151
|
Ferreira SS, Hotta CT, Poelking VGDC, Leite DCC, Buckeridge MS, Loureiro ME, Barbosa MHP, Carneiro MS, Souza GM. Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane. PLANT MOLECULAR BIOLOGY 2016; 91:15-35. [PMID: 26820137 PMCID: PMC4837222 DOI: 10.1007/s11103-016-0434-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/07/2016] [Indexed: 05/18/2023]
Abstract
Sugarcane is a hybrid of Saccharum officinarum and Saccharum spontaneum, with minor contributions from other species in Saccharum and other genera. Understanding the molecular basis of cell wall metabolism in sugarcane may allow for rational changes in fiber quality and content when designing new energy crops. This work describes a comparative expression profiling of sugarcane ancestral genotypes: S. officinarum, S. spontaneum and S. robustum and a commercial hybrid: RB867515, linking gene expression to phenotypes to identify genes for sugarcane improvement. Oligoarray experiments of leaves, immature and intermediate internodes, detected 12,621 sense and 995 antisense transcripts. Amino acid metabolism was particularly evident among pathways showing natural antisense transcripts expression. For all tissues sampled, expression analysis revealed 831, 674 and 648 differentially expressed genes in S. officinarum, S. robustum and S. spontaneum, respectively, using RB867515 as reference. Expression of sugar transporters might explain sucrose differences among genotypes, but an unexpected differential expression of histones were also identified between high and low Brix° genotypes. Lignin biosynthetic genes and bioenergetics-related genes were up-regulated in the high lignin genotype, suggesting that these genes are important for S. spontaneum to allocate carbon to lignin, while S. officinarum allocates it to sucrose storage. Co-expression network analysis identified 18 transcription factors possibly related to cell wall biosynthesis while in silico analysis detected cis-elements involved in cell wall biosynthesis in their promoters. Our results provide information to elucidate regulatory networks underlying traits of interest that will allow the improvement of sugarcane for biofuel and chemicals production.
Collapse
Affiliation(s)
| | | | - Viviane Guzzo de Carli Poelking
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Brazil
| | | | | | | | | | | | | |
Collapse
|
152
|
Abstract
The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyloglucan endotransglycosylase/hydrolase (XTH), and pectin methylesterases, and offer a critical assessment of their wall-loosening activity.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, 208 Mueller Lab, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
153
|
Fernandes JC, Goulao LF, Amâncio S. Regulation of cell wall remodeling in grapevine (Vitis vinifera L.) callus under individual mineral stress deficiency. JOURNAL OF PLANT PHYSIOLOGY 2016; 190:95-105. [PMID: 26735749 DOI: 10.1016/j.jplph.2015.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/22/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
Cell wall (CW) is a dynamic structure that determines the plant form, growth and response to environmental conditions. Vitis vinifera callus grown under nitrogen (-N), phosphorous (-P) and sulfur (-S) deficiency were used as a model system to address the influence of mineral stress in CW remodeling. Callus cells morphology was altered, mostly under -N, resulting in changes in cell length and width compared with the control. CW composition ascertained with specific staining and immuno-detection showed a decrease in cellulose and altered pattern of pectin methylesterification. Under mineral stress genes expression from candidate families disclosed mainly a downregulation of a glycosyl hydrolase family 9C (GH9C), xyloglucan transglycosylase/hydrolases (XTHs) with predicted hydrolytic activity and pectin methylesterases (PMEs). Conversely, upregulation of PMEs inhibitors (PMEIs) was observed. While methylesterification patterns can be associated to PME/PMEI gene expression, the lower cellulose content cannot be attributed to altered cellulose synthase (CesA) gene expression suggesting the involvement of other gene families. Salt extracts from -N and -P callus tissues increased plastic deformation in cucumber hypocotyls while no effect was observed with -S extracts. The lower endo-acting glycosyl hydrolase activity of -N callus extracts pinpoints a more expressive impact of -N on CW-remodeling.
Collapse
Affiliation(s)
- João C Fernandes
- DRAT/LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Luis F Goulao
- BioTrop, Instituto de Investigação Científica Tropical (IICT, IP), Pólo Mendes Ferrão-Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Sara Amâncio
- DRAT/LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal.
| |
Collapse
|
154
|
Han Y, Ban Q, Hou Y, Meng K, Suo J, Rao J. Isolation and Characterization of Two Persimmon Xyloglucan Endotransglycosylase/Hydrolase (XTH) Genes That Have Divergent Functions in Cell Wall Modification and Fruit Postharvest Softening. FRONTIERS IN PLANT SCIENCE 2016; 7:624. [PMID: 27242828 PMCID: PMC4863071 DOI: 10.3389/fpls.2016.00624] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/23/2016] [Indexed: 05/20/2023]
Abstract
Fruit cell wall modification is the primary factor affecting fruit softening. Xyloglucan endotransglycosylase/hydrolase (XTH), a cell wall-modifying enzyme, is involved in fruit softening. In this study, two novel XTH genes (DkXTH6 and DkXTH7) were identified from persimmon fruit. Transcriptional profiles of both of the two genes were analyzed in different tissues of persimmon, and in response to multiple hormonal and environmental treatments [gibberellic acid (GA3), abscisic acid (ABA), propylene, and low temperature]. Expression of DkXTH6 was positively up-regulated during ethylene production and by propylene and ABA treatments, and suppressed by GA3 and cold treatment. In contrast, DkXTH7 exhibited its highest transcript levels in GA3-treated fruit and cold-treated fruit, which had higher fruit firmness. We found that DkXTH6 protein was localized in cell wall by its signal peptide, while cytoplasmic DkXTH7 protein contained no signal peptide. When expressed in vitro, the recombinant proteins of both DkXTH6 and DkXTH7 exhibited strict xyloglucan endotransglycosylase (XET) activity but no xyloglucan endohydrolase (XEH) activity. The recombinant protein of DkXTH6 showed a higher affinity with small acceptor molecules than the recombinant DkXTH7. Taken together with their opposing expression patterns and subcellular localizations, these results suggested that DkXTH6 might take part in cell wall restructuring and DkXTH7 was likely to be involved in cell wall assembly, indicating their special roles in persimmon fruit softening.
Collapse
|
155
|
Somssich M, Khan GA, Persson S. Cell Wall Heterogeneity in Root Development of Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:1242. [PMID: 27582757 PMCID: PMC4987334 DOI: 10.3389/fpls.2016.01242] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/04/2016] [Indexed: 05/19/2023]
Abstract
Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signaling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modeling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes.
Collapse
Affiliation(s)
- Marc Somssich
- School of Biosciences, University of MelbourneMelbourne, VIC, Australia
| | - Ghazanfar Abbas Khan
- Department of Plant Molecular Biology, University of LausanneLausanne, Switzerland
| | - Staffan Persson
- School of Biosciences, University of MelbourneMelbourne, VIC, Australia
- *Correspondence: Staffan Persson,
| |
Collapse
|
156
|
Tang F, Wei H, Zhao S, Wang L, Zheng H, Lu M. Identification of microRNAs Involved in Regeneration of the Secondary Vascular System in Populus tomentosa Carr. FRONTIERS IN PLANT SCIENCE 2016; 7:724. [PMID: 27303419 PMCID: PMC4885845 DOI: 10.3389/fpls.2016.00724] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/10/2016] [Indexed: 05/20/2023]
Abstract
Wood formation is a complex developmental process primarily controlled by a regulatory transcription network. MicroRNAs (miRNAs) can modulate the expression of target genes involved in plant growth and development by inducing mRNA degradation and translational repression. In this study, we used a model of secondary vascular system regeneration established in Populus tomentosa to harvest differentiating xylem tissues over time for high-throughput sequencing of small RNAs. Analysis of the sequencing data identified 209 known and 187 novel miRNAs during this regeneration process. Degradome sequencing analysis was then performed, revealing 157 and 75 genes targeted by 21 known and 30 novel miRNA families, respectively. Gene ontology enrichment of these target genes revealed that the targets of 15 miRNAs were enriched in the auxin signaling pathway, cell differentiation, meristem development, and pattern specification process. The major biological events during regeneration of the secondary vascular system included the sequential stages of vascular cambium initiation, formation, and differentiation stages in sequence. This study provides the basis for further analysis of these miRNAs to gain greater insight into their regulatory roles in wood development in trees.
Collapse
Affiliation(s)
- Fang Tang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Key Laboratory of Science and Technology of Bamboo and Rattan of State Forestry Administration, International Centre for Bamboo and RattanBeijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China
| | - Hairong Wei
- School of Forestry Resources and Environmental Science, Michigan Technological UniversityHoughton, MI, USA
| | - Shutang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Lijuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Huanquan Zheng
- Department of Biology, McGill UniversityMontreal, QC, Canada
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China
- *Correspondence: Mengzhu Lu
| |
Collapse
|
157
|
Minoia S, Boualem A, Marcel F, Troadec C, Quemener B, Cellini F, Petrozza A, Vigouroux J, Lahaye M, Carriero F, Bendahmane A. Induced mutations in tomato SlExp1 alter cell wall metabolism and delay fruit softening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:195-202. [PMID: 26566837 DOI: 10.1016/j.plantsci.2015.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/29/2015] [Accepted: 07/02/2015] [Indexed: 05/25/2023]
Abstract
Fruit ripening and softening are key traits for many fleshy fruit. Since cell walls play a key role in the softening process, expansins have been investigated to control fruit over ripening and deterioration. In tomato, expression of Expansin 1 gene, SlExp1, during fruit ripening was associated with fruit softening. To engineer tomato plants with long shelf life, we screened for mutant plants impaired in SlExp1 function. Characterization of two induced mutations, Slexp1-6_W211S, and Slexp1-7_Q213Stop, showed that SlExp1 loss of function leads to enhanced fruit firmness and delayed fruit ripening. Analysis of cell wall polysaccharide composition of Slexp1-7_Q213Stop mutant pointed out significant differences for uronic acid, neutral sugar and total sugar contents. Hemicelluloses chemistry analysis by endo-β-1,4-d-glucanase hydrolysis and MALDI-TOF spectrometry revealed that xyloglucan structures were affected in the fruit pericarp of Slexp1-7_Q213Stop mutant. Altogether, these results demonstrated that SlExp1 loss of function mutants yield firmer and late ripening fruits through modification of hemicellulose structure. These SlExp1 mutants represent good tools for breeding long shelf life tomato lines with contrasted fruit texture as well as for the understanding of the cell wall polysaccharide assembly dynamics in fleshy fruits.
