151
|
Besserer A, Burnotte E, Bienert GP, Chevalier AS, Errachid A, Grefen C, Blatt MR, Chaumont F. Selective regulation of maize plasma membrane aquaporin trafficking and activity by the SNARE SYP121. THE PLANT CELL 2012; 24:3463-81. [PMID: 22942383 PMCID: PMC3462644 DOI: 10.1105/tpc.112.101758] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/23/2012] [Accepted: 08/01/2012] [Indexed: 05/18/2023]
Abstract
Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K(+) channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K(+) channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis.
Collapse
Affiliation(s)
- Arnaud Besserer
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Emeline Burnotte
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Gerd Patrick Bienert
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Adrien S. Chevalier
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Abdelmounaim Errachid
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Christopher Grefen
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - François Chaumont
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
- Address correspondence to
| |
Collapse
|
152
|
Robinson DG, Pimpl P, Scheuring D, Stierhof YD, Sturm S, Viotti C. Trying to make sense of retromer. TRENDS IN PLANT SCIENCE 2012; 17:431-9. [PMID: 22502774 DOI: 10.1016/j.tplants.2012.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 05/08/2023]
Abstract
Retromer is a cytosolic protein complex which binds to post-Golgi organelles involved in the trafficking of proteins to the lytic compartment of the cell. In non-plant organisms, retromer mediates the recycling of acid hydrolase receptors from early endosomal (EE) compartments. In plants, retromer components are required for the targeting of vacuolar storage proteins, and for the recycling of endocytosed PIN proteins. However, there are contradictory reports as to the localization of the sorting nexins and the core subunit of retromer. There is also uncertainty as to the identity of the organelles from which vacuolar sorting receptors (VSRs) and endocytosed plasma membrane (PM) proteins are recycled. In this review we try to resolve some of these conflicting observations.
Collapse
Affiliation(s)
- David G Robinson
- Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
153
|
Cai Y, Zhuang X, Wang J, Wang H, Lam SK, Gao C, Wang X, Jiang L. Vacuolar degradation of two integral plasma membrane proteins, AtLRR84A and OsSCAMP1, is cargo ubiquitination-independent and prevacuolar compartment-mediated in plant cells. Traffic 2012; 13:1023-40. [PMID: 22486829 DOI: 10.1111/j.1600-0854.2012.01360.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 12/31/2022]
Abstract
In plant cells, how integral plasma membrane (PM) proteins are degraded in a cargo ubiquitination-independent manner remains elusive. Here, we studied the degradative pathway of two plant PM proteins: AtLRR84A, a type I integral membrane protein belonging to the leucine-rich repeat receptor-like kinase protein family, and OsSCAMP1 (rice secretory carrier membrane protein 1), a tetraspan transmembrane protein located on the PM and trans-Golgi network (TGN) or early endosome (EE). Using wortmannin and ARA7(Q69L) mutant that could enlarge the multivesicular body (MVB) or prevacuolar compartment (PVC) as tools, we demonstrated that, when expressed as green fluorescent protein (GFP) fusions in tobacco BY-2 or Arabidopsis protoplasts, both AtLRR84A and OsSCAMP1 were degraded in the lytic vacuole via the internal vesicles of MVB/PVC in a cargo ubiquitination-independent manner. Such MVB/PVC-mediated vacuolar degradation of PM proteins was further supported by immunocytochemical electron microscopy (immunoEM) study showing the labeling of the fusions on the internal vesicles of the PVC/MVB. Thus, cargo ubiquitination-independent and PVC-mediated degradation of PM proteins in the vacuole is functionally operated in plant cells.
