151
|
Zhang YF, Hou MM, Tan BC. The requirement of WHIRLY1 for embryogenesis is dependent on genetic background in maize. PLoS One 2013; 8:e67369. [PMID: 23840682 PMCID: PMC3696099 DOI: 10.1371/journal.pone.0067369] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 05/16/2013] [Indexed: 11/19/2022] Open
Abstract
Plastid gene expression is essential to embryogenesis in higher plants, but the underlying mechanism is obscure. Through molecular characterization of an embryo defective 16 (emb16) locus, here we report that the requirement of plastid translation for embryogenesis is dependent on the genetic background in maize (Zea mays). The emb16 mutation arrests embryogenesis at transition stage and allows the endosperm to develop largely normally. Molecular cloning reveals that Emb16 encodes WHIRLY1 (WHY1), a DNA/RNA binding protein that is required for genome stability and ribosome formation in plastids. Interestingly, the previous why1 mutant alleles (why1-1 and why1-2) do not affect embryogenesis, only conditions albino seedlings. The emb16 allele of why1 mutation is in the W22 genetic background. Crosses between emb16 and why1-1 heterozygotes resulted in both defective embryos and albino seedlings in the F1 progeny. Introgression of the emb16 allele from W22 into A188, B73, Mo17, Oh51a and the why1-1 genetic backgrounds yielded both defective embryos and albino seedlings. Similar results were obtained with two other emb mutants (emb12 and emb14) that are impaired in plastid protein translation process. These results indicate that the requirement of plastid translation for embryogenesis is dependent on genetic backgrounds, implying a mechanism of embryo lethality suppression in maize.
Collapse
Affiliation(s)
- Ya-Feng Zhang
- Institute of Plant Molecular Biology and Agricultural Biotechnology, State Key Lab of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Ming-Ming Hou
- Institute of Plant Molecular Biology and Agricultural Biotechnology, State Key Lab of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Bao-Cai Tan
- Institute of Plant Molecular Biology and Agricultural Biotechnology, State Key Lab of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| |
Collapse
|
152
|
Shen Y, Li C, McCarty DR, Meeley R, Tan BC. Embryo defective12 encodes the plastid initiation factor 3 and is essential for embryogenesis in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:792-804. [PMID: 23451851 DOI: 10.1111/tpj.12161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 05/09/2023]
Abstract
Embryo-specific mutants in maize define a unique class of genetic loci that affect embryogenesis without a significant deleterious impact on endosperm development. Here we report the characterization of an embryo specific12 (emb12) mutant in maize. Embryogenesis in the emb12 mutants is arrested at or before transition stage. The mutant embryo at an early stage exhibits abnormal cell structure with increased vacuoles and dramatically reduced internal membrane organelles. In contrast, the mutant endosperm appears normal in morphology, cell structure, starch, lipid and protein accumulation. The Emb12 locus was cloned by transposon tagging and predicts a protein with a high similarity to prokaryotic translation initiation factor 3 (IF3). EMB12-GFP fusion analysis indicates that EMB12 is localized in plastids. The RNA in situ hybridization and protein immunohistochemical analyses indicate that a high level of Emb12 expression localizes in the embryo proper at early developmental stages and in the embryo axis at later stages. Western analysis indicates that plastid protein synthesis is impaired. These results indicate that Emb12 encodes the plastid IF3 which is essential for embryogenesis but not for endosperm development in maize.
Collapse
Affiliation(s)
- Yun Shen
- State Key Lab of Agrobiotechnology, Institute of Plant Molecular Biology and Agrobiotechnology, School of Life Science, The Chinese University of Hong Kong, N.T. Hong Kong, China
| | | | | | | | | |
Collapse
|
153
|
Kim J, Olinares PD, Oh SH, Ghisaura S, Poliakov A, Ponnala L, van Wijk KJ. Modified Clp protease complex in the ClpP3 null mutant and consequences for chloroplast development and function in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:157-79. [PMID: 23548781 PMCID: PMC3641200 DOI: 10.1104/pp.113.215699] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/27/2013] [Indexed: 05/18/2023]
Abstract
The plastid ClpPRT protease consists of two heptameric rings of ClpP1/ClpR1/ClpR2/ClpR3/ClpR4 (the R-ring) and ClpP3/ClpP4/ClpP5/ClpP6 (the P-ring) and peripherally associated ClpT1/ClpT2 subunits. Here, we address the contributions of ClpP3 and ClpP4 to ClpPRT core organization and function in Arabidopsis (Arabidopsis thaliana). ClpP4 is strictly required for embryogenesis, similar to ClpP5. In contrast, loss of ClpP3 (clpp3-1) leads to arrest at the hypocotyl stage; this developmental arrest can be removed by supplementation with sucrose or glucose. Heterotrophically grown clpp3-1 can be transferred to soil and generate viable seed, which is surprising, since we previously showed that CLPR2 and CLPR4 null alleles are always sterile and die on soil. Based on native gels and mass spectrometry-based quantification, we show that despite the loss of ClpP3, modified ClpPR core(s) could be formed, albeit at strongly reduced levels. A large portion of ClpPR subunits accumulated in heptameric rings, with overaccumulation of ClpP1/ClpP5/ClpP6 and ClpR3. Remarkably, the association of ClpT1 to the modified Clp core was unchanged. Large-scale quantitative proteomics assays of clpp3-1 showed a 50% loss of photosynthetic capacity and the up-regulation of plastoglobules and all chloroplast stromal chaperone systems. Specific chloroplast proteases were significantly up-regulated, whereas the major thylakoid protease (FtsH1/FtsH2/FtsH5/FtsH8) was clearly unchanged, indicating a controlled protease network response. clpp3-1 showed a systematic decrease of chloroplast-encoded proteins that are part of the photosynthetic apparatus but not of chloroplast-encoded proteins with other functions. Candidate substrates and an explanation for the differential phenotypes between the CLPP3, CLPP4, and CLPP5 null mutants are discussed.
Collapse
|
154
|
Sugita M, Ichinose M, Ide M, Sugita C. Architecture of the PPR gene family in the moss Physcomitrella patens. RNA Biol 2013; 10:1439-45. [PMID: 23645116 PMCID: PMC3858427 DOI: 10.4161/rna.24772] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are widespread in eukaryotes and in particular, include several hundred members in land plants. The majority of PPR proteins are localized in mitochondria and plastids, where they play a crucial role in various aspects of RNA metabolism at the post-transcriptional level in gene expression. However, many of their functions remain to be characterized. In contrast to vascular plants, the moss Physcomitrella patens has only 105 PPR genes. This number may represent a minimum set of PPR proteins required for post-transcriptional regulation in plant organelles. Here, we review the overall structure of the P. patens PPR gene family and the current status of the functional characterization of moss PPR proteins.
Collapse
Affiliation(s)
- Mamoru Sugita
- Center for Gene Research; Nagoya University; Chikusa-ku; Nagoya, Japan
| | - Mizuho Ichinose
- Center for Gene Research; Nagoya University; Chikusa-ku; Nagoya, Japan
| | - Mizuki Ide
- Center for Gene Research; Nagoya University; Chikusa-ku; Nagoya, Japan
| | - Chieko Sugita
- Center for Gene Research; Nagoya University; Chikusa-ku; Nagoya, Japan
| |
Collapse
|
155
|
Rousseau-Gueutin M, Huang X, Higginson E, Ayliffe M, Day A, Timmis JN. Potential functional replacement of the plastidic acetyl-CoA carboxylase subunit (accD) gene by recent transfers to the nucleus in some angiosperm lineages. PLANT PHYSIOLOGY 2013; 161:1918-29. [PMID: 23435694 PMCID: PMC3613465 DOI: 10.1104/pp.113.214528] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Eukaryotic cells originated when an ancestor of the nucleated cell engulfed bacterial endosymbionts that gradually evolved into the mitochondrion and the chloroplast. Soon after these endosymbiotic events, thousands of ancestral prokaryotic genes were functionally transferred from the endosymbionts to the nucleus. This process of functional gene relocation, now rare in eukaryotes, continues in angiosperms. In this article, we show that the chloroplastic acetyl-CoA carboxylase subunit (accD) gene that is present in the plastome of most angiosperms has been functionally relocated to the nucleus in the Campanulaceae. Surprisingly, the nucleus-encoded accD transcript is considerably smaller than the plastidic version, consisting of little more than the carboxylase domain of the plastidic accD gene fused to a coding region encoding a plastid targeting peptide. We verified experimentally the presence of a chloroplastic transit peptide by showing that the product of the nuclear accD fused to green fluorescent protein was imported in the chloroplasts. The nuclear gene regulatory elements that enabled the erstwhile plastidic gene to become functional in the nuclear genome were identified, and the evolution of the intronic and exonic sequences in the nucleus is described. Relocation and truncation of the accD gene is a remarkable example of the processes underpinning endosymbiotic evolution.
