151
|
Abe H, Ohnishi J, Narusaka M, Seo S, Narusaka Y, Tsuda S, Kobayashi M. Function of jasmonate in response and tolerance of Arabidopsis to thrip feeding. PLANT & CELL PHYSIOLOGY 2008; 49:68-80. [PMID: 18045812 DOI: 10.1093/pcp/pcm168] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We analyzed the interaction between Arabidopsis and western flower thrips (Frankliniella occidentalis), which are one of the most serious insect pests of cultivated plants. We focused on the function of the immunity-related plant hormones jasmonate (JA), ethylene (ET) and salicylic acid (SA) in the plant's response to thrip feeding. Expression of the marker genes for each hormone response was induced by thrip feeding in wild-type (WT) plants. Further analyses in the hormone-related mutants coi1-1 (JA insensitive), ein2-1 and ein3-1 (ET insensitive) and eds16-1 (SA deficient) suggested the importance of these hormones in the plant response to feeding. Comparative transcriptome analyses suggested a strong relationship between thrip feeding and JA treatment, but not ET or SA treatment. The JA content of WT plants was significantly increased after thrip feeding. Moreover, coi1-1, but not ein2-1, showed lower feeding tolerance against thrips than the WT. Application of JA to WT plants before thrip feeding enhanced the plants' feeding tolerance. JA modulates several defense responses in cooperation with ET, but application of the ET precursor 1-aminocyclopropane-carboxylic acid had a marked negative effect on feeding tolerance. Our results indicate that JA plays an important role in Arabidopsis in terms of response to, and tolerance against, thrip feeding.
Collapse
Affiliation(s)
- Hiroshi Abe
- Department of Biological Systems, RIKEN BioResource Center, Tsukuba, 305-0074 Japan.
| | | | | | | | | | | | | |
Collapse
|
152
|
Deng Z, Zhang X, Tang W, Oses-Prieto JA, Suzuki N, Gendron JM, Chen H, Guan S, Chalkley RJ, Peterman TK, Burlingame AL, Wang ZY. A proteomics study of brassinosteroid response in Arabidopsis. Mol Cell Proteomics 2007; 6:2058-71. [PMID: 17848588 PMCID: PMC2966871 DOI: 10.1074/mcp.m700123-mcp200] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The plant steroid hormones brassinosteroids (BRs) play an important role in a wide range of developmental and physiological processes. How BR signaling regulates diverse processes remains unclear. To understand the molecular details of BR responses, we performed a proteomics study of BR-regulated proteins in Arabidopsis using two-dimensional DIGE coupled with LC-MS/MS. We identified 42 BR-regulated proteins, which are predicted to play potential roles in BR regulation of specific cellular processes, such as signaling, cytoskeleton rearrangement, vesicle trafficking, and biosynthesis of hormones and vitamins. Analyses of the BR-insensitive mutant bri1-116 and BR-hypersensitive mutant bzr1-1D identified five proteins (PATL1, PATL2, THI1, AtMDAR3, and NADP-ME2) affected both by BR treatment and in the mutants, suggesting their importance in BR action. Selected proteins were further studied using insertion knock-out mutants or immunoblotting. Interestingly about 80% of the BR-responsive proteins were not identified in previous microarray studies, and direct comparison between protein and RNA changes in BR mutants revealed a very weak correlation. RT-PCR analysis of selected genes revealed gene-specific kinetic relationships between RNA and protein responses. Furthermore BR-regulated posttranslational modification of BiP2 protein was detected as spot shifts in two-dimensional DIGE. This study provides novel insights into the molecular networks that link BR signaling to specific cellular and physiological responses.
Collapse
Affiliation(s)
- Zhiping Deng
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305
| | - Xin Zhang
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco CA 94143
| | - Wenqiang Tang
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305
| | - Juan A Oses-Prieto
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco CA 94143
| | - Nagi Suzuki
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco CA 94143
| | - Joshua M Gendron
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305
- Department of Biological Sciences, Stanford University, Stanford, CA 94305
| | - Huanjing Chen
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305
| | - Shenheng Guan
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco CA 94143
| | - Robert J. Chalkley
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco CA 94143
| | - T. Kaye Peterman
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481
| | - Alma L. Burlingame
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco CA 94143
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305
- To whom correspondence should be addressed: Department of Plant Biology, Carnegie Institution of Washington, 260 Panama Street, Stanford, CA 94305. Phone: 650-325-1521 ext 205. Fax: 650-325-6857
| |
Collapse
|
153
|
Yara A, Yaeno T, Hasegawa M, Seto H, Montillet JL, Kusumi K, Seo S, Iba K. Disease resistance against Magnaporthe grisea is enhanced in transgenic rice with suppression of omega-3 fatty acid desaturases. PLANT & CELL PHYSIOLOGY 2007; 48:1263-74. [PMID: 17716996 DOI: 10.1093/pcp/pcm107] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Linolenic acid (18:3) is the most abundant fatty acid in plant membrane lipids and is a source for various oxidized metabolites, called oxylipins. 18:3 and oxylipins play important roles in the induction of defense responses to pathogen infection and wound stress in Arabidopsis. However, in rice, endogenous roles for 18:3 and oxylipins in disease resistance have not been confirmed. We generated 18:3-deficient transgenic rice plants (F78Ri) with co-suppression of two omega-3 fatty acid desaturases, OsFAD7 and OsFAD8. that synthesize 18:3. The F78Ri plants showed enhanced resistance to the phytopathogenic fungus Magnaporthe grisea. A typical 18:3-derived oxylipin, jasmonic acid (JA), acts as a signaling molecule in defense responses to fungal infection in Arabidopsis. However, in F78Ri plants, the expression of JA-responsive pathogenesis-related genes, PBZ1 and PR1b, was induced after inoculation with M. grisea, although the JA-mediated wound response was suppressed. Furthermore, the application of JA methyl ester had no significant effect on the enhanced resistance in F78Ri plants. Taken together, our results indicate that, although suppression of fatty acid desaturases involves the concerted action of varied oxylipins via diverse metabolic pathways, 18:3 or 18:3-derived oxylipins, except for JA, may contribute to signaling on defense responses of rice to M. grisea infection.