Collapse
Affiliation(s)
- Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Babajani G, Tropak MB, Mahuran DJ, Kermode AR. Pharmacological chaperones facilitate the post-ER transport of recombinant N370S mutant β-glucocerebrosidase in plant cells: evidence that N370S is a folding mutant. Mol Genet Metab 2012; 106:323-9. [PMID: 22592100 PMCID: PMC3425598 DOI: 10.1016/j.ymgme.2012.04.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 04/20/2012] [Accepted: 04/20/2012] [Indexed: 12/22/2022]
Abstract
Gaucher disease is a prevalent lysosomal storage disease in which affected individuals inherit mutations in the gene (GBA1) encoding lysosomal acid β-glucosidase (glucocerebrosidase, GCase, EC 3.2.1.45). One of the most prevalent disease-causing mutations in humans is a N370S missense mutation in the GCase protein. As part of a larger endeavor to study the fate of mutant human proteins expressed in plant cells, the N370S mutant protein along with the wild-type- (WT)-GCase, both equipped with a signal peptide, were synthesized in transgenic tobacco BY2 cells, which do not possess lysosomes. The enzymatic activity of plant-recombinant N370S GCase lines was significantly lower (by 81-95%) than that of the WT-GCase lines. In contrast to the WT-GCase protein, which was efficiently secreted from tobacco BY2 cells, and detected in large amounts in the culture medium, only a small proportion of the N370S GCase was secreted. Pharmacological chaperones such as N-(n-nonyl) deoxynojirimycin and ambroxol increased the steady-state mutant protein levels both inside the plant cells and in the culture medium. These findings contradict the assertion that small molecule chaperones increase N370S GCase activity (as assayed in treated patient cell lysates) by stabilizing the enzyme in the lysosome, and suggest that the mutant protein is impaired in its ability to obtain its functional folded conformation, which is a requirement for exiting the lumen of the ER.
Collapse
Affiliation(s)
- Gholamreza Babajani
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, BC, Canada V5A 1S6
| | | | | | | |
Collapse
|
155
|
Feraru E, Feraru MI, Asaoka R, Paciorek T, De Rycke R, Tanaka H, Nakano A, Friml J. BEX5/RabA1b regulates trans-Golgi network-to-plasma membrane protein trafficking in Arabidopsis. THE PLANT CELL 2012; 24:3074-86. [PMID: 22773752 PMCID: PMC3426133 DOI: 10.1105/tpc.112.098152] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/14/2012] [Accepted: 06/23/2012] [Indexed: 05/18/2023]
Abstract
Constitutive endocytic recycling is a crucial mechanism allowing regulation of the activity of proteins at the plasma membrane and for rapid changes in their localization, as demonstrated in plants for PIN-FORMED (PIN) proteins, the auxin transporters. To identify novel molecular components of endocytic recycling, mainly exocytosis, we designed a PIN1-green fluorescent protein fluorescence imaging-based forward genetic screen for Arabidopsis thaliana mutants that showed increased intracellular accumulation of cargos in response to the trafficking inhibitor brefeldin A (BFA). We identified bex5 (for BFA-visualized exocytic trafficking defective), a novel dominant mutant carrying a missense mutation that disrupts a conserved sequence motif of the small GTPase, RAS GENES FROM RAT BRAINA1b. bex5 displays defects such as enhanced protein accumulation in abnormal BFA compartments, aberrant endosomes, and defective exocytosis and transcytosis. BEX5/RabA1b localizes to trans-Golgi network/early endosomes (TGN/EE) and acts on distinct trafficking processes like those regulated by GTP exchange factors on ADP-ribosylation factors GNOM-LIKE1 and HOPM INTERACTOR7/BFA-VISUALIZED ENDOCYTIC TRAFFICKING DEFECTIVE1, which regulate trafficking at the Golgi apparatus and TGN/EE, respectively. All together, this study identifies Arabidopsis BEX5/RabA1b as a novel regulator of protein trafficking from a TGN/EE compartment to the plasma membrane.
Collapse
Affiliation(s)
- Elena Feraru
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Mugurel I. Feraru
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Rin Asaoka
- Department of Biological Sciences, Graduate School of Science, Tokyo University, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomasz Paciorek
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Riet De Rycke
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Hirokazu Tanaka
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, Tokyo University, Bunkyo-ku, Tokyo 113-0033, Japan
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| | - Jiří Friml
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
156
|
Takáč T, Pechan T, Samajová O, Ovečka M, Richter H, Eck C, Niehaus K, Samaj J. Wortmannin treatment induces changes in Arabidopsis root proteome and post-Golgi compartments. J Proteome Res 2012; 11:3127-42. [PMID: 22524784 DOI: 10.1021/pr201111n] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wortmannin is a widely used pharmaceutical compound which is employed to define vesicular trafficking routes of particular proteins or cellular compounds. It targets phosphatidylinositol 3-kinase and phosphatidylinositol 4-kinases in a dose-dependent manner leading to the inhibition of protein vacuolar sorting and endocytosis. Combined proteomics and cell biological approaches have been used in this study to explore the effects of wortmannin on Arabidopsis root cells, especially on proteome and endomembrane trafficking. On the subcellular level, wortmannin caused clustering, fusion, and swelling of trans-Golgi network (TGN) vesicles and multivesicular bodies (MVBs) leading to the formation of wortmannin-induced multivesicular compartments. Appearance of wortmannin-induced compartments was associated with depletion of TGN as revealed by electron microscopy. On the proteome level, wortmannin induced massive changes in protein abundance profiles. Wortmannin-sensitive proteins belonged to various functional classes. An inhibition of vacuolar trafficking by wortmannin was related to the downregulation of proteins targeted to the vacuole, as showed for vacuolar proteases. A small GTPase, RabA1d, which regulates vesicular trafficking at TGN, was identified as a new protein negatively affected by wortmannin. In addition, Sec14 was upregulated and PLD1 alpha was downregulated by wortmannin.
