151
|
Huang W, Zhang SB, Liu T. Moderate Photoinhibition of Photosystem II Significantly Affects Linear Electron Flow in the Shade-Demanding Plant Panax notoginseng. FRONTIERS IN PLANT SCIENCE 2018; 9:637. [PMID: 29868090 PMCID: PMC5962726 DOI: 10.3389/fpls.2018.00637] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 04/25/2018] [Indexed: 05/17/2023]
Abstract
Although photoinhibition of photosystem II (PSII) frequently occurs under natural growing conditions, knowledge about the effect of moderate photoinhibition on linear electron flow (LEF) remains controversial. Furthermore, mechanisms underlying the decrease in LEF upon PSII photoinhibition are not well clarified. We examined how selective PSII photoinhibition influenced LEF in the attached leaves of shade-demanding plant Panax notoginseng. After leaves were exposed to a high level of light (2258 μmol photons m-2 s-1) for 30 and 60 min, the maximum quantum yield of PSII (Fv/Fm) decreased by 17 and 23%, respectively, whereas the maximum photo-oxidizable P700 (Pm) remained stable. Therefore, this species displayed selective PSII photodamage under strong illumination. After these treatments, LEF was significantly decreased under all light levels but acidification of the thylakoid lumen changed only slightly. Furthermore, the decrease in LEF under low light was positively correlated with the extent of PSII photoinhibition. Thus, the decline in LEF was not caused by the enhancement of lumenal acidification, but was induced by a decrease in PSII activity. These results indicate that residual PSII activity is an important determinant of LEF in this shade-adapted species, and they provide new insight into how strong illumination affects the growth of shade-demanding plants.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Tao Liu
- National Local Joint Engineering Research Center on Germplasm Utilization and Innovation of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
152
|
Holloway-Phillips M. Photosynthetic Oxygen Production: New Method Brings to Light Forgotten Flux. PLANT PHYSIOLOGY 2018; 177:7-9. [PMID: 29720532 PMCID: PMC5933131 DOI: 10.1104/pp.18.00344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|
153
|
Cardona T, Shao S, Nixon PJ. Enhancing photosynthesis in plants: the light reactions. Essays Biochem 2018; 62:85-94. [PMID: 29563222 PMCID: PMC5897789 DOI: 10.1042/ebc20170015] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022]
Abstract
In this review, we highlight recent research and current ideas on how to improve the efficiency of the light reactions of photosynthesis in crops. We note that the efficiency of photosynthesis is a balance between how much energy is used for growth and the energy wasted or spent protecting the photosynthetic machinery from photodamage. There are reasons to be optimistic about enhancing photosynthetic efficiency, but many appealing ideas are still on the drawing board. It is envisioned that the crops of the future will be extensively genetically modified to tailor them to specific natural or artificial environmental conditions.
Collapse
Affiliation(s)
- Tanai Cardona
- Department of Life Sciences, Sir Ernst Chain Building - Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Shengxi Shao
- Department of Life Sciences, Sir Ernst Chain Building - Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building - Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| |
Collapse
|
154
|
The impact of a changing atmosphere on chloroplast function, photosynthesis, yield, and food security. Essays Biochem 2018; 62:1-11. [DOI: 10.1042/ebc20180023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 11/17/2022]
Abstract
A convergence of global factors is adding to the difficulties of securing a sustainable supply of food and feed to support the increasing global population. The positive impact of the rise in atmospheric CO2 on photosynthesis is more than offset by the increase in average global temperatures accompanying the change in atmospheric composition. This article provides a brief overview of how these adverse events affect some of the critical molecular processes of the chloroplast and by extension how this impacts the yields of the major crops. Although the tools are available to introduce genetic elements in most crops that will mitigate these adverse factors, the time needed to validate and optimize these traits can be extensive. There is a major concern that at the current rate of change to atmospheric composition and the accompanying rise in temperature the benefits of these traits may be rendered less effective soon after their introduction.
Collapse
|
155
|
Nuccio ML, Potter L, Stiegelmeyer SM, Curley J, Cohn J, Wittich PE, Tan X, Davis J, Ni J, Trullinger J, Hall R, Bate NJ. Strategies and tools to improve crop productivity by targeting photosynthesis. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0377. [PMID: 28808096 DOI: 10.1098/rstb.2016.0377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 12/15/2022] Open
Abstract
Crop productivity needs to substantially increase to meet global food and feed demand for a rapidly growing world population. Agricultural technology developers are pursuing a variety of approaches based on both traditional technologies such as genetic improvement, pest control and mechanization as well as new technologies such as genomics, gene manipulation and environmental modelling to develop crops that are capable of meeting growing demand. Photosynthesis is a key biochemical process that, many suggest, is not yet optimized for industrial agriculture or the modern global environment. We are interested in identifying control points in maize photoassimilation that are amenable to gene manipulation to improve overall productivity. Our approach encompasses: developing and using novel gene discovery techniques, translating our discoveries into traits and evaluating each trait in a stepwise manner that reflects a modern production environment. Our aim is to provide step change advancement in overall crop productivity and deliver this new technology into the hands of growers.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.
Collapse
Affiliation(s)
- Michael L Nuccio
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC 541-8500, USA
| | - Laura Potter
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC 541-8500, USA
| | - Suzy M Stiegelmeyer
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC 541-8500, USA
| | - Joseph Curley
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC 541-8500, USA
| | - Jonathan Cohn
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC 541-8500, USA
| | - Peter E Wittich
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC 541-8500, USA
| | - Xiaoping Tan
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC 541-8500, USA
| | - Jimena Davis
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC 541-8500, USA
| | - Junjian Ni
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC 541-8500, USA
| | - Jon Trullinger
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC 541-8500, USA
| | - Rick Hall
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC 541-8500, USA
| | - Nicholas J Bate
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC 541-8500, USA
| |
Collapse
|
156
|
Gollan PJ, Lima-Melo Y, Tiwari A, Tikkanen M, Aro EM. Interaction between photosynthetic electron transport and chloroplast sinks triggers protection and signalling important for plant productivity. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0390. [PMID: 28808104 PMCID: PMC5566885 DOI: 10.1098/rstb.2016.0390] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2017] [Indexed: 11/12/2022] Open
Abstract
The photosynthetic light reactions provide energy that is consumed and stored in electron sinks, the products of photosynthesis. A balance between light reactions and electron consumption in the chloroplast is vital for plants, and is protected by several photosynthetic regulation mechanisms. Photosystem I (PSI) is particularly susceptible to photoinhibition when these factors become unbalanced, which can occur in low temperatures or in high light. In this study we used the pgr5 Arabidopsis mutant that lacks ΔpH-dependent regulation of photosynthetic electron transport as a model to study the consequences of PSI photoinhibition under high light. We found that PSI damage severely inhibits carbon fixation and starch accumulation, and attenuates enzymatic oxylipin synthesis and chloroplast regulation of nuclear gene expression after high light stress. This work shows that modifications to regulation of photosynthetic light reactions, which may be designed to improve yield in crop plants, can negatively impact metabolism and signalling, and thereby threaten plant growth and stress tolerance.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.
Collapse
Affiliation(s)
- Peter J Gollan
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Yugo Lima-Melo
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Arjun Tiwari
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Mikko Tikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
157
|
Davis GA, Rutherford AW, Kramer DM. Hacking the thylakoid proton motive force for improved photosynthesis: modulating ion flux rates that control proton motive force partitioning into Δ ψ and ΔpH. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0381. [PMID: 28808100 DOI: 10.1098/rstb.2016.0381] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2017] [Indexed: 11/12/2022] Open
Abstract
There is considerable interest in improving plant productivity by altering the dynamic responses of photosynthesis in tune with natural conditions. This is exemplified by the 'energy-dependent' form of non-photochemical quenching (qE), the formation and decay of which can be considerably slower than natural light fluctuations, limiting photochemical yield. In addition, we recently reported that rapidly fluctuating light can produce field recombination-induced photodamage (FRIP), where large spikes in electric field across the thylakoid membrane (Δψ) induce photosystem II recombination reactions that produce damaging singlet oxygen (1O2). Both qE and FRIP are directly linked to the thylakoid proton motive force (pmf), and in particular, the slow kinetics of partitioning pmf into its ΔpH and Δψ components. Using a series of computational simulations, we explored the possibility of 'hacking' pmf partitioning as a target for improving photosynthesis. Under a range of illumination conditions, increasing the rate of counter-ion fluxes across the thylakoid membrane should lead to more rapid dissipation of Δψ and formation of ΔpH. This would result in increased rates for the formation and decay of qE while resulting in a more rapid decline in the amplitudes of Δψ-spikes and decreasing 1O2 production. These results suggest that ion fluxes may be a viable target for plant breeding or engineering. However, these changes also induce transient, but substantial mismatches in the ATP : NADPH output ratio as well as in the osmotic balance between the lumen and stroma, either of which may explain why evolution has not already accelerated thylakoid ion fluxes. Overall, though the model is simplified, it recapitulates many of the responses seen in vivo, while spotlighting critical aspects of the complex interactions between pmf components and photosynthetic processes. By making the programme available, we hope to enable the community of photosynthesis researchers to further explore and test specific hypotheses.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.
Collapse
Affiliation(s)
- Geoffry A Davis
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.,Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | | | - David M Kramer
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA .,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
158
|
Hubbart S, Smillie IRA, Heatley M, Swarup R, Foo CC, Zhao L, Murchie EH. Enhanced thylakoid photoprotection can increase yield and canopy radiation use efficiency in rice. Commun Biol 2018; 1:22. [PMID: 30271909 PMCID: PMC6123638 DOI: 10.1038/s42003-018-0026-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/01/2018] [Indexed: 11/09/2022] Open
Abstract
High sunlight can raise plant growth rates but can potentially cause cellular damage. The likelihood of deleterious effects is lowered by a sophisticated set of photoprotective mechanisms, one of the most important being the controlled dissipation of energy from chlorophyll within photosystem II (PSII) measured as non-photochemical quenching (NPQ). Although ubiquitous, the role of NPQ in plant productivity remains uncertain because it momentarily reduces the quantum efficiency of photosynthesis. Here we used plants overexpressing the gene encoding a central regulator of NPQ, the protein PsbS, within a major crop species (rice) to assess the effect of photoprotection at the whole canopy scale. We accounted for canopy light interception, to our knowledge for the first time in this context. We show that in comparison to wild-type plants, psbS overexpressors increased canopy radiation use efficiency and grain yield in fluctuating light, demonstrating that photoprotective mechanisms should be altered to improve rice crop productivity.