Collapse
Affiliation(s)
- Asanori Yara
- Department of Biology, Faculty of Sciences, Kyushu University, Hakozaki, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Wang L, Halitschke R, Kang JH, Berg A, Harnisch F, Baldwin IT. Independently silencing two JAR family members impairs levels of trypsin proteinase inhibitors but not nicotine. PLANTA 2007; 226:159-67. [PMID: 17273867 DOI: 10.1007/s00425-007-0477-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2006] [Accepted: 01/03/2007] [Indexed: 05/13/2023]
Abstract
Jasmonic acid (JA)-amino acid conjugates are important JA metabolites that activate JA responses. However, our understanding of their involvement in herbivore defenses is limited. We identified a new Arabidopsis jasmonate resistant 1 (JAR1) homologue in Nicotiana attenuata (N. attenuata) and named it jasmonate resistant 6 (JAR6). JAR6 clustered closely with Arabidopsis JAR1 and the recently reported jasmonate resistant 4 (JAR4), another JAR1 homologue in N. attenuata, in a phylogenic analysis. The strong elicitation of JAR6 transcripts by wounding and treatment with Manduca sexta (M. sexta) oral secretions (OS), which mimics herbivore attack, suggests it plays a role in herbivore defense. Independently silencing JAR4 or JAR6 by transforming N. attenuata with inverted repeat JAR4 or JAR6 constructs significantly reduced levels of not only JA-Ile plus JA-Leu but also JA-Val in OS-elicited leaves, suggesting JAR4 and JAR6 are functionally redundant and their amino acid substrates are not highly specific to individual amino acids. A new JA conjugate, JA-Gln, whose levels are much higher than those of the other JA conjugates in WT plants, was not affected in JAR4- or JAR6-silenced lines, implying that another JA-conjugating enzyme exists in N. attenuata. Neither JA-ACC, the second most abundant JA conjugate in Arabidopsis seedlings, nor JA-Met or JA-Trp, was detectable in N. attenuata. Levels of trypsin proteinase inhibitors (TPIs) in JAR4- and JAR6-silenced plants were significantly reduced, but nicotine levels were normal. We conclude that both JAR4 and JAR6 conjugate JA to Ile, Val, and Leu, and that both positively regulate TPI activity.
Collapse
Affiliation(s)
- Lei Wang
- Department for Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | | | | | | | | | | |
Collapse
|
155
|
Holton N, Caño-Delgado A, Harrison K, Montoya T, Chory J, Bishop GJ. Tomato BRASSINOSTEROID INSENSITIVE1 is required for systemin-induced root elongation in Solanum pimpinellifolium but is not essential for wound signaling. THE PLANT CELL 2007; 19:1709-17. [PMID: 17513502 PMCID: PMC1913732 DOI: 10.1105/tpc.106.047795] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The tomato Leu-rich repeat receptor kinase BRASSINOSTEROID INSENSITIVE1 (BRI1) has been implicated in both peptide (systemin) and steroid (brassinosteroid [BR]) hormone perception. In an attempt to dissect these signaling pathways, we show that transgenic expression of BRI1 can restore the dwarf phenotype of the tomato curl3 (cu3) mutation. Confirmation that BRI1 is involved in BR signaling is highlighted by the lack of BR binding to microsomal fractions made from cu3 mutants and the restoration of BR responsiveness following transformation with BRI1. In addition, wound and systemin responses in the cu3 mutants are functional, as assayed by proteinase inhibitor gene induction and rapid alkalinization of culture medium. However, we observed BRI1-dependent root elongation in response to systemin in Solanum pimpinellifolium. In addition, ethylene perception is required for normal systemin responses in roots. These data taken together suggest that cu3 is not defective in systemin-induced wound signaling and that systemin perception can occur via a non-BRI1 mechanism.
Collapse
Affiliation(s)
- Nicholas Holton
- Division of Biology, Imperial College London, Ashford, Kent TN25 5AN, United Kingdom
| | | | | | | | | | | |
Collapse
|
156
|
Kachroo A, Shanklin J, Whittle E, Lapchyk L, Hildebrand D, Kachroo P. The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis. PLANT MOLECULAR BIOLOGY 2007; 63:257-71. [PMID: 17072561 DOI: 10.1007/s11103-006-9086-y] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 08/31/2006] [Indexed: 05/12/2023]
Abstract
In plants, changes in the levels of oleic acid (18:1), a major monounsaturated fatty acid (FA), results in the alteration of salicylic acid (SA)- and jasmonic acid (JA)-mediated defense responses. This is evident in the Arabidopsis ssi2/fab2 mutant, which encodes a defective stearoyl-acyl carrier protein-desaturase (S-ACP-DES) and consequently accumulates high levels of stearic acid (18:0) and low levels of 18:1. In addition to SSI2, the Arabidopsis genome encodes six S-ACP-DES-like enzymes, the native expression levels of which are unable to compensate for a loss-of-function mutation in ssi2. The presence of low levels of 18:1 in the fab2 null mutant indicates that one or more S-ACP-DES isozymes contribute to the 18:1 pool. Biochemical assays show that in addition to SSI2, four other isozymes are capable of desaturating 18:0-ACP but with greatly reduced specific activities, which likely explains the inability of these SSI2 isozymes to substitute for a defective ssi2. Lines containing T-DNA insertions in S-ACP-DES1 and S-ACP-DES4 show that they are altered in their lipid profile but contain normal 18:1 levels. However, overexpression of the S-ACP-DES1 isoform in ssi2 plants results in restoration of 18:1 levels and thereby rescues all ssi2-associated phenotypes. Thus, high expression of a low specific activity S-ACP-DES is required to compensate for a mutation in ssi2. Transcript level of S-ACP-DES isoforms is reduced in high 18:1-containing plants. Enzyme activities of the desaturase isoforms in a 5-fold excess of 18:1-ACP show product inhibition of up to 73%. Together these data indicate that 18:1 levels are regulated at both transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA.