Collapse
Affiliation(s)
- Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University , Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Gao C, Yu CK, Qu S, San MWY, Li KY, Lo SW, Jiang L. The Golgi-localized Arabidopsis endomembrane protein12 contains both endoplasmic reticulum export and Golgi retention signals at its C terminus. THE PLANT CELL 2012; 24:2086-104. [PMID: 22570441 PMCID: PMC3442589 DOI: 10.1105/tpc.112.096057] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/12/2012] [Accepted: 04/18/2012] [Indexed: 05/17/2023]
Abstract
Endomembrane proteins (EMPs), belonging to the evolutionarily conserved transmembrane nine superfamily in yeast and mammalian cells, are characterized by the presence of a large lumenal N terminus, nine transmembrane domains, and a short cytoplasmic tail. The Arabidopsis thaliana genome contains 12 EMP members (EMP1 to EMP12), but little is known about their protein subcellular localization and function. Here, we studied the subcellular localization and targeting mechanism of EMP12 in Arabidopsis and demonstrated that (1) both endogenous EMP12 (detected by EMP12 antibodies) and green fluorescent protein (GFP)-EMP12 fusion localized to the Golgi apparatus in transgenic Arabidopsis plants; (2) GFP fusion at the C terminus of EMP12 caused mislocalization of EMP12-GFP to reach post-Golgi compartments and vacuoles for degradation in Arabidopsis cells; (3) the EMP12 cytoplasmic tail contained dual sorting signals (i.e., an endoplasmic reticulum export motif and a Golgi retention signal that interacted with COPII and COPI subunits, respectively); and (4) the Golgi retention motif of EMP12 retained several post-Golgi membrane proteins within the Golgi apparatus in gain-of-function analysis. These sorting signals are highly conserved in all plant EMP isoforms and, thus, likely represent a general mechanism for EMP targeting in plant cells.
Collapse
|
158
|
De Marcos Lousa C, Gershlick DC, Denecke J. Mechanisms and concepts paving the way towards a complete transport cycle of plant vacuolar sorting receptors. THE PLANT CELL 2012; 24:1714-32. [PMID: 22570446 PMCID: PMC3442565 DOI: 10.1105/tpc.112.095679] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Delivery of proteins to the lytic vacuole in plants is a complex cascade of selective interactions that specifically excludes residents of the endoplasmic reticulum and secreted proteins. Vacuolar transport must be highly efficient to avoid mistargeting of hydrolytic enzymes to locations where they could be harmful. While plant vacuolar sorting signals have been well described for two decades, it is only during the last 5 years that a critical mass of data was gathered that begins to reveal how vacuolar sorting receptors (VSRs) may complete a full transport cycle. Yet, the field is far from reaching a consensus regarding the organelles that could be involved in vacuolar sorting, their potential biogenesis, and the ultimate recycling of membranes and protein machinery that maintain this pathway. This review will highlight the important landmarks in our understanding of VSR function and compare recent transport models that have been proposed so that an emerging picture of plant vacuolar sorting mechanisms can be drawn.
Collapse
|
159
|
Tse YC, Wang J, Jiang L. Multivesicular bodies in developing tobacco seed and mung bean are functionally equivalent. PLANT SIGNALING & BEHAVIOR 2012; 7:450-3. [PMID: 22499175 PMCID: PMC3419030 DOI: 10.4161/psb.19524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protein storage vacuoles (PSVs) are the primarily storage organelles in cotyledon cells for protein preservation in seeds. Storage proteins are transported from the endoplasmic reticulum (ER) to the Golgi apparatus for subsequent delivery to PSVs via presumably Golgi-derived dense vesicles (DVs). However, recent studies demonstrated that storage proteins in early stage of developing cotyledon of mung beans reached the multivesicular bodies (MVBs) prior to the detection of DVs, indicating the possible involvement of MVBs in mediating transport of storage proteins during the early stage of seed development. Here, we further show that the MVBs in developing tobacco seeds are functionally and biochemically equivalent to those in developing mung beans. Thus, MVBs in developing tobacco seeds are structurally distinct from DVs, contain both vacuolar sorting receptors (VSRs) and storage proteins, and they are insensitive to treatments of wortmannin and brefeldin A (BFA).
