expression of ZmNHX1, ZmCBL4, and ZmCIPK16, and enhanced the root net Na(+) efflux and H(+) influx, but decreased net K(+) efflux, which maintained a high cytosolic K(+)/Na(+) ratio in transgenic plants under salt stress. However, amiloride or sodium orthovanadate could significantly elevate K(+) effluxes and decrease Na(+) efflux and H(+) influx in salt-treated transgenic roots, but the K(+) effluxes were inhibited by TEA, suggesting that ion fluxes regulated by AtLOS5 overexpression were possibly due to activation of Na(+)/H(+) antiport and K(+) channels across the plasma membrane. Moreover, AtLOS5 overexpression could up-regulate the transcripts of ZmPIP1:1, ZmPIP1:5, and ZmPIP2:4, and enhance root hydraulic conductivity. Thus transgenic plants had higher leaf water potential and turgor, which was correlated with greater biomass accumulation under salt stress. Thus AtLOS5 overexpression induced the expression of ABA biosynthetic genes to promote ABA accumulation, which activated ion transporter and PIP aquaporin gene expression to regulate root ion fluxes and water uptake, thus maintaining high cytosolic K(+) and Na(+) homeostasis and better water status in maize exposed to salt stress.
Collapse
Affiliation(s)
- Juan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Haiyue Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yushi Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yubing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Maoying Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jiachang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
163
|
Durand M, Porcheron B, Hennion N, Maurousset L, Lemoine R, Pourtau N. Water Deficit Enhances C Export to the Roots in Arabidopsis thaliana Plants with Contribution of Sucrose Transporters in Both Shoot and Roots. PLANT PHYSIOLOGY 2016; 170:1460-79. [PMID: 26802041 PMCID: PMC4775148 DOI: 10.1104/pp.15.01926] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/21/2016] [Indexed: 05/20/2023]
Abstract
Root high plasticity is an adaptation to its changing environment. Water deficit impairs growth, leading to sugar accumulation in leaves, part of which could be available to roots via sucrose (Suc) phloem transport. Phloem loading is widely described in Arabidopsis (Arabidopsis thaliana), while unloading in roots is less understood. To gain information on leaf-to-root transport, a soil-based culture system was developed to monitor root system architecture in two dimensions. Under water deficit (50% of soil water-holding capacity), total root length was strongly reduced but the depth of root foraging and the shape of the root system were less affected, likely to improve water uptake. (14)CO2 pulse-chase experiments confirmed that water deficit enhanced carbon (C) export to the roots, as suggested by the increased root-to-shoot ratio. The transcript levels of AtSWEET11 (for sugar will eventually be exported transporter), AtSWEET12, and AtSUC2 (for Suc carrier) genes, all three involved in Suc phloem loading, were significantly up-regulated in leaves of water deficit plants, in accordance with the increase in C export from the leaves to the roots. Interestingly, the transcript levels of AtSUC2 and AtSWEET11 to AtSWEET15 were also significantly higher in stressed roots, underlying the importance of Suc apoplastic unloading in Arabidopsis roots and a putative role for these Suc transporters in Suc unloading. These data demonstrate that, during water deficit, plants respond to growth limitation by allocating relatively more C to the roots to maintain an efficient root system and that a subset of Suc transporters is potentially involved in the flux of C to and in the roots.
Collapse
Affiliation(s)
- Mickaël Durand
- Université de Poitiers, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7267, Ecologie et Biologie des Interactions, 86073 Poitiers cedex 9, France
| | - Benoît Porcheron
- Université de Poitiers, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7267, Ecologie et Biologie des Interactions, 86073 Poitiers cedex 9, France
| | - Nils Hennion
- Université de Poitiers, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7267, Ecologie et Biologie des Interactions, 86073 Poitiers cedex 9, France
| | - Laurence Maurousset
- Université de Poitiers, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7267, Ecologie et Biologie des Interactions, 86073 Poitiers cedex 9, France
| | - Rémi Lemoine
- Université de Poitiers, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7267, Ecologie et Biologie des Interactions, 86073 Poitiers cedex 9, France
| | - Nathalie Pourtau
- Université de Poitiers, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7267, Ecologie et Biologie des Interactions, 86073 Poitiers cedex 9, France
| |
Collapse
|
164
|
The Roles of Aquaporins in Plant Stress Responses. J Dev Biol 2016; 4:jdb4010009. [PMID: 29615577 PMCID: PMC5831814 DOI: 10.3390/jdb4010009] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 12/26/2022] Open
Abstract
Aquaporins are membrane channel proteins ubiquitously present in all kingdoms of life. Although aquaporins were originally discovered as water channels, their roles in the transport of small neutral solutes, gasses, and metal ions are now well established. Plants contain the largest number and greatest diversity of aquaporin homologs with diverse subcellular localization patterns, gating properties, and solute specificity. The roles of aquaporins in physiological functions throughout plant growth and development are well known. As an integral regulator of plant–water relations, they are presumed to play an important role in plant defense responses against biotic and abiotic stressors. This review highlights involvement of various aquaporin homologs in plant stress responses against a variety of environmental stresses that disturb plant cell osmotic balance and nutrient homeostasis.
Collapse
|
165
|
Sun X, Xu L, Wang Y, Luo X, Zhu X, Kinuthia KB, Nie S, Feng H, Li C, Liu L. Transcriptome-based gene expression profiling identifies differentially expressed genes critical for salt stress response in radish (Raphanus sativus L.). PLANT CELL REPORTS 2016; 35:329-46. [PMID: 26518430 DOI: 10.1007/s00299-015-1887-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/02/2015] [Accepted: 10/15/2015] [Indexed: 05/20/2023]
Abstract
Transcriptome-based gene expression analysis identifies many critical salt-responsive genes in radish and facilitates further dissecting the molecular mechanism underlying salt stress response. Salt stress severely impacts plant growth and development. Radish, a moderately salt-sensitive vegetable crop, has been studied for decades towards the physiological and biochemical performances under salt stress. However, no systematic study on isolation and identification of genes involved in salt stress response has been performed in radish, and the molecular mechanism governing this process is still indistinct. Here, the RNA-Seq technique was applied to analyze the transcriptomic changes on radish roots treated with salt (200 mM NaCl) for 48 h in comparison with those cultured in normal condition. Totally 8709 differentially expressed genes (DEGs) including 3931 up- and 4778 down-regulated genes were identified. Functional annotation analysis indicated that many genes could be involved in several aspects of salt stress response including stress sensing and signal transduction, osmoregulation, ion homeostasis and ROS scavenging. The association analysis of salt-responsive genes and miRNAs exhibited that 36 miRNA-mRNA pairs had negative correlationship in expression trends. Reverse-transcription quantitative PCR (RT-qPCR) analysis revealed that the expression profiles of DEGs were in line with results from the RNA-Seq analysis. Furthermore, the putative model of DEGs and miRNA-mediated gene regulation was proposed to elucidate how radish sensed and responded to salt stress. This study represents the first comprehensive transcriptome-based gene expression profiling under salt stress in radish. The outcomes of this study could facilitate further dissecting the molecular mechanism underlying salt stress response and provide a valuable platform for further genetic improvement of salt tolerance in radish breeding programs.
Collapse
Affiliation(s)
- Xiaochuan Sun
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, People's Republic of China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, People's Republic of China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, People's Republic of China
| | - Xiaobo Luo
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Karanja Benard Kinuthia
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shanshan Nie
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, People's Republic of China
| | - Haiyang Feng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chao Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, People's Republic of China.
| |
Collapse
|
166
|
Chang W, Liu X, Zhu J, Fan W, Zhang Z. An aquaporin gene from halophyte Sesuvium portulacastrum, SpAQP1, increases salt tolerance in transgenic tobacco. PLANT CELL REPORTS 2016; 35:385-95. [PMID: 26581952 DOI: 10.1007/s00299-015-1891-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/29/2015] [Accepted: 10/27/2015] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE SpAQP1 was strongly induced by salt in an ABA-independent way, promoted seed germination and root growth in transgenic tobaccos and increased salt tolerance by increasing the activities of antioxidative enzymes. Aquaporin (AQP) plays crucial roles in the responses of plant to abiotic stresses such as drought, salt and cold. Compared to glycophytes, halophytes often have excellent salt and drought tolerances. To uncover the molecular mechanism of halophyte Sesuvium portulacastrum tolerance to salt, in this study, an AQP gene, SpAQP1, from S. portulacastrum was isolated and characterized. The amino acid sequence of SpAQP1 shared high homology with that of plant plasma membrane intrinsic proteins (PIPs) and contained the distinct molecular features of PIPs. In the phylogenic tree, SpAQP1 was evidently classified as the PIP2 subfamily. SpAQP1 is expressed in roots, stems and leaves, and was significantly induced by NaCl treatment and inhibited by abscisic acid (ABA) treatment. When heterologously expressed in yeast and tobacco, SpAQP1 enhanced the salt tolerance of yeast strains and tobacco plants and promoted seed germination and root growth under salt stress in transgenic plants. The activity of antioxidative enzymes including superoxide dismutase, peroxidase and catalase was increased in transgenic plants overexpressing SpAQP1. Taken together, our studies suggested that SpAQP1 functioned in the responses of S. portulacastrum to salt stress and could increase salt tolerance by enhancing the antioxidative activity of plants.
Collapse
Affiliation(s)
- Wenjun Chang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, People's Republic of China.