Collapse
Affiliation(s)
- Silvia Minoia
- INRA, UMR1403, IPS2, CNRS-UMR 9213, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 2 rue Gaston Crémieux, 91057 Evry, France; ALSIA, Centro Ricerche Metapontum Agrobios, SS Jonica 106 Km 448.2, 75012 Metaponto (MT), Italy.
| | - Adnane Boualem
- INRA, UMR1403, IPS2, CNRS-UMR 9213, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 2 rue Gaston Crémieux, 91057 Evry, France.
| | - Fabien Marcel
- INRA, UMR1403, IPS2, CNRS-UMR 9213, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 2 rue Gaston Crémieux, 91057 Evry, France.
| | - Christelle Troadec
- INRA, UMR1403, IPS2, CNRS-UMR 9213, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 2 rue Gaston Crémieux, 91057 Evry, France.
| | - Bernard Quemener
- INRA, UR1268 Biopolymers, Interactions and Assemblies, rue de la Géraudière, F-44316 Nantes, France.
| | - Francesco Cellini
- ALSIA, Centro Ricerche Metapontum Agrobios, SS Jonica 106 Km 448.2, 75012 Metaponto (MT), Italy.
| | - Angelo Petrozza
- ALSIA, Centro Ricerche Metapontum Agrobios, SS Jonica 106 Km 448.2, 75012 Metaponto (MT), Italy.
| | - Jacqueline Vigouroux
- INRA, UR1268 Biopolymers, Interactions and Assemblies, rue de la Géraudière, F-44316 Nantes, France.
| | - Marc Lahaye
- INRA, UR1268 Biopolymers, Interactions and Assemblies, rue de la Géraudière, F-44316 Nantes, France.
| | - Filomena Carriero
- ALSIA, Centro Ricerche Metapontum Agrobios, SS Jonica 106 Km 448.2, 75012 Metaponto (MT), Italy.
| | - Abdelhafid Bendahmane
- INRA, UMR1403, IPS2, CNRS-UMR 9213, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 2 rue Gaston Crémieux, 91057 Evry, France.
| |
Collapse
|
158
|
Nham NT, de Freitas ST, Macnish AJ, Carr KM, Kietikul T, Guilatco AJ, Jiang CZ, Zakharov F, Mitcham EJ. A transcriptome approach towards understanding the development of ripening capacity in 'Bartlett' pears (Pyrus communis L.). BMC Genomics 2015; 16:762. [PMID: 26452470 PMCID: PMC4600301 DOI: 10.1186/s12864-015-1939-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/19/2015] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The capacity of European pear fruit (Pyrus communis L.) to ripen after harvest develops during the final stages of growth on the tree. The objective of this study was to characterize changes in 'Bartlett' pear fruit physico-chemical properties and transcription profiles during fruit maturation leading to attainment of ripening capacity. RESULTS The softening response of pear fruit held for 14 days at 20 °C after harvest depended on their maturity. We identified four maturity stages: S1-failed to soften and S2- displayed partial softening (with or without ET-ethylene treatment); S3 - able to soften following ET; and S4 - able to soften without ET. Illumina sequencing and Trinity assembly generated 68,010 unigenes (mean length of 911 bp), of which 32.8 % were annotated to the RefSeq plant database. Higher numbers of differentially expressed transcripts were recorded in the S3-S4 and S1-S2 transitions (2805 and 2505 unigenes, respectively) than in the S2-S3 transition (2037 unigenes). High expression of genes putatively encoding pectin degradation enzymes in the S1-S2 transition suggests pectic oligomers may be involved as early signals triggering the transition to responsiveness to ethylene in pear fruit. Moreover, the co-expression of these genes with Exps (Expansins) suggests their collaboration in modifying cell wall polysaccharide networks that are required for fruit growth. K-means cluster analysis revealed that auxin signaling associated transcripts were enriched in cluster K6 that showed the highest gene expression at S3. AP2/EREBP (APETALA 2/ethylene response element binding protein) and bHLH (basic helix-loop-helix) transcripts were enriched in all three transition S1-S2, S2-S3, and S3-S4. Several members of Aux/IAA (Auxin/indole-3-acetic acid), ARF (Auxin response factors), and WRKY appeared to play an important role in orchestrating the S2-S3 transition. CONCLUSIONS We identified maturity stages associated with the development of ripening capacity in 'Bartlett' pear, and described the transcription profile of fruit at these stages. Our findings suggest that auxin is essential in regulating the transition of pear fruit from being ethylene-unresponsive (S2) to ethylene-responsive (S3), resulting in fruit softening. The transcriptome will be helpful for future studies about specific developmental pathways regulating the transition to ripening.
Collapse
Affiliation(s)
- Ngoc T Nham
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - Sergio Tonetto de Freitas
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Present address: Embrapa Tropical Semi-Arid, Petrolina, PE, 56302-970, Brazil.
| | - Andrew J Macnish
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Present address: Horticulture and Forestry Science, Queensland Department of Agriculture, Fisheries and Forestry, Maroochy Research Facility, Nambour, QLD, 4560, Australia.
| | - Kevin M Carr
- Research Technology Support Facility, Michigan State University, East Lansing, MI, 48824, USA.
| | - Trisha Kietikul
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - Angelo J Guilatco
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - Cai-Zhong Jiang
- Agriculture Research Service, United States Department of Agriculture, Davis, CA, 95616, USA.
| | - Florence Zakharov
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - Elizabeth J Mitcham
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
159
|
Seguela-Arnaud M, Smith C, Uribe MC, May S, Fischl H, McKenzie N, Bevan MW. The Mediator complex subunits MED25/PFT1 and MED8 are required for transcriptional responses to changes in cell wall arabinose composition and glucose treatment in Arabidopsis thaliana. BMC PLANT BIOLOGY 2015; 15:215. [PMID: 26341899 PMCID: PMC4560864 DOI: 10.1186/s12870-015-0592-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/13/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plant cell walls are dynamic structures involved in all aspects of plant growth, environmental interactions and defense responses, and are the most abundant renewable source of carbon-containing polymers on the planet. To balance rigidity and extensibility, the composition and integrity of cell wall components need to be tightly regulated, for example during cell elongation. RESULTS We show that mutations in the MED25/PFT1 and MED8 subunits of the Mediator transcription complex suppressed the sugar-hypersensitive hypocotyl elongation phenotype of the hsr8-1 mutant, which has cell wall defects due to arabinose deficiency that do not permit normal cell elongation. This suppression occurred independently of light and jasmonic acid (JA) signaling. Gene expression analyses revealed that the expression of genes induced in hsr8-1 that encode enzymes and proteins that are involved in cell expansion and cell wall strengthening is reduced in the pft1-2 mutant line, and the expression of genes encoding transcription factors involved in reducing hypocotyl cell elongation, genes encoding cell wall associated enzymes and proteins is up-regulated in pft1-2. PFT1 was also required for the expression of several glucose-induced genes, including those encoding cell wall components and enzymes, regulatory and enzymatic components of anthocyanin biosynthesis, and flavonoid and glucosinolate biosynthetic pathways. CONCLUSIONS These results establish that MED25 and MED8 subunits of the Mediator transcriptional complex are required for the transcriptional regulation of genes involved in cell elongation and cell wall composition in response to defective cell walls and in sugar- responsive gene expression.
Collapse
Affiliation(s)
- Mathilde Seguela-Arnaud
- Cell and Developmental Biology Department, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK.
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, 78000, Versailles, France.
| | - Caroline Smith
- Cell and Developmental Biology Department, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK.
| | - Marcos Castellanos Uribe
- Nottingham Arabidopsis Stock Centre, University of Nottingham, School of Biosciences, Loughborough, LE12 5RD, UK.
| | - Sean May
- Nottingham Arabidopsis Stock Centre, University of Nottingham, School of Biosciences, Loughborough, LE12 5RD, UK.
| | - Harry Fischl
- Cell and Developmental Biology Department, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK.
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK.
| | - Neil McKenzie
- Cell and Developmental Biology Department, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK.
| | - Michael W Bevan
- Cell and Developmental Biology Department, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK.
| |
Collapse
|
160
|
Simmons TJ, Mohler KE, Holland C, Goubet F, Franková L, Houston DR, Hudson AD, Meulewaeter F, Fry SC. Hetero-trans-β-glucanase, an enzyme unique to Equisetum plants, functionalizes cellulose. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:753-69. [PMID: 26185964 PMCID: PMC4950035 DOI: 10.1111/tpj.12935] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/12/2015] [Accepted: 06/24/2015] [Indexed: 05/18/2023]
Abstract
Cell walls are metabolically active components of plant cells. They contain diverse enzymes, including transglycanases (endotransglycosylases), enzymes that 'cut and paste' certain structural polysaccharide molecules and thus potentially remodel the wall during growth and development. Known transglycanase activities modify several cell-wall polysaccharides (xyloglucan, mannans, mixed-linkage β-glucan and xylans); however, no transglycanases were known to act on cellulose, the principal polysaccharide of biomass. We now report the discovery and characterization of hetero-trans-β-glucanase (HTG), a transglycanase that targets cellulose, in horsetails (Equisetum spp., an early-diverging genus of monilophytes). HTG is also remarkable in predominantly catalysing hetero-transglycosylation: its preferred donor substrates (cellulose or mixed-linkage β-glucan) differ qualitatively from its acceptor substrate (xyloglucan). HTG thus generates stable cellulose-xyloglucan and mixed-linkage β-glucan-xyloglucan covalent bonds, and may therefore strengthen ageing Equisetum tissues by inter-linking different structural polysaccharides of the cell wall. 3D modelling suggests that only three key amino acid substitutions (Trp → Pro, Gly → Ser and Arg → Leu) are responsible for the evolution of HTG's unique specificity from the better-known xyloglucan-acting homo-transglycanases (xyloglucan endotransglucosylase/hydrolases; XTH). Among land plants, HTG appears to be confined to Equisetum, but its target polysaccharides are widespread, potentially offering opportunities for enhancing crop mechanical properties, such as wind resistance. In addition, by linking cellulose to xyloglucan fragments previously tagged with compounds such as dyes or indicators, HTG may be useful biotechnologically for manufacturing stably functionalized celluloses, thereby potentially offering a commercially valuable 'green' technology for industrially manipulating biomass.
Collapse
Affiliation(s)
- Thomas J Simmons
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Kyle E Mohler
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Claire Holland
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Florence Goubet
- Bayer CropScience NV, Innovation Center, Technologiepark 38, 9052, Gent, Belgium
| | - Lenka Franková
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Douglas R Houston
- Institute of Structural and Molecular Biology, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JR, UK
| | - Andrew D Hudson
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Frank Meulewaeter
- Bayer CropScience NV, Innovation Center, Technologiepark 38, 9052, Gent, Belgium
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
161
|
Chormova D, Franková L, Defries A, Cutler SR, Fry SC. Discovery of small molecule inhibitors of xyloglucan endotransglucosylase (XET) activity by high-throughput screening. PHYTOCHEMISTRY 2015; 117:220-236. [PMID: 26093490 PMCID: PMC4560162 DOI: 10.1016/j.phytochem.2015.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/04/2015] [Accepted: 06/10/2015] [Indexed: 05/23/2023]
Abstract
Small molecules (xenobiotics) that inhibit cell-wall-localised enzymes are valuable for elucidating the enzymes' biological roles. We applied a high-throughput fluorescent dot-blot screen to search for inhibitors of Petroselinum xyloglucan endotransglucosylase (XET) activity in vitro. Of 4216 xenobiotics tested, with cellulose-bound xyloglucan as donor-substrate, 18 inhibited XET activity and 18 promoted it (especially anthraquinones and flavonoids). No compounds promoted XET in quantitative assays with (cellulose-free) soluble xyloglucan as substrate, suggesting that promotion was dependent on enzyme-cellulose interactions. With cellulose-free xyloglucan as substrate, we found 22 XET-inhibitors - especially compounds that generate singlet oxygen ((1)O2) e.g., riboflavin (IC50 29 μM), retinoic acid, eosin (IC50 27 μM) and erythrosin (IC50 36 μM). The riboflavin effect was light-dependent, supporting (1)O2 involvement. Other inhibitors included tannins, sulphydryl reagents and triphenylmethanes. Some inhibitors (vulpinic acid and brilliant blue G) were relatively specific to XET, affecting only two or three, respectively, of nine other wall-enzyme activities tested; others [e.g. (-)-epigallocatechin gallate and riboflavin] were non-specific. In vivo, out of eight XET-inhibitors bioassayed, erythrosin (1 μM) inhibited cell expansion in Rosa and Zea cell-suspension cultures, and 40 μM mycophenolic acid and (-)-epigallocatechin gallate inhibited Zea culture growth. Our work showcases a general high-throughput strategy for discovering wall-enzyme inhibitors, some being plant growth inhibitors potentially valuable as physiological tools or herbicide leads.