Collapse
Affiliation(s)
| | - Junqi Wang
- School of Life Sciences; Centre for Cell and Developmental Biology; The Chinese University of Hong Kong; Shatin; New Territories; Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences; Centre for Cell and Developmental Biology; The Chinese University of Hong Kong; Shatin; New Territories; Hong Kong, China
| |
Collapse
|
160
|
He X, Galpin JD, Tropak MB, Mahuran D, Haselhorst T, von Itzstein M, Kolarich D, Packer NH, Miao Y, Jiang L, Grabowski GA, Clarke LA, Kermode AR. Production of active human glucocerebrosidase in seeds of Arabidopsis thaliana complex-glycan-deficient (cgl) plants. Glycobiology 2012; 22:492-503. [PMID: 22061999 PMCID: PMC3425599 DOI: 10.1093/glycob/cwr157] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
There is a clear need for efficient methods to produce protein therapeutics requiring mannose-termination for therapeutic efficacy. Here we report on a unique system for production of active human lysosomal acid β-glucosidase (glucocerebrosidase, GCase, EC 3.2.1.45) using seeds of the Arabidopsis thaliana complex-glycan-deficient (cgl) mutant, which are deficient in the activity of N-acetylglucosaminyl transferase I (EC 2.4.1.101). Gaucher disease is a prevalent lysosomal storage disease in which affected individuals inherit mutations in the gene (GBA1) encoding GCase. A gene cassette optimized for seed expression was used to generate the human enzyme in seeds of the cgl (C5) mutant, and the recombinant GCase was mainly accumulated in the apoplast. Importantly, the enzymatic properties including kinetic parameters, half-maximal inhibitory concentration of isofagomine and thermal stability of the cgl-derived GCase were comparable with those of imiglucerase, a commercially available recombinant human GCase used for enzyme replacement therapy in Gaucher patients. N-glycan structural analyses of recombinant cgl-GCase showed that the majority of the N-glycans (97%) were mannose terminated. Additional purification was required to remove ∼15% of the plant-derived recombinant GCase that possessed potentially immunogenic (xylose- and/or fucose-containing) N-glycans. Uptake of cgl-derived GCase by mouse macrophages was similar to that of imiglucerase. The cgl seed system requires no addition of foreign (non-native) amino acids to the mature recombinant GCase protein, and the dry transgenic seeds represent a stable repository of the therapeutic protein. Other strategies that may completely prevent plant-like complex N-glycans are discussed, including the use of a null cgl mutant.
Collapse
Affiliation(s)
- Xu He
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, British Columbia, V5A 1S6, Canada
| | - Jason D Galpin
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, British Columbia, V5A 1S6, Canada
| | - Michael B Tropak
- Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | - Don Mahuran
- Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, Banting Institute, 100 College Street, Toronto, Ontario, M5G 1L5, Canada
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Daniel Kolarich
- Department of Chemistry and Biomolecular Scienes, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Scienes, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yansong Miao
- Department of Biology and Molecular Biotechnology Program, Centre for Cell and Developmental Biology, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- Department of Biology and Molecular Biotechnology Program, Centre for Cell and Developmental Biology, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Gregory A Grabowski
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Lorne A Clarke
- Department of Medical Genetics, University of British Columbia, Children’s and Family Research Institute, 950 W 28th Ave., Vancouver, BC, V6T 1Z4, Canada
| | - Allison R Kermode
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
161
|
Sun F, Suen PK, Zhang Y, Liang C, Carrie C, Whelan J, Ward JL, Hawkins ND, Jiang L, Lim BL. A dual-targeted purple acid phosphatase in Arabidopsis thaliana moderates carbon metabolism and its overexpression leads to faster plant growth and higher seed yield. THE NEW PHYTOLOGIST 2012; 194:206-219. [PMID: 22269069 DOI: 10.1111/j.1469-8137.2011.04026.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
• Overexpression of AtPAP2, a purple acid phosphatase (PAP) with a unique C-terminal hydrophobic motif in Arabidopsis, resulted in earlier bolting and a higher seed yield. Metabolite analysis showed that the shoots of AtPAP2 overexpression lines contained higher levels of sugars and tricarboxylic acid (TCA) metabolites. Enzyme assays showed that sucrose phosphate synthase (SPS) activity was significantly upregulated in the overexpression lines. The higher SPS activity arose from a higher level of SPS protein, and was independent of SnRK1. • AtPAP2 was found to be targeted to both plastids and mitochondria via its C-terminal hydrophobic motif. Ectopic expression of a truncated AtPAP2 without this C-terminal motif in Arabidopsis indicated that the subcellular localization of AtPAP2 is essential for its biological actions. • Plant PAPs are generally considered to mediate phosphorus acquisition and redistribution. AtPAP2 is the first PAP shown to modulate carbon metabolism and the first shown to be dual-targeted to both plastids and mitochondria by a C-terminal targeting signal. • One PAP-like sequence carrying a hydrophobic C-terminal motif could be identified in the genome of the smallest free-living photosynthetic eukaryote, Ostreococcus tauri. This might reflect a common ancestral function of AtPAP2-like sequences in the regulation of carbon metabolism.