Collapse
Affiliation(s)
- Mathieu Rousseau-Gueutin
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | | | | | | | | | |
Collapse
|
156
|
Germain A, Hotto AM, Barkan A, Stern DB. RNA processing and decay in plastids. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:295-316. [PMID: 23536311 DOI: 10.1002/wrna.1161] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plastids were derived through endosymbiosis from a cyanobacterial ancestor, whose uptake was followed by massive gene transfer to the nucleus, resulting in the compact size and modest coding capacity of the extant plastid genome. Plastid gene expression is essential for plant development, but depends on nucleus-encoded proteins recruited from cyanobacterial or host-cell origins. The plastid genome is heavily transcribed from numerous promoters, giving posttranscriptional events a critical role in determining the quantity and sizes of accumulating RNA species. The major events reviewed here are RNA editing, which restores protein conservation or creates correct open reading frames by converting C residues to U, RNA splicing, which occurs both in cis and trans, and RNA cleavage, which relies on a variety of exoribonucleases and endoribonucleases. Because the RNases have little sequence specificity, they are collectively able to remove extraneous RNAs whose ends are not protected by RNA secondary structures or sequence-specific RNA-binding proteins (RBPs). Other plastid RBPs, largely members of the helical-repeat superfamily, confer specificity to editing and splicing reactions. The enzymes that catalyze RNA processing are also the main actors in RNA decay, implying that these antagonistic roles are optimally balanced. We place the actions of RBPs and RNases in the context of a recent proteomic analysis that identifies components of the plastid nucleoid, a protein-DNA complex with multiple roles in gene expression. These results suggest that sublocalization and/or concentration gradients of plastid proteins could underpin the regulation of RNA maturation and degradation.
Collapse
|
157
|
Frémont N, Riefler M, Stolz A, Schmülling T. The Arabidopsis TUMOR PRONE5 gene encodes an acetylornithine aminotransferase required for arginine biosynthesis and root meristem maintenance in blue light. PLANT PHYSIOLOGY 2013; 161:1127-40. [PMID: 23321422 PMCID: PMC3585585 DOI: 10.1104/pp.112.210583] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Arginine is an essential amino acid necessary for protein synthesis and is also a nitrogen storage compound. The genes encoding the enzymes of arginine biosynthesis in plants are not well characterized and have mainly been predicted from homologies to bacterial and fungal genes. We report the cloning and characterization of the TUMOR PRONE5 (TUP5) gene of Arabidopsis (Arabidopsis thaliana) encoding an acetylornithine aminotransferase (ACOAT), catalyzing the fourth step of arginine biosynthesis. The free arginine content was strongly reduced in the chemically induced recessive mutant tup5-1, root growth was restored by supplementation with arginine and its metabolic precursors, and a yeast (Saccharomyces cerevisiae) ACOAT mutant was complemented by TUP5. Two null alleles of TUP5 caused a reduced viability of gametes and embryo lethality, possibly caused by insufficient Arg supply from maternal tissue. TUP5 expression is positively regulated by light, and a TUP5-green fluorescent protein was localized in chloroplasts. tup5-1 has a unique light-dependent short root phenotype. Roots of light-grown tup5-1 seedlings switch from indeterminate growth to determinate growth with arresting cell production and an exhausted root apical meristem. The inhibitory activity was specific for blue light, and the inhibiting light was perceived by the root. Thus, tup5-1 reveals a novel role of amino acids and blue light in regulating root meristem function.
Collapse
|
158
|
Myouga F, Akiyama K, Tomonaga Y, Kato A, Sato Y, Kobayashi M, Nagata N, Sakurai T, Shinozaki K. The Chloroplast Function Database II: a comprehensive collection of homozygous mutants and their phenotypic/genotypic traits for nuclear-encoded chloroplast proteins. PLANT & CELL PHYSIOLOGY 2013; 54:e2. [PMID: 23230006 DOI: 10.1093/pcp/pcs171] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The Chloroplast Function Database has so far offered phenotype information on mutants of the nuclear-encoded chloroplast proteins in Arabidopsis that pertains to >200 phenotypic data sets that were obtained from 1,722 transposon- or T-DNA-tagged lines. Here, we present the development of the second version of the database, which is named the Chloroplast Function Database II and was redesigned to increase the number of mutant characters and new user-friendly tools for data mining and integration. The upgraded database offers information on genome-wide mutant screens for any visible phenotype against 2,495 tagged lines to create a comprehensive homozygous mutant collection. The collection consists of 147 lines with seedling phenotypes and 185 lines for which we could not obtain homozygotes, as well as 1,740 homozygotes with wild-type phenotypes. Besides providing basic information about primer lists that were used for the PCR genotyping of T-DNA-tagged lines and explanations about the preparation of homozygous mutants and phenotype screening, the database includes access to a link between the gene locus and existing publicly available databases. This gives users access to a combined pool of data, enabling them to gain valuable insights into biological processes. In addition, high-resolution images of plastid morphologies of mutants with seedling-specific chloroplast defects as observed with transmission electron microscopy (TEM) are available in the current database. This database is used to compare the phenotypes of visually identifiable mutants with their plastid ultrastructures and to evaluate their potential significance from characteristic patterns of plastid morphology in vivo. Thus, the Chloroplast Function Database II is a useful and comprehensive information resource that can help researchers to connect individual Arabidopsis genes to plastid functions on the basis of phenotype analysis of our tagged mutant collection. It can be freely accessed at http://rarge.psc.riken.jp/chloroplast/.
Collapse
|
159
|
Ramanan R, Kim BH, Cho DH, Ko SR, Oh HM, Kim HS. Lipid droplet synthesis is limited by acetate availability in starchless mutant of Chlamydomonas reinhardtii. FEBS Lett 2013; 587:370-7. [PMID: 23313852 DOI: 10.1016/j.febslet.2012.12.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/17/2012] [Accepted: 12/17/2012] [Indexed: 11/29/2022]
Abstract
Phenotypic and genotypic changes in Chlamydomonas reinhardtii BafJ5, a starchless mutant, with respect to lipid metabolism was studied in different trophic states under nitrogen (N) sufficient and limited conditions. Interestingly, cellular lipid content increased linearly with input acetate concentration with highest lipid content (∼42%) under nitrogen limitation and mixotrophic state. RT-qPCR studies indicate that key fatty acid biosynthesis genes are down-regulated under N limitation but not under mixotrophic state, whereas, ACS2, encoding Acetyl-CoA synthetase, and DGTT4, encoding Diacylglycerol O-acyltransferase, are up-regulated under all conditions. These results collectively indicate that acetate is the limiting factor and central molecule in lipid droplet synthesis. The study also provides further evidence of the presence of a chloroplast pathway for triacylglycerol synthesis in microalgae.