Collapse
Affiliation(s)
- Dimitra Chormova
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Lenka Franková
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Andrew Defries
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Department of Chemistry (CFM), University of California, 5451 Boyce Hall, Riverside, CA 92521, USA
| | - Sean R Cutler
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Department of Chemistry (CFM), University of California, 5451 Boyce Hall, Riverside, CA 92521, USA
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
162
|
Ishizaki K. Development of schizogenous intercellular spaces in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:497. [PMID: 26191071 PMCID: PMC4488600 DOI: 10.3389/fpls.2015.00497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 06/22/2015] [Indexed: 05/13/2023]
Abstract
Gas exchange is essential for multicellular organisms. In contrast to the circulatory systems of animals, land plants have tissues with intercellular spaces (ICSs), called aerenchyma, that are critical for efficient gas exchange. Plants form ICSs by two different mechanisms: schizogeny, where localized cell separation creates spaces; and lysogeny, where cells die to create ICSs. In schizogenous ICS formation, specific molecular mechanisms regulate the sites of cell separation and coordinate extensive reorganization of cell walls. Emerging evidence suggests the involvement of extracellular signaling, mediated by peptide ligands and leucine-rich repeat receptor-like kinases, in the regulation of cell wall remodeling during cell separation. Recent work on the liverwort Marchantia polymorpha has demonstrated a critical role for a plasma membrane-associated plant U-box E3 ubiquitin ligase in ICS formation. In this review, I discuss the mechanism of schizogenous ICS formation, focusing on the potential role of extracellular signaling in the regulation of cell separation.
Collapse
|
163
|
Glycosynthesis in a waterworld: new insight into the molecular basis of transglycosylation in retaining glycoside hydrolases. Biochem J 2015; 467:17-35. [PMID: 25793417 DOI: 10.1042/bj20141412] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Carbohydrates are ubiquitous in Nature and play vital roles in many biological systems. Therefore the synthesis of carbohydrate-based compounds is of considerable interest for both research and commercial purposes. However, carbohydrates are challenging, due to the large number of sugar subunits and the multiple ways in which these can be linked together. Therefore, to tackle the challenge of glycosynthesis, chemists are increasingly turning their attention towards enzymes, which are exquisitely adapted to the intricacy of these biomolecules. In Nature, glycosidic linkages are mainly synthesized by Leloir glycosyltransferases, but can result from the action of non-Leloir transglycosylases or phosphorylases. Advantageously for chemists, non-Leloir transglycosylases are glycoside hydrolases, enzymes that are readily available and exhibit a wide range of substrate specificities. Nevertheless, non-Leloir transglycosylases are unusual glycoside hydrolases in as much that they efficiently catalyse the formation of glycosidic bonds, whereas most glycoside hydrolases favour the mechanistically related hydrolysis reaction. Unfortunately, because non-Leloir transglycosylases are almost indistinguishable from their hydrolytic counterparts, it is unclear how these enzymes overcome the ubiquity of water, thus avoiding the hydrolytic reaction. Without this knowledge, it is impossible to rationally design non-Leloir transglycosylases using the vast diversity of glycoside hydrolases as protein templates. In this critical review, a careful analysis of literature data describing non-Leloir transglycosylases and their relationship to glycoside hydrolase counterparts is used to clarify the state of the art knowledge and to establish a new rational basis for the engineering of glycoside hydrolases.
Collapse
|
164
|
Zhang HM, Wheeler S, Xia X, Radchuk R, Weber H, Offler CE, Patrick JW. Differential transcriptional networks associated with key phases of ingrowth wall construction in trans-differentiating epidermal transfer cells of Vicia faba cotyledons. BMC PLANT BIOLOGY 2015; 15:103. [PMID: 25887034 PMCID: PMC4437447 DOI: 10.1186/s12870-015-0486-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/01/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Transfer cells are characterized by intricate ingrowth walls, comprising an uniform wall upon which wall ingrowths are deposited. The ingrowth wall forms a scaffold to support an amplified plasma membrane surface area enriched in membrane transporters that collectively confers transfer cells with an enhanced capacity for membrane transport at bottlenecks for apo-/symplasmic exchange of nutrients. However, the underlying molecular mechanisms regulating polarized construction of the ingrowth wall and membrane transporter profile are poorly understood. RESULTS An RNAseq study of an inducible epidermal transfer cell system in cultured Vicia faba cotyledons identified transfer cell specific transcriptomes associated with uniform wall and wall ingrowth deposition. All functional groups of genes examined were expressed before and following transition to a transfer cell fate. What changed were the isoform profiles of expressed genes within functional groups. Genes encoding ethylene and Ca(2+) signal generation and transduction pathways were enriched during uniform wall construction. Auxin-and reactive oxygen species-related genes dominated during wall ingrowth formation and ABA genes were evenly expressed across ingrowth wall construction. Expression of genes encoding kinesins, formins and villins was consistent with reorganization of cytoskeletal components. Uniform wall and wall ingrowth specific expression of exocyst complex components and SNAREs suggested specific patterns of exocytosis while dynamin mediated endocytotic activity was consistent with establishing wall ingrowth loci. Key regulatory genes of biosynthetic pathways for sphingolipids and sterols were expressed across ingrowth wall construction. Transfer cell specific expression of cellulose synthases was absent. Rather xyloglucan, xylan and pectin biosynthetic genes were selectively expressed during uniform wall construction. More striking was expression of genes encoding enzymes for re-modelling/degradation of cellulose, xyloglucans, pectins and callose. Extensins dominated the cohort of expressed wall structural proteins and particularly so across wall ingrowth development. Ion transporters were selectively expressed throughout ingrowth wall development along with organic nitrogen transporters and a large group of ABC transporters. Sugar transporters were less represented. CONCLUSIONS Pathways regulating signalling and intracellular organization were fine tuned whilst cell wall construction and membrane transporter profiles were altered substantially upon transiting to a transfer cell fate. Each phase of ingrowth wall construction was linked with unique cohorts of expressed genes.
Collapse
Affiliation(s)
- Hui-Ming Zhang
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Simon Wheeler
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Xue Xia
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Ruslana Radchuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466, Gatersleben, Germany.
| | - Hans Weber
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466, Gatersleben, Germany.
| | - Christina E Offler
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - John W Patrick
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
165
|
Han Y, Zhu Q, Zhang Z, Meng K, Hou Y, Ban Q, Suo J, Rao J. Analysis of xyloglucan endotransglycosylase/hydrolase (XTH) genes and diverse roles of isoenzymes during persimmon fruit development and postharvest softening. PLoS One 2015; 10:e0123668. [PMID: 25849978 PMCID: PMC4388718 DOI: 10.1371/journal.pone.0123668] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 03/06/2015] [Indexed: 11/23/2022] Open
Abstract
Xyloglucan endotransglycosylase/hydrolase (XTH) enzymes have played a role in the remodeling of cell wall hemicelluloses. To investigate the function of XTHs in persimmon (Diospyros kaki L.) fruit development and postharvest softening, five cDNAs (DkXTH1 to DkXTH5), whose putative proteins contained the conserved DEIDFEFLG motif of XTH, were cloned. Real time quantitative PCR analysis revealed that DkXTH1, DkXTH4, and DkXTH5 peaked in immature expanding fruit, and their higher expression was observed along with higher fruit firmness in cold-treated fruit or firmer cultivar fruit during storage. The opposite gene expression patterns were observed in DkXTH2 and DkXTH3, which reached maxima concomitance with pronounced fruit softening. Meanwhile, the xyloglucan endotransglycosylase (XET) enzymes play important roles in both the rapid growth and ripening of persimmon fruit. Furthermore, the recombined DkXTH1 and DkXTH2 proteins showed significant XET activity without any detected XEH activity. However, the XET activity of recombined DkXTH2 protein had a higher affinity for small acceptor molecules than that of recombined DkXTH1 protein. The former might prefer to participate in cell wall restructuring, and the latter is more inclined to participate in cell wall assembly. Besides, DKXTH proteins could function by targeting to the cell wall under regulation of a signal peptide. The data suggested that individual DKXTHs could exhibit different patterns of expression, and the encoded products possessed specific enzymatic properties conferring on their respective functions in growth and postharvest softening of persimmon fruit.
Collapse
Affiliation(s)
- Ye Han
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Qinggang Zhu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Zhengke Zhang
- College of Food Science and Technology, Hainan University, Haikou, P.R. China
| | - Kun Meng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yali Hou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Qiuyan Ban
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jiangtao Suo
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jingping Rao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
166
|
Glass M, Barkwill S, Unda F, Mansfield SD. Endo-β-1,4-glucanases impact plant cell wall development by influencing cellulose crystallization. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:396-410. [PMID: 25756224 DOI: 10.1111/jipb.12353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/05/2015] [Indexed: 05/07/2023]
Abstract
Cell walls are vital to the normal growth and development of plants as they protect the protoplast and provide rigidity to the stem. Here, two poplar and Arabidopsis orthologous endoglucanases, which have been proposed to play a role in secondary cell wall development, were examined. The class B endoglucanases, PtGH9B5 and AtGH9B5, are secreted enzymes that have a predicted glycosylphosphatidylinositol anchor, while the class C endoglucanases, PtGH9C2 and AtGH9C2, are also predicted to be secreted but instead contain a carbohydrate-binding module. The poplar endoglucanases were expressed in Arabidopsis using both a 35S promoter and the Arabidopsis secondary cell wall-specific CesA8 promoter. Additionally, Arabidopsis t-DNA insertion lines and an RNAi construct was created to downregulate AtGH9C2 in Arabidopsis. All of the plant lines were examined for changes in cell morphology and patterning, growth and development, cell wall crystallinity, microfibril angle, and proportion of cell wall carbohydrates. Misregulation of PtGH9B5/AtGH9B5 resulted in changes in xylose content, while misregulation of PtGH9C2/AtGH9C2 resulted in changes in crystallinity, which was inversely correlated with changes in plant height and rosette diameter. Together, these results suggest that these endoglucanases affect secondary cell wall development by contributing to the cell wall crystallization process.
Collapse
Affiliation(s)
- Magdalena Glass
- Department of Wood Science, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | | | | | | |
Collapse
|
167
|
Shi YZ, Zhu XF, Miller JG, Gregson T, Zheng SJ, Fry SC. Distinct catalytic capacities of two aluminium-repressed Arabidopsis thaliana xyloglucan endotransglucosylase/hydrolases, XTH15 and XTH31, heterologously produced in Pichia. PHYTOCHEMISTRY 2015; 112:160-169. [PMID: 25446234 DOI: 10.1016/j.phytochem.2014.09.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 06/04/2023]
Abstract
Xyloglucan plays an important structural role in primary cell walls, possibly tethering adjacent microfibrils and restraining cell expansion. There is therefore considerable interest in understanding the role of xyloglucan endotransglucosylase/hydrolases (XTHs), which are encoded in Arabidopsis by a 33-member gene family. We compared the key catalytic properties of two very different Arabidopsis XTHs (heterologously produced in Pichia), both of which are aluminium-repressed. Reductively tritiated oligosaccharides of xyloglucan were used as model acceptor substrates. Untransformed Pichia produced no xyloglucan-acting enzymes; therefore purification of the XTHs was unnecessary. XTH15, a classical group-I/II XTH, had high XET and undetectable XEH activity in vitro; its XET Km values were 31 μM XXXGol (acceptor substrate) and 2.9 mg/ml xyloglucan (donor substrate). In contrast, XTH31, a group-III-A XTH, showed predominant XEH activity and only slight XET activity in vitro; its XET Km was 86μM XXXGol (acceptor), indicating a low affinity of this predominantly hydrolytic protein for a transglycosylation acceptor substrate. The Km of XTH31's XEH activity was 1.6 mg/ml xyloglucan. For both proteins, the preferred XET acceptor substrate, among five cellotetraitol-based oligosaccharides tested, was XXXGol. XTH31's XET activity was strongly compromised when the second Xyl residue was galactosylated. XTH15's XET activity, in contrast, tolerated substitution at the second Xyl residue. The two enzymes also showed different pH preferences, XTH31 exhibiting an unusually low pH optimum and XTH15 an unusually broad optimum. XTH31's hydrolase activity increased almost linearly with decreasing pH in the apoplastic range, 6.2-4.5, consistent with a possible role in 'acid growth'. In conclusion, these two Al(3+)-repressed XTHs differ, in several important enzymic features, from other members of the Arabidopsis XTH family.