Collapse
Affiliation(s)
- Feng Sun
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Pui Kit Suen
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Youjun Zhang
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chao Liang
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chris Carrie
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley WA 6009, Australia
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley WA 6009, Australia
| | - Jane L Ward
- National Centre for Plant and Microbial Metabolomics, Rothamsted Research, West Common, Harpenden, Herts, AL5 2JQ, UK
| | - Nathaniel D Hawkins
- National Centre for Plant and Microbial Metabolomics, Rothamsted Research, West Common, Harpenden, Herts, AL5 2JQ, UK
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, the Chinese University of Hong Kong, Hong Kong, China
| | - Boon Leong Lim
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
162
|
Law AHY, Chow CM, Jiang L. Secretory carrier membrane proteins. PROTOPLASMA 2012; 249:269-83. [PMID: 21633931 DOI: 10.1007/s00709-011-0295-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 05/22/2011] [Indexed: 05/24/2023]
Abstract
Secretory carrier membrane proteins (SCAMPs) are a family of integral membrane proteins that play roles in mediating exocytosis in animal cells. However, relatively little is known about the subcellular localization, trafficking, and function of SCAMPs in plants. Several recent studies in plant cells indicate that plant SCAMPs share many similarities with their mammalian homologs although there are differences. In this review, we will first summarize and compare animal and plant SCAMPs in terms of their subcellular localization, trafficking, and possible functions. We will then present a phylogenetic analysis of plant and animal SCAMPs. Finally, we will present expression analysis on selective Arabidopsis SCAMPs in the hope of pointing to directions for functional characterization of plant SCAMPs in the future.
Collapse
Affiliation(s)
- Angus Ho Yin Law
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | |
Collapse
|
163
|
Hillmer S, Viotti C, Robinson DG. An improved procedure for low-temperature embedding of high-pressure frozen and freeze-substituted plant tissues resulting in excellent structural preservation and contrast. J Microsc 2012; 247:43-7. [PMID: 22360578 DOI: 10.1111/j.1365-2818.2011.03595.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we describe refinements in the processing of high-pressure frozen samples of delicate plant tissues for immuno-electron microscopy. These involve: shortened freeze-substitution schedules, lower temperatures during processing and polymerisation, the avoidance of temperature fluctuations and the optimisation of heat transfer from the specimens using small disposable aluminium containers. The application of these modifications leads to very good structural preservation and selective membrane contrast. As a result, the versatility of the method is increased since not only immuno-electron microscopical studies can be performed but often the quality is also quite suitable for structural investigations.
Collapse
Affiliation(s)
- S Hillmer
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany.
| | | | | |
Collapse
|
164
|
Drakakaki G, van de Ven W, Pan S, Miao Y, Wang J, Keinath NF, Weatherly B, Jiang L, Schumacher K, Hicks G, Raikhel N. Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic trafficking in Arabidopsis. Cell Res 2012; 22:413-24. [PMID: 21826108 PMCID: PMC3271593 DOI: 10.1038/cr.2011.129] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 04/01/2011] [Accepted: 06/07/2011] [Indexed: 11/08/2022] Open
Abstract
The endomembrane system is a complex and dynamic intracellular trafficking network. It is very challenging to track individual vesicles and their cargos in real time; however, affinity purification allows vesicles to be isolated in their natural state so that their constituent proteins can be identified. Pioneering this approach in plants, we isolated the SYP61 trans-Golgi network compartment and carried out a comprehensive proteomic analysis of its contents with only minimal interference from other organelles. The proteome of SYP61 revealed the association of proteins of unknown function that have previously not been ascribed to this compartment. We identified a complete SYP61 SNARE complex, including regulatory proteins and validated the proteome data by showing that several of these proteins associated with SYP61 in planta. We further identified the SYP121-complex and cellulose synthases, suggesting that SYP61 plays a role in the exocytic trafficking and the transport of cell wall components to the plasma membrane. The presence of proteins of unknown function in the SYP61 proteome including ECHIDNA offers the opportunity to identify novel trafficking components and cargos. The affinity purification of plant vesicles in their natural state provides a basis for further analysis and dissection of complex endomembrane networks. The approach is widely applicable and can afford the study of several vesicle populations in plants, which can be compared with the SYP61 vesicle proteome.