Collapse
Affiliation(s)
- Stella Hubbart
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Ian R A Smillie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Matthew Heatley
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Ranjan Swarup
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Chuan Ching Foo
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Liang Zhao
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
| |
Collapse
|
159
|
Nguyen HC, Lin KH, Hsiung TC, Huang MY, Yang CM, Weng JH, Hsu MH, Chen PY, Chang KC. Biochemical and Physiological Characteristics of Photosynthesis in Plants of Two Calathea Species. Int J Mol Sci 2018; 19:E704. [PMID: 29494547 PMCID: PMC5877565 DOI: 10.3390/ijms19030704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 11/16/2022] Open
Abstract
Plants of the genus Calathea possess many leaf colors, and they are economically important because they are widely used as ornamentals for interior landscaping. Physiological performances and photosynthetic capacities of C. insignis and C. makoyana were investigated. The photosynthetic efficiencies of C. insignis and C. makoyana were significantly increased when the photosynthetic photon flux density (PPFD) increased from 0 to 600 μmol photons·m-2·s-1 and became saturated with a further increase in the PPFD. The two Calathea species had lower values of both the light saturation point and maximal photosynthetic rate, which indicated that they are shade plants. No significant differences in predawn Fv/Fm values (close to 0.8) were observed between dark-green (DG) and light-green (LG) leaf sectors in all tested leaves. However, the effective quantum yield of photosystem II largely decreased as the PPFD increased. An increase in the apparent photosynthetic electron transport rate was observed in both species to a maximum at 600 μmol·m-2·s-1 PPFD, following by a decrease to 1500 μmol·m-2·s-1 PPFD. Compared to LG leaf extracts, DG leaf extracts contained higher levels of chlorophyll (Chl) a, Chl b, Chls a + b, carotenoids (Cars), anthocyanins (Ants), flavonoids (Flas), and polyphenols (PPs) in all plants, except for the Ant, Fla and PP contents of C. insignis plants. Calathea insignis also contained significantly higher levels of total protein than did C. makoyana. The adjusted normalized difference vegetation index (NDVI), photochemical reflectance index (PRI), red-green, and flavonol index (FlavI) were significantly correlated to leaf Chls a + b, Cars, Ants, and Flas in C. makoyana, respectively, and can be used as indicators to characterize the physiology of these plants.
Collapse
Affiliation(s)
- Hoang Chinh Nguyen
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Kuan-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei 114, Taiwan.
| | - Tung-Chuan Hsiung
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei 114, Taiwan.
| | - Meng-Yuan Huang
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei 114, Taiwan.
| | - Chi-Ming Yang
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Jen-Hsien Weng
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan.
| | - Ming-Huang Hsu
- Refining and Manufacturing Research Institute, CPC Corporation, Minsheng S. Road, Chiayi 600, Taiwan.
| | - Po-Yen Chen
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei 114, Taiwan.
| | - Kai-Chieh Chang
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei 114, Taiwan.
| |
Collapse
|
160
|
Park JH, Jung S. Perturbations in carotenoid and porphyrin status result in differential photooxidative stress signaling and antioxidant responses. Biochem Biophys Res Commun 2018; 496:840-845. [PMID: 29395084 DOI: 10.1016/j.bbrc.2018.01.142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 11/16/2022]
Abstract
We examined differential photooxidative stress signaling and antioxidant responses in rice plants treated with norflurazon (NF) and oxyfluorfen (OF), which are inhibitors of carotenoid and porphyrin biosynthesis, respectively. Plants treated with OF markedly increased levels of cellular leakage and malondialdehyde, compared with NF-treated plants, showing that OF plants suffered greater oxidative damage with respect to membrane integrity. The enhanced production of H2O2 in response to OF, but not NF, indicates the important role of H2O2 in activation of photooxidative stress signaling in OF plants. In response to NF and OF, the increased levels of free salicylic acid as well as maintenance of the redox ratio of ascorbate and glutathione pools to a certain level are considered to be crucial factors in the protection against photooxidation. Plants treated with OF greatly up-regulated catalase (CAT) activity and Cat transcript levels, compared with NF-treated plants. Interestingly, NF plants showed no noticeable increase in oxidative metabolism, although they did show considerable increases in ascorbate peroxidase (APX) and peroxidase activities and transcript levels of APX, as in OF plants. Our results suggest that perturbations in carotenoid and porphyrin status by NF and OF can be sensed by differential photooxidative stress signaling, such as that involving H2O2, redox state of ascorbate and glutathione, and salicylic acid, which may be responsible for at least part of the induction of ROS-scavenging enzymes.
Collapse
Affiliation(s)
- Joon-Heum Park
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, South Korea
| | - Sunyo Jung
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
161
|
Ferrero-Serrano Á, Su Z, Assmann SM. Illuminating the role of the Gα heterotrimeric G protein subunit, RGA1, in regulating photoprotection and photoavoidance in rice. PLANT, CELL & ENVIRONMENT 2018; 41:451-468. [PMID: 29216416 DOI: 10.1111/pce.13113] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 05/22/2023]
Abstract
We studied physiological mechanisms of photoavoidance and photoprotection of a dwarf rice mutant with erect leaves, d1, in which the RGA1 gene, which encodes the Gα subunit of the heterotrimeric G protein, is non-functional. Leaves of d1 exhibit lower leaf temperature and higher photochemical reflectance index relative to wild type (WT), indicative of increased photoavoidance and more efficient light harvesting. RNA sequencing analysis of flag leaves revealed that messenger RNA levels of genes encoding heat shock proteins, enzymes associated with chlorophyll breakdown, and ROS scavengers were down-regulated in d1. By contrast, genes encoding proteins associated with light harvesting, Photosystem II, cyclic electron transport, Photosystem I, and chlorophyll biosynthesis were up-regulated in d1. Consistent with these observations, when WT and d1 plants were experimentally subjected to the same light intensity, d1 plants exhibited a greater capacity to dissipate excess irradiance (increased nonphotochemical quenching) relative to WT. The increased capacity in d1 for both photoavoidance and photoprotection reduced sustained photoinhibitory damage, as revealed by a higher Fv /Fm . We therefore propose RGA1 as a regulator of photoavoidance and photoprotection mechanisms in rice and highlight the prospect of exploiting modulation of heterotrimeric G protein signalling to increase these characteristics and improve the yield of cereals in the event of abiotic stress.
Collapse
Affiliation(s)
- Ángel Ferrero-Serrano
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| | - Zhao Su
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| | - Sarah M Assmann
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| |
Collapse
|
162
|
Magdaong NCM, Blankenship RE. Photoprotective, excited-state quenching mechanisms in diverse photosynthetic organisms. J Biol Chem 2018; 293:5018-5025. [PMID: 29298897 DOI: 10.1074/jbc.tm117.000233] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Light-harvesting complexes (LHCs) serve a dual role in photosynthesis, depending on the prevailing light conditions. In low light, they ensure photosynthetic efficiency by maximizing the light absorption cross-section and subsequent energy storage. Under excess light conditions, LHCs perform photoprotective quenching functions to prevent harmful chemical species such as triplet chlorophyll and singlet oxygen from forming and damaging the photosynthetic apparatus. In this Minireview, various photoprotective quenching mechanisms that have been identified in different photosynthetic organisms are surveyed and summarized, and implications for improving photosynthetic productivity are briefly discussed.
Collapse
Affiliation(s)
- Nikki Cecil M Magdaong
- From the Departments of Biology and Chemistry and.,the Photosynthetic Antenna Research Center, Washington University in Saint Louis, St. Louis, Missouri 63130
| | - Robert E Blankenship
- From the Departments of Biology and Chemistry and .,the Photosynthetic Antenna Research Center, Washington University in Saint Louis, St. Louis, Missouri 63130
| |
Collapse
|
163
|
Abstract
Chlorophyll fluorescence imaging provides a noninvasive rapid screen to assess the physiological status of a number of leaves or plants simultaneously. Although there are no standard protocols for chlorophyll fluorescence imaging, here we provide an example of routines for some of the typical measurements.
Collapse
Affiliation(s)
- Tracy Lawson
- School of Biological Sciences, University of Essex, Colchester, UK.
| | | |
Collapse
|
164
|
Mantilla-Perez MB, Salas Fernandez MG. Differential manipulation of leaf angle throughout the canopy: current status and prospects. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5699-5717. [PMID: 29126242 DOI: 10.1093/jxb/erx378] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/01/2017] [Indexed: 05/20/2023]
Abstract
Leaf angle is defined as the inclination between the midrib of the leaf blade and the vertical stem of a plant. This trait has been identified as a key component in the development of high-yielding varieties of cereal species, particularly maize, rice, wheat, and sorghum. The effect of leaf angle on light interception efficiency, photosynthetic rate, and yield has been investigated since the 1960s, yet, significant knowledge gaps remain in understanding the genetic control of this complex trait. Recent advances in physiology and modeling have proposed a plant ideotype with varying leaf angles throughout the canopy. In this context, we present historical and recent evidence of: (i) the effect of leaf angle on photosynthetic efficiency and yield; (ii) the hormonal regulation of this trait; (iii) the current knowledge on its quantitative genetic control; and (iv) the opportunity to utilize high-throughput phenotyping methods to characterize leaf angle at multiple canopy levels. We focus on research conducted on grass species of economic importance, with similar plant architecture and growth patterns. Finally, we present the challenges and strategies plant breeders will need to embrace in order to manipulate leaf angle differentially throughout the canopy and develop superior crops for food, feed, and fuel production.
Collapse
|
165
|
Wu H, Tito N, Giraldo JP. Anionic Cerium Oxide Nanoparticles Protect Plant Photosynthesis from Abiotic Stress by Scavenging Reactive Oxygen Species. ACS NANO 2017; 11:11283-11297. [PMID: 29099581 DOI: 10.1021/acsnano.7b05723] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant abiotic stress leads to accumulation of reactive oxygen species (ROS) and a consequent decrease in photosynthetic performance. We demonstrate that a plant nanobionics approach of localizing negatively charged, sub-11 nm, spherical cerium oxide nanoparticles (nanoceria) inside chloroplasts in vivo augments ROS scavenging and photosynthesis of Arabidopsis thaliana plants under excess light (2000 μmol m-2 s-1, 1.5 h), heat (35 °C, 2.5 h), and dark chilling (4 °C, 5 days). Poly(acrylic acid) nanoceria (PNC) with a hydrodynamic diameter (10.3 nm)-lower than the maximum plant cell wall porosity-and negative ζ-potential (-16.9 mV) exhibit significantly higher colocalization (46%) with chloroplasts in leaf mesophyll cells than aminated nanoceria (ANC) (27%) of similar size (12.6 nm) but positive charge (9.7 mV). Nanoceria are transported into chloroplasts via nonendocytic pathways, influenced by the electrochemical gradient of the plasma membrane potential. PNC with a low Ce3+/Ce4+ ratio (35.0%) reduce leaf ROS levels by 52%, including hydrogen peroxide, superoxide anion, and hydroxyl radicals. For the latter ROS, there is no known plant enzyme scavenger. Plants embedded with these PNC that were exposed to abiotic stress exhibit an increase up to 19% in quantum yield of photosystem II, 67% in carbon assimilation rates, and 61% in Rubisco carboxylation rates relative to plants without nanoparticles. In contrast, PNC with high Ce3+/Ce4+ ratio (60.8%) increase overall leaf ROS levels and do not protect photosynthesis from oxidative damage during abiotic stress. This study demonstrates that anionic, spherical, sub-11 nm PNC with low Ce3+/Ce4+ ratio can act as a tool to study the impact of oxidative stress on plant photosynthesis and to protect plants from abiotic stress.