Collapse
Affiliation(s)
- Yuan Zhi Shi
- College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3JH, UK; Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xiao Fang Zhu
- College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Janice G Miller
- Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3JH, UK
| | - Timothy Gregson
- Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3JH, UK
| | - Shao Jian Zheng
- College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Stephen C Fry
- Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3JH, UK.
| |
Collapse
|
168
|
Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C. Cell Wall Metabolism in Response to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2015; 4:112-66. [PMID: 27135320 PMCID: PMC4844334 DOI: 10.3390/plants4010112] [Citation(s) in RCA: 633] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/05/2015] [Accepted: 02/11/2015] [Indexed: 12/17/2022]
Abstract
This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.
Collapse
Affiliation(s)
- Hyacinthe Le Gall
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Florian Philippe
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Jean-Marc Domon
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Françoise Gillet
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Jérôme Pelloux
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Catherine Rayon
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| |
Collapse
|
169
|
Colicchio JM, Monnahan PJ, Kelly JK, Hileman LC. Gene expression plasticity resulting from parental leaf damage in Mimulus guttatus. THE NEW PHYTOLOGIST 2015; 205:894-906. [PMID: 25297849 DOI: 10.1111/nph.13081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 08/20/2014] [Indexed: 06/04/2023]
Abstract
Leaf trichome density in Mimulus guttatus can be altered by the parental environment. In this study, we compared global gene expression patterns in progeny of damaged and control plants. Significant differences in gene expression probably explain the observed trichome response, and identify additional responsive pathways. Using whole transcriptome RNA sequencing, we estimated differential gene expression between isogenic seedlings whose parents had, or had not, been subject to leaf damage. We identified over 900 genes that were differentially expressed in response to parental wounding. These genes clustered into groups involved in cell wall and cell membrane development, stress response pathways, and secondary metabolism. Gene expression is modified as a consequence of the parental environment in a targeted way that probably alters multiple developmental pathways, and may increase progeny fitness if they experience environments similar to that of their parents.
Collapse
Affiliation(s)
- Jack M Colicchio
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
170
|
Kim WC, Kim JY, Ko JH, Kang H, Kim J, Han KH. AtC3H14, a plant-specific tandem CCCH zinc-finger protein, binds to its target mRNAs in a sequence-specific manner and affects cell elongation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:772-84. [PMID: 25228083 DOI: 10.1111/tpj.12667] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 05/19/2023]
Abstract
AtC3H14 (At1 g66810) is a plant-specific tandem CCCH zinc-finger (TZF) protein that belongs to the 68-member CCCH family in Arabidopsis thaliana. In animals, TZFs have been shown to bind and recruit target mRNAs to the cytoplasmic foci where mRNA decay enzymes are active. However, it is not known whether plant TZF proteins such as AtC3H14 function. So far, no mRNA targets of plant TZFs have been identified. We have obtained several lines of experimental evidence in support of our hypothesis that AtC3H14 is involved in post-transcriptional regulation of its target genes. Nucleic acid binding assays using [(35) S]-labeled AtC3H14 protein showed that AtC3H14 could bind to ssDNA, dsDNA, and ribohomopolymers, suggesting its RNA-binding activity. RNA immunoprecipitation (RIP) assay identified several putative target RNAs of AtC3H14, including a polygalacturonase, a well-known cell wall modifying gene. RNA electrophoretic mobility shift assays (RNA-EMSA) were used to confirm the RIP results and demonstrate that the TZF domain of AtC3H14 is required for the target RNA binding. Microarray analysis of 35S::AtC3H14 plants revealed that many of the cell wall elongation and/or modification-associated genes were differentially expressed, which is consistent with the cell elongation defect phenotype and the changes in the cell wall monosaccharide composition. In addition, yeast activation assay showed that AtC3H14 also function as a transcriptional activator, which is consistent with the previous finding that AtC3H14 activate the secondary wall biosynthesis genes. Taken together, we conclude that AtC3H14 may play a key role in both transcriptional and post-transcriptional regulation.
Collapse
Affiliation(s)
- Won-Chan Kim
- Department of Horticulture and Department of Forestry, Michigan State University, East Lansing, MI, 48824-1222, USA; DOE-Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824-1222, USA
| | | | | | | | | | | |
Collapse
|
171
|
Domozych DS, Domozych CE. Multicellularity in green algae: upsizing in a walled complex. FRONTIERS IN PLANT SCIENCE 2014; 5:649. [PMID: 25477895 PMCID: PMC4235416 DOI: 10.3389/fpls.2014.00649] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 09/03/2014] [Indexed: 05/09/2023]
Abstract
Modern green algae constitute a large and diverse taxonomic assemblage that encompasses many multicellular phenotypes including colonial, filamentous, and parenchymatous forms. In all multicellular green algae, each cell is surrounded by an extracellular matrix (ECM), most often in the form of a cell wall. Volvocalean taxa like Volvox have an elaborate, gel-like, hydroxyproline rich glycoprotein covering that contains the cells of the colony. In "ulvophytes," uronic acid-rich and sulfated polysaccharides are the likely adhesion agents that maintain the multicellular habit. Charophytes also produce polysaccharide-rich cell walls and in late divergent taxa, pectin plays a critical role in cell adhesion in the multicellular complex. Cell walls are products of coordinated interaction of membrane trafficking, cytoskeletal dynamics and the cell's signal transduction machinery responding both to precise internal clocks and external environmental cues. Most often, these activities must be synchronized with the secretion, deposition and remodeling of the polymers of the ECM. Rapid advances in molecular genetics, cell biology and cell wall biochemistry of green algae will soon provide new insights into the evolution and subcellular processes leading to multicellularity.
Collapse
Affiliation(s)
- David S. Domozych
- Skidmore Microscopy Imaging Center, Department of Biology, Skidmore College, Saratoga SpringsNY, USA
| | | |
Collapse
|
172
|
Structural Diversity and Function of Xyloglucan Sidechain Substituents. PLANTS 2014; 3:526-42. [PMID: 27135518 PMCID: PMC4844278 DOI: 10.3390/plants3040526] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/02/2022]
Abstract
Xyloglucan (XyG) is a hemicellulose found in the cell walls of all land plants including early-divergent groups such as liverworts, hornworts and mosses. The basic structure of XyG, a xylosylated glucan, is similar in all of these plants but additional substituents can vary depending on plant family, tissue, and developmental stage. A comprehensive list of known XyG sidechain substituents is assembled including their occurrence within plant families, thereby providing insight into the evolutionary origin of the various sidechains. Recent advances in DNA sequencing have enabled comparative genomics approaches for the identification of XyG biosynthetic enzymes in Arabidopsis thaliana as well as in non-model plant species. Characterization of these biosynthetic genes not only allows the determination of their substrate specificity but also provides insights into the function of the various substituents in plant growth and development.
Collapse
|
173
|
Banasiak A, Ibatullin FM, Brumer H, Mellerowicz EJ. Glycoside Hydrolase Activities in Cell Walls of Sclerenchyma Cells in the Inflorescence Stems of Arabidopsis thaliana Visualized in Situ. PLANTS (BASEL, SWITZERLAND) 2014; 3:513-25. [PMID: 27135517 PMCID: PMC4844284 DOI: 10.3390/plants3040513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 11/16/2022]
Abstract
Techniques for in situ localization of gene products provide indispensable information for understanding biological function. In the case of enzymes, biological function is directly related to activity, and therefore, knowledge of activity patterns is central to understanding the molecular controls of plant development. We have previously developed a novel type of fluorogenic substrate for revealing glycoside hydrolase activity in planta, based on resorufin β-glycosides Here, we explore a wider range of such substrates to visualize glycoside hydrolase activities in Arabidopsis inflorescence stems in real time, especially highlighting distinct distribution patterns of these activities in the secondary cell walls of sclerenchyma cells. The results demonstrate that β-1,4-glucosidase, β-1,4-glucanase and β-1,4-galactosidase activities accompany secondary wall deposition. In contrast, xyloglucanase activity follows a different pattern, with the highest signal observed in mature cells, concentrated in the middle lamella. These data further the understanding of the process of cell wall deposition and function in sclerenchymatic tissues of plants.
Collapse
Affiliation(s)
- Alicja Banasiak
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland.
| | - Farid M Ibatullin
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden.
- Biophysics Division, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300, Russia.
| | - Harry Brumer
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden.
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z1, Canada.
- Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z1, Canada.
| | - Ewa J Mellerowicz
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umea Plant Science Centre, 90183 Umea, Sweden.
| |
Collapse
|
174
|
Lahaye M, Falourd X, Quemener B, Devaux MF, Audergon JM. Histological and cell wall polysaccharide chemical variability among apricot varieties. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
175
|
González-Pérez L, Perrotta L, Acosta A, Orellana E, Spadafora N, Bruno L, Bitonti BM, Albani D, Cabrera JC, Francis D, Rogers HJ. In tobacco BY-2 cells xyloglucan oligosaccharides alter the expression of genes involved in cell wall metabolism, signalling, stress responses, cell division and transcriptional control. Mol Biol Rep 2014; 41:6803-16. [PMID: 25008996 DOI: 10.1007/s11033-014-3566-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/25/2014] [Indexed: 02/02/2023]
Abstract
Xyloglucan oligosaccharides (XGOs) are breakdown products of XGs, the most abundant hemicelluloses of the primary cell walls of non-Poalean species. Treatment of cell cultures or whole plants with XGOs results in accelerated cell elongation and cell division, changes in primary root growth, and a stimulation of defence responses. They may therefore act as signalling molecules regulating plant growth and development. Previous work suggests an interaction with auxins and effects on cell wall loosening, however their mode of action is not fully understood. The effect of an XGO extract from tamarind (Tamarindus indica) on global gene expression was therefore investigated in tobacco BY-2 cells using microarrays. Over 500 genes were differentially regulated with similar numbers and functional classes of genes up- and down-regulated, indicating a complex interaction with the cellular machinery. Up-regulation of a putative XG endotransglycosylase/hydrolase-related (XTH) gene supports the mechanism of XGO action through cell wall loosening. Differential expression of defence-related genes supports a role for XGOs as elicitors. Changes in the expression of genes related to mitotic control and differentiation also support previous work showing that XGOs are mitotic inducers. XGOs also affected expression of several receptor-like kinase genes and transcription factors. Hence, XGOs have significant effects on expression of genes related to cell wall metabolism, signalling, stress responses, cell division and transcriptional control.
Collapse
Affiliation(s)
- Lien González-Pérez
- Plant Biology Department, Faculty of Biology, University of Havana, Havana City, Cuba
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Hara Y, Yokoyama R, Osakabe K, Toki S, Nishitani K. Function of xyloglucan endotransglucosylase/hydrolases in rice. ANNALS OF BOTANY 2014; 114:1309-18. [PMID: 24363334 PMCID: PMC4195539 DOI: 10.1093/aob/mct292] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/15/2013] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Although xyloglucans are ubiquitous in land plants, they are less abundant in Poales species than in eudicotyledons. Poales cell walls contain higher levels of β-1,3/1,4 mixed-linked glucans and arabinoxylans than xyloglucans. Despite the relatively low level of xyloglucans in Poales, the xyloglucan endotransglucosylase/hydrolase (XTH) gene family in rice (Oryza sativa) is comparable in size to that of the eudicotyledon Arabidopsis thaliana. This raises the question of whether xyloglucan is a substrate for rice XTH gene products, whose enzyme activity remains largely uncharacterized. METHODS This study focused on OsXTH19 (which belongs to Group IIIA of the XTH family and is specifically expressed in growing tissues of rice shoots), and two other XTHs, OsXTH11 (Group I/II) and OsXTH20 (Group IIIA), for reference, and measurements were made of the enzymatic activities of three recombinant rice XTHs, i.e. OsXTH11, OsXTH20 and OsXTH19. KEY RESULTS All three OsXTH gene products have xyloglucan endohydrolase (XEH, EC 3·2·1·151) activity, and OsXTH11 has both XEH and xyloglucan endotransglycosylase (XET, EC 2·4·1207) activities. However, these proteins had neither hydrolase nor transglucosylase activity when glucuronoarabinoxylan or mixed-linkage glucan was used as the substrate. These results are consistent with histological observations demonstrating that pOsXTH19::GUS is expressed specifically in the vicinity of tissues where xyloglucan immunoreactivity is present. Transgenic rice lines over-expressing OsXTH19 (harbouring a Cauliflower Mosaic Virus 35S promoter::OsXTH19 cDNA construct) or with suppressed OsXTH19 expression (harbouring a pOsXTH19 RNAi construct) did not show dramatic phenotypic changes, suggesting functional redundancy and collaboration among XTH family members, as was observed in A. thaliana. CONCLUSIONS OsXTH20 and OsXTH19 act as hydrolases exclusively on xyloglucan, while OsXTH11 exhibits both hydrolase and XET activities exclusively on xyloglucans. Phenotypic analysis of transgenic lines with altered expression of OsXTH19 suggests that OsXTH19 and related XTH(s) play redundant roles in rice growth.