Collapse
Affiliation(s)
- Georgia Drakakaki
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, 4119C Genomics Building, University of California Riverside, CA 92521, USA
- Current address: Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Wilhelmina van de Ven
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, 4119C Genomics Building, University of California Riverside, CA 92521, USA
| | - Songqin Pan
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, 4119C Genomics Building, University of California Riverside, CA 92521, USA
| | - Yansong Miao
- School of Life Sciences, Center for Cell and Developmental Biology, Chinese University of Hong Kong, New Territories, Hong Kong, China
- Current address: Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Junqi Wang
- School of Life Sciences, Center for Cell and Developmental Biology, Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Nana F Keinath
- Heidelberg Institute for Plant Science, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Brent Weatherly
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- NuSep Inc., Bogart, GA 30622, USA
| | - Liwen Jiang
- School of Life Sciences, Center for Cell and Developmental Biology, Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Karin Schumacher
- Heidelberg Institute for Plant Science, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Glenn Hicks
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, 4119C Genomics Building, University of California Riverside, CA 92521, USA
| | - Natasha Raikhel
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, 4119C Genomics Building, University of California Riverside, CA 92521, USA
| |
Collapse
|
165
|
Wang J, Tse YC, Hinz G, Robinson DG, Jiang L. Storage globulins pass through the Golgi apparatus and multivesicular bodies in the absence of dense vesicle formation during early stages of cotyledon development in mung bean. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1367-80. [PMID: 22143915 PMCID: PMC3276096 DOI: 10.1093/jxb/err366] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
During seed development and maturation, large amounts of storage proteins are synthesized and deposited in protein storage vacuoles (PSVs). Multiple mechanisms have been proposed to be responsible for transporting storage proteins to PSVs in developing seeds. In this study, a specific antibody was raised against the mung bean (Vigna radiata) seed storage protein 8S globulin and its deposition was followed via immunogold electron microscopy in developing mung bean cotyledons. It is demonstrated that non-aggregated 8S globulins are present in multivesicular bodies (MVBs) in early stages of cotyledon development where neither dense vesicles (DVs) nor a PSV were recognizable. However, at later stages of cotyledon development, condensed globulins were visible in both DVs and distinct MVBs with a novel form of partitioning, with the internal vesicles being pushed to one sector of this organelle. These distinct MVBs were no longer sensitive to wortmannin. This study thus indicates a possible role for MVBs in transporting storage proteins to PSVs during the early stage of seed development prior to the involvement of DVs. In addition, wortmannin treatment is shown to induce DVs to form aggregates and to fuse with the plasma membrane.
Collapse
Affiliation(s)
- Junqi Wang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yu Chung Tse
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Giselbert Hinz
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - David G. Robinson
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
166
|
|
167
|
Contento AL, Bassham DC. Structure and function of endosomes in plant cells. J Cell Sci 2012; 125:3511-8. [DOI: 10.1242/jcs.093559] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Endosomes are a heterogeneous collection of organelles that function in the sorting and delivery of internalized material from the cell surface and the transport of materials from the Golgi to the lysosome or vacuole. Plant endosomes have some unique features, with an organization distinct from that of yeast or animal cells. Two clearly defined endosomal compartments have been studied in plant cells, the trans-Golgi network (equivalent to the early endosome) and the multivesicular body (equivalent to the late endosome), with additional endosome types (recycling endosome, late prevacuolar compartment) also a possibility. A model has been proposed in which the trans-Golgi network matures into a multivesicular body, which then fuses with the vacuole to release its cargo. In addition to basic trafficking functions, endosomes in plant cells are known to function in maintenance of cell polarity by polar localization of hormone transporters and in signaling pathways after internalization of ligand-bound receptors. These signaling functions are exemplified by the BRI1 brassinosteroid hormone receptor and by receptors for pathogen elicitors that activate defense responses. After endocytosis of these receptors from the plasma membrane, endosomes act as a signaling platform, thus playing an essential role in plant growth, development and defense responses. Here we describe the key features of plant endosomes and their differences from those of other organisms and discuss the role of these organelles in cell polarity and signaling pathways.