Collapse
Affiliation(s)
- Rishiram Ramanan
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | |
Collapse
|
160
|
Ramundo S, Rahire M, Schaad O, Rochaix JD. Repression of essential chloroplast genes reveals new signaling pathways and regulatory feedback loops in chlamydomonas. THE PLANT CELL 2013; 25:167-86. [PMID: 23292734 PMCID: PMC3584532 DOI: 10.1105/tpc.112.103051] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/12/2012] [Accepted: 12/11/2012] [Indexed: 05/18/2023]
Abstract
Although reverse genetics has been used to elucidate the function of numerous chloroplast proteins, the characterization of essential plastid genes and their role in chloroplast biogenesis and cell survival has not yet been achieved. Therefore, we developed a robust repressible chloroplast gene expression system in the unicellular alga Chlamydomonas reinhardtii based mainly on a vitamin-repressible riboswitch, and we used this system to study the role of two essential chloroplast genes: ribosomal protein S12 (rps12), encoding a plastid ribosomal protein, and rpoA, encoding the α-subunit of chloroplast bacterial-like RNA polymerase. Repression of either of these two genes leads to the arrest of cell growth, and it induces a response that involves changes in expression of nuclear genes implicated in chloroplast biogenesis, protein turnover, and stress. This response also leads to the overaccumulation of several plastid transcripts and reveals the existence of multiple negative regulatory feedback loops in the chloroplast gene circuitry.
Collapse
Affiliation(s)
- Silvia Ramundo
- Department of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Michèle Rahire
- Department of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Olivier Schaad
- Genomics Departments Platform, National Center of Competence in Research Frontiers in Genetics and Department of Biochemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jean-David Rochaix
- Department of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
161
|
Romani I, Tadini L, Rossi F, Masiero S, Pribil M, Jahns P, Kater M, Leister D, Pesaresi P. Versatile roles of Arabidopsis plastid ribosomal proteins in plant growth and development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:922-34. [PMID: 22900828 DOI: 10.1111/tpj.12000] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A lack of individual plastid ribosomal proteins (PRPs) can have diverse phenotypic effects in Arabidopsis thaliana, ranging from embryo lethality to compromised vitality, with the latter being associated with photosynthetic lesions and decreases in the expression of plastid proteins. In this study, reverse genetics was employed to study the function of eight PRPs, five of which (PRPS1, -S20, -L27, -L28 and -L35) have not been functionally characterised before. In the case of PRPS17, only leaky alleles or RNA interference lines had been analysed previously. PRPL1 and PRPL4 have been described as essential for embryo development, but their mutant phenotypes are analysed in detail here. We found that PRPS20, -L1, -L4, -L27 and -L35 are required for basal ribosome activity, which becomes crucial at the globular stage and during the transition from the globular to the heart stage of embryogenesis. Thus, lack of any of these PRPs leads to alterations in cell division patterns, and embryo development ceases prior to the heart stage. PRPL28 is essential at the latest stages of embryo-seedling development, during the greening process. PRPS1, -S17 and -L24 appear not to be required for basal ribosome activity and the organism can complete its entire life cycle in their absence. Interestingly, despite the prokaryotic origin of plastids, the significance of individual PRPs for plant development cannot be predicted from the relative phenotypic severity of the corresponding mutants in prokaryotic systems.
Collapse
Affiliation(s)
- Isidora Romani
- Dipartimento di Bioscienze, Università degli studi di Milano, I-20133 Milano, ItalyLehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, GermanyPlant Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Kadirjan-Kalbach DK, Yoder DW, Ruckle ME, Larkin RM, Osteryoung KW. FtsHi1/ARC1 is an essential gene in Arabidopsis that links chloroplast biogenesis and division. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:856-67. [PMID: 22900897 DOI: 10.1111/tpj.12001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Arabidopsis arc1 (accumulation and replication of chloroplasts 1) mutant has pale seedlings and smaller, more numerous chloroplasts than the wild type. Previous work has suggested that arc1 affects the timing of chloroplast division but does not function directly in the division process. We isolated ARC1 by map-based cloning and discovered it encodes FtsHi1 (At4g23940), one of several FtsHi proteins in Arabidopsis. These poorly studied proteins resemble FtsH metalloproteases important for organelle biogenesis and protein quality control but are presumed to be proteolytically inactive. FtsHi1 bears a predicted chloroplast transit peptide and localizes to the chloroplast envelope membrane. Phenotypic studies showed that arc1 (hereafter ftsHi1-1), which bears a missense mutation, is a weak allele of FtsHi1 that disrupts thylakoid development and reduces de-etiolation efficiency in seedlings, suggesting that FtsHi1 is important for chloroplast biogenesis. Consistent with this finding, transgenic plants suppressed for accumulation of an FtsHi1 fusion protein were often variegated. A strong T-DNA insertion allele, ftsHi1-2, caused embryo-lethality, indicating that FtsHi1 is an essential gene product. A wild-type FtsHi1 transgene rescued both the chloroplast division and pale phenotypes of ftsHi1-1 and the embryo-lethal phenotype of ftsHi1-2. FtsHi1 overexpression produced a subtle increase in chloroplast size and decrease in chloroplast number in wild-type plants while suppression led to increased numbers of small chloroplasts, providing new evidence that FtsHi1 negatively influences chloroplast division. Taken together, our analyses reveal that FtsHi1 functions in an essential, envelope-associated process that may couple plastid development with division.
Collapse
Affiliation(s)
- Deena K Kadirjan-Kalbach
- Department of Plant Biology, 612 Wilson Road, Room 339, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
163
|
Germain A, Kim SH, Gutierrez R, Stern DB. Ribonuclease II preserves chloroplast RNA homeostasis by increasing mRNA decay rates, and cooperates with polynucleotide phosphorylase in 3' end maturation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:960-971. [PMID: 23061883 DOI: 10.1111/tpj.12006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ribonuclease R (RNR1) and polynucleotide phosphorylase (cpPNPase) are the two known 3'→5' exoribonucleases in Arabidopsis chloroplasts, and are involved in several aspects of rRNA and mRNA metabolism. In this work, we show that mutants lacking both RNR1 and cpPNPase exhibit embryo lethality, akin to the non-viability of the analogous double mutant in Escherichia coli. We were successful, however, in combining an rnr1 null mutation with weak pnp mutant alleles, and show that the resulting chlorotic plants display a global reduction in RNA abundance. Such a counterintuitive outcome following the loss of RNA degradation activity suggests a major importance of RNA maturation as a determinant of RNA stability. Detailed analysis of the double mutant demonstrates that the enzymes catalyze a two-step maturation of mRNA 3' ends, with RNR1 polishing 3' termini created by cpPNPase. The bulky quaternary structure of cpPNPase compared with RNR1 could explain this activity split between the two enzymes. In contrast to the double mutants, the rnr1 single mutant overaccumulates most mRNA species when compared with the wild type. The excess mRNAs in rnr1 are often present in non-polysomal fractions, and half-life measurements demonstrate a substantial increase in the stability of most mRNA species tested. Together, our data reveal the cooperative activity of two 3'→5' exoribonucleases in chloroplast mRNA 3' end maturation, and support the hypothesis that RNR1 plays a significant role in the destabilization of mRNAs unprotected by ribosomes.
Collapse
Affiliation(s)
- Arnaud Germain
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
164
|
Iñigo S, Giraldez AN, Chory J, Cerdán PD. Proteasome-mediated turnover of Arabidopsis MED25 is coupled to the activation of FLOWERING LOCUS T transcription. PLANT PHYSIOLOGY 2012; 160:1662-73. [PMID: 22992513 PMCID: PMC3490578 DOI: 10.1104/pp.112.205500] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 09/17/2012] [Indexed: 05/19/2023]
Abstract
The Mediator complex is a greater than 1-megadalton complex, composed of about 30 subunits and found in most eukaryotes, whose main role is to transmit signals from DNA-bound transcription factors to RNA Polymerase II. The proteasome is emerging as an important regulator of transcription during both initiation and elongation. It is increasing the number of cases where the proteolysis of transcriptional activators by the proteasome activates their function. This counterintuitive phenomenon was called "activation by destruction." Here, we show that, in Arabidopsis (Arabidopsis thaliana), PHYTOCHROME AND FLOWERING TIME1 (PFT1), the MEDIATOR25 (MED25) subunit of the plant Mediator complex, is degraded by the proteasome and that proteasome-mediated PFT1 turnover is coupled to its role in stimulating the transcription of FLOWERING LOCUS T, the plant florigen, which is involved in the process of flowering induction. We further identify two novel RING-H2 proteins that target PFT1 for degradation. We show that MED25-BINDING RING-H2 PROTEIN1 (MBR1) and MBR2 bind to PFT1 in yeast (Saccharomyces cerevisiae) and in vitro, and they promote PFT1 degradation in vivo, in a RING-H2-dependent way, typical of E3 ubiquitin ligases. We further show that both MBR1 and MBR2 also promote flowering by PFT1-dependent and -independent mechanisms. Our findings extend the phenomenon of activation by destruction to a Mediator subunit, adding a new mechanism by which Mediator subunits may regulate downstream genes in specific pathways. Furthermore, we show that two novel RING-H2 proteins are involved in the destruction of PFT1, adding new players to this process in plants.