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Longhua District, Haikou, 571101, People's Republic of China.
| | - Xiwen Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, People's Republic of China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Longhua District, Haikou, 571101, People's Republic of China
| | - Jiahong Zhu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, People's Republic of China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Longhua District, Haikou, 571101, People's Republic of China
| | - Wei Fan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, People's Republic of China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Longhua District, Haikou, 571101, People's Republic of China
| | - Zhili Zhang
- Hainan Academy of Agricultural Sciences, 4 Xingdan Road, Haikou, 571100, People's Republic of China.
| |
Collapse
|
167
|
Bushman BS, Amundsen KL, Warnke SE, Robins JG, Johnson PG. Transcriptome profiling of Kentucky bluegrass (Poa pratensis L.) accessions in response to salt stress. BMC Genomics 2016; 17:48. [PMID: 26758626 PMCID: PMC4711080 DOI: 10.1186/s12864-016-2379-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/06/2016] [Indexed: 12/22/2022] Open
Abstract
Background Kentucky bluegrass (Poa pratensis L.) is a prominent turfgrass in the cool-season regions, but it is sensitive to salt stress. Previously, a relatively salt tolerant Kentucky bluegrass accession was identified that maintained green colour under consistent salt applications. In this study, a transcriptome study between the tolerant (PI 372742) accession and a salt susceptible (PI 368233) accession was conducted, under control and salt treatments, and in shoot and root tissues. Results Sample replicates grouped tightly by tissue and treatment, and fewer differentially expressed transcripts were detected in the tolerant PI 372742 samples compared to the susceptible PI 368233 samples, and in root tissues compared to shoot tissues. A de novo assembly resulted in 388,764 transcripts, with 36,587 detected as differentially expressed. Approximately 75 % of transcripts had homology based annotations, with several differences in GO terms enriched between the PI 368233 and PI 372742 samples. Gene expression profiling identified salt-responsive gene families that were consistently down-regulated in PI 372742 and unlikely to contribute to salt tolerance in Kentucky bluegrass. Gene expression profiling also identified sets of transcripts relating to transcription factors, ion and water transport genes, and oxidation-reduction process genes with likely roles in salt tolerance. Conclusions The transcript assembly represents the first such assembly in the highly polyploidy, facultative apomictic Kentucky bluegrass. The transcripts identified provide genetic information on how this plant responds to and tolerates salt stress in both shoot and root tissues, and can be used for further genetic testing and introgression. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2379-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- B Shaun Bushman
- USDA-ARS Forage and Range Research Laboratory, 700 North 1100 East, Logan, UT, 84322-6300, USA.
| | - Keenan L Amundsen
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, USA.
| | - Scott E Warnke
- USDA-ARS Floral and Nursery Plants Research Unit, Beltsville, MD, USA.
| | - Joseph G Robins
- USDA-ARS Forage and Range Research Laboratory, 700 North 1100 East, Logan, UT, 84322-6300, USA.
| | - Paul G Johnson
- Department of Plants, Soils, and Climate, Utah State University, Logan, UT, USA.
| |
Collapse
|
168
|
Foster KJ, Miklavcic SJ. Modeling Root Zone Effects on Preferred Pathways for the Passive Transport of Ions and Water in Plant Roots. FRONTIERS IN PLANT SCIENCE 2016; 7:914. [PMID: 27446144 PMCID: PMC4917552 DOI: 10.3389/fpls.2016.00914] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/09/2016] [Indexed: 05/09/2023]
Abstract
We extend a model of ion and water transport through a root to describe transport along and through a root exhibiting a complexity of differentiation zones. Attention is focused on convective and diffusive transport, both radially and longitudinally, through different root tissue types (radial differentiation) and root developmental zones (longitudinal differentiation). Model transport parameters are selected to mimic the relative abilities of the different tissues and developmental zones to transport water and ions. For each transport scenario in this extensive simulations study, we quantify the optimal 3D flow path taken by water and ions, in response to internal barriers such as the Casparian strip and suberin lamellae. We present and discuss both transient and steady state results of ion concentrations as well as ion and water fluxes. We find that the peak in passive uptake of ions and water occurs at the start of the differentiation zone. In addition, our results show that the level of transpiration has a significant impact on the distribution of ions within the root as well as the rate of ion and water uptake in the differentiation zone, while not impacting on transport in the elongation zone. From our model results we infer information about the active transport of ions in the different developmental zones. In particular, our results suggest that any uptake measured in the elongation zone under steady state conditions is likely to be due to active transport.
Collapse
|
169
|
Jørgensen ME, Olsen CE, Halkier BA, Nour-Eldin HH. Phosphorylation at serine 52 and 635 does not alter the transport properties of glucosinolate transporter AtGTR1. PLANT SIGNALING & BEHAVIOR 2016; 11:e1071751. [PMID: 26340317 PMCID: PMC4883914 DOI: 10.1080/15592324.2015.1071751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 06/05/2023]
Abstract
Little is known about how plants regulate transporters of defense compounds. In A. thaliana, glucosinolates are transported between tissues by NPF2.10 (AtGTR1) and NPF2.11 (AtGTR2). Mining of the PhosPhat4.0 database showed two cytosol exposed phosphorylation sites for AtGTR1 and one membrane-buried phosphorylation site for AtGTR2. In this study, we investigate whether mutation of the two potential regulatory sites of AtGTR1 affected transport of glucosinolates in Xenopus oocytes. Characterization of AtGTR1 phosphorylation mutants showed that phosphorylation of AtGTR1 - at the two reported phosphorylation sites - is not directly involved in regulating AtGTR1 transport activity. We hypothesize a role for AtGTR1-phosphorylation in regulating protein-protein interactions.
Collapse
Affiliation(s)
- Morten Egevang Jørgensen
- Center for Dynamic Molecular Interactions (DynaMo); University of Copenhagen; Frederiksberg, Denmark
- Department of Plant and Environmental Sciences; Faculty of Science; University of Copenhagen; Frederiksberg, Denmark
| | - Carl Erik Olsen
- Department of Plant and Environmental Sciences; Faculty of Science; University of Copenhagen; Frederiksberg, Denmark
| | - Barbara Ann Halkier
- Center for Dynamic Molecular Interactions (DynaMo); University of Copenhagen; Frederiksberg, Denmark
- Department of Plant and Environmental Sciences; Faculty of Science; University of Copenhagen; Frederiksberg, Denmark
| | - Hussam Hassan Nour-Eldin
- Center for Dynamic Molecular Interactions (DynaMo); University of Copenhagen; Frederiksberg, Denmark
- Department of Plant and Environmental Sciences; Faculty of Science; University of Copenhagen; Frederiksberg, Denmark
| |
Collapse
|
170
|
Deokar AA, Tar'an B. Genome-Wide Analysis of the Aquaporin Gene Family in Chickpea ( Cicer arietinum L.). FRONTIERS IN PLANT SCIENCE 2016; 7:1802. [PMID: 27965700 PMCID: PMC5126082 DOI: 10.3389/fpls.2016.01802] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/15/2016] [Indexed: 05/18/2023]
Abstract
Aquaporins (AQPs) are essential membrane proteins that play critical role in the transport of water and many other solutes across cell membranes. In this study, a comprehensive genome-wide analysis identified 40 AQP genes in chickpea (Cicer arietinum L.). A complete overview of the chickpea AQP (CaAQP) gene family is presented, including their chromosomal locations, gene structure, phylogeny, gene duplication, conserved functional motifs, gene expression, and conserved promoter motifs. To understand AQP's evolution, a comparative analysis of chickpea AQPs with AQP orthologs from soybean, Medicago, common bean, and Arabidopsis was performed. The chickpea AQP genes were found on all of the chickpea chromosomes, except chromosome 7, with a maximum of six genes on chromosome 6, and a minimum of one gene on chromosome 5. Gene duplication analysis indicated that the expansion of chickpea AQP gene family might have been due to segmental and tandem duplications. CaAQPs were grouped into four subfamilies including 15 NOD26-like intrinsic proteins (NIPs), 13 tonoplast intrinsic proteins (TIPs), eight plasma membrane intrinsic proteins (PIPs), and four small basic intrinsic proteins (SIPs) based on sequence similarities and phylogenetic position. Gene structure analysis revealed a highly conserved exon-intron pattern within CaAQP subfamilies supporting the CaAQP family classification. Functional prediction based on conserved Ar/R selectivity filters, Froger's residues, and specificity-determining positions suggested wide differences in substrate specificity among the subfamilies of CaAQPs. Expression analysis of the AQP genes indicated that some of the genes are tissue-specific, whereas few other AQP genes showed differential expression in response to biotic and abiotic stresses. Promoter profiling of CaAQP genes for conserved cis-acting regulatory elements revealed enrichment of cis-elements involved in circadian control, light response, defense and stress responsiveness reflecting their varying pattern of gene expression and potential involvement in biotic and abiotic stress responses. The current study presents the first detailed genome-wide analysis of the AQP gene family in chickpea and provides valuable information for further functional analysis to infer the role of AQP in the adaptation of chickpea in diverse environmental conditions.