Collapse
|
168
|
Lerich A, Hillmer S, Langhans M, Scheuring D, van Bentum P, Robinson DG. ER Import Sites and Their Relationship to ER Exit Sites: A New Model for Bidirectional ER-Golgi Transport in Higher Plants. FRONTIERS IN PLANT SCIENCE 2012; 3:143. [PMID: 22876251 PMCID: PMC3410614 DOI: 10.3389/fpls.2012.00143] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/12/2012] [Indexed: 05/08/2023]
Abstract
Per definition, ER exit sites are COPII vesiculation events at the surface of the ER and in higher plants are only visualizable in the electron microscope through cryofixation techniques. Fluorescent COPII labeling moves with Golgi stacks and locates to the interface between the ER and the Golgi. In contrast, the domain of the ER where retrograde COPI vesicles fuse, i.e., ER import sites (ERIS), has remained unclear. To identify ERIS we have employed ER-located SNAREs and tethering factors. We screened several SNAREs (SYP81, the SYP7 family, and USE1) to find a SNARE whose overexpression did not disrupt ER-Golgi traffic and which gave rise to discrete fluorescent punctae when expressed with an XFP tag. Only the Qc-SNARE SYP72 fulfilled these criteria. When coexpressed with SYP72-YFP, both the type I-membrane protein RFP-p24δ5 and the luminal marker CFP-HDEL whose ER localization are due to an efficient COPI-mediated recycling, form nodules along the tubular ER network. SYP72-YFP colocalizes with these nodules which are not seen when RFP-p24δ5 or CFP-HDEL is expressed alone or when SYP72-YFP is coexpressed with a mutant form of RFP-p24δ5 that cannot exit the ER. SYP72-YFP does not colocalize with Golgi markers, except when the Golgi stacks are immobilized through actin depolymerization. Endogenous SYP7 SNAREs, also colocalize with immobilized COPII/Golgi. In contrast, XFP-tagged versions of plant homologs to TIP20 of the Dsl1 COPI-tethering factor complex, and the COPII-tethering factor p115 colocalize perfectly with Golgi stacks irrespective of the motile status. These data suggest that COPI vesicle fusion with the ER is restricted to periods when Golgi stacks are stationary, but that when moving both COPII and COPI vesicles are tethered and collect in the ER-Golgi interface. Thus, the Golgi stack and an associated domain of the ER thereby constitute a mobile secretory and recycling unit: a unique feature in eukaryotic cells.
Collapse
Affiliation(s)
- Alexander Lerich
- Department of Plant Cell Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Stefan Hillmer
- Department of Plant Cell Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Markus Langhans
- Department of Plant Cell Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - David Scheuring
- Department of Plant Cell Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Paulien van Bentum
- Department of Plant Cell Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - David G. Robinson
- Department of Plant Cell Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
- *Correspondence: David G. Robinson, Department Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany. e-mail:
| |
Collapse
|
169
|
Zhang H, Zhang L, Gao B, Fan H, Jin J, Botella MA, Jiang L, Lin J. Golgi apparatus-localized synaptotagmin 2 is required for unconventional secretion in Arabidopsis. PLoS One 2011; 6:e26477. [PMID: 22140429 PMCID: PMC3225361 DOI: 10.1371/journal.pone.0026477] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 09/27/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Most secretory proteins contain signal peptides that direct their sorting to the ER and secreted via the conventional ER/Golgi transport pathway, while some signal-peptide-lacking proteins have been shown to export through ER/Golgi independent secretory pathways. Hygromycin B is an aminoglycoside antibiotic produced by Streptomyces hygroscopicus that is active against both prokaryotic and eukaryotic cells. The hygromycin phosphotransferase (HYG(R)) can phosphorylate and inactivate the hygromycin B, and has been widely used as a positive selective marker in the construction of transgenic plants. However, the localization and trafficking of HYG(R) in plant cells remain unknown. Synaptotagmins (SYTs) are involved in controlling vesicle endocytosis and exocytosis as calcium sensors in animal cells, while their functions in plant cells are largely unclear. METHODOLOGY/PRINCIPAL FINDINGS We found Arabidopsis synaptotagmin SYT2 was localized on the Golgi apparatus by immunofluorescence and immunogold labeling. Surprisingly, co-expression of SYT2 and HYG(R) caused hypersensitivity of the transgenic Arabidopsis plants to hygromycin B. HYG(R), which lacks a signal sequence, was present in the cytoplasm as well as in the extracellular space in HYG(R)-GFP transgenic Arabidopsis plants and its secretion is not sensitive to brefeldin A treatment, suggesting it is not secreted via the conventional secretory pathway. Furthermore, we found that HYG(R)-GFP was truncated at carboxyl terminus of HYG(R) shortly after its synthesis, and the cells deficient SYT2 failed to efficiently truncate HYG(R)-GFP,resulting in HYG(R)-GFP accumulated in prevacuoles/vacuoles, indicating that SYT2 was involved in HYG(R)-GFP trafficking and secretion. CONCLUSION/SIGNIFICANCE These findings reveal for the first time that SYT2 is localized on the Golgi apparatus and regulates HYG(R)-GFP secretion via the unconventional protein transport from the cytosol to the extracelluar matrix in plant cells.