| | | | | | | | | | | |
Collapse
|
157
|
Kang JH, Wang L, Giri A, Baldwin IT. Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid-isoleucine-mediated defenses against Manduca sexta. THE PLANT CELL 2006; 18:3303-20. [PMID: 17085687 PMCID: PMC1693959 DOI: 10.1105/tpc.106.041103] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 08/25/2006] [Accepted: 10/13/2006] [Indexed: 05/12/2023]
Abstract
Threonine deaminase (TD) catalyzes the conversion of Thr to alpha-keto butyrate in Ile biosynthesis; however, its dramatic upregulation in leaves after herbivore attack suggests a role in defense. In Nicotiana attenuata, strongly silenced TD transgenic plants were stunted, whereas mildly silenced TD transgenic plants had normal growth but were highly susceptible to Manduca sexta attack. The herbivore susceptibility was associated with the reduced levels of jasmonic acid-isoleucine (JA-Ile), trypsin proteinase inhibitors, and nicotine. Adding [(13)C(4)]Thr to wounds treated with oral secretions revealed that TD supplies Ile for JA-Ile synthesis. Applying Ile or JA-Ile to the wounds of TD-silenced plants restored herbivore resistance. Silencing JASMONATE-RESISTANT4 (JAR4), the N. attenuata homolog of the JA-Ile-conjugating enzyme JAR1, by virus-induced gene silencing confirmed that JA-Ile plays important roles in activating plant defenses. TD may also function in the insect gut as an antinutritive defense protein, decreasing the availability of Thr, because continuous supplementation of TD-silenced plants with large amounts (2 mmol) of Thr, but not Ile, increased M. sexta growth. However, the fact that the herbivore resistance of both TD- and JAR-silenced plants was completely restored by signal quantities (0.6 mumol) of JA-Ile treatment suggests that TD's defensive role can be attributed more to signaling than to antinutritive defense.
Collapse
Affiliation(s)
- Jin-Ho Kang
- Department of Molecular Ecology, Max-Planck-Institute of Chemical Ecology, D-07745 Jena, Germany
| | | | | | | |
Collapse
|
158
|
Zheng W, Zhai Q, Sun J, Li CB, Zhang L, Li H, Zhang X, Li S, Xu Y, Jiang H, Wu X, Li C. Bestatin, an inhibitor of aminopeptidases, provides a chemical genetics approach to dissect jasmonate signaling in Arabidopsis. PLANT PHYSIOLOGY 2006; 141:1400-13. [PMID: 16798948 PMCID: PMC1533914 DOI: 10.1104/pp.106.080390] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Bestatin, a potent inhibitor of some aminopeptidases, was shown previously to be a powerful inducer of wound-response genes in tomato (Lycopersicon esculentum). Here, we present several lines of evidence showing that bestatin specifically activates jasmonic acid (JA) signaling in plants. First, bestatin specifically activates the expression of JA-inducible genes in tomato and Arabidopsis (Arabidopsis thaliana). Second, the induction of JA-responsive genes by bestatin requires the COI1-dependent JA-signaling pathway, but does not depend strictly on JA biosynthesis. Third, microarray analysis using Arabidopsis whole-genome chip demonstrates that the gene expression profile of bestatin-treated plants is similar to that of JA-treated plants. Fourth, bestatin promotes a series of JA-related developmental phenotypes. Taken together, the unique action mode of bestatin in regulating JA-signaled processes leads us to the hypothesis that bestatin exerts its effects through the modulation of some key regulators in JA signaling. We have employed bestatin as an experimental tool to dissect JA signaling through a chemical genetic screening, which yielded a collection of Arabidopsis bestatin-resistant (ber) mutants that are insensitive to the inhibitory effects of bestatin on root elongation. Further characterization efforts demonstrate that some ber mutants are defective in various JA-induced responses, which allowed us to classify the ber mutants into three phenotypic groups: JA-insensitive ber mutants, JA-hypersensitive ber mutants, and mutants insensitive to bestatin but showing normal response to JA. Genetic and phenotypic analyses of the ber mutants with altered JA responses indicate that we have identified several novel loci involved in JA signaling.
Collapse
Affiliation(s)
- Wenguang Zheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Li C, Zhao J, Jiang H, Wu X, Sun J, Zhang C, Wang X, Lou Y, Li C. The Wound Response Mutant suppressor of prosystemin-mediated responses6 (spr6) is a Weak Allele of the Tomato Homolog of CORONATINE-INSENSITIVE1 (COI1). ACTA ACUST UNITED AC 2006; 47:653-63. [PMID: 16533877 DOI: 10.1093/pcp/pcj034] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The systemic defense response of tomato plant in response to insect attack and wounding is regulated by the 18 amino acid peptide systemin and the phytohormone jasmonic acid (JA). Recent genetic analyses based mainly on spr (suppressors of prosystemin-mediated responses) mutant screens have led to the hypothesis that systemin acts at, or near, the site of wounding to amplify the production of JA, which in turn functions as a mobile signal to promote the systemic defense response. In order to identify more components involved in the systemin/JA-signaled defense response, we carried out a larger scale screen for new spr mutants in tomato. Here we describe the characterization of spr6, a mutant impaired in wound- and systemin-induced defense gene expression. Using a candidate gene approach based on genetic linkage, we demonstrate that spr6 is allelic to jai1-1, which is a loss-of-function allele of the tomato homolog of CORONATINE-INSENSITIVE1 (COI1), an F-box protein that is required for JA-signaled processes in Arabidopsis. We show several aspects of the spr6 mutant phenotype distinct from that of jai1-1. First, the responsiveness of spr6 plants to exogenous JA shows a dosage dependency, i.e. it is more sensitive to JA than jai1-1 while less sensitive to JA than the wild-type. Secondly, unlike the sterile jai1-1, the spr6 plant displays normal fertility and seed set and thus can be maintained as a pure line and does not require selection. Therefore, spr6 provides a valuable tool, which can complement the limitations of jai1-1, to study JA signaling in tomato. The gene identification process of Spr6 we described herein represents an example showing the convenience of a candidate gene approach, based on genetic linkage, to identify gene functions of genetic loci defined by tomato wound response mutants.