Collapse
Affiliation(s)
- Yoshinao Hara
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ryusuke Yokoyama
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Keishi Osakabe
- Center for Collaboration among Agriculture, Industry and Commerce, University of Tokushima, Tokushima, 770-8501 Japan
| | - Seiichi Toki
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Kazuhiko Nishitani
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
177
|
Hehemann JH, Boraston AB, Czjzek M. A sweet new wave: structures and mechanisms of enzymes that digest polysaccharides from marine algae. Curr Opin Struct Biol 2014; 28:77-86. [DOI: 10.1016/j.sbi.2014.07.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 10/24/2022]
|
178
|
Wang B, Zhang D. Association of allelic variation in PtoXET16A with growth and wood properties in Populus tomentosa. Int J Mol Sci 2014; 15:16949-74. [PMID: 25250912 PMCID: PMC4200824 DOI: 10.3390/ijms150916949] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 12/26/2022] Open
Abstract
Xyloglucan endo-transglycosylases (XETs) modify the xyloglucan-cellulose framework of plant cell walls and, thus, affect cell wall expansion and strength. Dissecting the mechanism by which natural variation in XETs affects wood properties can inform breeding efforts to improve wood quality and yield traits. To this end, we isolated a full-length PtoXET16A cDNA clone from Populus tomentosa. Real-time PCR analysis showed that PtoXET16A was maximally expressed in the root, followed by phloem, cambium, and developing xylem, suggesting that PtoXET16A plays important roles in the development of vascular tissues. Nucleotide diversity and linkage disequilibrium analysis revealed that PtoXET16A has high single nucleotide polymorphism (SNP) diversity (π = 0.01266 and θw = 0.01392) and low linkage disequilibrium (r2 ≥ 0.1, within 900 bp). SNP- and haplotype-based association analyses of 426 individuals from a natural population indicated that nine SNPs (including two non-synonymous markers and one splicing variant) (p ≤ 0.05, false discovery rate Q ≤ 0.01), and nine haplotypes (p ≤ 0.05) were significantly associated with growth and wood properties, each explaining from 3.40%–10.95% of phenotypic variance. This work shows that examination of allelic variation and linkage disequilibrium by a candidate-gene-based approach can help to decipher the genetic basis of wood formation. Moreover, the SNP markers identified in this study can potentially be applied for marker-assisted selection to improve growth and wood-property traits in Populus.
Collapse
Affiliation(s)
- Bowen Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
179
|
Gong SY, Huang GQ, Sun X, Qin LX, Li Y, Zhou L, Li XB. Cotton KNL1, encoding a class II KNOX transcription factor, is involved in regulation of fibre development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4133-47. [PMID: 24831118 PMCID: PMC4112624 DOI: 10.1093/jxb/eru182] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this study, the GhKNL1 (KNOTTED1-LIKE) gene, encoding a classical class II KNOX protein was identified in cotton (Gossypium hirsutum). GhKNL1 was preferentially expressed in developing fibres at the stage of secondary cell wall (SCW) biosynthesis. GhKNL1 was localized in the cell nucleus, and could interact with GhOFP4, as well as AtOFP1, AtOFP4, and AtMYB75. However, GhKNL1 lacked transcriptional activation activity. Dominant repression of GhKNL1 affected fibre development of cotton. The expression levels of genes related to fibre elongation and SCW biosynthesis were altered in transgenic fibres of cotton. As a result, transgenic cotton plants produced aberrant, shrunken, and collapsed fibre cells. Length and cell-wall thickness of fibres of transgenic cotton plants were significantly reduced compared with the wild type. Furthermore, overexpression and dominant repression of GhKNL1 in Arabidopsis resulted in a reduction in interfascicular fibre cell-wall thickening of basal stems of transgenic plants. Complementation revealed that GhKNL1 rescued the defective phenotype of Arabidopsis knat7 mutant in some extent. These data suggest that GhKNL1, as a transcription factor, participates in regulating fibre development of cotton.
Collapse
Affiliation(s)
- Si-Ying Gong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Geng-Qing Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xiang Sun
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Li-Xia Qin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Li Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
180
|
Generation and structural validation of a library of diverse xyloglucan-derived oligosaccharides, including an update on xyloglucan nomenclature. Carbohydr Res 2014; 402:56-66. [PMID: 25497333 DOI: 10.1016/j.carres.2014.06.031] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/24/2014] [Accepted: 06/28/2014] [Indexed: 12/25/2022]
Abstract
Xyloglucans are structurally complex plant cell wall polysaccharides that are involved in cell growth and expansion, energy metabolism, and signaling. Determining the structure-function relationships of xyloglucans would benefit from the availability of a comprehensive and structurally diverse collection of rigorously characterized xyloglucan oligosaccharides. Here, we present a workflow for the semi-preparative scale generation and purification of neutral and acidic xyloglucan oligosaccharides using a combination of enzymatic and chemical treatments and size-exclusion chromatography. Twenty-six of these oligosaccharides were purified to near homogeneity and their structures validated using a combination of matrix-assisted laser desorption/ionization mass spectrometry, high-performance anion exchange chromatography, and 1H nuclear magnetic resonance spectroscopy. Mass spectrometry and analytical chromatography were compared as methods for xyloglucan oligosaccharide quantification. 1H chemical shifts were assigned using two-dimensional correlation spectroscopy. A comprehensive update of the nomenclature describing xyloglucan side-chain structures is provided for reference.
Collapse
|
181
|
An Aspergillus nidulans β-mannanase with high transglycosylation capacity revealed through comparative studies within glycosidase family 5. Appl Microbiol Biotechnol 2014; 98:10091-104. [PMID: 24950755 PMCID: PMC4237917 DOI: 10.1007/s00253-014-5871-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 11/03/2022]
Abstract
β-Mannanases are involved in the conversion and modification of mannan-based saccharides. Using a retaining mechanism, they can, in addition to hydrolysis, also potentially perform transglycosylation reactions, synthesizing new glyco-conjugates. Transglycosylation has been reported for β-mannanases in GH5 and GH113. However, although they share the same fold and catalytic mechanism, there may be differences in the enzymes’ ability to perform transglycosylation. Three GH5 β-mannanases from Aspergillus nidulans, AnMan5A, AnMan5B and AnMan5C, which belong to subfamily GH5_7 were studied. Comparative studies, including the GH5_7 TrMan5A from Trichoderma reesei, showed some differences between the enzymes. All the enzymes could perform transglycosylation but AnMan5B stood out in generating comparably higher amounts of transglycosylation products when incubated with manno-oligosaccharides. In addition, AnMan5B did not use alcohols as acceptor, which was also different compared to the other three β-mannanases. In order to map the preferred binding of manno-oligosaccharides, incubations were performed in H218O. AnMan5B in contrary to the other enzymes did not generate any 18O-labelled products. This further supported the idea that AnMan5B potentially prefers to use saccharides as acceptor instead of water. A homology model of AnMan5B showed a non-conserved Trp located in subsite +2, not present in the other studied enzymes. Strong aglycone binding seems to be important for transglycosylation with saccharides. Depending on the application, it is important to select the right enzyme.
Collapse
|
182
|
Sebastiana M, Vieira B, Lino-Neto T, Monteiro F, Figueiredo A, Sousa L, Pais MS, Tavares R, Paulo OS. Oak root response to ectomycorrhizal symbiosis establishment: RNA-Seq derived transcript identification and expression profiling. PLoS One 2014; 9:e98376. [PMID: 24859293 PMCID: PMC4032270 DOI: 10.1371/journal.pone.0098376] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/01/2014] [Indexed: 11/19/2022] Open
Abstract
Ectomycorrhizal symbiosis is essential for the life and health of trees in temperate and boreal forests where it plays a major role in nutrient cycling and in functioning of the forest ecosystem. Trees with ectomycorrhizal root tips are more tolerant to environmental stresses, such as drought, and biotic stresses such as root pathogens. Detailed information on these molecular processes is essential for the understanding of symbiotic tissue development in order to optimize the benefits of this natural phenomenon. Next generation sequencing tools allow the analysis of non model ectomycorrhizal plant-fungal interactions that can contribute to find the "symbiosis toolkits" and better define the role of each partner in the mutualistic interaction. By using 454 pyrosequencing we compared ectomycorrhizal cork oak roots with non-symbiotic roots. From the two cDNA libraries sequenced, over 2 million reads were obtained that generated 19,552 cork oak root unique transcripts. A total of 2238 transcripts were found to be differentially expressed when ECM roots were compared with non-symbiotic roots. Identification of up- and down-regulated gens in ectomycorrhizal roots lead to a number of insights into the molecular mechanisms governing this important symbiosis. In cork oak roots, ectomycorrhizal colonization resulted in extensive cell wall remodelling, activation of the secretory pathway, alterations in flavonoid biosynthesis, and expression of genes involved in the recognition of fungal effectors. In addition, we identified genes with putative roles in symbiotic processes such as nutrient exchange with the fungal partner, lateral root formation or root hair decay. These findings provide a global overview of the transcriptome of an ectomycorrhizal host root, and constitute a foundation for future studies on the molecular events controlling this important symbiosis.
Collapse
Affiliation(s)
- Mónica Sebastiana
- Plant Systems Biology Lab, Center for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Bruno Vieira
- Center for Environmental Biology, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Teresa Lino-Neto
- Plant Functional Biology Centre, Center for Biodiversity, Functional and Integrative Genomics, University of Minho, Braga, Portugal
| | - Filipa Monteiro
- Plant Systems Biology Lab, Center for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Andreia Figueiredo
- Plant Systems Biology Lab, Center for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Lisete Sousa
- Department of Statistics and Operational Research, Center of Statistics and Applications from Lisbon University, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Maria Salomé Pais
- Plant Systems Biology Lab, Center for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Rui Tavares
- Plant Functional Biology Centre, Center for Biodiversity, Functional and Integrative Genomics, University of Minho, Braga, Portugal
| | - Octávio S. Paulo
- Center for Environmental Biology, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
183
|
Bergonci T, Ribeiro B, Ceciliato PH, Guerrero-Abad JC, Silva-Filho MC, Moura DS. Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2219-30. [PMID: 24620000 PMCID: PMC3991750 DOI: 10.1093/jxb/eru099] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rapid alkalinization factor (RALF) is a peptide signal that plays a basic role in cell biology and most likely regulates cell expansion. In this study, transgenic Arabidopsis thaliana lines with high and low levels of AtRALF1 transcripts were used to investigate this peptide's mechanism of action. Overexpression of the root-specific isoform AtRALF1 resulted in reduced cell size. Conversely, AtRALF1 silencing increased root length by increasing the size of root cells. AtRALF1-silenced plants also showed an increase in the number of lateral roots, whereas AtRALF1 overexpression produced the opposite effect. In addition, four AtRALF1-inducible genes were identified: two genes encoding proline-rich proteins (AtPRP1 and AtPRP3), one encoding a hydroxyproline-rich glycoprotein (AtHRPG2), and one encoding a xyloglucan endotransglucosylase (TCH4). These genes were expressed in roots and involved in cell-wall rearrangement, and their induction was concentration dependent. Furthermore, AtRALF1-overexpressing plants were less sensitive to exogenous brassinolide (BL); upon BL treatment, the plants showed no increase in root length and a compromised increase in hypocotyl elongation. In addition, the treatment had no effect on the number of emerged lateral roots. AtRALF1 also induces two brassinosteroid (BR)-downregulated genes involved in the BR biosynthetic pathway: the cytochrome P450 monooxygenases CONSTITUTIVE PHOTOMORPHISM AND DWARFISM (CPD) and DWARF4 (DWF4). Simultaneous treatment with both AtRALF1 and BL caused a reduction in AtRALF1-inducible gene expression levels, suggesting that these signals may compete for components shared by both pathways. Taken together, these results indicate an opposing effect of AtRALF1 and BL, and suggest that RALF's mechanism of action could be to interfere with the BR signalling pathway.