Collapse
|
165
|
Sosso D, Canut M, Gendrot G, Dedieu A, Chambrier P, Barkan A, Consonni G, M. Rogowsky P. PPR8522 encodes a chloroplast-targeted pentatricopeptide repeat protein necessary for maize embryogenesis and vegetative development. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5843-57. [PMID: 22945943 PMCID: PMC3467297 DOI: 10.1093/jxb/ers232] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The pentatricopeptide repeat (PPR) domain is an RNA binding domain allowing members of the PPR superfamily to participate in post-transcriptional processing of organellar RNA. Loss of PPR8522 from maize (Zea mays) confers an embryo-specific (emb) phenotype. The emb8522 mutation was isolated in an active Mutator (Mu) population and co-segregation analysis revealed that it was tightly linked to a MuDR insertion in the first exon of PPR8522. Independent evidence that disruption of PPR8522 caused the emb phenotype was provided by fine mapping to a region of 116kb containing no other gene than PPR8522 and complementation of the emb8522 mutant by a PPR8522 cDNA. The deduced PPR8522 amino acid sequence of 832 amino acids contains 10 PPR repeats and a chloroplast target peptide, the function of which was experimentally demonstrated by transient expression in Nicotiana benthamiana. Whereas mutant endosperm is apparently normal, mutant embryos deviate from normal development as early as 3 days after pollination, are reduced in size, exhibit more or less severe morphological aberrations depending on the genetic background, and generally do not germinate. The emb8522 mutation is the first to associate the loss of a PPR gene with an embryo-lethal phenotype in maize. Analyses of mutant plantlets generated by embryo-rescue experiments indicate that emb8522 also affects vegetative plant growth and chloroplast development. The loss of chloroplast transcription dependent on plastid-encoded RNA polymerase is the likely cause for the lack of an organized thylakoid network and an albino, seedling-lethal phenotype.
Collapse
Affiliation(s)
- Davide Sosso
- Université de Lyon, Ecole Normale Supérieure de Lyon,
Université Lyon 1, Unité Reproduction et Développement des
Plantes,F-69364 Lyon,France
- INRA, UMR879 Reproduction et Développement des Plantes,F-69364 Lyon,France
- CNRS, UMR5667 Reproduction et Développement des Plantes,F-69364 Lyon,France
- Dipartimento di Produzione Vegetale, Università degli Studi di
Milano,20133 Milan,Italy
| | - Matthieu Canut
- Université de Lyon, Ecole Normale Supérieure de Lyon,
Université Lyon 1, Unité Reproduction et Développement des
Plantes,F-69364 Lyon,France
- INRA, UMR879 Reproduction et Développement des Plantes,F-69364 Lyon,France
- CNRS, UMR5667 Reproduction et Développement des Plantes,F-69364 Lyon,France
| | - Ghislaine Gendrot
- Université de Lyon, Ecole Normale Supérieure de Lyon,
Université Lyon 1, Unité Reproduction et Développement des
Plantes,F-69364 Lyon,France
- INRA, UMR879 Reproduction et Développement des Plantes,F-69364 Lyon,France
- CNRS, UMR5667 Reproduction et Développement des Plantes,F-69364 Lyon,France
| | - Annick Dedieu
- Université de Lyon, Ecole Normale Supérieure de Lyon,
Université Lyon 1, Unité Reproduction et Développement des
Plantes,F-69364 Lyon,France
- INRA, UMR879 Reproduction et Développement des Plantes,F-69364 Lyon,France
- CNRS, UMR5667 Reproduction et Développement des Plantes,F-69364 Lyon,France
| | - Pierre Chambrier
- Université de Lyon, Ecole Normale Supérieure de Lyon,
Université Lyon 1, Unité Reproduction et Développement des
Plantes,F-69364 Lyon,France
- INRA, UMR879 Reproduction et Développement des Plantes,F-69364 Lyon,France
- CNRS, UMR5667 Reproduction et Développement des Plantes,F-69364 Lyon,France
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, EugeneOR 97403,USA
| | - Gabriella Consonni
- Dipartimento di Produzione Vegetale, Università degli Studi di
Milano,20133 Milan,Italy
| | - Peter M. Rogowsky
- Université de Lyon, Ecole Normale Supérieure de Lyon,
Université Lyon 1, Unité Reproduction et Développement des
Plantes,F-69364 Lyon,France
- INRA, UMR879 Reproduction et Développement des Plantes,F-69364 Lyon,France
- CNRS, UMR5667 Reproduction et Développement des Plantes,F-69364 Lyon,France
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
166
|
Phylogenetic genomewide comparisons of the pentatricopeptide repeat gene family in indica and japonica rice. Biochem Genet 2012; 50:978-89. [PMID: 22983666 DOI: 10.1007/s10528-012-9537-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 06/26/2012] [Indexed: 10/27/2022]
Abstract
More than 400 pentatricopeptide repeat (PPR) genes have been found in higher plants, but most of them have not been functionally analyzed and their origins are still obscure. In this study, we performed phylogenetic genomewide comparisons of the PPR gene family in indica and japonica rice to explore the expansion mechanisms of these genes in higher plants. The functions of PPR genes in plant CMS/Rf systems are also discussed. The results indicate that (1) unequal crossing over participated in the expansion of the newly evolved PPR genes in indica and japonica rice genomes, (2) CMS/Rf systems are different in monocots and dicots, (3) the BT-type CMS/Rf system exists in both indica and japonica rice, and (4) both the PPR gene family and the BT-type CMS/Rf system may have existed before the divergence of indica and japonica rice.
Collapse
|
167
|
Khrouchtchova A, Monde RA, Barkan A. A short PPR protein required for the splicing of specific group II introns in angiosperm chloroplasts. RNA (NEW YORK, N.Y.) 2012; 18:1197-209. [PMID: 22495966 PMCID: PMC3358642 DOI: 10.1261/rna.032623.112] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A maize gene designated thylakoid assembly 8 (tha8) emerged from a screen for nuclear mutations that cause defects in the biogenesis of chloroplast thylakoid membranes. The tha8 gene encodes an unusual member of the pentatricopeptide repeat (PPR) family, a family of helical repeat proteins that participate in various aspects of organellar RNA metabolism. THA8 localizes to chloroplasts, where it associates specifically with the ycf3-2 and trnA group II introns. The splicing of ycf3-2 is eliminated in tha8 mutants, and trnA splicing is strongly compromised. Reverse-genetic analysis of the tha8 ortholog in Arabidopsis thaliana showed that these molecular functions are conserved, although null alleles are embryo lethal in Arabidopsis and seedling lethal in maize. Whereas most PPR proteins have more than 10 PPR motifs, THA8 belongs to a subfamily of plant PPR proteins with only four PPR motifs and little else. THA8 is the first member of this subfamily with a defined molecular function, and illustrates that even small PPR proteins have the potential to mediate specific intermolecular interactions in vivo.