Collapse
Affiliation(s)
- Changbao Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Chen H, Jones AD, Howe GA. Constitutive activation of the jasmonate signaling pathway enhances the production of secondary metabolites in tomato. FEBS Lett 2006; 580:2540-6. [PMID: 16647069 DOI: 10.1016/j.febslet.2006.03.070] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/15/2006] [Accepted: 03/27/2006] [Indexed: 12/01/2022]
Abstract
The phytohormone jasmonic acid (JA) regulates the synthesis of secondary metabolites in a wide range of plant species. Here, we show that exogenous methyl-JA (MeJA) elicits massive accumulation of caffeoylputrescine (CP) in tomato leaves. A mutant (jai1) that is defective in jasmonate perception failed to accumulate CP in flowers and MeJA-treated leaves. Conversely, a transgenic tomato line (called 35S::PS) that exhibits constitutive JA signaling accumulated high levels of leaf CP in the absence of jasmonate treatment. RNA blot analysis showed that genes encoding enzymes in the phenylpropanoid and polyamine pathways for CP biosynthesis are upregulated in MeJA-treated wild-type plants and in untreated 35S::PS plants. These results indicate that CP accumulation in tomato is tightly controlled by the jasmonate signaling pathway, and provide proof-of-concept that the production of some plant secondary metabolites can be enhanced by transgenic manipulation of endogenous JA levels.
Collapse
Affiliation(s)
- Hui Chen
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, 48824, USA
| | | | | |
Collapse
|
161
|
Sánchez-Hernández C, López MG, Délano-Frier JP. Reduced levels of volatile emissions in jasmonate-deficient spr2 tomato mutants favour oviposition by insect herbivores. PLANT, CELL & ENVIRONMENT 2006; 29:546-57. [PMID: 17080606 DOI: 10.1111/j.1365-3040.2005.01431.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tomato plants release volatile organic compounds (VOCs) following insect or mechanical damage. In this study, the constitutive and wound-induced emission levels of VOCs in suppressor of prosystemin-mediated responses2 (spr2) mutant plants, compromised in linolenic acid (LA) and jasmonic acid (JA) synthesis, and in 35S::prosystemin (35S::prosys) plants, having upregulated direct defence responses, were compared. The spr2 mutants produced constitutively lower levels of VOCs, which were nonetheless increased in response to (a)biotic damage, although at lower levels than wild-type (Wt) and 35S::prosys plants. No significant differences in VOC emissions were detected between the latter two genotypes, thereby suggesting that systemin does not regulate indirect defence responses, whereas differences in fatty acid composition in spr2 plants led to the predominant emission of saturated C6 volatiles in response to wounding. The expression of 1-deoxy-D-xylulose 5-phosphate synthase (DXS2), a key gene involved in VOC synthesis in the chloroplast, was only upregulated in Manduca sexta L.-damaged Wt and 35S::prosys plants. However, its expression was restored in spr2 plants by exogenous LA or JA, suggesting that abated VOC emissions in spr2 plants are correlated with lowered DXS2 expression. Bioassays with two different insects showed that adult females significantly preferred spr2 plants, indicating that lowered levels of VOCs in tomato influence plant selection by insects during oviposition.
Collapse
Affiliation(s)
- Carla Sánchez-Hernández
- Centro de Investigación y de Estudios Avanzados del IPN-Unidad Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato, León., Irapuato, Gto., México
| | | | | |
Collapse
|
162
|
Wasternack C, Stenzel I, Hause B, Hause G, Kutter C, Maucher H, Neumerkel J, Feussner I, Miersch O. The wound response in tomato--role of jasmonic acid. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:297-306. [PMID: 16368162 DOI: 10.1016/j.jplph.2005.10.014] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 10/10/2005] [Indexed: 05/05/2023]
Abstract
Plants respond to mechanical wounding or herbivore attack with a complex scenario of sequential, antagonistic or synergistic action of different signals leading to defense gene expression. Tomato plants were used as a model system since the peptide systemin and the lipid-derived jasmonic acid (JA) were recognized as essential signals in wound-induced gene expression. In this review recent data are discussed with emphasis on wound-signaling in tomato. The following aspects are covered: (i) systemin signaling, (ii) JA biosynthesis and action, (iii) orchestration of various signals such as JA, H2O2, NO, and salicylate, (iv) local and systemic response, and (v) amplification in wound signaling. The common occurrence of JA biosynthesis and systemin generation in the vascular bundles suggest JA as the systemic signal. Grafting experiments with JA-deficient, JA-insensitive and systemin-insensitive mutants strongly support this assumption.
Collapse
Affiliation(s)
- Claus Wasternack
- Department of Natural Product Biotechnology, Leibniz-Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle/Saale, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Thompson GA, Goggin FL. Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:755-66. [PMID: 16495409 DOI: 10.1093/jxb/erj135] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The relationship between phloem-feeding insects (PFIs) and plants offers an intriguing example of a highly specialized biotic interaction. These insects have evolved to survive on a nutritionally imbalanced diet of phloem sap, and to minimize wound responses in their host plants. As a consequence, plant perception of and responses to PFIs differ from plant interactions with other insect-feeding guilds. Transcriptome-wide analyses of gene expression are currently being applied to characterize plant responses to PFIs in crop plants with race-specific innate resistance, as well as in compatible interactions with susceptible hosts. Recent studies indicate that PFIs induce transcriptional reprogramming in their host plants, and that plant responses to PFIs appear to be quantitatively and qualitatively different from responses to other insects or pathogens. Transcript profiling studies also suggest that PFIs induce cell wall modifications, reduce photosynthetic activity, manipulate source-sink relations, and modify secondary metabolism in their hosts, and many of these responses appear to occur within the phloem tissue. Plant responses to these insects appear to be regulated in part by the salicylate, jasmonate, and ethylene signalling pathways. As additional transcript profiling data become available, forward and reverse genetic approaches will be necessary to determine which changes in gene expression influence resistance or susceptibility to PFIs.