Collapse
|
171
|
Skorupa-Kłaput M, Szczepanek J, Kurnik K, Tretyn A, Tyburski J. The expression patterns of plasma membrane aquaporins in leaves of sugar beet and its halophyte relative, Beta vulgaris ssp. maritima, in response to salt stress. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
172
|
Vitali V, Bellati J, Soto G, Ayub ND, Amodeo G. Root hydraulic conductivity and adjustments in stomatal conductance: hydraulic strategy in response to salt stress in a halotolerant species. AOB PLANTS 2015; 7:plv136. [PMID: 26602985 PMCID: PMC4683980 DOI: 10.1093/aobpla/plv136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 11/07/2015] [Indexed: 05/23/2023]
Abstract
Recent advances at the molecular level are introducing a new scenario that needs to be integrated into the analysis of plant hydraulic properties. Although it is not yet clear to what extent this scenario alters the current proposal for the hydraulic circuit models, it introduces new insights when studying plants that are able to easily overcome water restrictions. In this context, our aim was to explore water adjustments in a halotolerant model (Beta vulgaris) by studying the coordination between the root in terms of root hydraulic conductivity (Lpr) and the shoot as reflected in the stomatal conductance (gs). The root water pathways were also analysed in terms of root suberization (apoplastic barrier) and aquaporin transcript levels (cell-to-cell pathway). Beta vulgaris showed the ability to rapidly lose (4 h) and gain (24 h) turgor when submitted to salt stress (200 mM). The reduction profile observed in Lpr and gs was consistent with a coupled process. The tuning of the root water flow involved small variations in the studied aquaporin's transcripts before anatomical modifications occurred. Exploring Lpr enhancement after halting the stress contributed to show not only a different profile in restoring Lpr but also the capacity to uncouple Lpr from gs. Beta vulgaris root plays a key role and can anticipate water loss before the aerial water status is affected.
Collapse
Affiliation(s)
- Victoria Vitali
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, C1428EGA Buenos Aires, Argentina
| | - Jorge Bellati
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, C1428EGA Buenos Aires, Argentina
| | - Gabriela Soto
- Instituto de Genética "Ewald A. Favret", CICVyA, INTA-Castelar and Consejo Nacional de Investigaciones Científicas y Técnicas, 1686 Buenos Aires, Argentina
| | - Nicolás D Ayub
- Instituto de Genética "Ewald A. Favret", CICVyA, INTA-Castelar and Consejo Nacional de Investigaciones Científicas y Técnicas, 1686 Buenos Aires, Argentina
| | - Gabriela Amodeo
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
173
|
Krishnamurthy P, Tan XF, Lim TK, Lim TM, Kumar PP, Loh CS, Lin Q. Proteomic analysis of plasma membrane and tonoplast from the leaves of mangrove plant Avicennia officinalis. Proteomics 2015; 14:2545-57. [PMID: 25236605 DOI: 10.1002/pmic.201300527] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 07/15/2014] [Accepted: 09/15/2014] [Indexed: 12/29/2022]
Abstract
In order to understand the salt tolerance and secretion in mangrove plant species, gel electrophoresis coupled with LC-MS-based proteomics was used to identify key transport proteins in the plasma membrane (PM) and tonoplast fractions of Avicennia officinalis leaves. PM and tonoplast proteins were purified using two-aqueous-phase partitioning and density gradient centrifugation, respectively. Forty of the 254 PM proteins and 31 of the 165 tonoplast proteins identified were predicted to have transmembrane domains. About 95% of the identified proteins could be classified based on their functions. The major classes of proteins were predicted to be involved in transport, metabolic processes, defense/stress response, and signal transduction, while a few of the proteins were predicted to be involved in other functions such as membrane trafficking. The main classes of transporter proteins identified included H(+) -ATPases, ATP-binding cassette transporters, and aquaporins, all of which could play a role in salt secretion. These data will serve as the baseline membrane proteomic dataset for Avicennia species. Further, this information can contribute to future studies on understanding the mechanism of salt tolerance in halophytes in addition to salt secretion in mangroves. All MS data have been deposited in the ProteomeXchange with identifier PXD000837 (http://proteomecentral.proteomexchange.org/dataset/PXD000837).
Collapse
Affiliation(s)
- Pannaga Krishnamurthy
- Department of Biological Sciences, National University of Singapore, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
174
|
Yaneff A, Vitali V, Amodeo G. PIP1 aquaporins: Intrinsic water channels or PIP2 aquaporin modulators? FEBS Lett 2015; 589:3508-15. [PMID: 26526614 DOI: 10.1016/j.febslet.2015.10.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
Abstract
The highly conserved plant aquaporins, known as Plasma membrane Intrinsic Proteins (PIPs), are the main gateways for cell membrane water exchange. Years of research have described in detail the properties of the PIP2 subfamily. However, characterizing the PIP1 subfamily has been difficult due to the failure to localize to the plasma membrane. In addition, the discovery of the PIP1-PIP2 interaction suggested that PIP1 aquaporins could be regulated by a complex posttranslational mechanism that involves trafficking, heteromerization and fine-tuning of channel activity. This review not only considers the evidence and findings but also discusses the complexity of PIP aquaporins. To establish a new benchmark in PIP regulation, we propose to consider PIP1-PIP2 pairs as functional units for the purpose of future research into their physiological roles.
Collapse
Affiliation(s)
- Agustín Yaneff
- Departamento de Biodiversidad de Biología Experimental and Instituto de Biodiversidad y Biología Experimental (IBBEA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Victoria Vitali
- Departamento de Biodiversidad de Biología Experimental and Instituto de Biodiversidad y Biología Experimental (IBBEA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gabriela Amodeo
- Departamento de Biodiversidad de Biología Experimental and Instituto de Biodiversidad y Biología Experimental (IBBEA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
175
|
Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L. Aquaporins in Plants. Physiol Rev 2015; 95:1321-58. [DOI: 10.1152/physrev.00008.2015] [Citation(s) in RCA: 486] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aquaporins are membrane channels that facilitate the transport of water and small neutral molecules across biological membranes of most living organisms. In plants, aquaporins occur as multiple isoforms reflecting a high diversity of cellular localizations, transport selectivity, and regulation properties. Plant aquaporins are localized in the plasma membrane, endoplasmic reticulum, vacuoles, plastids and, in some species, in membrane compartments interacting with symbiotic organisms. Plant aquaporins can transport various physiological substrates in addition to water. Of particular relevance for plants is the transport of dissolved gases such as carbon dioxide and ammonia or metalloids such as boron and silicon. Structure-function studies are developed to address the molecular and cellular mechanisms of plant aquaporin gating and subcellular trafficking. Phosphorylation plays a central role in these two processes. These mechanisms allow aquaporin regulation in response to signaling intermediates such as cytosolic pH and calcium, and reactive oxygen species. Combined genetic and physiological approaches are now integrating this knowledge, showing that aquaporins play key roles in hydraulic regulation in roots and leaves, during drought but also in response to stimuli as diverse as flooding, nutrient availability, temperature, or light. A general hydraulic control of plant tissue expansion by aquaporins is emerging, and their role in key developmental processes (seed germination, emergence of lateral roots) has been established. Plants with genetically altered aquaporin functions are now tested for their ability to improve plant tolerance to stresses. In conclusion, research on aquaporins delineates ever expanding fields in plant integrative biology thereby establishing their crucial role in plants.
Collapse
Affiliation(s)
- Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| | - Yann Boursiac
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| | - Doan-Trung Luu
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| | - Véronique Santoni
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| | - Zaigham Shahzad
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| | - Lionel Verdoucq
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| |
Collapse
|
176
|
Martins CDPS, Pedrosa AM, Du D, Gonçalves LP, Yu Q, Gmitter FG, Costa MGC. Genome-Wide Characterization and Expression Analysis of Major Intrinsic Proteins during Abiotic and Biotic Stresses in Sweet Orange (Citrus sinensis L. Osb.). PLoS One 2015; 10:e0138786. [PMID: 26397813 PMCID: PMC4580632 DOI: 10.1371/journal.pone.0138786] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/03/2015] [Indexed: 01/01/2023] Open
Abstract
The family of aquaporins (AQPs), or major intrinsic proteins (MIPs), includes integral membrane proteins that function as transmembrane channels for water and other small molecules of physiological significance. MIPs are classified into five subfamilies in higher plants, including plasma membrane (PIPs), tonoplast (TIPs), NOD26-like (NIPs), small basic (SIPs) and unclassified X (XIPs) intrinsic proteins. This study reports a genome-wide survey of MIP encoding genes in sweet orange (Citrus sinensis L. Osb.), the most widely cultivated Citrus spp. A total of 34 different genes encoding C. sinensis MIPs (CsMIPs) were identified and assigned into five subfamilies (CsPIPs, CsTIPs, CsNIPs, CsSIPs and CsXIPs) based on sequence analysis and also on their phylogenetic relationships with clearly classified MIPs of Arabidopsis thaliana. Analysis of key amino acid residues allowed the assessment of the substrate specificity of each CsMIP. Gene structure analysis revealed that the CsMIPs possess an exon-intron organization that is highly conserved within each subfamily. CsMIP loci were precisely mapped on every sweet orange chromosome, indicating a wide distribution of the gene family in the sweet orange genome. Investigation of their expression patterns in different tissues and upon drought and salt stress treatments, as well as with ‘Candidatus Liberibacter asiaticus’ infection, revealed a tissue-specific and coordinated regulation of the different CsMIP isoforms, consistent with the organization of the stress-responsive cis-acting regulatory elements observed in their promoter regions. A special role in regulating the flow of water and nutrients is proposed for CsTIPs and CsXIPs during drought stress, and for most CsMIPs during salt stress and the development of HLB disease. These results provide a valuable reference for further exploration of the CsMIPs functions and applications to the genetic improvement of both abiotic and biotic stress tolerance in citrus.