Collapse
Affiliation(s)
| | - Rita-Ann Monde
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
- Corresponding author.E-mail .
| |
Collapse
|
168
|
Tang W, Wang W, Chen D, Ji Q, Jing Y, Wang H, Lin R. Transposase-derived proteins FHY3/FAR1 interact with PHYTOCHROME-INTERACTING FACTOR1 to regulate chlorophyll biosynthesis by modulating HEMB1 during deetiolation in Arabidopsis. THE PLANT CELL 2012; 24:1984-2000. [PMID: 22634759 PMCID: PMC3442582 DOI: 10.1105/tpc.112.097022] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/30/2012] [Accepted: 05/10/2012] [Indexed: 05/18/2023]
Abstract
Successful chlorophyll biosynthesis during initial light exposure is critical for plant survival and growth, as excess accumulation of chlorophyll precursors in darkness can cause photooxidative damage to cells. Therefore, efficient mechanisms have evolved to precisely regulate chlorophyll biosynthesis in plants. Here, we identify FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and FAR-RED IMPAIRED RESPONSE1 (FAR1), two transposase-derived transcription factors, as positive regulators of chlorophyll biosynthesis in Arabidopsis thaliana. We show that null mutations in FHY3 and FAR1 cause reduced protochlorophyllide (a precursor of chlorophyll) levels in darkness and less photobleaching in the light. We find that FHY3 directly binds to the promoter and activates expression of HEMB1, which encodes 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. We reveal that PHYTOCHROME-INTERACTING FACTOR1 physically interacts with the DNA binding domain of FHY3, thereby partly repressing FHY3/FAR1-activated HEMB1 expression. Strikingly, FHY3 expression is upregulated by white light. In addition, our genetic data indicate that overexpression, severe reduction, or lack of HEMB1 impairs plant growth and development. Together, our findings reveal a crucial role of FHY3/FAR1 in regulating chlorophyll biosynthesis, thus uncovering a new layer of regulation by which light promotes plant dark-light transition in early seedling development.
Collapse
Affiliation(s)
- Weijiang Tang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wanqing Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dongqin Chen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qiang Ji
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Haiyang Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Address correspondence to
| |
Collapse
|
169
|
Yin T, Pan G, Liu H, Wu J, Li Y, Zhao Z, Fu T, Zhou Y. The chloroplast ribosomal protein L21 gene is essential for plastid development and embryogenesis in Arabidopsis. PLANTA 2012; 235:907-21. [PMID: 22105802 DOI: 10.1007/s00425-011-1547-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/31/2011] [Indexed: 05/22/2023]
Abstract
Embryogenesis in higher plants is controlled by a complex gene network. Identification and characterization of genes essential for embryogenesis will provide insights into the early events in embryo development. In this study, a novel mutant with aborted seed development (asd) was identified in Arabidopsis. The asd mutant produced about 25% of albino seeds at the early stage of silique development. The segregation of normal and albino seeds was inherited as a single recessive embryo-lethal trait. The gene disrupted in the asd mutant was isolated through map-based cloning. The mutated gene contains a single base change (A to C) in the coding region of RPL21C (At1g35680) that is predicted to encode the chloroplast 50S ribosomal protein L21. Allele test with other two T-DNA insertion lines in RPL21C and a complementation test demonstrated that the mutation in RPL21C was responsible for the asd phenotype. RPL21C exhibits higher expression in leaves and flowers compared with expression levels in roots and developing seeds. The RPL21C-GFP fusion protein was localized in chloroplasts. Cytological observations showed that the asd embryo development was arrested at the globular stage. There were no plastids with normal thylakoids and as a result no normal chloroplasts formed in mutant cells, indicating an indispensable role of the ASD gene in chloroplasts biogenesis. Our studies suggest that the chloroplast ribosomal protein L21 gene is required for chloroplast development and embryogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Tuanzhang Yin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Law SR, Narsai R, Taylor NL, Delannoy E, Carrie C, Giraud E, Millar AH, Small I, Whelan J. Nucleotide and RNA metabolism prime translational initiation in the earliest events of mitochondrial biogenesis during Arabidopsis germination. PLANT PHYSIOLOGY 2012; 158:1610-27. [PMID: 22345507 PMCID: PMC3320173 DOI: 10.1104/pp.111.192351] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 02/13/2012] [Indexed: 05/18/2023]
Abstract
Mitochondria play a crucial role in germination and early seedling growth in Arabidopsis (Arabidopsis thaliana). Morphological observations of mitochondria revealed that mitochondrial numbers, typical size, and oval morphology were evident after 12 h of imbibition in continuous light (following 48 h of stratification). The transition from a dormant to an active metabolic state was punctuated by an early molecular switch, characterized by a transient burst in the expression of genes encoding mitochondrial proteins. Factors involved in mitochondrial transcription and RNA processing were overrepresented among these early-expressed genes. This was closely followed by an increase in the transcript abundance of genes encoding proteins involved in mitochondrial DNA replication and translation. This burst in the expression of factors implicated in mitochondrial RNA and DNA metabolism was accompanied by an increase in transcripts encoding components required for nucleotide biosynthesis in the cytosol and increases in transcript abundance of specific members of the mitochondrial carrier protein family that have previously been associated with nucleotide transport into mitochondria. Only after these genes peaked in expression and largely declined were typical mitochondrial numbers and morphology observed. Subsequently, there was an increase in transcript abundance for various bioenergetic and metabolic functions of mitochondria. The coordination of nucleus- and organelle-encoded gene expression was also examined by quantitative reverse transcription-polymerase chain reaction, specifically for components of the mitochondrial electron transport chain and the chloroplastic photosynthetic machinery. Analysis of protein abundance using western-blot analysis and mass spectrometry revealed that for many proteins, patterns of protein and transcript abundance changes displayed significant positive correlations. A model for mitochondrial biogenesis during germination is proposed, in which an early increase in the abundance of transcripts encoding biogenesis functions (RNA metabolism and import components) precedes a later cascade of gene expression encoding the bioenergetic and metabolic functions of mitochondria.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology (S.R.L., R.N., N.L.T., E.D., C.C., E.G., A.H.M., I.S., J.W.), Centre for Computational Systems Biology (R.N., I.S.), and Centre for Comparative Analysis of Biomolecular Networks (N.L.T., A.H.M.), University of Western Australia, Crawley 6009, Western Australia, Australia
| |
Collapse
|
171
|
Lloyd J, Meinke D. A comprehensive dataset of genes with a loss-of-function mutant phenotype in Arabidopsis. PLANT PHYSIOLOGY 2012; 158:1115-29. [PMID: 22247268 PMCID: PMC3291275 DOI: 10.1104/pp.111.192393] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/12/2012] [Indexed: 05/18/2023]
Abstract
Despite the widespread use of Arabidopsis (Arabidopsis thaliana) as a model plant, a curated dataset of Arabidopsis genes with mutant phenotypes remains to be established. A preliminary list published nine years ago in Plant Physiology is outdated, and genome-wide phenotype information remains difficult to obtain. We describe here a comprehensive dataset of 2,400 genes with a loss-of-function mutant phenotype in Arabidopsis. Phenotype descriptions were gathered primarily from manual curation of the scientific literature. Genes were placed into prioritized groups (essential, morphological, cellular-biochemical, and conditional) based on the documented phenotypes of putative knockout alleles. Phenotype classes (e.g. vegetative, reproductive, and timing, for the morphological group) and subsets (e.g. flowering time, senescence, circadian rhythms, and miscellaneous, for the timing class) were also established. Gene identities were classified as confirmed (through molecular complementation or multiple alleles) or not confirmed. Relationships between mutant phenotype and protein function, genetic redundancy, protein connectivity, and subcellular protein localization were explored. A complementary dataset of 401 genes that exhibit a mutant phenotype only when disrupted in combination with a putative paralog was also compiled. The importance of these genes in confirming functional redundancy and enhancing the value of single gene datasets is discussed. With further input and curation from the Arabidopsis community, these datasets should help to address a variety of important biological questions, provide a foundation for exploring the relationship between genotype and phenotype in angiosperms, enhance the utility of Arabidopsis as a reference plant, and facilitate comparative studies with model genetic organisms.