Collapse
Affiliation(s)
- Honghong Wu
- Department of Botany and Plant Sciences, University of California , Riverside, California 92521, United States
| | - Nicholas Tito
- Department of Botany and Plant Sciences, University of California , Riverside, California 92521, United States
| | - Juan P Giraldo
- Department of Botany and Plant Sciences, University of California , Riverside, California 92521, United States
| |
Collapse
|
166
|
Park JH, Tran LH, Jung S. Perturbations in the Photosynthetic Pigment Status Result in Photooxidation-Induced Crosstalk between Carotenoid and Porphyrin Biosynthetic Pathways. FRONTIERS IN PLANT SCIENCE 2017; 8:1992. [PMID: 29209351 PMCID: PMC5701815 DOI: 10.3389/fpls.2017.01992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/06/2017] [Indexed: 06/01/2023]
Abstract
Possible crosstalk between the carotenoid and porphyrin biosynthetic pathways under photooxidative conditions was investigated by using their biosynthetic inhibitors, norflurazon (NF) and oxyfluorfen (OF). High levels of protoporphyrin IX (Proto IX) accumulated in rice plants treated with OF, whereas Proto IX decreased in plants treated with NF. Both NF and OF treatments resulted in greater decreases in MgProto IX, MgProto IX methyl ester, and protochlorophyllide. Activities and transcript levels of most porphyrin biosynthetic enzymes, particularly in the Mg-porphyrin branch, were greatly down-regulated in NF and OF plants. In contrast, the transcript levels of GSA, PPO1, and CHLD as well as FC2 and HO2 were up-regulated in NF-treated plants, while only moderate increases in FC2 and HO2 were observed in the early stage of OF treatment. Phytoene, antheraxanthin, and zeaxanthin showed high accumulation in NF-treated plants, whereas other carotenoid intermediates greatly decreased. Transcript levels of carotenoid biosynthetic genes, PSY1 and PDS, decreased in response to NF and OF, whereas plants in the later stage of NF treatment exhibited up-regulation of BCH and VDE as well as recovery of PDS. However, perturbed porphyrin biosynthesis by OF did not noticeably influence levels of carotenoid metabolites, regardless of the strong down-regulation of carotenoid biosynthetic genes. Both NF and OF plants appeared to provide enhanced protection against photooxidative damage, not only by scavenging of Mg-porphyrins, but also by up-regulating FC2, HO2, and Fe-chelatase, particularly with increased levels of zeaxanthin via up-regulation of BCH and VDE in NF plants. On the other hand, the up-regulation of GSA, PPO1, and CHLD under inhibition of carotenogenic flux may be derived from the necessity to recover impaired chloroplast biogenesis during photooxidative stress. Our study demonstrates that perturbations in carotenoid and porphyrin biosynthesis coordinate the expression of their biosynthetic genes to sustain plastid function at optimal levels by regulating their metabolic flux in plants under adverse stress conditions.
Collapse
Affiliation(s)
| | | | - Sunyo Jung
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
167
|
Feldman AB, Leung H, Baraoidan M, Elmido-Mabilangan A, Canicosa I, Quick WP, Sheehy J, Murchie EH. Increasing Leaf Vein Density via Mutagenesis in Rice Results in an Enhanced Rate of Photosynthesis, Smaller Cell Sizes and Can Reduce Interveinal Mesophyll Cell Number. FRONTIERS IN PLANT SCIENCE 2017; 8:1883. [PMID: 29163607 PMCID: PMC5672787 DOI: 10.3389/fpls.2017.01883] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/17/2017] [Indexed: 05/07/2023]
Abstract
Improvements to leaf photosynthetic rates of crops can be achieved by targeted manipulation of individual component processes, such as the activity and properties of RuBisCO or photoprotection. This study shows that simple forward genetic screens of mutant populations can also be used to rapidly generate photosynthesis variants that are useful for breeding. Increasing leaf vein density (concentration of vascular tissue per unit leaf area) has important implications for plant hydraulic properties and assimilate transport. It was an important step to improving photosynthetic rates in the evolution of both C3 and C4 species and is a foundation or prerequisite trait for C4 engineering in crops like rice (Oryza sativa). A previous high throughput screen identified five mutant rice lines (cv. IR64) with increased vein densities and associated narrower leaf widths (Feldman et al., 2014). Here, these high vein density rice variants were analyzed for properties related to photosynthesis. Two lines were identified as having significantly reduced mesophyll to bundle sheath cell number ratios. All five lines had 20% higher light saturated photosynthetic capacity per unit leaf area, higher maximum carboxylation rates, dark respiration rates and electron transport capacities. This was associated with no significant differences in leaf thickness, stomatal conductance or CO2 compensation point between mutants and the wild-type. The enhanced photosynthetic rate in these lines may be a result of increased RuBisCO and electron transport component amount and/or activity and/or enhanced transport of photoassimilates. We conclude that high vein density (associated with altered mesophyll cell length and number) is a trait that may confer increased photosynthetic efficiency without increased transpiration.
Collapse
Affiliation(s)
| | - Hei Leung
- Plant Breeding, Genetics and Biotechnology, The International Rice Research Institute, Los Baños, Philippines
| | - Marietta Baraoidan
- Plant Breeding, Genetics and Biotechnology, The International Rice Research Institute, Los Baños, Philippines
| | | | - Irma Canicosa
- The C4 Rice Center, The International Rice Research Institute, Los Baños, Philippines
| | - William P. Quick
- The C4 Rice Center, The International Rice Research Institute, Los Baños, Philippines
- Department of Animal Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - John Sheehy
- The C4 Rice Center, The International Rice Research Institute, Los Baños, Philippines
| | - Erik H. Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|
168
|
Orr DJ, Pereira AM, da Fonseca Pereira P, Pereira-Lima ÍA, Zsögön A, Araújo WL. Engineering photosynthesis: progress and perspectives. F1000Res 2017; 6:1891. [PMID: 29263782 PMCID: PMC5658708 DOI: 10.12688/f1000research.12181.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2017] [Indexed: 12/11/2022] Open
Abstract
Photosynthesis is the basis of primary productivity on the planet. Crop breeding has sustained steady improvements in yield to keep pace with population growth increases. Yet these advances have not resulted from improving the photosynthetic process
per se but rather of altering the way carbon is partitioned within the plant. Mounting evidence suggests that the rate at which crop yields can be boosted by traditional plant breeding approaches is wavering, and they may reach a “yield ceiling” in the foreseeable future. Further increases in yield will likely depend on the targeted manipulation of plant metabolism. Improving photosynthesis poses one such route, with simulations indicating it could have a significant transformative influence on enhancing crop productivity. Here, we summarize recent advances of alternative approaches for the manipulation and enhancement of photosynthesis and their possible application for crop improvement.
Collapse
Affiliation(s)
- Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Auderlan M Pereira
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Paula da Fonseca Pereira
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ítalo A Pereira-Lima
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
169
|
Crisp PA, Ganguly DR, Smith AB, Murray KD, Estavillo GM, Searle I, Ford E, Bogdanović O, Lister R, Borevitz JO, Eichten SR, Pogson BJ. Rapid Recovery Gene Downregulation during Excess-Light Stress and Recovery in Arabidopsis. THE PLANT CELL 2017; 29:1836-1863. [PMID: 28705956 PMCID: PMC5590493 DOI: 10.1105/tpc.16.00828] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 06/22/2017] [Accepted: 07/11/2017] [Indexed: 05/19/2023]
Abstract
Stress recovery may prove to be a promising approach to increase plant performance and, theoretically, mRNA instability may facilitate faster recovery. Transcriptome (RNA-seq, qPCR, sRNA-seq, and PARE) and methylome profiling during repeated excess-light stress and recovery was performed at intervals as short as 3 min. We demonstrate that 87% of the stress-upregulated mRNAs analyzed exhibit very rapid recovery. For instance, HSP101 abundance declined 2-fold every 5.1 min. We term this phenomenon rapid recovery gene downregulation (RRGD), whereby mRNA abundance rapidly decreases promoting transcriptome resetting. Decay constants (k) were modeled using two strategies, linear and nonlinear least squares regressions, with the latter accounting for both transcription and degradation. This revealed extremely short half-lives ranging from 2.7 to 60.0 min for 222 genes. Ribosome footprinting using degradome data demonstrated RRGD loci undergo cotranslational decay and identified changes in the ribosome stalling index during stress and recovery. However, small RNAs and 5'-3' RNA decay were not essential for recovery of the transcripts examined, nor were any of the six excess light-associated methylome changes. We observed recovery-specific gene expression networks upon return to favorable conditions and six transcriptional memory types. In summary, rapid transcriptome resetting is reported in the context of active recovery and cellular memory.