Collapse
Affiliation(s)
- Cristina de Paula Santos Martins
- Center for Biotechnology and Genetics, Biological Sciences Department, State University of Santa Cruz, Ilhéus, Bahia, Brazil; Citrus Research and Education Center, Department of Horticultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Andresa Muniz Pedrosa
- Center for Biotechnology and Genetics, Biological Sciences Department, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Dongliang Du
- Citrus Research and Education Center, Department of Horticultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Luana Pereira Gonçalves
- Center for Biotechnology and Genetics, Biological Sciences Department, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Qibin Yu
- Citrus Research and Education Center, Department of Horticultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Frederick G Gmitter
- Citrus Research and Education Center, Department of Horticultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Marcio Gilberto Cardoso Costa
- Center for Biotechnology and Genetics, Biological Sciences Department, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| |
Collapse
|
177
|
Wang S, Liu P, Chen D, Yin L, Li H, Deng X. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber. FRONTIERS IN PLANT SCIENCE 2015; 6:759. [PMID: 26442072 PMCID: PMC4585001 DOI: 10.3389/fpls.2015.00759] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/04/2015] [Indexed: 05/18/2023]
Abstract
Although the effects of silicon application on enhancing plant salt tolerance have been widely investigated, the underlying mechanism has remained unclear. In this study, seedlings of cucumber, a medium silicon accumulator plant, grown in 0.83 mM silicon solution for 2 weeks were exposed to 65 mM NaCl solution for another 1 week. The dry weight and shoot/root ratio were reduced by salt stress, but silicon application significantly alleviated these decreases. The chlorophyll concentration, net photosynthetic rate, transpiration rate and leaf water content were higher in plants treated with silicon than in untreated plants under salt stress conditions. Further investigation showed that salt stress decreased root hydraulic conductance (Lp), but that silicon application moderated this salt-induced decrease in Lp. The higher Lp in silicon-treated plants may account for the superior plant water balance. Moreover, silicon application significantly decreased Na(+) concentration in the leaves while increasing K(+) concentration. Simultaneously, both free and conjugated types of polyamines were maintained at high levels in silicon-treated plants, suggesting that polyamines may be involved in the ion toxicity. Our results indicate that silicon enhances the salt tolerance of cucumber through improving plant water balance by increasing the Lp and reducing Na(+) content by increasing polyamine accumulation.
Collapse
Affiliation(s)
- Shiwen Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F UniversityYangling, China
- Institute of Soil and Water Conservation, Chinese Academy of SciencesYangling, China
| | - Peng Liu
- Department of Plant Protection, Shandong Agricultural UniversityTai’an, China
| | - Daoqian Chen
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Lina Yin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F UniversityYangling, China
- Institute of Soil and Water Conservation, Chinese Academy of SciencesYangling, China
| | - Hongbing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F UniversityYangling, China
- Institute of Soil and Water Conservation, Chinese Academy of SciencesYangling, China
| | - Xiping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F UniversityYangling, China
- Institute of Soil and Water Conservation, Chinese Academy of SciencesYangling, China
| |
Collapse
|
178
|
Moshelion M, Halperin O, Wallach R, Oren R, Way DA. Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield. PLANT, CELL & ENVIRONMENT 2015; 38:1785-93. [PMID: 25039365 DOI: 10.1111/pce.12410] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/27/2014] [Accepted: 06/29/2014] [Indexed: 05/18/2023]
Abstract
The global shortage of fresh water is one of our most severe agricultural problems, leading to dry and saline lands that reduce plant growth and crop yield. Here we review recent work highlighting the molecular mechanisms allowing some plant species and genotypes to maintain productivity under water stress conditions, and suggest molecular modifications to equip plants for greater production in water-limited environments. Aquaporins (AQPs) are thought to be the main transporters of water, small and uncharged solutes, and CO2 through plant cell membranes, thus linking leaf CO2 uptake from the intercellular airspaces to the chloroplast with water loss pathways. AQPs appear to play a role in regulating dynamic changes of root, stem and leaf hydraulic conductivity, especially in response to environmental changes, opening the door to using AQP expression to regulate plant water-use efficiency. We highlight the role of vascular AQPs in regulating leaf hydraulic conductivity and raise questions regarding their role (as well as tonoplast AQPs) in determining the plant isohydric threshold, growth rate, fruit yield production and harvest index. The tissue- or cell-specific expression of AQPs is discussed as a tool to increase yield relative to control plants under both normal and water-stressed conditions.
Collapse
Affiliation(s)
- Menachem Moshelion
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Ofer Halperin
- Department of Soil and Water Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Rony Wallach
- Department of Soil and Water Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Ram Oren
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), SE-901 83, Umeå, Sweden
| | - Danielle A Way
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
- Department of Biology, Western University, London, ON, Canada, N6A5B7
| |
Collapse
|
179
|
Julkowska MM, Testerink C. Tuning plant signaling and growth to survive salt. TRENDS IN PLANT SCIENCE 2015; 20:586-594. [PMID: 26205171 DOI: 10.1016/j.tplants.2015.06.008] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/16/2015] [Accepted: 06/25/2015] [Indexed: 05/20/2023]
Abstract
Salinity is one of the major abiotic factors threatening food security worldwide. Recently, our understanding of early processes underlying salinity tolerance has expanded. In this review, early signaling events, such as phospholipid signaling, calcium ion (Ca(2+)) responses, and reactive oxygen species (ROS) production, together with salt stress-induced abscisic acid (ABA) accumulation, are brought into the context of long-term salt stress-specific responses and alteration of plant growth. Salt-induced quiescent and recovery growth phases rely on modification of cell cycle activity, cell expansion, and cell wall extensibility. The period of initial growth arrest varies among different organs, leading to altered plant morphology. Studying stress-induced changes in growth dynamics can be used for screening to discover novel genes contributing to salt stress tolerance in model species and crops.
Collapse
Affiliation(s)
- Magdalena M Julkowska
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Christa Testerink
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands.
| |
Collapse
|
180
|
Baral A, Shruthi KS, Mathew MK. Vesicular trafficking and salinity responses in plants. IUBMB Life 2015; 67:677-86. [PMID: 26314939 DOI: 10.1002/iub.1425] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/11/2015] [Indexed: 01/09/2023]
Abstract
Research spanning three decades has demonstrated that vesicles pinch off from the plasma membrane and traffic through the cytoplasm of plant cells, much as previously reported in animal cells. Although the well-conserved clathrin-mediated mechanism of endocytosis has been well characterized, relatively little is known about clathrin-independent pathways in plants. Modulation of endocytosis by both physical stimuli and chemical ligands has been reported in plants. Here, we review the effect of salinity-one of the most deleterious environmental assaults-on endocytosis and intracellular trafficking.
Collapse
Affiliation(s)
- Anirban Baral
- National Centre for Biological Sciences (Tata Institute of Fundamental Research), Bellary Road, Bangalore, Karnataka, India
| | - K S Shruthi
- National Centre for Biological Sciences (Tata Institute of Fundamental Research), Bellary Road, Bangalore, Karnataka, India.,School of Bio-Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - M K Mathew
- National Centre for Biological Sciences (Tata Institute of Fundamental Research), Bellary Road, Bangalore, Karnataka, India
| |
Collapse
|
181
|
Campbell MT, Knecht AC, Berger B, Brien CJ, Wang D, Walia H. Integrating Image-Based Phenomics and Association Analysis to Dissect the Genetic Architecture of Temporal Salinity Responses in Rice. PLANT PHYSIOLOGY 2015; 168:1476-89. [PMID: 26111541 PMCID: PMC4528749 DOI: 10.1104/pp.15.00450] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/25/2015] [Indexed: 05/18/2023]
Abstract
Salinity affects a significant portion of arable land and is particularly detrimental for irrigated agriculture, which provides one-third of the global food supply. Rice (Oryza sativa), the most important food crop, is salt sensitive. The genetic resources for salt tolerance in rice germplasm exist but are underutilized due to the difficulty in capturing the dynamic nature of physiological responses to salt stress. The genetic basis of these physiological responses is predicted to be polygenic. In an effort to address this challenge, we generated temporal imaging data from 378 diverse rice genotypes across 14 d of 90 mm NaCl stress and developed a statistical model to assess the genetic architecture of dynamic salinity-induced growth responses in rice germplasm. A genomic region on chromosome 3 was strongly associated with the early growth response and was captured using visible range imaging. Fluorescence imaging identified four genomic regions linked to salinity-induced fluorescence responses. A region on chromosome 1 regulates both the fluorescence shift indicative of the longer term ionic stress and the early growth rate decline during salinity stress. We present, to our knowledge, a new approach to capture the dynamic plant responses to its environment and elucidate the genetic basis of these responses using a longitudinal genome-wide association model.
Collapse
Affiliation(s)
- Malachy T Campbell
- Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.)
| | - Avi C Knecht
- Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.)
| | - Bettina Berger
- Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.)
| | - Chris J Brien
- Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.)
| | - Dong Wang
- Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.)
| | - Harkamal Walia
- Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.)
| |
Collapse
|
182
|
Campbell MT, Knecht AC, Berger B, Brien CJ, Wang D, Walia H. Integrating Image-Based Phenomics and Association Analysis to Dissect the Genetic Architecture of Temporal Salinity Responses in Rice. PLANT PHYSIOLOGY 2015; 168:1476-1489. [PMID: 26111541 DOI: 10.1104/pp15.00450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/25/2015] [Indexed: 05/26/2023]
Abstract
Salinity affects a significant portion of arable land and is particularly detrimental for irrigated agriculture, which provides one-third of the global food supply. Rice (Oryza sativa), the most important food crop, is salt sensitive. The genetic resources for salt tolerance in rice germplasm exist but are underutilized due to the difficulty in capturing the dynamic nature of physiological responses to salt stress. The genetic basis of these physiological responses is predicted to be polygenic. In an effort to address this challenge, we generated temporal imaging data from 378 diverse rice genotypes across 14 d of 90 mm NaCl stress and developed a statistical model to assess the genetic architecture of dynamic salinity-induced growth responses in rice germplasm. A genomic region on chromosome 3 was strongly associated with the early growth response and was captured using visible range imaging. Fluorescence imaging identified four genomic regions linked to salinity-induced fluorescence responses. A region on chromosome 1 regulates both the fluorescence shift indicative of the longer term ionic stress and the early growth rate decline during salinity stress. We present, to our knowledge, a new approach to capture the dynamic plant responses to its environment and elucidate the genetic basis of these responses using a longitudinal genome-wide association model.