Collapse
Affiliation(s)
- Gary A Thompson
- Department of Applied Science, University of Arkansas at Little Rock, 2801 South University Ave, Little Rock, 72204-1099, USA.
| | | |
Collapse
|
164
|
Abstract
In recent years, numerous biochemical and genetic studies have demonstrated that peptide signaling plays a greater than anticipated role in various aspects of plant growth and development. A substantial proportion of these peptides are secretory and act as local signals mediating cell-to-cell communication. Specific receptors for several peptides were identified as being membrane-localized receptor kinases, the largest family of receptor-like molecules in plants. These findings illustrate the importance of peptide signaling in the regulation of plant growth, functions that were previously ascribed to the combined action of small lipophilic compounds referred to as "traditional plant hormones." Here, we outline recent advances in the current understanding of biologically active peptides in plants, currently regarded as a new class of plant hormones.
Collapse
Affiliation(s)
- Yoshikatsu Matsubayashi
- Graduate School of Bio-Agricultural Sciences, Nagoya University Chikusa, Nagoya 464-8601 Japan.
| | | |
Collapse
|
165
|
Kachroo P, Venugopal SC, Navarre DA, Lapchyk L, Kachroo A. Role of salicylic acid and fatty acid desaturation pathways in ssi2-mediated signaling. PLANT PHYSIOLOGY 2005; 139:1717-35. [PMID: 16306139 PMCID: PMC1310554 DOI: 10.1104/pp.105.071662] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 10/09/2005] [Accepted: 10/11/2005] [Indexed: 05/05/2023]
Abstract
Stearoyl-acyl carrier protein desaturase-mediated conversion of stearic acid to oleic acid (18:1) is the key step that regulates the levels of unsaturated fatty acids (FAs) in cells. Our previous work with the Arabidopsis (Arabidopsis thaliana) ssi2/fab2 mutant and its suppressors demonstrated that a balance between glycerol-3-phosphate (G3P) and 18:1 levels is critical for the regulation of salicylic acid (SA)- and jasmonic acid-mediated defense signaling in the plant. In this study, we have evaluated the role of various genes that have an impact on SA, resistance gene-mediated, or FA desaturation (FAD) pathways on ssi2-mediated signaling. We show that ssi2-triggered resistance is dependent on EDS1, PAD4, EDS5, SID2, and FAD7 FAD8 genes. However, ssi2-triggered defects in the jasmonic acid pathway, morphology, and cell death phenotypes are independent of the EDS1, EDS5, PAD4, NDR1, SID2, FAD3, FAD4, FAD5, DGD1, FAD7, and FAD7 FAD8 genes. Furthermore, the act1-mediated rescue of ssi2 phenotypes is also independent of the FAD2, FAD3, FAD4, FAD5, FAD7, and DGD1 genes. Since exogenous application of glycerol converts wild-type plants into ssi2 mimics, we also studied the effect of exogenous application of glycerol on mutants impaired in resistance-gene signaling, SA, or fad pathways. Glycerol increased SA levels and induced pathogenesis-related gene expression in all but sid2, nahG, fad7, and fad7 fad8 plants. Furthermore, glycerol-induced phenotypes in various mutant lines correlate with a concomitant reduction in 18:1 levels. Inability to convert glycerol into G3P due to a mutation in the nho1-encoded glycerol kinase renders plants tolerant to glycerol and unable to induce the SA-dependent pathway. A reduction in the NHO1-derived G3P pool also results in a partial age-dependent rescue of the ssi2 morphological and cell death phenotypes in the ssi2 nho1 plants. The glycerol-mediated induction of defense was not associated with any major changes in the lipid profile and/or levels of phosphatidic acid. Taken together, our results suggest that glycerol application and the ssi2 mutation in various mutant backgrounds produce similar effects and that restoration of ssi2 phenotypes is not associated with the further desaturation of 18:1 to linoleic or linolenic acids in plastidal or extraplastidal lipids.
Collapse
Affiliation(s)
- Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA.
| | | | | | | | | |
Collapse
|
166
|
Li C, Schilmiller AL, Liu G, Lee GI, Jayanty S, Sageman C, Vrebalov J, Giovannoni JJ, Yagi K, Kobayashi Y, Howe GA. Role of beta-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. THE PLANT CELL 2005; 17:971-86. [PMID: 15722469 PMCID: PMC1069712 DOI: 10.1105/tpc.104.029108] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Jasmonic acid (JA) is a lipid-derived signal that regulates plant defense responses to biotic stress. Here, we report the characterization of a JA-deficient mutant of tomato (Lycopersicon esculentum) that lacks local and systemic expression of defensive proteinase inhibitors (PIs) in response to wounding. Map-based cloning studies demonstrated that this phenotype results from loss of function of an acyl-CoA oxidase (ACX1A) that catalyzes the first step in the peroxisomal beta-oxidation stage of JA biosynthesis. Recombinant ACX1A exhibited a preference for C12 and C14 straight-chain acyl-CoAs and also was active in the metabolism of C18 cyclopentanoid-CoA precursors of JA. The overall growth, development, and reproduction of acx1 plants were similar to wild-type plants. However, the mutant was compromised in its defense against tobacco hornworm (Manduca sexta) attack. Grafting experiments showed that loss of ACX1A function disrupts the production of the transmissible signal for wound-induced PI expression but does not affect the recognition of this signal in undamaged responding leaves. We conclude that ACX1A is essential for the beta-oxidation stage of JA biosynthesis and that JA or its derivatives is required both for antiherbivore resistance and the production of the systemic wound signal. These findings support a role for peroxisomes in the production of lipid-based signaling molecules that promote systemic defense responses.