Collapse
Affiliation(s)
- Peter A Crisp
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108
| | - Diep R Ganguly
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| | - Aaron B Smith
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| | - Kevin D Murray
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| | - Gonzalo M Estavillo
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
- CSIRO Agriculture and Food, Black Mountain, Canberra ACT 2601, Australia
| | - Iain Searle
- School of Biological Sciences, The University of Adelaide, SA 5005, Australia
| | - Ethan Ford
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth WA 6009, Australia
| | - Ozren Bogdanović
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth WA 6009, Australia
- Harry Perkins Institute of Medical Research, Perth WA 6009, Australia
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth WA 6009, Australia
- Harry Perkins Institute of Medical Research, Perth WA 6009, Australia
| | - Justin O Borevitz
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| | - Steven R Eichten
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| |
Collapse
|
170
|
Murchie EH. Safety conscious or living dangerously: what is the 'right' level of plant photoprotection for fitness and productivity? PLANT, CELL & ENVIRONMENT 2017; 40:1239-1242. [PMID: 28382767 DOI: 10.1111/pce.12965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 03/20/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, UK
| |
Collapse
|
171
|
Kotkowiak M, Dudkowiak A, Fiedor L. Intrinsic Photoprotective Mechanisms in Chlorophylls. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Michał Kotkowiak
- Faculty of Technical Physics; Poznan University of Technology; Piotrowo 3 60-965 Poznan Poland
| | - Alina Dudkowiak
- Faculty of Technical Physics; Poznan University of Technology; Piotrowo 3 60-965 Poznan Poland
| | - Leszek Fiedor
- Faculty of Biochemistry, Biophysics and Biotechnology; Jagiellonian University; Gronostajowa 7 30-387 Krakow Poland
| |
Collapse
|
172
|
Kotkowiak M, Dudkowiak A, Fiedor L. Intrinsic Photoprotective Mechanisms in Chlorophylls. Angew Chem Int Ed Engl 2017; 56:10457-10461. [DOI: 10.1002/anie.201705357] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Michał Kotkowiak
- Faculty of Technical Physics; Poznan University of Technology; Piotrowo 3 60-965 Poznan Poland
| | - Alina Dudkowiak
- Faculty of Technical Physics; Poznan University of Technology; Piotrowo 3 60-965 Poznan Poland
| | - Leszek Fiedor
- Faculty of Biochemistry, Biophysics and Biotechnology; Jagiellonian University; Gronostajowa 7 30-387 Krakow Poland
| |
Collapse
|
173
|
Xu F, Jiang M, Meng F. Short-term effect of elevated CO 2 concentration (0.5%) on mitochondria in diploid and tetraploid black locust ( Robinia pseudoacacia L.). Ecol Evol 2017; 7:4651-4660. [PMID: 28690795 PMCID: PMC5496526 DOI: 10.1002/ece3.3046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 03/24/2017] [Accepted: 04/09/2017] [Indexed: 11/17/2022] Open
Abstract
Recent increases in atmospheric CO 2 concentration have affected the growth and physiology of plants. In this study, plants were grown with 0.5% CO 2 for 0, 3, and 6 days. The anatomy, fluorescence intensity of H2O2, respiration rate, and antioxidant activities of the mitochondria were analyzed in diploid (2×) and tetraploid (4×) black locust (Robinia pseudoacacia L.). Exposure to 0.5% CO 2 resulted in clear structural alterations and stomatal closure in the mitochondria. Reduced membrane integrity and increased structural damage were observed in 2× plants at 6 days. However, after 0.5% CO 2 treatment, little structural damage was observed in 4× plants. Under severe stress, H2O2 and malondialdehyde were dramatically induced in both 2× and 4× plants. Proline remains unchanged at an elevated CO 2 concentration in 4× plants. Moreover, the total respiration and alternative respiration rates decreased in both 2× and 4× plants. In contrast, the cytochrome pathway showed no decrease in 2× plants and even increased slightly in 4× plants. The antioxidant enzymes and nonenzymatic antioxidants, which are related to the ascorbate-glutathione pathway, were inhibited following CO 2 exposure. These analyses indicated that 4× and 2× plants were damaged by 0.5% CO 2 but the former were more resistant than the latter, and this may be due to increases in antioxidant enzymes and nonenzymatic antioxidants and stabilized membrane structure.
Collapse
Affiliation(s)
- Fuling Xu
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Mingquan Jiang
- College of Life ScienceNortheast Forestry UniversityHarbinChina
- Jilin Province Product Quality Supervision and Inspection InstituteChangchunChina
| | - Fanjuan Meng
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| |
Collapse
|
174
|
Cantrell M, Peers G. A mutant of Chlamydomonas without LHCSR maintains high rates of photosynthesis, but has reduced cell division rates in sinusoidal light conditions. PLoS One 2017. [PMID: 28644828 PMCID: PMC5482440 DOI: 10.1371/journal.pone.0179395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The LHCSR protein belongs to the light harvesting complex family of pigment-binding proteins found in oxygenic photoautotrophs. Previous studies have shown that this complex is required for the rapid induction and relaxation of excess light energy dissipation in a wide range of eukaryotic algae and moss. The ability of cells to rapidly regulate light harvesting between this dissipation state and one favoring photochemistry is believed to be important for reducing oxidative stress and maintaining high photosynthetic efficiency in a rapidly changing light environment. We found that a mutant of Chlamydomonas reinhardtii lacking LHCSR, npq4lhcsr1, displays minimal photoinhibition of photosystem II and minimal inhibition of short term oxygen evolution when grown in constant excess light compared to a wild type strain. We also investigated the impact of no LHCSR during growth in a sinusoidal light regime, which mimics daily changes in photosynthetically active radiation. The absence of LHCSR correlated with a slight reduction in the quantum efficiency of photosystem II and a stimulation of the maximal rates of photosynthesis compared to wild type. However, there was no reduction in carbon accumulation during the day. Another novel finding was that npq4lhcsr1 cultures underwent fewer divisions at night, reducing the overall growth rate compared to the wild type. Our results show that the rapid regulation of light harvesting mediated by LHCSR is required for high growth rates, but it is not required for efficient carbon accumulation during the day in a sinusoidal light environment. This finding has direct implications for engineering strategies directed at increasing photosynthetic productivity in mass cultures.
Collapse
Affiliation(s)
- Michael Cantrell
- Department of Biology, Colorado State University, Fort Collins, CO, United States of America
| | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, CO, United States of America
- * E-mail:
| |
Collapse
|
175
|
Dutta S, Cruz JA, Imran SM, Chen J, Kramer DM, Osteryoung KW. Variations in chloroplast movement and chlorophyll fluorescence among chloroplast division mutants under light stress. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3541-3555. [PMID: 28645163 PMCID: PMC5853797 DOI: 10.1093/jxb/erx203] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/25/2017] [Indexed: 05/18/2023]
Abstract
Chloroplasts divide to maintain consistent size, shape, and number in leaf mesophyll cells. Altered expression of chloroplast division proteins in Arabidopsis results in abnormal chloroplast morphology. To better understand the influence of chloroplast morphology on chloroplast movement and photosynthesis, we compared the chloroplast photorelocation and photosynthetic responses of a series of Arabidopsis chloroplast division mutants with a wide variety of chloroplast phenotypes. Chloroplast movement was monitored by red light reflectance imaging of whole plants under increasing intensities of white light. The accumulation and avoidance responses were differentially affected in different mutants and depended on both chloroplast number and morphological heterogeneity. Chlorophyll fluorescence measurements during 5 d light experiments demonstrated that mutants with large-chloroplast phenotypes generally exhibited greater PSII photodamage than those with intermediate phenotypes. No abnormalities in photorelocation efficiency or photosynthetic capacity were observed in plants with small-chloroplast phenotypes. Simultaneous measurement of chloroplast movement and chlorophyll fluorescence indicated that the energy-dependent (qE) and long-lived components of non-photochemical quenching that reflect photoinhibition are affected differentially in different division mutants exposed to high or fluctuating light intensities. We conclude that chloroplast division mutants with abnormal chloroplast morphologies differ markedly from the wild type in their light adaptation capabilities, which may decrease their relative fitness in nature.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Jeffrey A Cruz
- MSU-DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology Michigan State University, East Lansing, MI, USA
| | - Saif M Imran
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA
| | - Jin Chen
- MSU-DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Computer Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - David M Kramer
- MSU-DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology Michigan State University, East Lansing, MI, USA
- Correspondence: or
| | - Katherine W Osteryoung
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Correspondence: or
| |
Collapse
|
176
|
Smith HL, McAusland L, Murchie EH. Don't ignore the green light: exploring diverse roles in plant processes. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2099-2110. [PMID: 28575474 DOI: 10.1093/jxb/erx098] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The pleasant green appearance of plants, caused by their reflectance of wavelengths in the 500-600 nm range, might give the impression that green light is of minor importance in biology. This view persists to an extent. However, there is strong evidence that these wavelengths are not only absorbed but that they also drive and regulate physiological responses and anatomical traits in plants. This review details the existing evidence of essential roles for green wavelengths in plant biology. Absorption of green light is used to stimulate photosynthesis deep within the leaf and canopy profile, contributing to carbon gain and likely crop yield. In addition, green light also contributes to the array of signalling information available to leaves, resulting in developmental adaptation and immediate physiological responses. Within shaded canopies this enables optimization of resource-use efficiency and acclimation of photosynthesis to available irradiance. In this review, we suggest that plants may use these wavelengths not just to optimize stomatal aperture but also to fine-tune whole-canopy efficiency. We conclude that all roles for green light make a significant contribution to plant productivity and resource-use efficiency. We also outline the case for using green wavelengths in applied settings such as crop cultivation in LED-based agriculture and horticulture.
Collapse
Affiliation(s)
- Hayley L Smith
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington campus, Leicestershire LE12 5JS, UK
| | - Lorna McAusland
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington campus, Leicestershire LE12 5JS, UK
| | - Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington campus, Leicestershire LE12 5JS, UK
| |
Collapse
|
177
|
Ajigboye OO, Lu C, Murchie EH, Schlatter C, Swart G, Ray RV. Altered gene expression by sedaxane increases PSII efficiency, photosynthesis and growth and improves tolerance to drought in wheat seedlings. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 137:49-61. [PMID: 28364804 DOI: 10.1016/j.pestbp.2016.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 06/07/2023]
Abstract
Succinate dehydrogenase inhibitor (SDHI) fungicides have been shown to increase PSII efficiency and photosynthesis under drought stress in the absence of disease to enhance the biomass and yield of winter wheat. However, the molecular mechanism of improved photosynthetic efficiency observed in SDHI-treated wheat has not been previously elucidated. Here we used a combination of chlorophyll fluorescence, gas exchange and gene expression analysis, to aid our understanding of the basis of the physiological responses of wheat seedlings under drought conditions to sedaxane, a novel SDHI seed treatment. We show that sedaxane increased the efficiency of PSII photochemistry, reduced non-photochemical quenching and improved the photosynthesis and biomass in wheat correlating with systemic changes in the expression of genes involved in defense, chlorophyll synthesis and cell wall modification. We applied a coexpression network-based approach using differentially expressed genes of leaves, roots and pregerminated seeds from our wheat array datasets to identify the most important hub genes, with top ranked correlation (higher gene association value and z-score) involved in cell wall expansion and strengthening, wax and pigment biosynthesis and defense. The results indicate that sedaxane confers tolerant responses of wheat plants grown under drought conditions by redirecting metabolites from defense/stress responses towards growth and adaptive development.