Collapse
Affiliation(s)
- Malachy T Campbell
- Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.)
| | - Avi C Knecht
- Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.)
| | - Bettina Berger
- Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.)
| | - Chris J Brien
- Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.)
| | - Dong Wang
- Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.)
| | - Harkamal Walia
- Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.)
| |
Collapse
|
183
|
Taochy C, Gaillard I, Ipotesi E, Oomen R, Leonhardt N, Zimmermann S, Peltier JB, Szponarski W, Simonneau T, Sentenac H, Gibrat R, Boyer JC. The Arabidopsis root stele transporter NPF2.3 contributes to nitrate translocation to shoots under salt stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:466-79. [PMID: 26058834 DOI: 10.1111/tpj.12901] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 05/20/2023]
Abstract
In most plants, NO(3)(-) constitutes the major source of nitrogen, and its assimilation into amino acids is mainly achieved in shoots. Furthermore, recent reports have revealed that reduction of NO(3)(-) translocation from roots to shoots is involved in plant acclimation to abiotic stress. NPF2.3, a member of the NAXT (nitrate excretion transporter) sub-group of the NRT1/PTR family (NPF) from Arabidopsis, is expressed in root pericycle cells, where it is targeted to the plasma membrane. Transport assays using NPF2.3-enriched Lactococcus lactis membranes showed that this protein is endowed with NO(3)(-) transport activity, displaying a strong selectivity for NO(3)(-) against Cl(-). In response to salt stress, NO(3)(-) translocation to shoots is reduced, at least partly because expression of the root stele NO(3)(-) transporter gene NPF7.3 is decreased. In contrast, NPF2.3 expression was maintained under these conditions. A loss-of-function mutation in NPF2.3 resulted in decreased root-to-shoot NO(3)(-) translocation and reduced shoot NO(3)(-) content in plants grown under salt stress. Also, the mutant displayed impaired shoot biomass production when plants were grown under mild salt stress. These mutant phenotypes were dependent on the presence of Na(+) in the external medium. Our data indicate that NPF2.3 is a constitutively expressed transporter whose contribution to NO(3)(-) translocation to the shoots is quantitatively and physiologically significant under salinity.
Collapse
Affiliation(s)
- Christelle Taochy
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Isabelle Gaillard
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Emilie Ipotesi
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Ronald Oomen
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Nathalie Leonhardt
- Laboratoire de Biologie du Développement des Plantes, Institut de Biologie Environnementale et Biotechnologie, Laboratoire des Echanges Membranaires et Signalisation, UMR 7265 CNRS/CEA/Université Aix-Marseille II, F-13108, St Paul lez Durance, France
| | - Sabine Zimmermann
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Jean-Benoît Peltier
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Wojciech Szponarski
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Thierry Simonneau
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Institut de Biologie Intégrative des Plantes, UMR 0759 INRA/Montpellier SupAgro, F-34060, Montpellier, France
| | - Hervé Sentenac
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Rémy Gibrat
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Jean-Christophe Boyer
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| |
Collapse
|
184
|
Li G, Boudsocq M, Hem S, Vialaret J, Rossignol M, Maurel C, Santoni V. The calcium-dependent protein kinase CPK7 acts on root hydraulic conductivity. PLANT, CELL & ENVIRONMENT 2015; 38:1312-20. [PMID: 25366820 DOI: 10.1111/pce.12478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 05/20/2023]
Abstract
The hydraulic conductivity of plant roots (Lp(r)) is determined in large part by the activity of aquaporins. Mechanisms occurring at the post-translational level, in particular phosphorylation of aquaporins of the plasma membrane intrinsic protein 2 (PIP2) subfamily, are thought to be of critical importance for regulating root water transport. However, knowledge of protein kinases and phosphatases acting on aquaporin function is still scarce. In the present work, we investigated the Lp(r) of knockout Arabidopsis plants for four Ca(2+)-dependent protein kinases. cpk7 plants showed a 30% increase in Lp(r) because of a higher aquaporin activity. A quantitative proteomic analysis of wild-type and cpk7 plants revealed that PIP gene expression and PIP protein quantity were not correlated and that CPK7 has no effect on PIP2 phosphorylation. In contrast, CPK7 exerts a negative control on the cellular abundance of PIP1s, which likely accounts for the higher Lp(r) of cpk7. In addition, this study revealed that the cellular amount of a few additional proteins including membrane transporters is controlled by CPK7. The overall work provides evidence for CPK7-dependent stability of specific membrane proteins.
Collapse
Affiliation(s)
- Guowei Li
- Biochimie et Physiologie Moléculaire des Plantes, INRA/CNRS/SupAgro/UM2, UMR 5004, 2 Place Viala, Montpellier Cedex 1, 34060, France
| | - Marie Boudsocq
- Saclay Plant Sciences, Institut des Sciences du Végétal, UPR2355, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex, 91198, France
| | - Sonia Hem
- Laboratoire de Protéomique Fonctionnelle, UR1199, 1 Place Viala, Montpellier Cedex 1, 34060, France
| | - Jérôme Vialaret
- Laboratoire de Protéomique Fonctionnelle, UR1199, 1 Place Viala, Montpellier Cedex 1, 34060, France
| | - Michel Rossignol
- Laboratoire de Protéomique Fonctionnelle, UR1199, 1 Place Viala, Montpellier Cedex 1, 34060, France
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, INRA/CNRS/SupAgro/UM2, UMR 5004, 2 Place Viala, Montpellier Cedex 1, 34060, France
| | - Véronique Santoni
- Biochimie et Physiologie Moléculaire des Plantes, INRA/CNRS/SupAgro/UM2, UMR 5004, 2 Place Viala, Montpellier Cedex 1, 34060, France
| |
Collapse
|
185
|
Wudick MM, Li X, Valentini V, Geldner N, Chory J, Lin J, Maurel C, Luu DT. Subcellular Redistribution of Root Aquaporins Induced by Hydrogen Peroxide. MOLECULAR PLANT 2015; 8:1103-14. [PMID: 25749111 DOI: 10.1016/j.molp.2015.02.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/18/2015] [Accepted: 02/27/2015] [Indexed: 05/08/2023]
Abstract
Aquaporins are water channel proteins that mediate the fine-tuning of cell membrane water permeability during development or in response to environmental stresses. The present work focuses on the oxidative stress-induced redistribution of plasma membrane intrinsic protein (PIP) aquaporins from the plasma membrane (PM) to intracellular membranes. This process was investigated in the Arabidopsis root. Sucrose density gradient centrifugation showed that exposure of roots to 0.5 mM H2O2 induces significant depletion in PM fractions of several abundant PIP homologs after 15 min. Analyses by single-particle tracking and fluorescence correlative spectroscopy showed that, in the PM of epidermal cells, H2O2 treatment induces an increase in lateral motion and a reduction in the density of a fluorescently tagged form of the prototypal AtPIP2;1 isoform, respectively. Co-expression analyses of AtPIP2;1 with endomembrane markers revealed that H2O2 triggers AtPIP2;1 accumulation in the late endosomal compartments. Life-time analyses established that the high stability of PIPs was maintained under oxidative stress conditions, suggesting that H2O2 triggers a mechanism for intracellular sequestration of PM aquaporins without further degradation. In addition to information on cellular regulation of aquaporins, this study provides novel and complementary insights into the dynamic remodeling of plant internal membranes during oxidative stress responses.
Collapse
Affiliation(s)
- Michael M Wudick
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, 2, Place Viala, F-34060 Montpellier Cedex 2, France
| | - Xiaojuan Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Valeria Valentini
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, 2, Place Viala, F-34060 Montpellier Cedex 2, France
| | - Niko Geldner
- Department of Plant Molecular Biology, Université de Lausanne, 1015 Lausanne, Switzerland
| | - Joanne Chory
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute, La Jolla, CA 92037, USA
| | - Jinxing Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, 2, Place Viala, F-34060 Montpellier Cedex 2, France.
| | - Doan-Trung Luu
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, 2, Place Viala, F-34060 Montpellier Cedex 2, France.
| |
Collapse
|
186
|
Heterologous Expression of Two Jatropha Aquaporins Imparts Drought and Salt Tolerance and Improves Seed Viability in Transgenic Arabidopsis thaliana. PLoS One 2015; 10:e0128866. [PMID: 26067295 PMCID: PMC4466373 DOI: 10.1371/journal.pone.0128866] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/02/2015] [Indexed: 11/19/2022] Open
Abstract
Drought and high salinity are environmental conditions that cause adverse effects on the growth and productivity of crops. Aquaporins are small integral membrane proteins that belong to the family of the major intrinsic proteins (MIPs), with members in animals, plants and microbes, where they facilitate the transport of water and/or small neutral solutes thereby affecting water balance. In this study we characterized two aquaporin genes namely, plasma membrane intrinsic protein (PIP2;7) and tonoplast intrinsic protein TIP1;3 from Jatropha curcas that are localised to the plasma membrane and vacuole respectively. Transgenic Arabidopsis thaliana lines over-expressing JcPIP2;7 and JcTIP1;3 under a constitutive promoter show improved germination under high salt and mannitol compared to control seeds. These transgenic plants also show increased root length under abiotic stress conditions compared to wild type Col-0 plants. Transgenic lines exposed to drought conditions by withholding water for 20 days, were able to withstand water stress and attained normal growth after re-watering unlike control plants which could not survive. Transgenic lines also had better seed yield than control under salt stress. Importantly, seed viability of transgenic plants grown under high salt concentration was 35%-45% compared to less than 5% for control seeds obtained from plants growing under salt stress. The effect of JcPIP2;7 and JcTIP1;3 on improving germination and seed viability in drought and salinity make these important candidates for genetic manipulation of plants for growth in saline soils.