Collapse
Affiliation(s)
- Chuanyou Li
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Bostock RM. Signal crosstalk and induced resistance: straddling the line between cost and benefit. ANNUAL REVIEW OF PHYTOPATHOLOGY 2005; 43:545-80. [PMID: 16078895 DOI: 10.1146/annurev.phyto.41.052002.095505] [Citation(s) in RCA: 315] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This review discusses recent progress in our understanding of signaling in induced plant resistance and susceptibility to pathogens and insect herbivores, with a focus on the connections and crosstalk among phytohormone signaling networks that regulate responses to these and other stresses. Multiple stresses, often simultaneous, reduce growth and yield in plants. However, prior challenge by a pathogen or insect herbivore also can induce resistance to subsequent challenge. This resistance, or failure of susceptibility, must be orchestrated within a larger physiological context that is strongly influenced by other biotic agents and by abiotic stresses such as inadequate light, temperature extremes, drought, nutrient limitation, and soil salinity. Continued research in this area is predicated on the notion that effective utilization of induced resistance in crop protection will require a functional understanding of the physiological consequences of the "induced" state of the plant, coupled with the knowledge of the specificity and compatibility of the signaling systems leading to this state. This information may guide related strategies to improve crop performance in suboptimal environments, and define the limits of induced resistance in certain agricultural contexts.
Collapse
Affiliation(s)
- Richard M Bostock
- Department of Plant Pathology, University of California, Davis, California 95616, USA.
| |
Collapse
|
168
|
Abstract
Jasmonic acid is an oxylipin signaling molecule derived from linolenic acid. So far, jasmonate (JA) (including the free acid and a number of conjugates) has been shown to regulate or co-regulate a wide range of processes in plants, from responses to biotic and abiotic stresses to the developmental maturation of stamens and pollen in Arabidopsis. This review focuses on discoveries in several of these areas. Most work described is from studies in Arabidopsis. While the results are expected to be broadly applicable to other higher plants, there are cases where related but distinct phenotypes have been observed in other species (e.g., tomato). Investigation of JA action in wound- and insect-defense responses has established that this compound is an essential component of the systemic signal that activates defense genes throughout the plant. It is possible that JA acts indirectly through the production of reactive oxygen species including hydrogen peroxide (H2O2). The availability of Arabidopsis mutants deficient in JA synthesis has been central to the identification of additional roles for JA in defense against microbial pathogens and in reproductive development. Currently, the key issues in JA action are to understand the role of the skip/cullin/F-box ubiquitination complex, SCF(COI1), and to identify additional protein components that act in the early steps of JA signaling.
Collapse
Affiliation(s)
- John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
169
|
Pieterse CMJ, Van Loon LC. NPR1: the spider in the web of induced resistance signaling pathways. CURRENT OPINION IN PLANT BIOLOGY 2004; 7:456-64. [PMID: 15231270 DOI: 10.1016/j.pbi.2004.05.006] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The plant hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are major players in the regulation of signaling networks that are involved in induced defense responses against pathogens and insects. During the past two years, significant progress has been made in understanding the function of NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1), a key regulator of systemic acquired resistance (SAR), that is essential for transducing the SA signal to activate PATHOGENESIS-RELATED (PR) gene expression. SA-mediated redox changes in Arabidopsis cells regulate both the functioning of NPR1 and its binding to TGA1, a member of the TGA family of transcription factors that activate SA-responsive elements in the promoters of PR genes upon binding with NPR1. Apart from its role in regulating SAR in the nucleus, a novel cytosolic function of NPR1 in cross-communication between SA- and JA-dependent defense signaling pathways has been identified. Other advances in induced resistance signaling, such as the implication that ET is involved in the generation of systemic signal molecules, the suggestion of the involvement of lipid-derived molecules in long-distance signaling, and the identification of new components of various systemic defense signaling pathways, shed new light on how plants actively defend themselves against harmful organisms.
Collapse
Affiliation(s)
- Corné M J Pieterse
- Section Phytopathology, Faculty of Biology, Utrecht University, PO Box 80084, 3508 TB Utrecht, The Netherlands.
| | | |
Collapse
|
170
|
Mur LAJ, Xu R, Casson SA, Stoddart WM, Routledge APM, Draper J. Characterization of a proteinase inhibitor from Brachypodium distachyon suggests the conservation of defence signalling pathways between dicotyledonous plants and grasses. MOLECULAR PLANT PATHOLOGY 2004; 5:267-80. [PMID: 20565595 DOI: 10.1111/j.1364-3703.2004.00225.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
SUMMARY Proteinase inhibitors (PIs) are established markers for wound- and especially jasmonate-mediated signalling in dicot species such as tomato and potato. Differential screening of a cDNA library constructed from RNA isolated from wounded leaves of the grass Brachypodium distachyon led to the identification of a proteinase inhibitor gene (Bdpin1). Bdpin1 exhibited the highest homology to the subtilisin/chymotrypsin-inhibiting subgroup of the pin1 class of plant PIs. Northern analyses indicated that Bdpin1 was induced within 6 h at the site of wounding and systemically, by 24 h, thereby providing evidence for long-distance signalling in grasses. Bdpin1 also proved to be more rapidly induced in susceptible than in resistant ecotypes of B. distachyon following challenge with the Rice blast pathogen, Magnaporthe grisea. Screening with chemical signals indicated that Bdpin1 could be induced with MeJA but not with the putative mimic of salicylic acid, benzothiadiazole. Genomic Southern hybridization was consistent with Bdpin1 existing at a single locus, which was isolated following screening of a genomic cosmid library. DNA upstream of the Bdpin1 coding sequence was characterized via fusion to a GUS reporter and was found to confer wound-responsive transcription in B. distachyon and other cereals following biolistic bombardment. Both wound- and TMV-activated Bdpin1-GUS activity was detected in transgenic tobacco. Given that B. distachyon represents an ancestral grass species, our data suggest that there is considerable conservation in defence-associated signalling between dicots and grasses.