Collapse
Affiliation(s)
- Olubukola O Ajigboye
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Chungui Lu
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Erik H Murchie
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | | | - Gina Swart
- Syngenta Crop Protection, Schwarzwaldallee 215, 4058 Basel, Switzerland
| | - Rumiana V Ray
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, United Kingdom.
| |
Collapse
|
178
|
Marias DE, Meinzer FC, Woodruff DR, McCulloh KA. Thermotolerance and heat stress responses of Douglas-fir and ponderosa pine seedling populations from contrasting climates. TREE PHYSIOLOGY 2017; 37:301-315. [PMID: 28008081 DOI: 10.1093/treephys/tpw117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Temperature and the frequency and intensity of heat waves are predicted to increase throughout the 21st century. Germinant seedlings are expected to be particularly vulnerable to heat stress because they are in the boundary layer close to the soil surface where intense heating occurs in open habitats. We quantified leaf thermotolerance and whole-plant physiological responses to heat stress in first-year germinant seedlings in two populations each of Pinus ponderosa P. and C. Lawson (PIPO) and Pseudotsuga menziesii (Mirb.) Franco (PSME) from climates with contrasting precipitation and temperature regimes. Thermotolerance of detached needles was evaluated using chlorophyll fluorescence (FV/FM, FO) and electrolyte leakage. PSME was more heat tolerant than PIPO according to both independent assessments of thermotolerance. Following exposure of whole seedlings to a simulated heat wave at 45 °C for 1 h in a growth chamber, we monitored FV/FM, photosynthesis, stomatal conductance, non-structural carbohydrates (NSCs) and carbon isotope ratios (δ13C) for 14 days. Heat treatment induced significant reductions in FV/FM in both species and a transient reduction in photosynthetic gas exchange only in PIPO 1 day after treatment. Heat treatment induced an increase in glucose + fructose concurrent with a decrease in starch in both species, whereas total NSC and sucrose were not affected by heat treatment. The negative relationship between glucose + fructose and starch observed in treated plants may be due to the conversion of starch to glucose + fructose to aid recovery from heat-induced damage. Populations from drier sites displayed greater δ13C values than those from wetter sites, consistent with higher intrinsic water-use efficiency and drought resistance of populations from drier climates. Thermotolerance and heat stress responses appeared to be phenotypically plastic and representative of the environment in which plants were grown, whereas intrinsic water-use efficiency appeared to reflect ecotypic differentiation and the climate of origin.
Collapse
Affiliation(s)
- Danielle E Marias
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
| | - Frederick C Meinzer
- USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331, USA
| | - David R Woodruff
- USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331, USA
| | | |
Collapse
|
179
|
Park JH, Jung S. Perturbations of carotenoid and tetrapyrrole biosynthetic pathways result in differential alterations in chloroplast function and plastid signaling. Biochem Biophys Res Commun 2017; 482:672-677. [PMID: 27865844 DOI: 10.1016/j.bbrc.2016.11.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 11/30/2022]
Abstract
In this study, we used the biosynthetic inhibitors of carotenoid and tetrapyrrole biosynthetic pathways, norflurazon (NF) and oxyfluorfen (OF), as tools to gain insight into mechanisms of photooxidation in rice plants. NF resulted in bleaching symptom on leaves of the treated plants, whereas OF treatment developed a fast symptom of an apparent necrotic phenotype. Both plants exhibited decreases in photosynthetic efficiency, as indicated by Fv/Fm. NF caused severe disruption in thylakoid membranes, whereas OF-treated plants exhibited disruption of chloroplast envelope and plasma membrane. Levels of Lhca and Lhcb proteins in photosystem I (PSI) and PSII were reduced by photooxidative stress in NF- and OF-treated plants, with a greater decrease in NF plants. The down-regulation of nuclear-encoded photosynthesis genes Lhcb and rbcS was also found in both NF- and OF-treated plants, whereas plastid-encoded photosynthetic genes including RbcL, PsaC, and PsbD accumulated normally in NF plants but decreased drastically in OF plants. This proposes that the plastids in NF plants retain their potential to develop thylakoid membranes and that photobleaching is mainly controlled by nuclear genes. Distinct photooxidation patterns between NF- and OF-treated plants developed differential signaling, which might enable the plant to coordinate the expression of photosynthetic genes from the nuclear and plastidic genomes.
Collapse
Affiliation(s)
- Joon-Heum Park
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, South Korea
| | - Sunyo Jung
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
180
|
Meacham K, Sirault X, Quick WP, von Caemmerer S, Furbank R. Diurnal Solar Energy Conversion and Photoprotection in Rice Canopies. PLANT PHYSIOLOGY 2017; 173:495-508. [PMID: 27895208 PMCID: PMC5210756 DOI: 10.1104/pp.16.01585] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/24/2016] [Indexed: 05/06/2023]
Abstract
Genetic improvement of photosynthetic performance of cereal crops and increasing the efficiency with which solar radiation is converted into biomass has recently become a major focus for crop physiologists and breeders. The pulse amplitude modulated chlorophyll fluorescence technique (PAM) allows quantitative leaf level monitoring of the utilization of energy for photochemical light conversion and photoprotection in natural environments, potentially over the entire crop lifecycle. Here, the diurnal relationship between electron transport rate (ETR) and irradiance was measured in five cultivars of rice (Oryza sativa) in canopy conditions with PAM fluorescence under natural solar radiation. This relationship differed substantially from that observed for conventional short term light response curves measured under controlled actinic light with the same leaves. This difference was characterized by a reduced curvature factor when curve fitting was used to model this diurnal response. The engagement of photoprotective processes in chloroplast electron transport in leaves under canopy solar radiation was shown to be a major contributor to this difference. Genotypic variation in the irradiance at which energy flux into photoprotective dissipation became greater than ETR was observed. Cultivars capable of higher ETR at midrange light intensities were shown to produce greater leaf area over time, estimated by noninvasive imaging.
Collapse
Affiliation(s)
- Katherine Meacham
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory 2601, Australia (K.M., X.S., S.v.C., R.F.)
- High Resolution Plant Phenomics Centre, Commonwealth Scientific and Industrial Research Organization (CSIRO), CSIRO Agriculture and Food, Canberra, Australian Capital Territory 2601, Australia (K.M., X.S., R.F.)
- International Rice Research Institute, Los Baños, 4031 Laguna, Philippines (W.P.Q.); and
- University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom (W.P.Q.)
| | - Xavier Sirault
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory 2601, Australia (K.M., X.S., S.v.C., R.F.)
- High Resolution Plant Phenomics Centre, Commonwealth Scientific and Industrial Research Organization (CSIRO), CSIRO Agriculture and Food, Canberra, Australian Capital Territory 2601, Australia (K.M., X.S., R.F.)
- International Rice Research Institute, Los Baños, 4031 Laguna, Philippines (W.P.Q.); and
- University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom (W.P.Q.)
| | - W Paul Quick
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory 2601, Australia (K.M., X.S., S.v.C., R.F.)
- High Resolution Plant Phenomics Centre, Commonwealth Scientific and Industrial Research Organization (CSIRO), CSIRO Agriculture and Food, Canberra, Australian Capital Territory 2601, Australia (K.M., X.S., R.F.)
- International Rice Research Institute, Los Baños, 4031 Laguna, Philippines (W.P.Q.); and
- University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom (W.P.Q.)
| | - Susanne von Caemmerer
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory 2601, Australia (K.M., X.S., S.v.C., R.F.)
- High Resolution Plant Phenomics Centre, Commonwealth Scientific and Industrial Research Organization (CSIRO), CSIRO Agriculture and Food, Canberra, Australian Capital Territory 2601, Australia (K.M., X.S., R.F.)
- International Rice Research Institute, Los Baños, 4031 Laguna, Philippines (W.P.Q.); and
- University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom (W.P.Q.)
| | - Robert Furbank
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory 2601, Australia (K.M., X.S., S.v.C., R.F.);
- High Resolution Plant Phenomics Centre, Commonwealth Scientific and Industrial Research Organization (CSIRO), CSIRO Agriculture and Food, Canberra, Australian Capital Territory 2601, Australia (K.M., X.S., R.F.);
- International Rice Research Institute, Los Baños, 4031 Laguna, Philippines (W.P.Q.); and
- University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom (W.P.Q.)
| |
Collapse
|
181
|
Kaiser E, Kromdijk J, Harbinson J, Heuvelink E, Marcelis LFM. Photosynthetic induction and its diffusional, carboxylation and electron transport processes as affected by CO2 partial pressure, temperature, air humidity and blue irradiance. ANNALS OF BOTANY 2017; 119:191-205. [PMID: 28025286 DOI: 10.1002/dvdy] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/08/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Plants depend on photosynthesis for growth. In nature, factors such as temperature, humidity, CO2 partial pressure, and spectrum and intensity of irradiance often fluctuate. Whereas irradiance intensity is most influential and has been studied in detail, understanding of interactions with other factors is lacking. METHODS We tested how photosynthetic induction after dark-light transitions was affected by CO2 partial pressure (20, 40, 80 Pa), leaf temperatures (15·5, 22·8, 30·5 °C), leaf-to-air vapour pressure deficits (VPDleaf-air; 0·5, 0·8, 1·6, 2·3 kPa) and blue irradiance (0-20 %) in tomato leaves (Solanum lycopersicum). KEY RESULTS Rates of photosynthetic induction strongly increased with CO2 partial pressure, due to increased apparent Rubisco activation rates and reduced diffusional limitations. High leaf temperature produced slightly higher induction rates, and increased intrinsic water use efficiency and diffusional limitation. High VPDleaf-air slowed down induction rates and apparent Rubisco activation and (at 2·3 kPa) induced damped stomatal oscillations. Blue irradiance had no effect. Slower apparent Rubisco activation in elevated VPDleaf-air may be explained by low leaf internal CO2 partial pressure at the beginning of induction. CONCLUSIONS The environmental factors CO2 partial pressure, temperature and VPDleaf-air had significant impacts on rates of photosynthetic induction, as well as on underlying diffusional, carboxylation and electron transport processes. Furthermore, maximizing Rubisco activation rates would increase photosynthesis by at most 6-8 % in ambient CO2 partial pressure (across temperatures and humidities), while maximizing rates of stomatal opening would increase photosynthesis by at most 1-3 %.
Collapse
Affiliation(s)
- Elias Kaiser
- Horticulture and Product Physiology Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Johannes Kromdijk
- Institute for Genomic Biology, University of Illinois, 1206 West Gregory Drive, Urbana, IL, USA
| | - Jeremy Harbinson
- Horticulture and Product Physiology Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Ep Heuvelink
- Horticulture and Product Physiology Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
182
|
Kaiser E, Kromdijk J, Harbinson J, Heuvelink E, Marcelis LFM. Photosynthetic induction and its diffusional, carboxylation and electron transport processes as affected by CO2 partial pressure, temperature, air humidity and blue irradiance. ANNALS OF BOTANY 2017; 119:191-205. [PMID: 28025286 PMCID: PMC5218377 DOI: 10.1093/aob/mcw226] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/08/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Plants depend on photosynthesis for growth. In nature, factors such as temperature, humidity, CO2 partial pressure, and spectrum and intensity of irradiance often fluctuate. Whereas irradiance intensity is most influential and has been studied in detail, understanding of interactions with other factors is lacking. METHODS We tested how photosynthetic induction after dark-light transitions was affected by CO2 partial pressure (20, 40, 80 Pa), leaf temperatures (15·5, 22·8, 30·5 °C), leaf-to-air vapour pressure deficits (VPDleaf-air; 0·5, 0·8, 1·6, 2·3 kPa) and blue irradiance (0-20 %) in tomato leaves (Solanum lycopersicum). KEY RESULTS Rates of photosynthetic induction strongly increased with CO2 partial pressure, due to increased apparent Rubisco activation rates and reduced diffusional limitations. High leaf temperature produced slightly higher induction rates, and increased intrinsic water use efficiency and diffusional limitation. High VPDleaf-air slowed down induction rates and apparent Rubisco activation and (at 2·3 kPa) induced damped stomatal oscillations. Blue irradiance had no effect. Slower apparent Rubisco activation in elevated VPDleaf-air may be explained by low leaf internal CO2 partial pressure at the beginning of induction. CONCLUSIONS The environmental factors CO2 partial pressure, temperature and VPDleaf-air had significant impacts on rates of photosynthetic induction, as well as on underlying diffusional, carboxylation and electron transport processes. Furthermore, maximizing Rubisco activation rates would increase photosynthesis by at most 6-8 % in ambient CO2 partial pressure (across temperatures and humidities), while maximizing rates of stomatal opening would increase photosynthesis by at most 1-3 %.