Collapse
Affiliation(s)
- Tábata Bergonci
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, SP, 13418–900, Brazil
| | - Bianca Ribeiro
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, SP, 13418–900, Brazil
| | - Paulo H.O. Ceciliato
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, SP, 13418–900, Brazil
| | - Juan Carlos Guerrero-Abad
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, SP, 13418–900, Brazil
| | - Marcio C. Silva-Filho
- Laboratório de Biologia Molecular de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, SP, 13418–900, Brazil
| | - Daniel S. Moura
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, SP, 13418–900, Brazil
| |
Collapse
|
184
|
Wang Y, Vilaplana F, Brumer H, Aspeborg H. Enzymatic characterization of a glycoside hydrolase family 5 subfamily 7 (GH5_7) mannanase from Arabidopsis thaliana. PLANTA 2014; 239:653-65. [PMID: 24327260 PMCID: PMC3928506 DOI: 10.1007/s00425-013-2005-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/01/2013] [Indexed: 05/16/2023]
Abstract
Each plant genome contains a repertoire of β-mannanase genes belonging to glycoside hydrolase family 5 subfamily 7 (GH5_7), putatively involved in the degradation and modification of various plant mannan polysaccharides, but very few have been characterized at the gene product level. The current study presents recombinant production and in vitro characterization of AtMan5-1 as a first step towards the exploration of the catalytic capacity of Arabidopsis thaliana β-mannanase. The target enzyme was expressed in both E. coli (AtMan5-1e) and P. pastoris (AtMan5-1p). The main difference between the two forms was a higher observed thermal stability for AtMan5-1p, presumably due to glycosylation of that particular variant. AtMan5-1 displayed optimal activity at pH 5 and 35 °C and hydrolyzed polymeric carob galactomannan, konjac glucomannan, and spruce galactoglucomannan as well as oligomeric mannopentaose and mannohexaose. However, the galactose-rich and highly branched guar gum was not as efficiently degraded. AtMan5-1 activity was enhanced by Co(2+) and inhibited by Mn(2+). The catalytic efficiency values for carob galactomannan were 426.8 and 368.1 min(-1) mg(-1) mL for AtMan5-1e and AtMan5-1p, respectively. Product analysis of AtMan5-1p suggested that at least five substrate-binding sites were required for manno-oligosaccharide hydrolysis, and that the enzyme also can act as a transglycosylase.
Collapse
Affiliation(s)
- Yang Wang
- Division of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
- Division of Industrial Biotechnology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
| | - Francisco Vilaplana
- Division of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
- Wallenberg Wood Science Centre, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden
| | - Harry Brumer
- Division of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, V6T 1Z4 Canada
| | - Henrik Aspeborg
- Division of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
- Division of Industrial Biotechnology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
| |
Collapse
|
185
|
Valmonte GR, Arthur K, Higgins CM, MacDiarmid RM. Calcium-dependent protein kinases in plants: evolution, expression and function. PLANT & CELL PHYSIOLOGY 2014; 55:551-69. [PMID: 24363288 DOI: 10.1093/pcp/pct200] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in metabolism, osmosis, hormone response and stress signaling pathways. CPKs are a large multigene family of proteins that are present in all plants studied to date, as well as in protists, oomycetes and green algae, but are not found in animals and fungi. Despite the increasing evidence of the importance of CPKs in developmental and stress responses from various plants, a comprehensive genome-wide analysis of CPKs from algae to higher plants has not been undertaken. This paper describes the evolution of CPKs from green algae to plants using a broadly sampled phylogenetic analysis and demonstrates the functional diversification of CPKs based on expression and functional studies in different plant species. Our findings reveal that CPK sequence diversification into four major groups occurred in parallel with the terrestrial transition of plants. Despite significant expansion of the CPK gene family during evolution from green algae to higher plants, there is a high level of sequence conservation among CPKs in all plant species. This sequence conservation results in very little correlation between CPK evolutionary groupings and functional diversity, making the search for CPK functional orthologs a challenge.
Collapse
Affiliation(s)
- Gardette R Valmonte
- Institute for Applied Ecology New Zealand, School of Applied Sciences, Auckland University of Technology, New Zealand
| | | | | | | |
Collapse
|
186
|
Braidwood L, Breuer C, Sugimoto K. My body is a cage: mechanisms and modulation of plant cell growth. THE NEW PHYTOLOGIST 2014; 201:388-402. [PMID: 24033322 DOI: 10.1111/nph.12473] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 08/01/2013] [Indexed: 05/19/2023]
Abstract
388 I. 388 II. 389 III. 389 IV. 390 V. 391 VI. 393 VII. 394 VIII. 398 399 References 399 SUMMARY: The wall surrounding plant cells provides protection from abiotic and biotic stresses, and support through the action of turgor pressure. However, the presence of this strong elastic wall also prevents cell movement and resists cell growth. This growth can be likened to extending a house from the inside, using extremely high pressures to push out the walls. Plants must increase cell volume in order to explore their environment, acquire nutrients and reproduce. Cell wall material must stretch and flow in a controlled manner and, concomitantly, new cell wall material must be deposited at the correct rate and site to prevent wall and cell rupture. In this review, we examine biomechanics, cell wall structure and growth regulatory networks to provide a 'big picture' of plant cell growth.
Collapse
Affiliation(s)
- Luke Braidwood
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Christian Breuer
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
187
|
Blanco-Ulate B, Morales-Cruz A, Amrine KCH, Labavitch JM, Powell ALT, Cantu D. Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts. FRONTIERS IN PLANT SCIENCE 2014; 5:435. [PMID: 25232357 PMCID: PMC4153048 DOI: 10.3389/fpls.2014.00435] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/15/2014] [Indexed: 05/19/2023]
Abstract
Cell walls are barriers that impair colonization of host tissues, but also are important reservoirs of energy-rich sugars. Growing hyphae of necrotrophic fungal pathogens, such as Botrytis cinerea (Botrytis, henceforth), secrete enzymes that disassemble cell wall polysaccharides. In this work we describe the annotation of 275 putative secreted Carbohydrate-Active enZymes (CAZymes) identified in the Botrytis B05.10 genome. Using RNAseq we determined which Botrytis CAZymes were expressed during infections of lettuce leaves, ripe tomato fruit, and grape berries. On the three hosts, Botrytis expressed a common group of 229 potentially secreted CAZymes, including 28 pectin backbone-modifying enzymes, 21 hemicellulose-modifying proteins, 18 enzymes that might target pectin and hemicellulose side-branches, and 16 enzymes predicted to degrade cellulose. The diversity of the Botrytis CAZymes may be partly responsible for its wide host range. Thirty-six candidate CAZymes with secretion signals were found exclusively when Botrytis interacted with ripe tomato fruit and grape berries. Pectin polysaccharides are notably abundant in grape and tomato cell walls, but lettuce leaf walls have less pectin and are richer in hemicelluloses and cellulose. The results of this study not only suggest that Botrytis targets similar wall polysaccharide networks on fruit and leaves, but also that it may selectively attack host wall polysaccharide substrates depending on the host tissue.
Collapse
Affiliation(s)
- Barbara Blanco-Ulate
- Department of Viticulture and Enology, University of California, DavisDavis, CA, USA
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Abraham Morales-Cruz
- Department of Viticulture and Enology, University of California, DavisDavis, CA, USA
| | | | - John M. Labavitch
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Ann L. T. Powell
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, DavisDavis, CA, USA
- *Correspondence: Dario Cantu, Department of Viticulture and Enology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA e-mail:
| |
Collapse
|
188
|
Kyndt T, Vieira P, Gheysen G, de Almeida-Engler J. Nematode feeding sites: unique organs in plant roots. PLANTA 2013; 238:807-18. [PMID: 23824525 DOI: 10.1007/s00425-013-1923-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/13/2013] [Indexed: 05/19/2023]
Abstract
Although generally unnoticed, nearly all crop plants have one or more species of nematodes that feed on their roots, frequently causing tremendous yield losses. The group of sedentary nematodes, which are among the most damaging plant-parasitic nematodes, cause the formation of special organs called nematode feeding sites (NFS) in the root tissue. In this review we discuss key metabolic and cellular changes correlated with NFS development, and similarities and discrepancies between different types of NFS are highlighted.
Collapse
Affiliation(s)
- Tina Kyndt
- Department Molecular Biotechnology, Ghent University (UGent), Coupure Links 653, 9000, Ghent, Belgium,
| | | | | | | |
Collapse
|
189
|
Lampugnani ER, Moller IE, Cassin A, Jones DF, Koh PL, Ratnayake S, Beahan CT, Wilson SM, Bacic A, Newbigin E. In vitro grown pollen tubes of Nicotiana alata actively synthesise a fucosylated xyloglucan. PLoS One 2013; 8:e77140. [PMID: 24116212 PMCID: PMC3792914 DOI: 10.1371/journal.pone.0077140] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/29/2013] [Indexed: 12/15/2022] Open
Abstract
Nicotiana alata pollen tubes are a widely used model for studies of polarized tip growth and cell wall synthesis in plants. To better understand these processes, RNA-Seq and de novo assembly methods were used to produce a transcriptome of N. alata pollen grains. Notable in the reconstructed transcriptome were sequences encoding proteins that are involved in the synthesis and remodelling of xyloglucan, a cell wall polysaccharide previously not thought to be deposited in Nicotiana pollen tube walls. Expression of several xyloglucan-related genes in actively growing pollen tubes was confirmed and xyloglucan epitopes were detected in the wall with carbohydrate-specific antibodies: the major xyloglucan oligosaccharides found in N. alata pollen grains and tubes were fucosylated, an unusual structure for the Solanaceae, the family to which Nicotiana belongs. Finally, carbohydrate linkages consistent with xyloglucan were identified chemically in the walls of N. alata pollen grains and pollen tubes grown in culture. The presence of a fucosylated xyloglucan in Nicotiana pollen tube walls was thus confirmed. The consequences of this discovery to models of pollen tube growth dynamics and more generally to polarised tip-growing cells in plants are discussed.