Collapse
|
172
|
Pudelski B, Schock A, Hoth S, Radchuk R, Weber H, Hofmann J, Sonnewald U, Soll J, Philippar K. The plastid outer envelope protein OEP16 affects metabolic fluxes during ABA-controlled seed development and germination. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1919-36. [PMID: 22155670 PMCID: PMC3295387 DOI: 10.1093/jxb/err375] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/15/2011] [Accepted: 10/21/2011] [Indexed: 05/20/2023]
Abstract
Previously, the OEP16.1 channel pore in the outer envelope membrane of mature pea (Pisum sativum) chloroplasts in vitro has been characterized to be selective for amino acids. Isolation of OEP16.2, a second OEP16 isoform from pea, in the current study allowed membrane localization and gene expression of OEP16 to be followed throughout seed development and germination of Arabidopsis thaliana and P. sativum. Thereby it can be shown on the transcript and protein level that the isoforms OEP16.1 and OEP16.2 in both plant species are alternating: whereas OEP16.1 is prominent in early embryo development and first leaves of the growing plantlet, OEP16.2 dominates in late seed development stages, which are associated with dormancy and desiccation, as well as early germination events. Further, OEP16.2 expression in seeds is under control of the phytohormone abscisic acid (ABA), leading to an ABA-hypersensitive phenotype of germinating oep16 knockout mutants. In consequence, the loss of OEP16 causes metabolic imbalance, in particular that of amino acids during seed development and early germination. It is thus concluded that in vivo OEP16 most probably functions in shuttling amino acids across the outer envelope of seed plastids.
Collapse
Affiliation(s)
- Birgit Pudelski
- Biochemie und Physiologie der Pflanzen, Department Biologie I, Botanik, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
- Munich Centre for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität München, D-81377 München, Germany
| | - Annette Schock
- Biochemie und Physiologie der Pflanzen, Department Biologie I, Botanik, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
- Munich Centre for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität München, D-81377 München, Germany
| | - Stefan Hoth
- Molekulare Pflanzenphysiologie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
- Pflanzenphysiologie, Biozentrum Klein Flottbek, Universität Hamburg, Ohnhorststrabe 18, D-22609 Hamburg, Germany
| | - Ruslana Radchuk
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Hans Weber
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Jörg Hofmann
- Biochemie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Uwe Sonnewald
- Biochemie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Jürgen Soll
- Biochemie und Physiologie der Pflanzen, Department Biologie I, Botanik, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
- Munich Centre for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität München, D-81377 München, Germany
| | - Katrin Philippar
- Biochemie und Physiologie der Pflanzen, Department Biologie I, Botanik, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
- Munich Centre for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität München, D-81377 München, Germany
| |
Collapse
|
173
|
Burch-Smith TM, Zambryski PC. Plasmodesmata paradigm shift: regulation from without versus within. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:239-60. [PMID: 22136566 DOI: 10.1146/annurev-arplant-042811-105453] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant cells are surrounded by cellulosic cell walls, creating a potential challenge to resource sharing and information exchange between individual cells. To overcome this, plants have evolved channels called plasmodesmata that provide cytoplasmic continuity between each cell and its immediate neighbors. We first review plasmodesmata basics-their architecture, their origin, the types of cargo they transport, and their molecular components. The bulk of this review discusses the regulation of plasmodesmata formation and function. Historically, plasmodesmata research has focused intensely on uncovering regulatory or structural proteins that reside within or immediately adjacent to plasmodesmata. Recent findings, however, underscore that plasmodesmata are exquisitely sensitive to signals far removed from the plasmodesmal channel itself. Signals originating from molecules and pathways that regulate cellular homeostasis-such as reactive oxygen species, organelle-organelle signaling, and organelle-nucleus signaling-lead to astonishing alterations in gene expression that affect plasmodesmata formation and function.
Collapse
Affiliation(s)
- Tessa M Burch-Smith
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
174
|
Hsu SC, Nafati M, Inoue K. OEP80, an essential protein paralogous to the chloroplast protein translocation channel Toc75, exists as a 70-kD protein in the Arabidopsis thaliana chloroplast outer envelope. PLANT MOLECULAR BIOLOGY 2012; 78:147-58. [PMID: 22094888 DOI: 10.1007/s11103-011-9853-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/04/2011] [Indexed: 05/08/2023]
Abstract
Toc75 and OEP80 are paralogous proteins found in the Viridiplantae lineages, and appear to have evolved from a protein in the outer membrane of an ancient cyanobacterium. Toc75 is known to act as a protein translocation channel at the outer membrane of the chloroplast envelope, whereas the exact function of OEP80 is not understood. In Arabidopsis thaliana, each protein is encoded by a single gene, and both are essential for plant viability from embryonic stages onward. Sequence annotation and immunoblotting data with an antibody against its internal sequence (αOEP80(325-337)) indicated that the molecular weight of OEP80 is ca. 80 kD. Here we present multiple data to show that the size of A. thaliana OEP80 is smaller than previously estimated. First, we prepared the antibody against a recombinant protein consisting of annotated full-length A. thaliana OEP80 with an N-terminal hexahistidine tag (αOEP80(1-732)). This antibody recognized a 70-kD protein in the A. thaliana chloroplast membrane fraction which migrated faster than the His-tagged antigen and the protein recognized by the αOEP80(325-337) antibody on SDS-PAGE. Immunoprecipitation followed by LC-MS/MS analysis confirmed that the 70-kD protein was encoded by the OEP80 cDNA. Next, we performed a genetic complementation assay using embryo-lethal oep80-null plants and constructs encoding OEP80 and its variants. The results revealed that the nucleotide sequence encoding the 52 N-terminal amino acids was not required for functional expression of OEP80 and accumulation of the 70-kD protein. The data also indicated that an additional C-terminal T7 tag remained intact without disrupting the functionality of OEP80, and was not exposed to the cytoplasmic surface of the chloroplast envelope. Finally, OEP80-T7 and Toc75 showed distinct migration patterns on blue native-PAGE. This study provides molecular tools to investigate the function of OEP80, and also calls for caution in using an anti-peptide antibody.
Collapse
Affiliation(s)
- Shih-Chi Hsu
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
175
|
Majeran W, Friso G, Asakura Y, Qu X, Huang M, Ponnala L, Watkins KP, Barkan A, van Wijk KJ. Nucleoid-enriched proteomes in developing plastids and chloroplasts from maize leaves: a new conceptual framework for nucleoid functions. PLANT PHYSIOLOGY 2012; 158:156-89. [PMID: 22065420 PMCID: PMC3252073 DOI: 10.1104/pp.111.188474] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/06/2011] [Indexed: 05/18/2023]
Abstract
Plastids contain multiple copies of the plastid chromosome, folded together with proteins and RNA into nucleoids. The degree to which components of the plastid gene expression and protein biogenesis machineries are nucleoid associated, and the factors involved in plastid DNA organization, repair, and replication, are poorly understood. To provide a conceptual framework for nucleoid function, we characterized the proteomes of highly enriched nucleoid fractions of proplastids and mature chloroplasts isolated from the maize (Zea mays) leaf base and tip, respectively, using mass spectrometry. Quantitative comparisons with proteomes of unfractionated proplastids and chloroplasts facilitated the determination of nucleoid-enriched proteins. This nucleoid-enriched proteome included proteins involved in DNA replication, organization, and repair as well as transcription, mRNA processing, splicing, and editing. Many proteins of unknown function, including pentatricopeptide repeat (PPR), tetratricopeptide repeat (TPR), DnaJ, and mitochondrial transcription factor (mTERF) domain proteins, were identified. Strikingly, 70S ribosome and ribosome assembly factors were strongly overrepresented in nucleoid fractions, but protein chaperones were not. Our analysis strongly suggests that mRNA processing, splicing, and editing, as well as ribosome assembly, take place in association with the nucleoid, suggesting that these processes occur cotranscriptionally. The plastid developmental state did not dramatically change the nucleoid-enriched proteome but did quantitatively shift the predominating function from RNA metabolism in undeveloped plastids to translation and homeostasis in chloroplasts. This study extends the known maize plastid proteome by hundreds of proteins, including more than 40 PPR and mTERF domain proteins, and provides a resource for targeted studies on plastid gene expression. Details of protein identification and annotation are provided in the Plant Proteome Database.