Collapse
|
187
|
Kaneko T, Horie T, Nakahara Y, Tsuji N, Shibasaka M, Katsuhara M. Dynamic regulation of the root hydraulic conductivity of barley plants in response to salinity/osmotic stress. PLANT & CELL PHYSIOLOGY 2015; 56:875-82. [PMID: 25634964 DOI: 10.1093/pcp/pcv013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 01/23/2015] [Indexed: 05/15/2023]
Abstract
Salinity stress significantly reduces the root hydraulic conductivity (Lpr) of several plant species including barley (Hordeum vulgare). Here we characterized changes in the Lpr of barley plants in response to salinity/osmotic stress in detail using a pressure chamber. Salt-tolerant and intermediate barley cultivars, K305 and Haruna-nijyo, but not a salt-sensitive cultivar, I743, exhibited characteristic time-dependent Lpr changes induced by 100 mM NaCl. An identical response was evoked by isotonic sorbitol, indicating that this phenomenon was triggered by osmotic imbalances. Further examination of this mechanism using barley cv. Haruna-nijyo plants in combination with the use of various inhibitors suggested that various cellular processes such as protein phosphorylation/dephosphorylation and membrane internalization appear to be involved. Interestingly, the three above-mentioned barley cultivars did not exhibit a remarkable difference in root cell sap osmolality under hypertonic conditions, in contrast to the case of Lpr. The possible biological significance of the regulation of Lpr in barley plants upon salinity/osmotic stress is discussed.
Collapse
Affiliation(s)
- Toshiyuki Kaneko
- Institute of Plant Science and Resources, Okayama University, 20-1, Chuo-2-chome, Kurashiki, Okayama, 710-0046 Japan Department of Physiology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-higashi, Asahikawa, Hokkaido, 078-8510 Japan These authors contributed equally to this work
| | - Tomoaki Horie
- Institute of Plant Science and Resources, Okayama University, 20-1, Chuo-2-chome, Kurashiki, Okayama, 710-0046 Japan Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano, 386-8567 Japan These authors contributed equally to this work
| | - Yoshiki Nakahara
- Institute of Plant Science and Resources, Okayama University, 20-1, Chuo-2-chome, Kurashiki, Okayama, 710-0046 Japan
| | - Nobuya Tsuji
- Institute of Plant Science and Resources, Okayama University, 20-1, Chuo-2-chome, Kurashiki, Okayama, 710-0046 Japan
| | - Mineo Shibasaka
- Institute of Plant Science and Resources, Okayama University, 20-1, Chuo-2-chome, Kurashiki, Okayama, 710-0046 Japan
| | - Maki Katsuhara
- Institute of Plant Science and Resources, Okayama University, 20-1, Chuo-2-chome, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
188
|
Chevalier AS, Chaumont F. Trafficking of plant plasma membrane aquaporins: multiple regulation levels and complex sorting signals. PLANT & CELL PHYSIOLOGY 2015; 56:819-29. [PMID: 25520405 PMCID: PMC7107115 DOI: 10.1093/pcp/pcu203] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/04/2014] [Indexed: 05/21/2023]
Abstract
Aquaporins are small channel proteins which facilitate the diffusion of water and small neutral molecules across biological membranes. Compared with animals, plant genomes encode numerous aquaporins, which display a large variety of subcellular localization patterns. More specifically, plant aquaporins of the plasma membrane intrinsic protein (PIP) subfamily were first described as plasma membrane (PM)-resident proteins, but recent research has demonstrated that the trafficking and subcellular localization of these proteins are complex and highly regulated. In the past few years, PIPs emerged as new model proteins to study subcellular sorting and membrane dynamics in plant cells. At least two distinct sorting motifs (one cytosolic, the other buried in the membrane) are required to direct PIPs to the PM. Hetero-oligomerization and interaction with SNAREs (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptors) also influence the subcellular trafficking of PIPs. In addition to these constitutive processes, both the progression of PIPs through the secretory pathway and their dynamics at the PM are responsive to changing environmental conditions.
Collapse
Affiliation(s)
- Adrien S Chevalier
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4, L7.07.14, B-1348 Louvain-la-Neuve, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4, L7.07.14, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
189
|
Lee SH, Zwiazek JJ. Regulation of aquaporin-mediated water transport in Arabidopsis roots exposed to NaCl. PLANT & CELL PHYSIOLOGY 2015; 56:750-8. [PMID: 25604052 DOI: 10.1093/pcp/pcv003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 01/06/2015] [Indexed: 05/20/2023]
Abstract
The effects of Ca(NO3)2, KF and okadaic acid (OA) on cell hydraulic responses to NaCl were examined in roots of Arabidopsis thaliana wild-type plants and compared with plants overexpressing plasma membrane intrinsic protein PIP2;5. Root treatment with 10 mM NaCl rapidly and sharply reduced cell hydraulic conductivity (L(p)) in the wild-type Arabidopsis plants, but had no effect on L(p) in Arabidopsis plants overexpressing PIP2;5, suggesting that changes in protein and aquaporin gene expression were among the initial targets responsible for the inhibition of L(p) by NaCl. The down-regulation of PIP transcripts after 1 h exposure to 10 mM NaCl was likely a significant factor in the reduction of L(p). The effect of NaCl on L(p) in the wild-type plants was abolished when the NaCl-treated roots were subsequently exposed to 5 mM KF, 5 mM Ca(NO3)2 and 5 µM OA. The reduction of L(p) by 5 mM KF could not be prevented by treatment with 5 mM Ca(NO3)2 in both wild-type and PIP2;5-overexpressing plants. However, 5 µM OA, which was added following NaCl or KF treatment, completely reversed L(p) within several minutes. The results provide evidence for high sensitivity of aquaporin-mediated water transport to relatively low NaCl concentrations and point to the phosphorylation and/or dephosphorylation processes as those that are likely responsible for the protection of L(p) by fluoride and calcium treatments against the effects of NaCl.
Collapse
Affiliation(s)
- Seong H Lee
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., T6G 2E3, Edmonton, AB, Canada
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., T6G 2E3, Edmonton, AB, Canada
| |
Collapse
|
190
|
Ayadi A, David P, Arrighi JF, Chiarenza S, Thibaud MC, Nussaume L, Marin E. Reducing the genetic redundancy of Arabidopsis PHOSPHATE TRANSPORTER1 transporters to study phosphate uptake and signaling. PLANT PHYSIOLOGY 2015; 167:1511-26. [PMID: 25670816 PMCID: PMC4378149 DOI: 10.1104/pp.114.252338] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/09/2015] [Indexed: 05/18/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) absorbs inorganic phosphate (Pi) from the soil through an active transport process mediated by the nine members of the PHOSPHATE TRANSPORTER1 (PHT1) family. These proteins share a high level of similarity (greater than 61%), with overlapping expression patterns. The resulting genetic and functional redundancy prevents the analysis of their specific roles. To overcome this difficulty, our approach combined several mutations with gene silencing to inactivate multiple members of the PHT1 family, including a cluster of genes localized on chromosome 5 (PHT1;1, PHT1;2, and PHT1;3). Physiological analyses of these lines established that these three genes, along with PHT1;4, are the main contributors to Pi uptake. Furthermore, PHT1;1 plays an important role in translocation from roots to leaves in high phosphate conditions. These genetic tools also revealed that some PHT1 transporters likely exhibit a dual affinity for phosphate, suggesting that their activity is posttranslationally controlled. These lines display significant phosphate deficiency-related phenotypes (e.g. biomass and yield) due to a massive (80%-96%) reduction in phosphate uptake activities. These defects limited the amount of internal Pi pool, inducing compensatory mechanisms triggered by the systemic Pi starvation response. Such reactions have been uncoupled from PHT1 activity, suggesting that systemic Pi sensing is most probably acting downstream of PHT1.
Collapse
Affiliation(s)
- Amal Ayadi
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); andLaboratoire des Symbioses Tropicales et Méditerranéennes, TA A-82/J Campus International de Baillarguet, 34398 Montpellier cedex 5, France (J.-F.A.)
| | - Pascale David
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); andLaboratoire des Symbioses Tropicales et Méditerranéennes, TA A-82/J Campus International de Baillarguet, 34398 Montpellier cedex 5, France (J.-F.A.)
| | - Jean-François Arrighi
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); andLaboratoire des Symbioses Tropicales et Méditerranéennes, TA A-82/J Campus International de Baillarguet, 34398 Montpellier cedex 5, France (J.-F.A.)
| | - Serge Chiarenza
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); andLaboratoire des Symbioses Tropicales et Méditerranéennes, TA A-82/J Campus International de Baillarguet, 34398 Montpellier cedex 5, France (J.-F.A.)
| | - Marie-Christine Thibaud
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); andLaboratoire des Symbioses Tropicales et Méditerranéennes, TA A-82/J Campus International de Baillarguet, 34398 Montpellier cedex 5, France (J.-F.A.)
| | - Laurent Nussaume
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); andLaboratoire des Symbioses Tropicales et Méditerranéennes, TA A-82/J Campus International de Baillarguet, 34398 Montpellier cedex 5, France (J.-F.A.)
| | - Elena Marin
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); andLaboratoire des Symbioses Tropicales et Méditerranéennes, TA A-82/J Campus International de Baillarguet, 34398 Montpellier cedex 5, France (J.-F.A.)