Collapse
Affiliation(s)
- Elias Kaiser
- Horticulture and Product Physiology Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Johannes Kromdijk
- Institute for Genomic Biology, University of Illinois, 1206 West Gregory Drive, Urbana, IL, USA
| | - Jeremy Harbinson
- Horticulture and Product Physiology Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Ep Heuvelink
- Horticulture and Product Physiology Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
183
|
Wang Q, Zhao H, Jiang J, Xu J, Xie W, Fu X, Liu C, He Y, Wang G. Genetic Architecture of Natural Variation in Rice Nonphotochemical Quenching Capacity Revealed by Genome-Wide Association Study. FRONTIERS IN PLANT SCIENCE 2017; 8:1773. [PMID: 29081789 PMCID: PMC5645755 DOI: 10.3389/fpls.2017.01773] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/28/2017] [Indexed: 05/18/2023]
Abstract
The photoprotective processes conferred by nonphotochemical quenching (NPQ) serve fundamental roles in maintaining plant fitness and sustainable yield. So far, few loci have been reported to be involved in natural variation of NPQ capacity in rice (Oryza sativa), and the extents of variation explored are very limited. Here we conducted a genome-wide association study (GWAS) for NPQ capacity using a diverse worldwide collection of 529 O. sativa accessions. A total of 33 significant association loci were identified. To check the validity of the GWAS signals, three F2 mapping populations with parents selected from the association panel were constructed and assayed. All QTLs detected in mapping populations could correspond to at least one GWAS signal, indicating the GWAS results were quite reliable. OsPsbS1 was repeatedly detected and explained more than 40% of the variation in the whole association population in two years, and demonstrated to be a common major QTL in all three mapping populations derived from inter-group crosses. We revealed 43 single nucleotide polymorphisms (SNPs) and 7 insertions and deletions (InDels) within a 6,997-bp DNA fragment of OsPsbS1, but found no non-synonymous SNPs or InDels in the coding region, indicating the PsbS1 protein sequence is highly conserved. Haplotypes with the 2,674-bp insertion in the promoter region exhibited significantly higher NPQ values and higher expression levels of OsPsbS1. The OsPsbS1 RNAi plants and CRISPR/Cas9 mutants exhibited drastically decreased NPQ values. OsPsbS1 had specific and high-level expression in green tissues of rice. However, we didn't find significant function for OsPsbS2, the other rice PsbS homologue. Manipulation of the significant loci or candidate genes identified may enhance photoprotection and improve photosynthesis and yield in rice.
Collapse
|
184
|
Kandoi D, Mohanty S, Tripathy BC. Towards efficient photosynthesis: overexpression of Zea mays phosphoenolpyruvate carboxylase in Arabidopsis thaliana. PHOTOSYNTHESIS RESEARCH 2016; 130:47-72. [PMID: 26897549 DOI: 10.1007/s11120-016-0224-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/25/2016] [Indexed: 05/26/2023]
Abstract
Plants with C4 photosynthesis are efficient in carbon assimilation and have an advantage over C3 photosynthesis. In C4 photosynthesis, the primary CO2 fixation is catalyzed by phosphoenolpyruvate carboxylase (PEPC). Here, we show that overexpression of Zea mays PEPC cDNA, under the control of 35S promoter, in Arabidopsis thaliana resulted in ~7-10 fold higher protein abundance and ~7-10 fold increase in PEPC activity in the transgenic lines than that in the vector control. We suggest that overexpression of PEPC played an anaplerotic role to increase the supply of 4-carbon carboxylic acids, which provided carbon skeletons for increased amino acid and protein synthesis. Higher protein content must have been responsible for increased metabolic processes including chlorophyll biosynthesis, photosynthesis, and respiration. Consequently, the PEPC-overexpressed transgenic plants had higher chlorophyll content, enhanced electron transport rate (ETR), lower non-photochemical quenching (NPQ) of chlorophyll a fluorescence, and a higher performance index (PI) than the vector control. Consistent with these observations, the rate of CO2 assimilation, the starch content, and the dry weight of PEPC-overexpressed plants increased by 14-18 %, 10-18 %, and 6.5-16 %, respectively. Significantly, transgenics were tolerant to salt stress as they had increased ability to synthesize amino acids, including the osmolyte proline. NaCl (150 mM)-treated transgenic plants had higher variable to maximum Chl a fluorescence (F v/F m) ratio, higher PI, higher ETR, and lower NPQ than the salt-treated vector controls. These results suggest that expression of C4 photosynthesis enzyme(s) in a C3 plant can improve its photosynthetic capacity with enhanced tolerance to salinity stress.
Collapse
Affiliation(s)
- Deepika Kandoi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- School of Biotechnology, Kalinga Institute of Industrial Technology University, Bhubaneswar, Odisha, 751024, India
| | - Sasmita Mohanty
- School of Biotechnology, Kalinga Institute of Industrial Technology University, Bhubaneswar, Odisha, 751024, India
| | - Baishnab C Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
185
|
|
186
|
Zhang AO, Cui ZH, Yu JL, Hu ZL, Ding R, Ren DM, Zhang LJ. Dissipation of excess excitation energy of the needle leaves in Pinus trees during cold winters. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2016; 60:1953-1960. [PMID: 27192998 PMCID: PMC5127873 DOI: 10.1007/s00484-016-1182-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 04/19/2016] [Accepted: 04/30/2016] [Indexed: 06/05/2023]
Abstract
Photooxidative damage to the needle leaves of evergreen trees results from the absorption of excess excitation energy. Efficient dissipation of this energy is essential to prevent photodamage. In this study, we determined the fluorescence transients, absorption spectra, chlorophyll contents, chlorophyll a/b ratios, and relative membrane permeabilities of needle leaves of Pinus koraiensis, Pinus tabulaeformis, and Pinus armandi in both cold winter and summer. We observed a dramatic decrease in the maximum fluorescence (F m) and substantial absorption of light energy in winter leaves of all three species. The F m decline was not correlated with a decrease in light absorption or with changes in chlorophyll content and chlorophyll a/b ratio. The results suggested that the winter leaves dissipated a large amount of excess energy as heat. Because the cold winter leaves had lost normal physiological function, the heat dissipation depended solely on changes in the photosystem II supercomplex rather than the xanthophyll cycle. These findings imply that more attention should be paid to heat dissipation via changes in the photosystem complex structure during the growing season.
Collapse
Affiliation(s)
- A O Zhang
- College of Biological Sciences and Technology, Shenyang Agricultural University, Shenyang, 110866, China
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhen-Hai Cui
- College of Biological Sciences and Technology, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang, 110866, China
| | - Jia-Lin Yu
- College of Biological Sciences and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zi-Ling Hu
- College of Biological Sciences and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Rui Ding
- College of Biological Sciences and Technology, Shenyang Agricultural University, Shenyang, 110866, China
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Da-Ming Ren
- College of Biological Sciences and Technology, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Li-Jun Zhang
- College of Biological Sciences and Technology, Shenyang Agricultural University, Shenyang, 110866, China.
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China.
- Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang, 110866, China.
| |
Collapse
|
187
|
Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, Long SP. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 2016; 354:857-861. [PMID: 27856901 DOI: 10.1126/science.aai8878] [Citation(s) in RCA: 733] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/28/2016] [Indexed: 01/06/2023]
Abstract
Crop leaves in full sunlight dissipate damaging excess absorbed light energy as heat. When sunlit leaves are shaded by clouds or other leaves, this protective dissipation continues for many minutes and reduces photosynthesis. Calculations have shown that this could cost field crops up to 20% of their potential yield. Here, we describe the bioengineering of an accelerated response to natural shading events in Nicotiana (tobacco), resulting in increased leaf carbon dioxide uptake and plant dry matter productivity by about 15% in fluctuating light. Because the photoprotective mechanism that has been altered is common to all flowering plants and crops, the findings provide proof of concept for a route to obtaining a sustainable increase in productivity for food crops and a much-needed yield jump.
Collapse
MESH Headings
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Bioengineering
- Carbon Dioxide/metabolism
- Crops, Agricultural/genetics
- Crops, Agricultural/growth & development
- Crops, Agricultural/metabolism
- Crops, Agricultural/radiation effects
- Darkness
- Light-Harvesting Protein Complexes/genetics
- Light-Harvesting Protein Complexes/metabolism
- Magnoliopsida/genetics
- Magnoliopsida/growth & development
- Magnoliopsida/metabolism
- Magnoliopsida/radiation effects
- Oxidoreductases/genetics
- Oxidoreductases/metabolism
- Photosynthesis
- Photosystem II Protein Complex/genetics
- Photosystem II Protein Complex/metabolism
- Plant Leaves/growth & development
- Plant Leaves/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/radiation effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sunlight
- Nicotiana/genetics
- Nicotiana/growth & development
- Nicotiana/metabolism
- Nicotiana/radiation effects
Collapse
Affiliation(s)
- Johannes Kromdijk
- Carl R. Woese Institute for Genomic Biology, University of Illinois, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Katarzyna Głowacka
- Carl R. Woese Institute for Genomic Biology, University of Illinois, 1206 West Gregory Drive, Urbana, IL 61801, USA.
- Institute of Plant Genetics, Polish Academy of Sciences, Ulica Strzeszyńska 34, 60-479 Poznań, Poland
| | - Lauriebeth Leonelli
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, 111 Koshland Hall, University of California Berkeley, Berkeley, CA 94720-3102, USA
| | - Stéphane T Gabilly
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, 111 Koshland Hall, University of California Berkeley, Berkeley, CA 94720-3102, USA
| | - Masakazu Iwai
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, 111 Koshland Hall, University of California Berkeley, Berkeley, CA 94720-3102, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Krishna K Niyogi
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, 111 Koshland Hall, University of California Berkeley, Berkeley, CA 94720-3102, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Stephen P Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois, 1206 West Gregory Drive, Urbana, IL 61801, USA.