Collapse
|
176
|
Burch-Smith TM, Brunkard JO, Choi YG, Zambryski PC. Organelle-nucleus cross-talk regulates plant intercellular communication via plasmodesmata. Proc Natl Acad Sci U S A 2011; 108:E1451-60. [PMID: 22106293 PMCID: PMC3251100 DOI: 10.1073/pnas.1117226108] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We use Arabidopsis thaliana embryogenesis as a model system for studying intercellular transport via plasmodesmata (PD). A forward genetic screen for altered PD transport identified increased size exclusion limit (ise) 1 and ise2 mutants with increased intercellular transport of fluorescent 10-kDa tracers. Both ise1 and ise2 exhibit increased formation of twinned and branched PD. ISE1 encodes a mitochondrial DEAD-box RNA helicase, whereas ISE2 encodes a DEVH-type RNA helicase. Here, we show that ISE2 foci are localized to the chloroplast stroma. Surprisingly, plastid development is defective in both ise1 and ise2 mutant embryos. In an effort to understand how RNA helicases that localize to different organelles have similar impacts on plastid and PD development/function, we performed whole-genome expression analyses. The most significantly affected class of transcripts in both mutants encode products that target to and enable plastid function. These results reinforce the importance of plastid-mitochondria-nucleus cross-talk, add PD as a critical player in the plant cell communication network, and thereby illuminate a previously undescribed signaling pathway dubbed organelle-nucleus-plasmodesmata signaling. Several genes with roles in cell wall synthesis and modification are also differentially expressed in both mutants, providing new targets for investigating PD development and function.
Collapse
Affiliation(s)
| | | | - Yoon Gi Choi
- Functional Genomics Laboratory, University of California, Berkeley, CA 94720
| | | |
Collapse
|
177
|
Muralla R, Lloyd J, Meinke D. Molecular foundations of reproductive lethality in Arabidopsis thaliana. PLoS One 2011; 6:e28398. [PMID: 22164284 PMCID: PMC3229588 DOI: 10.1371/journal.pone.0028398] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/07/2011] [Indexed: 11/23/2022] Open
Abstract
The SeedGenes database (www.seedgenes.org) contains information on more than 400 genes required for embryo development in Arabidopsis. Many of these EMBRYO-DEFECTIVE (EMB) genes encode proteins with an essential function required throughout the life cycle. This raises a fundamental question. Why does elimination of an essential gene in Arabidopsis often result in embryo lethality rather than gametophyte lethality? In other words, how do mutant (emb) gametophytes survive and participate in fertilization when an essential cellular function is disrupted? Furthermore, why do some mutant embryos proceed further in development than others? To address these questions, we first established a curated dataset of genes required for gametophyte development in Arabidopsis based on information extracted from the literature. This provided a basis for comparison with EMB genes obtained from the SeedGenes dataset. We also identified genes that exhibited both embryo and gametophyte defects when disrupted by a loss-of-function mutation. We then evaluated the relationship between mutant phenotype, gene redundancy, mutant allele strength, gene expression pattern, protein function, and intracellular protein localization to determine what factors influence the phenotypes of lethal mutants in Arabidopsis. After removing cases where continued development potentially resulted from gene redundancy or residual function of a weak mutant allele, we identified numerous examples of viable mutant (emb) gametophytes that required further explanation. We propose that the presence of gene products derived from transcription in diploid (heterozygous) sporocytes often enables mutant gametophytes to survive the loss of an essential gene in Arabidopsis. Whether gene disruption results in embryo or gametophyte lethality therefore depends in part on the ability of residual, parental gene products to support gametophyte development. We also highlight here 70 preglobular embryo mutants with a zygotic pattern of inheritance, which provide valuable insights into the maternal-to-zygotic transition in Arabidopsis and the timing of paternal gene activation during embryo development.
Collapse
Affiliation(s)
- Rosanna Muralla
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Johnny Lloyd
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - David Meinke
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
178
|
Sharwood RE, Halpert M, Luro S, Schuster G, Stern DB. Chloroplast RNase J compensates for inefficient transcription termination by removal of antisense RNA. RNA (NEW YORK, N.Y.) 2011; 17:2165-76. [PMID: 22033332 PMCID: PMC3222129 DOI: 10.1261/rna.028043.111] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 09/13/2011] [Indexed: 05/20/2023]
Abstract
Ribonuclease J is an essential enzyme, and the Bacillus subtilis ortholog possesses both endoribonuclease and 5' → 3' exoribonuclease activities. Chloroplasts also contain RNase J, which has been postulated to participate, as both an exo- and endonuclease, in the maturation of polycistronic mRNAs. Here we have examined recombinant Arabidopsis RNase J and found both 5' → 3' exoribonuclease and endonucleolytic activities. Virus-induced gene silencing was used to reduce RNase J expression in Arabidopsis and Nicotiana benthamiana, leading to chlorosis but surprisingly few disruptions in the cleavage of polycistronic rRNA and mRNA precursors. In contrast, antisense RNAs accumulated massively, suggesting that the failure of chloroplast RNA polymerase to terminate effectively leads to extensive symmetric transcription products that are normally eliminated by RNase J. Mung bean nuclease digestion and polysome analysis revealed that this antisense RNA forms duplexes with sense strand transcripts and prevents their translation. We conclude that a major role of chloroplast RNase J is RNA surveillance to prevent overaccumulation of antisense RNA, which would otherwise exert deleterious effects on chloroplast gene expression.
Collapse
Affiliation(s)
- Robert E. Sharwood
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Michal Halpert
- Department of Biology, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Scott Luro
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Gadi Schuster
- Department of Biology, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - David B. Stern
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
- Corresponding author.E-mail .
| |
Collapse
|
179
|
Yang L, Peng X, Sun MX. AtNG1 encodes a protein that is required for seed germination. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:457-64. [PMID: 21889052 DOI: 10.1016/j.plantsci.2011.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/18/2011] [Accepted: 07/20/2011] [Indexed: 05/25/2023]
Abstract
The pentatricopeptide repeat (PPR) family of eukaryotic proteins has numerous members in plants and is important for plant development. In the present study, we cloned a novel PPR gene, designated AtNG1, and characterized the ng1 Arabidopsis mutant. Morphological and structural observation of an ng1 mutant revealed that its sexual reproduction and seed formation processes are essentially normal. The mature embryonic root of ng1 is fully developed and has a well-differentiated structure; however, ng1 seeds cannot germinate, even when supplied with supplemental hormones and nutrition. Further investigation showed that embryo expansion and root cell elongation fails to occur after water imbibitions. Transient gene expression analysis indicated that AtNG1 localizes in mitochondrion. This implies that the deficiency of mitochondrion function might be the reason for the failed seed germination. Thus, our finding confirmed that AtNG1 plays a critical role in the early process of seed germination.
Collapse
Affiliation(s)
- Libo Yang
- Department of Cell and Developmental Biology, College of Life Science, Wuhan University, Wuhan, China
| | | | | |
Collapse
|
180
|
Trösch R, Jarvis P. The stromal processing peptidase of chloroplasts is essential in Arabidopsis, with knockout mutations causing embryo arrest after the 16-cell stage. PLoS One 2011; 6:e23039. [PMID: 21857988 PMCID: PMC3156710 DOI: 10.1371/journal.pone.0023039] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 07/05/2011] [Indexed: 11/19/2022] Open
Abstract
Stromal processing peptidase (SPP) is a metalloendopeptidase located in the stroma of chloroplasts, and it is responsible for the cleavage of transit peptides from preproteins upon their import into the organelle. Two independent mutant Arabidopsis lines with T-DNA insertions in the SPP gene were analysed (spp-1 and spp-2). For both lines, no homozygous mutant plants could be detected, and the segregating progeny of spp heterozygotes contained heterozygous and wild-type plants in a ratio of 2∶1. The siliques of heterozygous spp-1 and spp-2 plants contained many aborted seeds, at a frequency of ∼25%, suggesting embryo lethality. By contrast, transmission of the spp mutations through the male and female gametes was found to be normal, and so gametophytic effects could be ruled out. To further elucidate the timing of the developmental arrest, mutant and wild-type seeds were cleared and analysed by Nomarski microscopy. A significant proportion (∼25%) of the seeds in mutant siliques exhibited delayed embryogenesis compared to those in wild type. Moreover, the mutant embryos never progressed normally beyond the 16-cell stage, with cell divisions not completing properly thereafter. Heterozygous spp mutant plants were phenotypically indistinguishable from the wild type, indicating that the spp knockout mutations are completely recessive and suggesting that one copy of the SPP gene is able to produce sufficient SPP protein for normal development under standard growth conditions.