Collapse
Affiliation(s)
| | - Isabel E. Moller
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew Cassin
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel F. Jones
- Department of Botany, La Trobe University, Bundoora, Victoria, Australia
| | - Poh Ling Koh
- School of Botany, University of Melbourne, Melbourne, Victoria, Australia
| | - Sunil Ratnayake
- School of Botany, University of Melbourne, Melbourne, Victoria, Australia
| | - Cherie T. Beahan
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah M. Wilson
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Melbourne, Victoria, Australia
| | - Antony Bacic
- Bio21 Institute for Molecular Science & Biotechnology, University of Melbourne, Victoria, Australia
| | - Ed Newbigin
- School of Botany, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
190
|
Franková L, Fry SC. Biochemistry and physiological roles of enzymes that 'cut and paste' plant cell-wall polysaccharides. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3519-50. [PMID: 23956409 DOI: 10.1093/jxb/ert201] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The plant cell-wall matrix is equipped with more than 20 glycosylhydrolase activities, including both glycosidases and glycanases (exo- and endo-hydrolases, respectively), which between them are in principle capable of hydrolysing most of the major glycosidic bonds in wall polysaccharides. Some of these enzymes also participate in the 'cutting and pasting' (transglycosylation) of sugar residues-enzyme activities known as transglycosidases and transglycanases. Their action and biological functions differ from those of the UDP-dependent glycosyltransferases (polysaccharide synthases) that catalyse irreversible glycosyl transfer. Based on the nature of the substrates, two types of reaction can be distinguished: homo-transglycosylation (occurring between chemically similar polymers) and hetero-transglycosylation (between chemically different polymers). This review focuses on plant cell-wall-localized glycosylhydrolases and the transglycosylase activities exhibited by some of these enzymes and considers the physiological need for wall polysaccharide modification in vivo. It describes the mechanism of transglycosylase action and the classification and phylogenetic variation of the enzymes. It discusses the modulation of their expression in plants at the transcriptional and translational levels, and methods for their detection. It also critically evaluates the evidence that the enzyme proteins under consideration exhibit their predicted activity in vitro and their predicted action in vivo. Finally, this review suggests that wall-localized glycosylhydrolases with transglycosidase and transglycanase abilities are widespread in plants and play important roles in the mechanism and control of plant cell expansion, differentiation, maturation, and wall repair.
Collapse
Affiliation(s)
- Lenka Franková
- Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JH, UK
| | | |
Collapse
|
191
|
Guzmán-Rodríguez JJ, Ibarra-Laclette E, Herrera-Estrella L, Ochoa-Zarzosa A, Suárez-Rodríguez LM, Rodríguez-Zapata LC, Salgado-Garciglia R, Jimenez-Moraila B, López-Meza JE, López-Gómez R. Analysis of expressed sequence tags (ESTs) from avocado seed (Persea americana var. drymifolia) reveals abundant expression of the gene encoding the antimicrobial peptide snakin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:318-24. [PMID: 23811120 DOI: 10.1016/j.plaphy.2013.05.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 05/28/2013] [Indexed: 05/08/2023]
Abstract
Avocado is one of the most important fruits in the world. Avocado "native mexicano" (Persea americana var. drymifolia) seeds are widely used in the propagation of this plant and are the primary source of rootstocks globally for a variety of avocado cultivars, such as the Hass avocado. Here, we report the isolation of 5005 ESTs from the 5' ends of P. americana var. drymifolia seed cDNA clones representing 1584 possible unigenes. These avocado seed ESTs were compared with the avocado flower EST library, and we detected several genes that are expressed either in both tissues or only in the seed. The snakin gene, which encodes an element of the innate immune response in plants, was one of those most frequently found among the seed ESTs, and this suggests that it is abundantly expressed in the avocado seed. We expressed the snakin gene in a heterologous system, namely the bovine endothelial cell line BVE-E6E7. Conditioned media from transfected BVE-E6E7 cells showed antimicrobial activity against strains of Escherichia coli and Staphylococcus aureus. This is the first study of the function of the snakin gene in plant seed tissue, and our observations suggest that this gene might play a protective role in the avocado seed.
Collapse
Affiliation(s)
- Jaquelina J Guzmán-Rodríguez
- Centro Multidisciplinario de Estudios en Biotecnología (CMEB), Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, C.P. 58893, Morelia, Michoacán, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Muñoz-Bertomeu J, Miedes E, Lorences EP. Expression of xyloglucan endotransglucosylase/hydrolase (XTH) genes and XET activity in ethylene treated apple and tomato fruits. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1194-201. [PMID: 23628624 DOI: 10.1016/j.jplph.2013.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 05/18/2023]
Abstract
Xyloglucan endotransglucosylase/hydrolase (XTHs: EC 2.4.1.207 and/or EC 3.2.1.151), a xyloglucan modifying enzyme, has been proposed to have a role during tomato and apple fruit ripening by loosening the cell wall. Since the ripening of climacteric fruits is controlled by endogenous ethylene biosynthesis, we wanted to study whether XET activity was ethylene-regulated, and if so, which specific genes encoding ripening-regulated XTH genes were indeed ethylene-regulated. XET specific activity in tomato and apple fruits was significantly increased by the ethylene treatment, as compared with the control fruits, suggesting an increase in the XTH gene expression induced by ethylene. The 25 SlXTH protein sequences of tomato and the 11 sequences MdXTH of apple were phylogenetically analyzed and grouped into three major clades. The SlXTHs genes with highest expression during ripening were SlXTH5 and SlXTH8 from Group III-B, and in apple MdXTH2, from Group II, and MdXTH10, and MdXTH11 from Group III-B. Ethylene was involved in the regulation of the expression of different SlXTH and MdXTH genes during ripening. In tomato fruit fifteen different SlXTH genes showed an increase in expression after ethylene treatment, and the SlXTHs that were ripening associated were also ethylene dependent, and belong to Group III-B (SlXTH5 and SlXTH8). In apple fruit, three MdXTH showed an increase in expression after the ethylene treatment and the only MdXTH that was ripening associated and ethylene dependent was MdXTH10 from Group III-B. The results indicate that XTH may play an important role in fruit ripening and a possible relationship between XTHs from Group III-B and fruit ripening, and ethylene regulation is suggested.
Collapse
Affiliation(s)
- J Muñoz-Bertomeu
- Dpto. Biología Vegetal, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | | | | |
Collapse
|
193
|
Eklöf JM, Shojania S, Okon M, McIntosh LP, Brumer H. Structure-function analysis of a broad specificity Populus trichocarpa endo-β-glucanase reveals an evolutionary link between bacterial licheninases and plant XTH gene products. J Biol Chem 2013; 288:15786-99. [PMID: 23572521 DOI: 10.1074/jbc.m113.462887] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The large xyloglucan endotransglycosylase/hydrolase (XTH) gene family continues to be the focus of much attention in studies of plant cell wall morphogenesis due to the unique catalytic functions of the enzymes it encodes. The XTH gene products compose a subfamily of glycoside hydrolase family 16 (GH16), which also comprises a broad range of microbial endoglucanases and endogalactanases, as well as yeast cell wall chitin/β-glucan transglycosylases. Previous whole-family phylogenetic analyses have suggested that the closest relatives to the XTH gene products are the bacterial licheninases (EC 3.2.1.73), which specifically hydrolyze linear mixed linkage β(1→3)/β(1→4)-glucans. In addition to their specificity for the highly branched xyloglucan polysaccharide, XTH gene products are distinguished from the licheninases and other GH16 enzyme subfamilies by significant active site loop alterations and a large C-terminal extension. Given these differences, the molecular evolution of the XTH gene products in GH16 has remained enigmatic. Here, we present the biochemical and structural analysis of a unique, mixed function endoglucanase from black cottonwood (Populus trichocarpa), which reveals a small, newly recognized subfamily of GH16 members intermediate between the bacterial licheninases and plant XTH gene products. We postulate that this clade comprises an important link in the evolution of the large plant XTH gene families from a putative microbial ancestor. As such, this analysis provides new insights into the diversification of GH16 and further unites the apparently disparate members of this important family of proteins.
Collapse
Affiliation(s)
- Jens M Eklöf
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
194
|
Luang S, Cho JI, Mahong B, Opassiri R, Akiyama T, Phasai K, Komvongsa J, Sasaki N, Hua YL, Matsuba Y, Ozeki Y, Jeon JS, Cairns JRK. Rice Os9BGlu31 is a transglucosidase with the capacity to equilibrate phenylpropanoid, flavonoid, and phytohormone glycoconjugates. J Biol Chem 2013; 288:10111-10123. [PMID: 23430256 PMCID: PMC3617254 DOI: 10.1074/jbc.m112.423533] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 02/15/2013] [Indexed: 10/07/2023] Open
Abstract
Glycosylation is an important mechanism of controlling the reactivities and bioactivities of plant secondary metabolites and phytohormones. Rice (Oryza sativa) Os9BGlu31 is a glycoside hydrolase family GH1 transglycosidase that acts to transfer glucose between phenolic acids, phytohormones, and flavonoids. The highest activity was observed with the donors feruloyl-glucose, 4-coumaroyl-glucose, and sinapoyl-glucose, which are known to serve as donors in acyl and glucosyl transfer reactions in the vacuole, where Os9BGlu31 is localized. The free acids of these compounds also served as the best acceptors, suggesting that Os9BGlu31 may equilibrate the levels of phenolic acids and carboxylated phytohormones and their glucoconjugates. The Os9BGlu31 gene is most highly expressed in senescing flag leaf and developing seed and is induced in rice seedlings in response to drought stress and treatment with phytohormones, including abscisic acid, ethephon, methyljasmonate, 2,4-dichlorophenoxyacetic acid, and kinetin. Although site-directed mutagenesis of Os9BGlu31 indicated a function for the putative catalytic acid/base (Glu(169)), catalytic nucleophile residues (Glu(387)), and His(386), the wild type enzyme displays an unusual lack of inhibition by mechanism-based inhibitors of GH1 β-glucosidases that utilize a double displacement retaining mechanism.
Collapse
Affiliation(s)
- Sukanya Luang
- Institute of Science, Schools of Biochemistry and Chemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jung-Il Cho
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| | - Bancha Mahong
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| | - Rodjana Opassiri
- Institute of Science, Schools of Biochemistry and Chemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Takashi Akiyama
- National Agricultural Research Center for Hokkaido Region, 1 Hitsujigaoka, Toyohira-ku, Sapporo, Hokkaido 062-8555, Japan
| | - Kannika Phasai
- Institute of Science, Schools of Biochemistry and Chemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Juthamath Komvongsa
- Institute of Science, Schools of Biochemistry and Chemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nobuhiro Sasaki
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yan-Ling Hua
- Institute of Science, Schools of Biochemistry and Chemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Yuki Matsuba
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yoshihiro Ozeki
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea.
| | - James R Ketudat Cairns
- Institute of Science, Schools of Biochemistry and Chemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand.
| |
Collapse
|
195
|
Simmons TJ. Considerations in the search for mixed-linkage (1→3),(1→4)-β-D-glucan-active endotransglycosylases. PLANT SIGNALING & BEHAVIOR 2013; 8:e23835. [PMID: 23425852 PMCID: PMC7030212 DOI: 10.4161/psb.23835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Xyloglucan endotransglucosylase, catalyzed by XTH subfamily members, is thought to play crucial roles in plant cell wall physiology. Recent discovery of endotransglycosylases active on other hemicelluloses extend our understanding of the physiological scope of endotransglycosylation in general. Discovery in Poaceaen XTHs of endotransglycosylases which act on Poaceaen-prevalent hemicelluloses, such as MLG, could reconcile the apparent incongruence between the large size of Poaceaen putative XTH families and the low xyloglucan content of their cell walls. Here, I speculate on hypothetical MLG-active endotransglycosylases and highlight potential hindrances to their discovery. It is suggested that because the location of β-(1→3) bonds within MLG oligosaccharides (MLGOs) could define their ability to act as endotranglycosylase acceptor substrates: a) thorough probing of substrate specificities necessitates the use of MLGOs created using different endo-glycanases; and b) endogenous plant exo-glycosidases, which can hinder endotranglycosylase assays by degrading acceptor substrates, might prove particularly troublesome where MLGOs are concerned.