- Lancaster Environment Centre, University of Lancaster, Lancaster LA1 1YX, UK
| |
Collapse
|
188
|
Leonelli L, Erickson E, Lyska D, Niyogi KK. Transient expression in Nicotiana benthamiana for rapid functional analysis of genes involved in non-photochemical quenching and carotenoid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:375-386. [PMID: 27407008 PMCID: PMC5516181 DOI: 10.1111/tpj.13268] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/30/2016] [Accepted: 07/04/2016] [Indexed: 05/21/2023]
Abstract
Plants must switch rapidly between light harvesting and photoprotection in response to environmental fluctuations in light intensity. This switch can lead to losses in absorbed energy usage, as photoprotective energy dissipation mechanisms can take minutes to hours to fully relax. One possible way to improve photosynthesis is to engineer these energy dissipation mechanisms (measured as non-photochemical quenching of chlorophyll a fluorescence, NPQ) to induce and relax more quickly, resulting in smaller losses under dynamic light conditions. Previous studies aimed at understanding the enzymes involved in the regulation of NPQ have relied primarily on labor-intensive and time-consuming generation of stable transgenic lines and mutant populations - approaches limited to organisms amenable to genetic manipulation and mapping. To enable rapid functional testing of NPQ-related genes from diverse organisms, we performed Agrobacterium tumefaciens-mediated transient expression assays in Nicotiana benthamiana to test if NPQ kinetics could be modified in fully expanded leaves. By expressing Arabidopsis thaliana genes known to be involved in NPQ, we confirmed the viability of this method for studying dynamic photosynthetic processes. Subsequently, we used naturally occurring variation in photosystem II subunit S, a modulator of NPQ in plants, to explore how differences in amino acid sequence affect NPQ capacity and kinetics. Finally, we functionally characterized four predicted carotenoid biosynthesis genes from the marine algae Nannochloropsis oceanica and Thalassiosira pseudonana and examined the effect of their expression on NPQ in N. benthamiana. This method offers a powerful alternative to traditional gene characterization methods by providing a fast and easy platform for assessing gene function in planta.
Collapse
Affiliation(s)
- Lauriebeth Leonelli
- Howard Hughes Medical InstituteDepartment of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720‐3102USA
| | - Erika Erickson
- Howard Hughes Medical InstituteDepartment of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720‐3102USA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Dagmar Lyska
- Howard Hughes Medical InstituteDepartment of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720‐3102USA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Krishna K. Niyogi
- Howard Hughes Medical InstituteDepartment of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720‐3102USA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| |
Collapse
|
189
|
Jallet D, Caballero MA, Gallina AA, Youngblood M, Peers G. Photosynthetic physiology and biomass partitioning in the model diatom Phaeodactylum tricornutum grown in a sinusoidal light regime. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
190
|
Kaiser E, Morales A, Harbinson J, Heuvelink E, Prinzenberg AE, Marcelis LFM. Metabolic and diffusional limitations of photosynthesis in fluctuating irradiance in Arabidopsis thaliana. Sci Rep 2016; 6:31252. [PMID: 27502328 PMCID: PMC4977489 DOI: 10.1038/srep31252] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/11/2016] [Indexed: 11/09/2022] Open
Abstract
A better understanding of the metabolic and diffusional limitations of photosynthesis in fluctuating irradiance can help identify targets for improving crop yields. We used different genotypes of Arabidopsis thaliana to characterise the importance of Rubisco activase (Rca), stomatal conductance (gs), non-photochemical quenching of chlorophyll fluorescence (NPQ) and sucrose phosphate synthase (SPS) on photosynthesis in fluctuating irradiance. Leaf gas exchange and chlorophyll fluorescence were measured in leaves exposed to stepwise increases and decreases in irradiance. rwt43, which has a constitutively active Rubisco enzyme in different irradiance intensities (except in darkness), showed faster increases than the wildtype, Colombia-0, in photosynthesis rates after step increases in irradiance. rca-2, having decreased Rca concentration, showed lower rates of increase. In aba2-1, high gs increased the rate of change after stepwise irradiance increases, while in C24, low gs tended to decrease it. Differences in rates of change between Colombia-0 and plants with low levels of NPQ (npq1-2, npq4-1) or SPS (spsa1) were negligible. In Colombia-0, the regulation of Rubisco activation and of gs were therefore limiting for photosynthesis in fluctuating irradiance, while levels of NPQ or SPS were not. This suggests Rca and gs as targets for improvement of photosynthesis of plants in fluctuating irradiance.
Collapse
Affiliation(s)
- Elias Kaiser
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Alejandro Morales
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, PO Box 430, 6700 AK Wageningen, The Netherlands
| | - Jeremy Harbinson
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Ep Heuvelink
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Aina E Prinzenberg
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands.,Laboratory of Genetics, Department of Plant Sciences, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
191
|
Armbruster U, Leonelli L, Correa Galvis V, Strand D, Quinn EH, Jonikas MC, Niyogi KK. Regulation and Levels of the Thylakoid K+/H+ Antiporter KEA3 Shape the Dynamic Response of Photosynthesis in Fluctuating Light. PLANT & CELL PHYSIOLOGY 2016; 57:1557-1567. [PMID: 27335350 PMCID: PMC4937787 DOI: 10.1093/pcp/pcw085] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/24/2016] [Indexed: 05/22/2023]
Abstract
Crop canopies create environments of highly fluctuating light intensities. In such environments, photoprotective mechanisms and their relaxation kinetics have been hypothesized to limit photosynthetic efficiency and therefore crop yield potential. Here, we show that overexpression of the Arabidopsis thylakoid K+/H+ antiporter KEA3 accelerates the relaxation of photoprotective energy-dependent quenching after transitions from high to low light in Arabidopsis and tobacco. This, in turn, enhances PSII quantum efficiency in both organisms, supporting that in wild-type plants, residual light energy quenching following a high to low light transition represents a limitation to photosynthetic efficiency in fluctuating light. This finding underscores the potential of accelerating quenching relaxation as a building block for improving photosynthetic efficiency in the field. Additionally, by overexpressing natural KEA3 variants with modification to the C-terminus, we show that KEA3 activity is regulated by a mechanism involving its lumen-localized C-terminus, which lowers KEA3 activity in high light. This regulatory mechanism fine-tunes the balance between photoprotective energy dissipation in high light and maximum quantum yield in low light, likely to be critical for efficient photosynthesis in fluctuating light conditions.
Collapse
Affiliation(s)
- Ute Armbruster
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA 94305, USA
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Lauriebeth Leonelli
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Viviana Correa Galvis
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Deserah Strand
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Erica H Quinn
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Martin C Jonikas
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA 94305, USA
| | - Krishna K Niyogi
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
192
|
Johnson GN, Stepien P. Plastid Terminal Oxidase as a Route to Improving Plant Stress Tolerance: Known Knowns and Known Unknowns. PLANT & CELL PHYSIOLOGY 2016; 57:1387-1396. [PMID: 26936791 DOI: 10.1093/pcp/pcw042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/21/2016] [Indexed: 05/24/2023]
Abstract
A plastid-localized terminal oxidase, PTox, was first described due to its role in chloroplast development, with plants lacking PTox producing white sectors on their leaves. This phenotype is explained as being due to PTox playing a role in carotenoid biosynthesis, as a cofactor of phytoene desaturase. Co-occurrence of PTox with a chloroplast-localized NADPH dehydrogenase (NDH) has suggested the possibility of a functional respiratory pathway in plastids. Evidence has also been found that, in certain stress-tolerant plant species, PTox can act as an electron acceptor from PSII, making it a candidate for engineering stress-tolerant crops. However, attempts to induce such a pathway via overexpression of the PTox protein have failed to date. Here we review the current understanding of PTox function in higher plants and discuss possible barriers to inducing PTox activity to improve stress tolerance.
Collapse
Affiliation(s)
- Giles N Johnson
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Piotr Stepien
- Department of Plant Nutrition, Wroclaw University of Environmental and Life Sciences, ul. Grunwaldzka 53, 50-357 Wroclaw, Poland
| |
Collapse
|
193
|
Chen JW, Kuang SB, Long GQ, Yang SC, Meng ZG, Li LG, Chen ZJ, Zhang GH. Photosynthesis, light energy partitioning, and photoprotection in the shade-demanding species Panax notoginseng under high and low level of growth irradiance. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:479-491. [PMID: 32480478 DOI: 10.1071/fp15283] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/22/2016] [Indexed: 06/11/2023]
Abstract
Partitioning of light energy into several pathways and its relation to photosynthesis were examined in a shade-demanding species Panax notoginseng (Burkill) F.H.Chen ex C.Y.Wu & K.M.Feng grown along a light gradient. In fully light-induced leaves, the actual efficiency of PSII photochemistry (ΔF/Fm'), electron transport rate (ETR), non-photochemical quenching (NPQ) and photochemical quenching (qP) were lower in low-light-grown plants; this was also the case in fully dark-adapted leaves under a simulated sunfleck. In response to varied light intensity, high-light-grown plants showed greater quantum yields of light-dependent non-photochemical quenching (ΦNPQ) and PSII photochemistry (ΦPSII) and smaller quantum yields of fluorescence and constitutive thermal dissipation (Φf,d). Under the simulated sunfleck, high-light-grown plants showed greater ΦPSII and smaller Φf,d. There were positive relationships between net photosynthesis (Anet) and ΦNPQ+f,d and negative relationships between Anet and ΦPSII in fully light-induced leaves; negative correlations of Anet with ΦNPQ+f,d and positive correlations of Anet with ΦPSII were observed in fully dark-adapted leaves. In addition, more nitrogen was partitioned to light-harvesting components in low-light-grown plants, whereas leaf morphology and anatomy facilitate reducing light capture in high-light-grown plants. The pool of xanthophyll pigments and the de-epoxidation state was greater in high-light-grown plants. Antioxidant defence was elevated by increased growth irradiance. Overall, the evidences from P. notoginseng suggest that in high-light-grown shade-demanding plants irradiated by high light more electrons were consumed by non-net carboxylative processes that activate the component of NPQ, that low-light-grown plants correspondingly protect the photosynthetic apparatus against photodamage by reducing the efficiency of PSII photochemistry under high light illumination, and that during the photosynthetic induction, the ΔpH-dependent (qE) component of NPQ might dominate photoprotection, but the NPQ also depresses the enhancement of photosynthesis via competition for light energy.