Collapse
Affiliation(s)
- Raphael Trösch
- Department of Biology, University of Leicester, Leicester, United Kingdom
| | - Paul Jarvis
- Department of Biology, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
181
|
Lu Y, Li C, Wang H, Chen H, Berg H, Xia Y. AtPPR2, an Arabidopsis pentatricopeptide repeat protein, binds to plastid 23S rRNA and plays an important role in the first mitotic division during gametogenesis and in cell proliferation during embryogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:13-25. [PMID: 21435048 PMCID: PMC3214271 DOI: 10.1111/j.1365-313x.2011.04569.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins are mainly involved in regulating post-transcriptional processes in mitochondria and plastids, including chloroplasts. Mutations in the Arabidopsis PPR2 gene have previously been found to cause defects in seed development and reduced transmission through male and female gametophytes. However, the exact function of AtPPR2 has not been defined. We found that a loss-of-function mutation of AtPPR2 leads to arrest of the first mitotic division during both male and female gametogenesis. In addition, the Atppr2 mutation causes delayed embryogenesis, leading to embryonic lethality. Mutation in emb2750, which appears to be a weak mutant allele of the AtPPR2 locus, also results in defective seeds. However, a majority of emb2750 seeds were able to germinate, but their cotyledons were albino and often deformed, and growth of the emb2750 seedlings were arrested after germination. AtPPR2 is mainly expressed in plant parts that undergo cell division, and AtPPR2 protein was localized to chloroplasts. RNA immunoprecipitation and protein gel mobility shift assays showed that AtPPR2 binds to plastid 23S rRNA. Our study adds to a growing body of evidence that plastids and/or chloroplasts play a key role in cell division. AtPPR2 may modulate the translational process to fine-tune plastid function, thereby regulating cell division.
Collapse
Affiliation(s)
- Yuqing Lu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Donald Danforth Plant Science Center, St Louis, MO, USA
- Hong Kong Baptist University, Kowloon, Hong Kong
| | - Cong Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai Wang
- Donald Danforth Plant Science Center, St Louis, MO, USA
- Hong Kong Baptist University, Kowloon, Hong Kong
| | - Hao Chen
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | - Howard Berg
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | - Yiji Xia
- Donald Danforth Plant Science Center, St Louis, MO, USA
- Hong Kong Baptist University, Kowloon, Hong Kong
| |
Collapse
|
182
|
Qiao J, Ma C, Wimmelbacher M, Börnke F, Luo M. Two novel proteins, MRL7 and its paralog MRL7-L, have essential but functionally distinct roles in chloroplast development and are involved in plastid gene expression regulation in Arabidopsis. PLANT & CELL PHYSIOLOGY 2011; 52:1017-30. [PMID: 21515910 DOI: 10.1093/pcp/pcr054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chloroplast development requires the coordinated action of various proteins, many of which remain to be identified. Here, we report two novel genes, Mesophyll-cell RNAi Library line 7 (MRL7) and MRL7-Like (MRL7-L), that are involved in this process. An Arabidopsis knock-down transgenic plant (MRL7-RNAi) with delayed-greening phenotype was isolated from an RNA interference (RNAi) transformant library. Cotyledons and young leaves of MRL7-RNAi were pale in seedlings and gradually greened as the plant matured, while a knock-out in the MRL7 gene was seedling lethal. The MRL7 protein was shown to co-localize with a marker protein for nucleoids in chloroplasts, indicative of a role for the protein in chloroplast nucleic acid metabolism. Accordingly, chloroplast development was arrested upon loss of MRL7 function and the expression of plastid-encoded genes transcribed by plastid-encoded RNA polymerase (PEP) was significantly reduced in MRL7 knock-down and knock-out plants. A paralog of MRL7 (MRL7-L) was identified in the Arabidopsis genome. Both MRL7 and MRL7-L are only found in land plants and encode previously uncharacterized proteins without any known conserved domain. Like MRL7, knock-down of MRL7-L also resulted in a virescent phenotype, and a similar effect on plastid gene expression. However, the MRL7-L protein was localized to the chloroplast stroma. Taken together, our data indicate that the two paralogous proteins MRL7 and MRL7-L have essential but distinct roles during early chloroplast development and are involved in regulation of plastid gene expression.
Collapse
Affiliation(s)
- Jiangwei Qiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, PR China
| | | | | | | | | |
Collapse
|
183
|
Babiychuk E, Vandepoele K, Wissing J, Garcia-Diaz M, De Rycke R, Akbari H, Joubès J, Beeckman T, Jänsch L, Frentzen M, Van Montagu MCE, Kushnir S. Plastid gene expression and plant development require a plastidic protein of the mitochondrial transcription termination factor family. Proc Natl Acad Sci U S A 2011; 108:6674-9. [PMID: 21464319 PMCID: PMC3081001 DOI: 10.1073/pnas.1103442108] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plastids are DNA-containing organelles unique to plant cells. In Arabidopsis, one-third of the genes required for embryo development encode plastid-localized proteins. To help understand the role of plastids in embryogenesis and postembryonic development, we characterized proteins of the mitochondrial transcription termination factor (mTERF) family, which in animal models, comprises DNA-binding regulators of mitochondrial transcription. Of 35 Arabidopsis mTERF proteins, 11 are plastid-localized. Genetic complementation shows that at least one plastidic mTERF, BELAYA SMERT' (BSM), is required for embryogenesis. The main postembryonic phenotypes of genetic mosaics with the bsm mutation are severe abnormalities in leaf development. Mutant bsm cells are albino, are compromised in growth, and suffer defects in global plastidic gene expression. The bsm phenotype could be phenocopied by inhibition of plastid translation with spectinomycin. Plastid translation is essential for cell viability in dicotyledonous species such as tobacco but not in monocotyledonous maize. Here, genetic interactions between BSM and the gene encoding plastid homomeric acetyl-CoA carboxylase ACC2 suggest that there is a functional redundancy in malonyl-CoA biosynthesis that permits bsm cell survival in Arabidopsis. Overall, our results indicate that biosynthesis of malonyl-CoA and plastid-derived systemic growth-promoting compounds are the processes that link plant development and plastid gene expression.
Collapse
Affiliation(s)
- Elena Babiychuk
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Josef Wissing
- Abteilung Zellbiologie, Helmholtz-Zentrum für Infektionsforschung GmbH, 38124 Braunschweig, Germany
| | - Miguel Garcia-Diaz
- Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651
| | - Riet De Rycke
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Hana Akbari
- Institut für Biologie I, Spezielle Botanik, Rheinisch-Westfälische Technische Hochschule Aachen, 52056 Aachen, Germany; and
| | - Jérôme Joubès
- Université Victor Ségalen Bordeaux 2, Laboratoire de Biogenèse Membranaire, Centre National de la Recherche Scientifique, 33076 Bordeaux Cedex, France
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Lothar Jänsch
- Abteilung Zellbiologie, Helmholtz-Zentrum für Infektionsforschung GmbH, 38124 Braunschweig, Germany
| | - Margrit Frentzen
- Institut für Biologie I, Spezielle Botanik, Rheinisch-Westfälische Technische Hochschule Aachen, 52056 Aachen, Germany; and
| | | | - Sergei Kushnir
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|