Collapse
Affiliation(s)
- Thomas J. Simmons
- The Edinburgh Cell Wall Group; Institute of Molecular Plant Sciences; School of Biological Sciences; The University of Edinburgh; Edinburgh, U.K
| |
Collapse
|
196
|
Assor C, Quemener B, Vigouroux J, Lahaye M. Fractionation and structural characterization of LiCl-DMSO soluble hemicelluloses from tomato. Carbohydr Polym 2013; 94:46-55. [PMID: 23544508 DOI: 10.1016/j.carbpol.2013.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/21/2012] [Accepted: 01/01/2013] [Indexed: 11/30/2022]
Abstract
To prepare and explore the structure of native hemicellulose from tomato, extraction of the natively acetylated polysaccharides was achieved from partially depectinated cell walls by DMSO doped with LiCl. DEAE anion exchange chromatography of the LiCl-DMSO extract allowed the removal of residual acidic pectin and the isolation of acetylated glucuronoxylan. The hemicellulose neutral fraction from the anion exchanger was fractionated by size exclusion chromatography into xyloglucan (XyG) and galactoglucomannan (GgM) either as single major constituents or as mixtures of both. Residual hemicellulose in the cell wall was extracted by 4.0 M and not 1.0 M KOH. The fine structure of all LiCl-DMSO fractions and alkali extracts was assessed by coupling β-glucanase, β-mannanase and β-xylanase enzymatic degradations to the analysis of the resulting fragments by HPAEC and MALDI-TOF mass spectrometry. This approach revealed substitutions in part of the GgM fractions by pentose residues, presumably arabinose and/or xylose occurring in highly substituted block domains. It also demonstrated a different glucanase hydrolysis profile from 4.0 M KOH compared to LiCl-DMSO soluble fractions. The present extraction and purification scheme allow the recovery of several populations of acetylated hemicellulose families which emphasize the structural diversity and complexity of these polysaccharides.
Collapse
Affiliation(s)
- Carole Assor
- INRA, UR 1268 Biopolymers, Interactions and Assemblies, rue de la Géraudière, F-44316 Nantes, France.
| | | | | | | |
Collapse
|
197
|
Carey RE, Hepler NK, Cosgrove DJ. Selaginella moellendorffii has a reduced and highly conserved expansin superfamily with genes more closely related to angiosperms than to bryophytes. BMC PLANT BIOLOGY 2013; 13:4. [PMID: 23286898 PMCID: PMC3680112 DOI: 10.1186/1471-2229-13-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/22/2012] [Indexed: 05/10/2023]
Abstract
BACKGROUND Expansins are plant cell wall loosening proteins encoded by a large superfamily of genes, consisting of four families named EXPA, EXPB, EXLA, and EXLB. The evolution of the expansin superfamily is well understood in angiosperms, thanks to synteny-based evolutionary studies of the gene superfamily in Arabidopsis, rice, and Populus. Analysis of the expansin superfamily in the moss Physcomitrella patens revealed a superfamily without EXLA or EXLB genes that has evolved considerably and independently of angiosperm expansins. The sequencing of the Selaginella moellendorffii genome has allowed us to extend these analyses into an early diverging vascular plant. RESULTS The expansin superfamily in Selaginella moellendorffii has now been assembled from genomic scaffolds. A smaller (and less diverse) superfamily is revealed, consistent with studies of other gene families in Selaginella. Selaginella has an expansin superfamily, which, like Physcomitrella, lacks EXLA or EXLB genes, but does contain two EXPA genes that are related to a particular Arabidopsis-rice clade involved in root hair development. CONCLUSIONS From sequence-based phylogenetic analysis, most Selaginella expansins lie outside the Arabidopsis-rice clades, leading us to estimate the minimum number of expansins present in the last common ancestor of Selaginella and angiosperms at 2 EXPA genes and 1 EXPB gene. These results confirm Selaginella as an important intermediary between bryophytes and angiosperms.
Collapse
Affiliation(s)
- Robert E Carey
- Department of Biology, Lebanon Valley College, 101 N. College Ave., Annville, PA, 17003, USA
- Department of Biology, The Pennsylvania State University, 208 Mueller Lab, University Park, PA, 16802, USA
| | - Nathan K Hepler
- Program in Biochemistry and Molecular Biology, Lebanon Valley College, 101 N. College Ave., Annville, PA, 17003, USA
| | - Daniel J Cosgrove
- Department of Biology, The Pennsylvania State University, 208 Mueller Lab, University Park, PA, 16802, USA
| |
Collapse
|
198
|
Mohler KE, Simmons TJ, Fry SC. Mixed-linkage glucan:xyloglucan endotransglucosylase (MXE) re-models hemicelluloses in Equisetum shoots but not in barley shoots or Equisetum callus. THE NEW PHYTOLOGIST 2013; 197:111-122. [PMID: 23078260 DOI: 10.1111/j.1469-8137.2012.04371.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/31/2012] [Indexed: 05/09/2023]
Abstract
Among land-plant hemicelluloses, xyloglucan is ubiquitous, whereas mixed-linkage (1→3),(1→4)-β-D-glucan (MLG) is confined to the Poales (e.g. cereals) and Equisetales (horsetails). The enzyme MLG:xyloglucan endotransglucosylase (MXE) grafts MLG to xyloglucan. In Equisetum, MXE often exceeds extractable xyloglucan endotransglucosylase (XET) activity; curiously, cereals lack extractable MXE. We investigated whether barley possesses inextractable MXE. Grafting of endogenous MLG or xyloglucan onto exogenous [(3)H]xyloglucan oligosaccharides in vivo indicated MXE and XET action, respectively. Extractable MXE and XET activities were assayed in vitro. MXE and XET actions were both detectable in living Equisetum fluviatile shoots, the MXE : XET ratio increasing with age. However, only XET action was observed in barley coleoptiles, leaves and roots (which all contained MLG) and in E. fluviatile intercalary meristems and callus (which lacked MLG). In E. fluviatile, extractable MXE activity was high in mature shoots, but extremely low in callus and young shoots; in E. arvense strobili, it was undetectable. Barley possesses neither extractable nor inextractable MXE, despite containing both of its substrates and high XET activity. As the Poales are xyloglucan-poor, the role of their abundant endotransglucosylases remains enigmatic. The distribution of MXE action and activity within Equisetum suggests a strengthening role in ageing tissues.
Collapse
Affiliation(s)
- Kyle E Mohler
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JH, UK
| | - Thomas J Simmons
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JH, UK
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JH, UK
| |
Collapse
|
199
|
Kaewthai N, Gendre D, Eklöf JM, Ibatullin FM, Ezcurra I, Bhalerao RP, Brumer H. Group III-A XTH genes of Arabidopsis encode predominant xyloglucan endohydrolases that are dispensable for normal growth. PLANT PHYSIOLOGY 2013; 161:440-54. [PMID: 23104861 PMCID: PMC3532273 DOI: 10.1104/pp.112.207308] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/25/2012] [Indexed: 05/05/2023]
Abstract
The molecular basis of primary wall extension endures as one of the central enigmas in plant cell morphogenesis. Classical cell wall models suggest that xyloglucan endo-transglycosylase activity is the primary catalyst (together with expansins) of controlled cell wall loosening through the transient cleavage and religation of xyloglucan-cellulose cross links. The genome of Arabidopsis (Arabidopsis thaliana) contains 33 phylogenetically diverse XYLOGLUCAN ENDO-TRANSGLYCOSYLASE/HYDROLASE (XTH) gene products, two of which were predicted to be predominant xyloglucan endohydrolases due to clustering into group III-A. Enzyme kinetic analysis of recombinant AtXTH31 confirmed this prediction and indicated that this enzyme had similar catalytic properties to the nasturtium (Tropaeolum majus) xyloglucanase1 responsible for storage xyloglucan hydrolysis during germination. Global analysis of Genevestigator data indicated that AtXTH31 and the paralogous AtXTH32 were abundantly expressed in expanding tissues. Microscopy analysis, utilizing the resorufin β-glycoside of the xyloglucan oligosaccharide XXXG as an in situ probe, indicated significant xyloglucan endohydrolase activity in specific regions of both roots and hypocotyls, in good correlation with transcriptomic data. Moreover, this hydrolytic activity was essentially completely eliminated in AtXTH31/AtXTH32 double knockout lines. However, single and double knockout lines, as well as individual overexpressing lines, of AtXTH31 and AtXTH32 did not demonstrate significant growth or developmental phenotypes. These results suggest that although xyloglucan polysaccharide hydrolysis occurs in parallel with primary wall expansion, morphological effects are subtle or may be compensated by other mechanisms. We hypothesize that there is likely to be an interplay between these xyloglucan endohydrolases and recently discovered apoplastic exo-glycosidases in the hydrolytic modification of matrix xyloglucans.
Collapse
Affiliation(s)
| | | | - Jens M. Eklöf
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, S–106 91 Stockholm, Sweden (N.K., J.M.E., F.M.I., I.E., H.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE–901 83 Umea, Sweden (D.G., R.P.B.); Biophysics Division, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300, Russia (F.M.I.); and Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (H.B.)
| | - Farid M. Ibatullin
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, S–106 91 Stockholm, Sweden (N.K., J.M.E., F.M.I., I.E., H.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE–901 83 Umea, Sweden (D.G., R.P.B.); Biophysics Division, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300, Russia (F.M.I.); and Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (H.B.)
| | - Ines Ezcurra
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, S–106 91 Stockholm, Sweden (N.K., J.M.E., F.M.I., I.E., H.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE–901 83 Umea, Sweden (D.G., R.P.B.); Biophysics Division, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300, Russia (F.M.I.); and Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (H.B.)
| | - Rishikesh P. Bhalerao
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, S–106 91 Stockholm, Sweden (N.K., J.M.E., F.M.I., I.E., H.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE–901 83 Umea, Sweden (D.G., R.P.B.); Biophysics Division, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300, Russia (F.M.I.); and Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (H.B.)
| | - Harry Brumer
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, S–106 91 Stockholm, Sweden (N.K., J.M.E., F.M.I., I.E., H.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE–901 83 Umea, Sweden (D.G., R.P.B.); Biophysics Division, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300, Russia (F.M.I.); and Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (H.B.)
| |
Collapse
|
200
|
Johnston SL, Prakash R, Chen NJ, Kumagai MH, Turano HM, Cooney JM, Atkinson RG, Paull RE, Cheetamun R, Bacic A, Brummell DA, Schröder R. An enzyme activity capable of endotransglycosylation of heteroxylan polysaccharides is present in plant primary cell walls. PLANTA 2013; 237:173-87. [PMID: 23001197 DOI: 10.1007/s00425-012-1766-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 09/03/2012] [Indexed: 06/01/2023]
Abstract
Heteroxylans in the plant cell wall have been proposed to have a role analogous to that of xyloglucans or heteromannans, forming growth-restraining networks by interlocking cellulose microfibrils. A xylan endotransglycosylase has been identified that can transglycosylate heteroxylan polysaccharides in the presence of xylan-derived oligosaccharides. High activity was detected in ripe fruit of papaya (Carica papaya), but activity was also found in a range of other fruits, imbibed seeds and rapidly growing seedlings of cereals. Xylan endotransglycosylase from ripe papaya fruit used a range of heteroxylans, such as wheat arabinoxylan, birchwood glucuronoxylan and various heteroxylans from dicotyledonous primary cell walls purified from tomato and papaya fruit, as donor molecules. As acceptor molecules, the enzyme preferentially used xylopentaitol over xylohexaitol or shorter-length acceptors. Xylan endotransglycosylase was active over a broad pH range and could perform transglycosylation reactions up to 55 °C. Xylan endotransglycosylase activity was purified from ripe papaya fruit by ultrafiltration and cation exchange chromatography. Highest endotransglycosylase activity was identified in fractions that also contained high xylan hydrolase activity and correlated with the presence of the endoxylanase CpaEXY1. Recombinant CpaEXY1 protein transiently over-expressed in Nicotiana benthamiana leaves showed both endoxylanase and xylan endotransglycosylase activities in vitro, suggesting that CpaEXY1 is a single enzyme with dual activity in planta. Purified native CpaEXY1 showed two- to fourfold higher endoxylanase than endotransglycosylase activity, suggesting that CpaEXY1 may act primarily as a hydrolase. We propose that xylan endotransglycosylase activity (like xyloglucan and mannan endotransglycosylase activities) could be involved in remodelling or re-arrangement of heteroxylans of the cellulose-non-cellulosic cell wall framework.
Collapse
Affiliation(s)
- Sarah L Johnston
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|