Collapse
Affiliation(s)
- Luis A J Mur
- Institute of Biological Sciences, Edward Llwyd Building, University of Wales, Aberystwyth, Ceredigion, SY23 3DA, UK
| | | | | | | | | | | |
Collapse
|
171
|
Abstract
Various lipids are involved in mediating plant growth, development and responses to biotic and abiotic cues, and their production is regulated by lipid-signaling enzymes. Lipid-hydrolyzing enzymes play a pivotal role both in the production of lipid messengers and in other processes, such as cytoskeletal rearrangement, membrane trafficking, and degradation. Studies on the downstream targets and modes of action of lipid signals in plants are still in their early stages but distinguishing features of plant lipid-based signaling are being recognized. Phospholipase D enzymes and phosphatidic acid may play a broader role in lipid signaling in plants than in other systems.
Collapse
Affiliation(s)
- Xuemin Wang
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA.
| |
Collapse
|
172
|
Ryu SB. Phospholipid-derived signaling mediated by phospholipase A in plants. TRENDS IN PLANT SCIENCE 2004; 9:229-235. [PMID: 15130548 DOI: 10.1016/j.tplants.2004.03.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Stephen B Ryu
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea.
| |
Collapse
|
173
|
Gross N, Wasternack C, Köck M. Wound-induced RNaseLE expression is jasmonate and systemin independent and occurs only locally in tomato (Lycopersicon esculentum cv. Lukullus). PHYTOCHEMISTRY 2004; 65:1343-1350. [PMID: 15231407 DOI: 10.1016/j.phytochem.2004.04.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 04/08/2004] [Indexed: 05/24/2023]
Abstract
Tomato RNaseLE is induced by phosphate deficiency and wounding and may play a role in macromolecular recycling as well as wound healing. Here, we analyzed the role of jasmonate and systemin in the wound-induced RNaseLE activation. The rapid expression of RNaseLE upon wounding of leaves leading to maximal RNase activity within 10 h, appeared only locally. Jasmonic acid (JA) or its molecular mimic ethyl indanoyl isoleucine conjugate did not induce RNaseLE expression. Correspondingly, RNaseLE was expressed upon wounding of 35S::allene oxide cyclase antisense plants known to be JA deficient. RNaseLE was not expressed upon systemin treatment, but was locally expressed in the spr1 mutant which is affected in systemin perception. In tomato plants carrying a PromLE::uidA construct, GUS activity could be detected upon wounding, but not following treatment with JA or systemin. The data indicate a locally acting wound-inducible systemin- and JA-independent signaling pathway for RNaseLE expression.
Collapse
Affiliation(s)
- Nadine Gross
- Biocenter, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120 Halle, Germany
| | | | | |
Collapse
|
174
|
Haga K, Iino M. Phytochrome-Mediated Transcriptional Up-regulation of ALLENE OXIDE SYNTHASE in Rice Seedlings. ACTA ACUST UNITED AC 2004; 45:119-28. [PMID: 14988482 DOI: 10.1093/pcp/pch025] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Allene oxide synthase (AOS) is a key enzyme for the biosynthesis of jasmonic acid (JA). We identified four AOS gene homologs, named OsAOS1-4, in the database of a japonica rice genome and cloned a full-length cDNA of OsAOS1. The analysis of deduced amino acid sequences indicated that only OsAOS1 has a chloroplast transit peptide among all the identified monocot AOSs including OsAOSs. We found that the transcripts of OsAOS1 and OsAOS4 are up-regulated by red and far-red light in seedling shoots. The response in OsAOS1 transcripts occurred rapidly and transiently, while the response in OsAOS4 transcripts was slower and more sustainable; the maximal enhancement was greater in OsAOS1 transcripts than in OsAOS4 transcripts. The transcript of OsAOS1 was also up-regulated transiently in response to wounding, as reported for dicot AOSs. No wound-induced enhancement occurred, however, in OsAOS4 transcripts. Our results also indicated that OsAOS1, responding to both light and wounding, is the most highly expressed of all the OsAOSs in seedling shoots. By using phyA mutants of rice, it was demonstrated that the photoregulation of the AOS transcript level is mediated by phytochrome. It is suggested that this transcriptional photoregulation participates in the phytochrome-mediated inhibition of rice coleoptile growth.
Collapse
Affiliation(s)
- Ken Haga
- Botanical Gardens, Research School of Science, Osaka City University, Kisaichi, Katano-shi, Osaka, 576-0004 Japan
| | | |
Collapse
|
175
|
Wang ZY, He JX. Brassinosteroid signal transduction--choices of signals and receptors. TRENDS IN PLANT SCIENCE 2004; 9:91-96. [PMID: 15102375 DOI: 10.1016/j.tplants.2003.12.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Small signaling molecules that mediate cell-cell communication are essential for developmental regulation in multicellular organisms. Among them are the steroids and peptide hormones that regulate growth in both plants and animals. In plants, brassinosteroids (BRs) are perceived by the cell surface receptor kinase BRI1, which is distinct from the animal steroid receptors. Identification of components of the BR signaling pathway has revealed similarities to other animal and plant signal transduction pathways. Recent studies demonstrated that tomato BRI1 (tBRI1) perceives both BR and the peptide hormone systemin, raising new questions about the molecular mechanism and evolution of receptor-ligand specificity.