| |
Collapse
|
191
|
Reguera M, Bassil E, Tajima H, Wimmer M, Chanoca A, Otegui MS, Paris N, Blumwald E. pH Regulation by NHX-Type Antiporters Is Required for Receptor-Mediated Protein Trafficking to the Vacuole in Arabidopsis. THE PLANT CELL 2015; 27:1200-17. [PMID: 25829439 PMCID: PMC4558692 DOI: 10.1105/tpc.114.135699] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/26/2015] [Accepted: 03/12/2015] [Indexed: 05/18/2023]
Abstract
Protein trafficking requires proper ion and pH homeostasis of the endomembrane system. The NHX-type Na(+)/H(+) antiporters NHX5 and NHX6 localize to the Golgi, trans-Golgi network, and prevacuolar compartments and are required for growth and trafficking to the vacuole. In the nhx5 nhx6 T-DNA insertional knockouts, the precursors of the 2S albumin and 12S globulin storage proteins accumulated and were missorted to the apoplast. Immunoelectron microscopy revealed the presence of vesicle clusters containing storage protein precursors and vacuolar sorting receptors (VSRs). Isolation and identification of complexes of VSRs with unprocessed 12S globulin by 2D blue-native PAGE/SDS-PAGE indicated that the nhx5 nhx6 knockouts showed compromised receptor-cargo association. In vivo interaction studies using bimolecular fluorescence complementation between VSR2;1, aleurain, and 12S globulin suggested that nhx5 nhx6 knockouts showed a significant reduction of VSR binding to both cargoes. In vivo pH measurements indicated that the lumens of VSR compartments containing aleurain, as well as the trans-Golgi network and prevacuolar compartments, were significantly more acidic in nhx5 nhx6 knockouts. This work demonstrates the importance of NHX5 and NHX6 in maintaining endomembrane luminal pH and supports the notion that proper vacuolar trafficking and proteolytic processing of storage proteins require endomembrane pH homeostasis.
Collapse
Affiliation(s)
- Maria Reguera
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Elias Bassil
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Hiromi Tajima
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Monika Wimmer
- Institute of Crop Science and Resource Conservation, Division of Plant Nutrition, University of Bonn, D-53115 Bonn, Germany
| | - Alexandra Chanoca
- Departments of Botany and Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Marisa S Otegui
- Departments of Botany and Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Nadine Paris
- Biochemistry and Plant Molecular Biology Laboratory, Unité Mixte de Recherche 5004, 34060 Montpellier, France
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, California 95616
| |
Collapse
|
192
|
Organelles maintain spindle position in plant meiosis. Nat Commun 2015; 6:6492. [DOI: 10.1038/ncomms7492] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 02/03/2015] [Indexed: 11/08/2022] Open
|
193
|
Qian ZJ, Song JJ, Chaumont F, Ye Q. Differential responses of plasma membrane aquaporins in mediating water transport of cucumber seedlings under osmotic and salt stresses. PLANT, CELL & ENVIRONMENT 2015; 38:461-73. [PMID: 24601940 DOI: 10.1111/pce.12319] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/28/2014] [Accepted: 03/03/2014] [Indexed: 05/09/2023]
Abstract
It has long been recognized that inhibition of plant water transport by either osmotic stress or salinity is mediated by aquaporins (AQPs), but the function and regulation of AQPs are highly variable among distinct isoforms and across different species. In this study, cucumber seedlings were subjected to polyethylene glycol (PEG) or NaCl stress for duration of 2 h or 24 h. The 2 h treatment with PEG or NaCl had non-significant effect on the expression of plasma membrane AQP (CsPIPs) in roots, indicating the decrease in hydraulic conductivity of roots (Lpr ) and root cells (Lprc ) measured in these conditions were due to changes in AQP activity. After both 2 h and 24 h PEG or NaCl exposure, the decrease in hydraulic conductivity of leaves (Kleaf ) and leaf cells (Lplc ) could be attributed to a down-regulation of the two most highly expressed isoforms, CsPIP1;2 and CsPIP2;4. In roots, both Lpr and Lprc were further reduced after 24 h PEG exposure, but partially recovered after 24 h NaCl treatment, which were consistent with changes in the expression of CsPIP genes. Overall, the results demonstrated differential responses of CsPIPs in mediating water transport of cucumber seedlings, and the regulatory mechanisms differed according to applied stresses, stress durations and specific organs.
Collapse
Affiliation(s)
- Zheng-Jiang Qian
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | | |
Collapse
|
194
|
Martínez-Ballesta M, Moreno-Fernández DA, Castejón D, Ochando C, Morandini PA, Carvajal M. The impact of the absence of aliphatic glucosinolates on water transport under salt stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:524. [PMID: 26236322 PMCID: PMC4502342 DOI: 10.3389/fpls.2015.00524] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 06/29/2015] [Indexed: 05/21/2023]
Abstract
Members of the Brassicaceae are known for their contents of nutrients and health-promoting phytochemicals, including glucosinolates. Exposure to salinity increases the levels of several of these compounds, but their role in abiotic stress response is unclear. The effect of aliphatic glucosinolates on plant water balance and growth under salt stress, involving aquaporins, was investigated by means of Arabidopsis thaliana mutants impaired in aliphatic glucosinolate biosynthesis, which is controlled by two transcription factors: Myb28 and Myb29. The double mutant myb28myb29, completely lacking aliphatic glucosinolates, was compared to wild type Col-0 (WT) and the single mutant myb28. A greater reduction in the hydraulic conductivity of myb28myb29 was observed under salt stress, when compared to the WT and myb28; this correlated with the abundance of both PIP1 and PIP2 aquaporin subfamilies. Also, changes in root architecture in response to salinity were genotype dependent. Treatment with NaCl altered glucosinolates biosynthesis in a similar way in WT and the single mutant and differently in the double mutant. The results indicate that short-chain aliphatic glucosinolates may contribute to water saving under salt stress.
Collapse
Affiliation(s)
- Mcarmen Martínez-Ballesta
- Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC)Murcia, Spain
- *Correspondence: Mcarmen Martínez-Ballesta, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, 30100 Espinardo, Murcia, Spain
| | - Diego A. Moreno-Fernández
- Food Science and Technology Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC)Murcia, Spain
| | - Diego Castejón
- Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC)Murcia, Spain
| | - Cristina Ochando
- Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC)Murcia, Spain
| | - Piero A. Morandini
- Department of Biosciences, CNR Biophysics Institute, University of MilanMilano, Italy
| | - Micaela Carvajal
- Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC)Murcia, Spain
| |
Collapse
|
195
|
Wang X, Cai H, Li Y, Zhu Y, Ji W, Bai X, Zhu D, Sun X. Ectopic overexpression of a novel Glycine soja stress-induced plasma membrane intrinsic protein increases sensitivity to salt and dehydration in transgenic Arabidopsis thaliana plants. JOURNAL OF PLANT RESEARCH 2015; 128:103-13. [PMID: 25358447 DOI: 10.1007/s10265-014-0674-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/25/2014] [Indexed: 05/21/2023]
Abstract
Plasma membrane intrinsic proteins (PIPs) belong to the aquaporin family and facilitate water movement across plasma membranes. Existing data indicate that PIP genes are associated with the abilities of plants to tolerate certain stress conditions. A review of our Glycine soja expressed sequence tag (EST) dataset revealed that abiotic stress stimulated expression of a PIP, herein designated as GsPIP2;1 (GenBank_Accn: FJ825766). To understand the roles of this PIP in stress tolerance, we generated a coding sequence for GsPIP2;1 by in silico elongation and cloned the cDNA by 5'-RACE. Semiquantitative RT-PCR showed that GsPIP2;1 expression was stimulated in G. soja leaves by cold, salt, or dehydration stress, whereas the same stresses suppressed GsPIP2;1 expression in the roots. Transgenic Arabidopsis thaliana plants overexpressing GsPIP2;1 grew normally under unstressed and cold conditions, but exhibited depressed tolerance to salt and dehydration stresses. Moreover, greater changes in water potential were detected in the transgenic A. thaliana shoots, implying that GsPIP2;1 may negatively impact stress tolerance by regulating water potential. These results, deviating from those obtained in previous reports, provide new insights into the relationship between PIPs and abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- Xi Wang
- The Key Laboratory of Sugar Beet Genetic Breeding, Colleges of Heilongjiang Province, Heilongjiang University, No. 74 XueFu Road, NanGang District, Harbin, 150080, Heilongjiang, China,
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Zhang D, Tong J, He X, Xu Z, Xu L, Wei P, Huang Y, Brestic M, Ma H, Shao H. A Novel Soybean Intrinsic Protein Gene, GmTIP2;3, Involved in Responding to Osmotic Stress. FRONTIERS IN PLANT SCIENCE 2015; 6:1237. [PMID: 26779248 PMCID: PMC4705450 DOI: 10.3389/fpls.2015.01237] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/20/2015] [Indexed: 05/19/2023]
Abstract
Water is essential for plant growth and development. Water deficiency leads to loss of yield and decreased crop quality. To understand water transport mechanisms in plants, we cloned and characterized a novel tonoplast intrinsic protein (TIP) gene from soybean with the highest similarity to TIP2-type from other plants, and thus designated GmTIP2;3. The protein sequence contains two conserved NPA motifs and six transmembrane domains. The expression analysis indicated that this gene was constitutively expressed in all detected tissues, with higher levels in the root, stem and pod, and the accumulation of GmTIP2;3 transcript showed a significant response to osmotic stresses, including 20% PEG6000 (polyethylene glycol) and 100 μM ABA (abscisic acid) treatments. The promoter-GUS (glucuronidase) activity analysis suggested that GmTIP2;3 was also expressed in the root, stem, and leaf, and preferentially expressed in the stele of root and stem, and the core promoter region was 1000 bp in length, located upstream of the ATG start codon. The GUS tissue and induced expression observations were consistent with the findings in soybean. In addition, subcellular localization showed that GmTIP2;3 was a plasma membrane-localized protein. Yeast heterologous expression revealed that GmTIP2;3 could improve tolerance to osmotic stress in yeast cells. Integrating these results, GmTIP2;3 might play an important role in response to osmotic stress in plants.