Collapse
Affiliation(s)
- Jun-Wen Chen
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming, 650 201 Yunnan, People's Republic of China
| | - Shuang-Bian Kuang
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming, 650 201 Yunnan, People's Republic of China
| | - Guang-Qiang Long
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming, 650 201 Yunnan, People's Republic of China
| | - Sheng-Chao Yang
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming, 650 201 Yunnan, People's Republic of China
| | - Zhen-Gui Meng
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming, 650 201 Yunnan, People's Republic of China
| | - Long-Gen Li
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming, 650 201 Yunnan, People's Republic of China
| | - Zhong-Jian Chen
- Insitute of Sanqi, Wenshan University, Wenshan, 663 000 Yunnan, People's Republic of China
| | - Guang-Hui Zhang
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming, 650 201 Yunnan, People's Republic of China
| |
Collapse
|
194
|
Herdean A, Teardo E, Nilsson AK, Pfeil BE, Johansson ON, Ünnep R, Nagy G, Zsiros O, Dana S, Solymosi K, Garab G, Szabó I, Spetea C, Lundin B. A voltage-dependent chloride channel fine-tunes photosynthesis in plants. Nat Commun 2016; 7:11654. [PMID: 27216227 PMCID: PMC4890181 DOI: 10.1038/ncomms11654] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/16/2016] [Indexed: 11/17/2022] Open
Abstract
In natural habitats, plants frequently experience rapid changes in the intensity of sunlight. To cope with these changes and maximize growth, plants adjust photosynthetic light utilization in electron transport and photoprotective mechanisms. This involves a proton motive force (PMF) across the thylakoid membrane, postulated to be affected by unknown anion (Cl(-)) channels. Here we report that a bestrophin-like protein from Arabidopsis thaliana functions as a voltage-dependent Cl(-) channel in electrophysiological experiments. AtVCCN1 localizes to the thylakoid membrane, and fine-tunes PMF by anion influx into the lumen during illumination, adjusting electron transport and the photoprotective mechanisms. The activity of AtVCCN1 accelerates the activation of photoprotective mechanisms on sudden shifts to high light. Our results reveal that AtVCCN1, a member of a conserved anion channel family, acts as an early component in the rapid adjustment of photosynthesis in variable light environments.
Collapse
Affiliation(s)
- Andrei Herdean
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Enrico Teardo
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Anders K. Nilsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Bernard E. Pfeil
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Oskar N. Johansson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Renáta Ünnep
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen 5232, Switzerland
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest 1121, Hungary
| | - Gergely Nagy
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen 5232, Switzerland
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest 1121, Hungary
| | - Ottó Zsiros
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, Szeged 6701, Hungary
| | - Somnath Dana
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Katalin Solymosi
- Department of Plant Anatomy, Eötvös Loránd University, Budapest 1117, Hungary
| | - Győző Garab
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, Szeged 6701, Hungary
| | - Ildikó Szabó
- Department of Biology, University of Padova, Padova 35121, Italy
- CNR Neuroscience Institute, Padova 35121, Italy
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Björn Lundin
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| |
Collapse
|
195
|
Light-emitting diode technology status and directions: opportunities for horticultural lighting. ACTA ACUST UNITED AC 2016. [DOI: 10.17660/actahortic.2016.1134.53] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
196
|
Dirks I, Raviv B, Shelef O, Hill A, Amir E, Aidoo MK, Hoefgen B, Rapaport T, Gil H, Geta E, Kochavi A, Cohen I, Rachmilevitch S. Green roofs: what can we learn from desert plants? Isr J Ecol Evol 2016. [DOI: 10.1080/15659801.2016.1140619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Green roofs in the Mediterranean region are often exposed to high levels of radiation, extreme temperatures, and an inconsistent water supply. To withstand these harsh conditions in shallow soils and poorly aerated growth media, plants must be armored with adaptations. Strategies that have evolved in desert plants can play significant roles in the use of plants for green covers. In the following, we will specifically focus on (1) heat and radiation, (2) drought, and (3) salinity. Further, we will discuss (4) interactions between neighboring plants. Finally, we will (5) propose a design for diverse green roofs that includes horticultural and medicinal products and provides diverse habitats. Many desert plants have developed morphological and anatomical features to avoid photo-inhibition, which can be advantageous for growth on green roofs. Plants exhibiting C4photosynthesis or crassulacean acid metabolism (CAM) photosynthesis have a protected hydraulic system that enables growth under dry conditions. Furthermore, dew and high levels of relative humidity can provide reliable water sources under limited precipitation. Halophytes are protected against salinity, ionic specific stress, and nutritional imbalances, characteristics that can be advantageous for green roofs. Under limited space, competition for resources becomes increasingly relevant. Allelopathy can also induce the germination and growth inhibition of neighboring plants. Many desert plants, as a result of their exposure to environmental stress, have developed unique survival adaptations based on secondary metabolites that can be used as pharmaceuticals. A systematic survey of plant strategies to withstand these extreme conditions provides a basis for increasing the number of green roof candidates.
Collapse
Affiliation(s)
- Inga Dirks
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| | - Buzi Raviv
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| | - Oren Shelef
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| | - Amber Hill
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| | - Eppel Amir
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| | - Moses Kwame Aidoo
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| | - Brian Hoefgen
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| | - Tal Rapaport
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| | - Hila Gil
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| | - Endale Geta
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| | - Amnon Kochavi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| | - Itay Cohen
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| | - Shimon Rachmilevitch
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| |
Collapse
|
197
|
Huang JY, Chiu YF, Ortega JM, Wang HT, Tseng TS, Ke SC, Roncel M, Chu HA. Mutations of Cytochrome b559 and PsbJ on and near the QC Site in Photosystem II Influence the Regulation of Short-Term Light Response and Photosynthetic Growth of the Cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 2016; 55:2214-26. [DOI: 10.1021/acs.biochem.6b00133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jine-Yung Huang
- Institute
of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Fang Chiu
- Institute
of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - José M. Ortega
- Instituto
de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, 41092 Seville, Spain
| | - Hsing-Ting Wang
- Institute
of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Tien-Sheng Tseng
- Institute
of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shyue-Chu Ke
- Department
of Physics, National Dong Hwa University, Hualien 97401, Taiwan
| | - Mercedes Roncel
- Instituto
de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, 41092 Seville, Spain
| | - Hsiu-An Chu
- Institute
of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
198
|
Flood PJ, Kruijer W, Schnabel SK, van der Schoor R, Jalink H, Snel JFH, Harbinson J, Aarts MGM. Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. PLANT METHODS 2016; 12:14. [PMID: 26884806 PMCID: PMC4754911 DOI: 10.1186/s13007-016-0113-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/25/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Recent advances in genome sequencing technologies have shifted the research bottleneck in plant sciences from genotyping to phenotyping. This shift has driven the development of phenomics, high-throughput non-invasive phenotyping technologies. RESULTS We describe an automated high-throughput phenotyping platform, the Phenovator, capable of screening 1440 Arabidopsis plants multiple times per day for photosynthesis, growth and spectral reflectance at eight wavelengths. Using this unprecedented phenotyping capacity, we have been able to detect significant genetic differences between Arabidopsis accessions for all traits measured, across both temporal and environmental scales. The high frequency of measurement allowed us to observe that heritability was not only trait specific, but for some traits was also time specific. CONCLUSIONS Such continuous real-time non-destructive phenotyping will allow detailed genetic and physiological investigations of the kinetics of plant homeostasis and development. The success and ultimate outcome of a breeding program will depend greatly on the genetic variance which is sampled. Our observation of temporal fluctuations in trait heritability shows that the moment of measurement can have lasting consequences. Ultimately such phenomic level technologies will provide more dynamic insights into plant physiology, and the necessary data for the omics revolution to reach its full potential.
Collapse
Affiliation(s)
- Pádraic J. Flood
- />Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
- />Horticulture and Production Physiology, Wageningen University, Wageningen, The Netherlands
- />Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Willem Kruijer
- />Biometris, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Sabine K. Schnabel
- />Biometris, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Rob van der Schoor
- />Greenhouse Horticulture, Wageningen University and Research Centre, Wageningen, The Netherlands
- />PhenoVation BV, Wageningen, The Netherlands
| | - Henk Jalink
- />Greenhouse Horticulture, Wageningen University and Research Centre, Wageningen, The Netherlands
- />PhenoVation BV, Wageningen, The Netherlands
| | - Jan F. H. Snel
- />Greenhouse Horticulture, Wageningen University and Research Centre, Wageningen, The Netherlands
- />Adviesbureau JFH Snel, Wageningen, The Netherlands
| | - Jeremy Harbinson
- />Horticulture and Production Physiology, Wageningen University, Wageningen, The Netherlands
| | - Mark G. M. Aarts
- />Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
199
|
Tang Y, Fu X, Shen Q, Tang K. Roles of MPBQ-MT in Promoting α/γ-Tocopherol Production and Photosynthesis under High Light in Lettuce. PLoS One 2016; 11:e0148490. [PMID: 26867015 PMCID: PMC4750918 DOI: 10.1371/journal.pone.0148490] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 01/19/2016] [Indexed: 11/27/2022] Open
Abstract
2-methyl-6-phytyl-1, 4-benzoquinol methyltransferase (MPBQ-MT) is a vital enzyme catalyzing a key methylation step in both α/γ-tocopherol and plastoquinone biosynthetic pathway. In this study, the gene encoding MPBQ-MT was isolated from lettuce (Lactuca sativa) by rapid amplification of cDNA ends (RACE), named LsMT. Overexpression of LsMT in lettuce brought about a significant increase of α- and γ-tocopherol contents with a reduction of phylloquinone (vitamin K1) content, suggesting a competition for a common substrate phytyl diphosphate (PDP) between the two biosynthetic pathways. Besides, overexpression of LsMT significantly increased plastoquinone (PQ) level. The increase of tocopherol and plastoquinone levels by LsMT overexpression conduced to the improvement of plants' tolerance and photosynthesis under high light stress, by directing excessive light energy toward photosynthetic production rather than toward generation of more photooxidative damage. These findings suggest that the role and function of MPBQ-MT can be further explored for enhancing vitamin E value, strengthening photosynthesis and phototolerance under high light in plants.
Collapse
Affiliation(s)
- Yueli Tang
- Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xueqing Fu
- Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Shen
- Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kexuan Tang
- Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
200
|
Abstract
The first step of photosynthesis in plants is the absorption of sunlight by pigments in the antenna complexes of photosystem II (PSII), followed by transfer of the nascent excitation energy to the reaction centers, where long-term storage as chemical energy is initiated. Quantum mechanical mechanisms must be invoked to explain the transport of excitation within individual antenna. However, it is unclear how these mechanisms influence transfer across assemblies of antenna and thus the photochemical yield at reaction centers in the functional thylakoid membrane. Here, we model light harvesting at the several-hundred-nanometer scale of the PSII membrane, while preserving the dominant quantum effects previously observed in individual complexes. We show that excitation moves diffusively through the antenna with a diffusion length of 50 nm until it reaches a reaction center, where charge separation serves as an energetic trap. The diffusion length is a single parameter that incorporates the enhancing effect of excited state delocalization on individual rates of energy transfer as well as the complex kinetics that arise due to energy transfer and loss by decay to the ground state. The diffusion length determines PSII's high quantum efficiency in ideal conditions, as well as how it is altered by the membrane morphology and the closure of reaction centers. We anticipate that the model will be useful in resolving the nonphotochemical quenching mechanisms that PSII employs in conditions of high light stress.
Collapse
|