Collapse
Affiliation(s)
- Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution, 260 Panama Street, Stanford, CA 94305, USA.
| | | |
Collapse
|
176
|
Li L, Zhao Y, McCaig BC, Wingerd BA, Wang J, Whalon ME, Pichersky E, Howe GA. The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. THE PLANT CELL 2004; 16:126-43. [PMID: 14688297 PMCID: PMC301400 DOI: 10.1105/tpc.017954] [Citation(s) in RCA: 473] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Accepted: 10/31/2003] [Indexed: 05/18/2023]
Abstract
Jasmonic acid (JA) is a fatty acid-derived signaling molecule that regulates a broad range of plant defense responses against herbivores and some microbial pathogens. Molecular genetic studies in Arabidopsis have established that JA also performs a critical role in anther and pollen development but is not essential for other developmental aspects of the plant's life cycle. Here, we describe the phenotypic and molecular characterization of a sterile mutant of tomato (jasmonic acid-insensitive1 [jai1]) that is defective in JA signaling. Although the mutant exhibited reduced pollen viability, sterility was caused by a defect in the maternal control of seed maturation, which was associated with the loss of accumulation of JA-regulated proteinase inhibitor proteins in reproductive tissues. jai1 plants exhibited several defense-related phenotypes, including the inability to express JA-responsive genes, severely compromised resistance to two-spotted spider mites, and abnormal development of glandular trichomes. We demonstrate that these defects are caused by the loss of function of the tomato homolog of CORONATINE-INSENSITIVE1 (COI1), an F-box protein that is required for JA-signaled processes in Arabidopsis. These findings indicate that the JA/COI1 signaling pathway regulates distinct developmental processes in different plants and suggest a role for JA in the promotion of glandular trichome-based defenses.
Collapse
Affiliation(s)
- Lei Li
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Kachroo A, Lapchyk L, Fukushige H, Hildebrand D, Klessig D, Kachroo P. Plastidial fatty acid signaling modulates salicylic acid- and jasmonic acid-mediated defense pathways in the Arabidopsis ssi2 mutant. THE PLANT CELL 2003; 15:2952-65. [PMID: 14615603 PMCID: PMC282837 DOI: 10.1105/tpc.017301] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Accepted: 10/06/2003] [Indexed: 05/18/2023]
Abstract
A mutation in the Arabidopsis gene ssi2/fab2, which encodes stearoyl-acyl carrier protein desaturase (S-ACP-DES), results in the reduction of oleic acid (18:1) levels in the mutant plants and also leads to the constitutive activation of NPR1-dependent and -independent defense responses. By contrast, ssi2 plants are compromised in the induction of the jasmonic acid (JA)-responsive gene PDF1.2 and in resistance to the necrotrophic pathogen Botrytis cinerea. Although S-ACP-DES catalyzes the initial desaturation step required for JA biosynthesis, a mutation in ssi2 does not alter the levels of the JA precursor linolenic acid (18:3), the perception of JA or ethylene, or the induced endogenous levels of JA. This finding led us to postulate that the S-ACP-DES-derived fatty acid (FA) 18:1 or its derivative is required for the activation of certain JA-mediated responses and the repression of the salicylic acid (SA) signaling pathway. Here, we report that alteration of the prokaryotic FA signaling pathway in plastids, leading to increased levels of 18:1, is required for the rescue of ssi2-triggered phenotypes. 18:1 levels in ssi2 plants were increased by performing epistatic analyses between ssi2 and several mutants in FA pathways that cause an increase in the levels of 18:1 in specific compartments of the cell. A loss-of-function mutation in the soluble chloroplastic enzyme glycerol-3-phosphate acyltransferase (ACT1) completely reverses SA- and JA-mediated phenotypes in ssi2. In contrast to the act1 mutation, a loss-of-function mutation in the endoplasmic reticulum-localized omega6 oleate desaturase (FAD2) does not alter SA- or JA-related phenotypes of ssi2. However, a mutation in the plastidial membrane-localized omega6 desaturase (FAD6) mediates a partial rescue of ssi2-mediated phenotypes. Although ssi2 fad6 plants are rescued in their morphological phenotypes, including larger size, absence of visible lesions, and straight leaves, these plants continue to exhibit microscopic cell death and express the PR-1 gene constitutively. In addition, these plants are unable to induce the expression of PDF1.2 in response to the exogenous application of JA. Because the act1 mutation rescues all of these phenotypes in ssi2 fad6 act1 triple-mutant plants, act1-mediated reversion may be mediated largely by an increase in the free 18:1 content within the chloroplasts. The reversion of JA responsiveness in ssi2 act1 plants is abolished in the ssi2 act1 coi1 triple-mutant background, suggesting that both JA- and act1-generated signals are required for the expression of the JA-inducible PDF1.2 gene. Our conclusion that FA signaling in plastids plays an essential role in the regulation of SSI2-mediated defense signaling is further substantiated by the fact that overexpression of the N-terminal-deleted SSI2, which lacks the putative plastid-localizing transit peptide, is unable to rescue ssi2-triggered phenotypes, as opposed to overexpression of the full-length protein.
Collapse
Affiliation(s)
- Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | | | | | | | | | | |
Collapse
|
178
|
Zhao Y, Thilmony R, Bender CL, Schaller A, He SY, Howe GA. Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 36:485-99. [PMID: 14617079 DOI: 10.1046/j.1365-313x.2003.01895.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) causes bacterial speck disease on tomato. The pathogenicity of Pst DC3000 depends on both the type III secretion system that delivers virulence effector proteins into host cells and the phytotoxin coronatine (COR), which is thought to mimic the action of the plant hormone jasmonic acid (JA). We found that a JA-insensitive mutant (jai1) of tomato was unresponsive to COR and highly resistant to Pst DC3000, whereas host genotypes that are defective in JA biosynthesis were as susceptible to Pst DC3000 as wild-type (WT) plants. Treatment of WT plants with exogenous methyl-JA (MeJA) complemented the virulence defect of a bacterial mutant deficient in COR production, but not a mutant defective in the type III secretion system. Analysis of host gene expression using cDNA microarrays revealed that COR works through Jai1 to induce the massive expression of JA and wound response genes that have been implicated in defense against herbivores. Concomitant with the induction of JA and wound response genes, the type III secretion system and COR repressed the expression of pathogenesis-related (PR) genes in Pst DC3000-infected WT plants. Resistance of jai1 plants to Pst DC3000 was correlated with a high level of PR gene expression and reduced expression of JA/wound response genes. These results indicate that COR promotes bacterial virulence by activating the host's JA signaling pathway, and further suggest that the type III secretion system might also modify host defense by targeting the JA signaling pathway in susceptible tomato plants.
Collapse
Affiliation(s)
- Youfu Zhao
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|