Collapse
Affiliation(s)
- Dayong Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
- *Correspondence: Dayong Zhang
| | - Jinfeng Tong
- Institute of Botany, Jiangsu Province and Chinese Academy of SciencesNanjing, China
| | - Xiaolan He
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Zhaolong Xu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Ling Xu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Peipei Wei
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Yihong Huang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Marian Brestic
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
- Department of Plant Physiology, Slovak Agricultural UniversityNitra, Slovakia
| | - Hongxiang Ma
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Hongbo Shao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
- Key Laboratory of Coastal Biology and Bioresources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
- Hongbo Shao
| |
Collapse
|
197
|
Tumburu L, Andersen CP, Rygiewicz PT, Reichman JR. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:70-83. [PMID: 25242526 DOI: 10.1002/etc.2756] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/19/2014] [Accepted: 09/13/2014] [Indexed: 05/20/2023]
Abstract
The effects of exposure to nanoparticles of titanium dioxide (nano-titanium) and cerium oxide (nano-cerium) on gene expression and growth in Arabidopsis thaliana germinants were studied by using microarrays and quantitative real-time polymerase chain reaction (qPCR), and by evaluating germinant phenotypic plasticity. Exposure to 12 d of either nano-titania or nano-ceria altered the regulation of 204 and 142 genes, respectively. Genes induced by the nanoparticles mainly include ontology groups annotated as stimuli responsive, including both abiotic (oxidative stress, salt stress, water transport) and biotic (respiratory burst as a defense against pathogens) stimuli. Further analysis of the differentially expressed genes indicates that both nanoparticles affected a range of metabolic processes (deoxyribonucleic acid [DNA] metabolism, hormone metabolism, tetrapyrrole synthesis, and photosynthesis). Individual exposures to the nanoparticles increased percentages of seeds with emergent radicles, early development of hypocotyls and cotyledons, and those with fully grown leaves. Although there were distinct differences between the nanoparticles in their affect on molecular mechanisms attributable to enhancing germinant growth, both particles altered similar suites of genes related to various pathways and processes related to enhanced growth.
Collapse
Affiliation(s)
- Laxminath Tumburu
- National Research Council, Western Ecology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Corvallis, Oregon, USA
| | | | | | | |
Collapse
|
198
|
Ellouzi H, Ben Hamed K, Hernández I, Cela J, Müller M, Magné C, Abdelly C, Munné-Bosch S. A comparative study of the early osmotic, ionic, redox and hormonal signaling response in leaves and roots of two halophytes and a glycophyte to salinity. PLANTA 2014; 240:1299-317. [PMID: 25156490 DOI: 10.1007/s00425-014-2154-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/12/2014] [Indexed: 05/08/2023]
Abstract
Salt stress is one of the most important abiotic stress factors affecting plant growth and productivity in natural ecosystems. In this study, we aimed at determining possible differences between salt tolerant and salt sensitive species in early (within 72 h) salt stress response in leaves and roots. To this purpose, we subjected three Brassicaceae species, namely two halophytes-Cakile maritima and Thellungiella salsuginea--and a glycophyte--Arabidopsis thaliana- to short-term salt stress (400 mM NaCl). The results indicate that the halophytes showed a differential osmotic and ionic response together with an early and transient oxidative burst, which was characterized by enhanced hydrogen peroxide levels and subsequent activation of antioxidant defenses in both leaves and roots. In addition, the halophytes displayed enhanced accumulation of abscisic acid, jasmonic acid (JA) and ACC (aminocyclopropane-1-carboxylic acid, the precursor of ethylene) in leaves and roots, as compared to A. thaliana under salt stress. Moreover, the halophytes showed enhanced expression of ethylene response factor1 (ERF1), the convergence node of the JA and ethylene signaling pathways in both leaves and roots upon exposure to salt stress. In conclusion, we show that the halophytes C. maritima and T. salsuginea experience an early oxidative burst, improved antioxidant defenses and hormonal response not only in leaves but also in roots, in comparison to the glycophyte A. thaliana. This differential signaling response converging, at least in part, into increased ERF1 expression in both above- and underground tissues seems to underlay, at least in part, the enhanced tolerance of the two studied halophytes to salt stress.
Collapse
Affiliation(s)
- Hasna Ellouzi
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Pellizzaro A, Clochard T, Cukier C, Bourdin C, Juchaux M, Montrichard F, Thany S, Raymond V, Planchet E, Limami AM, Morère-Le Paven MC. The nitrate transporter MtNPF6.8 (MtNRT1.3) transports abscisic acid and mediates nitrate regulation of primary root growth in Medicago truncatula. PLANT PHYSIOLOGY 2014; 166:2152-65. [PMID: 25367858 PMCID: PMC4256864 DOI: 10.1104/pp.114.250811] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/29/2014] [Indexed: 05/18/2023]
Abstract
Elongation of the primary root during postgermination of Medicago truncatula seedlings is a multigenic trait that is responsive to exogenous nitrate. A quantitative genetic approach suggested the involvement of the nitrate transporter MtNPF6.8 (for Medicago truncatula NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER Family6.8) in the inhibition of primary root elongation by high exogenous nitrate. In this study, the inhibitory effect of nitrate on primary root elongation, via inhibition of elongation of root cortical cells, was abolished in npf6.8 knockdown lines. Accordingly, we propose that MtNPF6.8 mediates nitrate inhibitory effects on primary root growth in M. truncatula. pMtNPF6.8:GUS promoter-reporter gene fusion in Agrobacterium rhizogenes-generated transgenic roots showed the expression of MtNPF6.8 in the pericycle region of primary roots and lateral roots, and in lateral root primordia and tips. MtNPF6.8 expression was insensitive to auxin and was stimulated by abscisic acid (ABA), which restored the inhibitory effect of nitrate in npf6.8 knockdown lines. It is then proposed that ABA acts downstream of MtNPF6.8 in this nitrate signaling pathway. Furthermore, MtNPF6.8 was shown to transport ABA in Xenopus spp. oocytes, suggesting an additional role of MtNPF6.8 in ABA root-to-shoot translocation. (15)NO3(-)-influx experiments showed that only the inducible component of the low-affinity transport system was affected in npf6.8 knockdown lines. This indicates that MtNPF6.8 is a major contributor to the inducible component of the low-affinity transport system. The short-term induction by nitrate of the expression of Nitrate Reductase1 (NR1) and NR2 (genes that encode two nitrate reductase isoforms) was greatly reduced in the npf6.8 knockdown lines, supporting a role of MtNPF6.8 in the primary nitrate response in M. truncatula.
Collapse
Affiliation(s)
- Anthoni Pellizzaro
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Thibault Clochard
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Caroline Cukier
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Céline Bourdin
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Marjorie Juchaux
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Françoise Montrichard
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Steeve Thany
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Valérie Raymond
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Elisabeth Planchet
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Anis M Limami
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Marie-Christine Morère-Le Paven
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| |
Collapse
|
200
|
Hachez C, Veljanovski V, Reinhardt H, Guillaumot D, Vanhee C, Chaumont F, Batoko H. The Arabidopsis abiotic stress-induced TSPO-related protein reduces cell-surface expression of the aquaporin PIP2;7 through protein-protein interactions and autophagic degradation. THE PLANT CELL 2014; 26:4974-90. [PMID: 25538184 PMCID: PMC4311218 DOI: 10.1105/tpc.114.134080] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 11/27/2014] [Accepted: 12/03/2014] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana multi-stress regulator TSPO is transiently induced by abiotic stresses. The final destination of this polytopic membrane protein is the Golgi apparatus, where its accumulation is strictly regulated, and TSPO is downregulated through a selective autophagic pathway. TSPO-related proteins regulate the physiology of the cell by generating functional protein complexes. A split-ubiquitin screen for potential TSPO interacting partners uncovered a plasma membrane aquaporin, PIP2;7. Pull-down assays and fluorescence imaging approaches revealed that TSPO physically interacts with PIP2;7 at the endoplasmic reticulum and Golgi membranes in planta. Intriguingly, constitutive expression of fluorescently tagged PIP2;7 in TSPO-overexpressing transgenic lines resulted in patchy distribution of the fluorescence, reminiscent of the pattern of constitutively expressed yellow fluorescent protein-TSPO in Arabidopsis. Mutational stabilization of TSPO or pharmacological inhibition of the autophagic pathway affected concomitantly the detected levels of PIP2;7, suggesting that the complex containing both proteins is degraded through the autophagic pathway. Coexpression of TSPO and PIP2;7 resulted in decreased levels of PIP2;7 in the plasma membrane and abolished the membrane water permeability mediated by transgenic PIP2;7. Taken together, these data support a physiological role for TSPO in regulating the cell-surface expression of PIP2;7 during abiotic stress conditions through protein-protein interaction and demonstrate an aquaporin regulatory mechanism involving TSPO.
Collapse
Affiliation(s)
- Charles Hachez
- Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Vasko Veljanovski
- Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Hagen Reinhardt
- Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Damien Guillaumot
- Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Celine Vanhee
- Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Henri Batoko
- Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|