Collapse
Affiliation(s)
- Haiyan Zhang
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Liang Zhang
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Graduate School of Chinese Academy of Sciences, Beijng, China
| | - Bin Gao
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hai Fan
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jingbo Jin
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Miguel A. Botella
- Departamento de Biología Moleculary Bioquímica, Universidad de Málaga, Málaga, Spain
| | - Liwen Jiang
- Department of Biology and Molecular Biotechnology Program, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jinxing Lin
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
170
|
Du C, Chong K. ARF-GTPase activating protein mediates auxin influx carrier AUX1 early endosome trafficking to regulate auxin dependent plant development. PLANT SIGNALING & BEHAVIOR 2011; 6:1644-6. [PMID: 22057332 PMCID: PMC3329325 DOI: 10.4161/psb.6.11.17755] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Polar auxin transport (PAT) plays a critical role in the regulation of plant growth and development. Auxin influx carrier AUX1 is predominantly localized to the upper side of specific root cells in Arabidopsis. Overexpression of OsAGAP, an ARF-GTPase activating protein in rice, could induce the accumulation of AUX1. But the mechanism is poorly known. Here we reported that over-expression of ARF-GAP could reduce the thickness and bundling of microfilament (MF) which possibly could greatly interfere with the endocytosis of AUX1 early endosome; but not the exocytosis of AUX1 recycling endosome. Therefore, AFR-GAP over-expression suppressed-MF bundling is likely involved in regulating endocytosis of Auxin influx carrier AUX1 and in mediating auxin dependent plant development.
Collapse
Affiliation(s)
- Cheng Du
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences; Beijing, China
- College of Life Sciences; Beijing Normal University; Beijing, China
| | - Kang Chong
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences; Beijing, China
- Correspondence to: Kang Chong,
| |
Collapse
|
171
|
Zhang L, Zhang H, Liu P, Hao H, Jin JB, Lin J. Arabidopsis R-SNARE proteins VAMP721 and VAMP722 are required for cell plate formation. PLoS One 2011; 6:e26129. [PMID: 22022536 PMCID: PMC3191180 DOI: 10.1371/journal.pone.0026129] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 09/20/2011] [Indexed: 11/18/2022] Open
Abstract
Background Cell plate formation during plant cytokinesis is facilitated by SNARE complex-mediated vesicle fusion at the cell-division plane. However, our knowledge regarding R-SNARE components of membrane fusion machinery for cell plate formation remains quite limited. Methodology/Principal Findings We report the in vivo function of Arabidopsis VAMP721 and VAMP722, two closely sequence-related R-SNAREs, in cell plate formation. Double homozygous vamp721vamp722 mutant seedlings showed lethal dwarf phenotypes and were characterized by rudimentary roots, cotyledons and hypocotyls. Furthermore, cell wall stubs and incomplete cytokinesis were frequently observed in vamp721vamp722 seedlings. Confocal images revealed that green fluorescent protein-tagged VAMP721 and VAMP722 were preferentially localized to the expanding cell plates in dividing cells. Drug treatments and co-localization analyses demonstrated that punctuate organelles labeled with VAMP721 and VAMP722 represented early endosomes overlapped with VHA-a1-labeled TGN, which were distinct from Golgi stacks and prevacuolar compartments. In addition, protein traffic to the plasma membrane, but not to the vacuole, was severely disrupted in vamp721vamp722 seedlings by subcellular localization of marker proteins. Conclusion/Significance These observations suggest that VAMP721 and VAMP722 are involved in secretory trafficking to the plasma membrane via TGN/early endosomal compartment, which contributes substantially to cell plate formation during plant cytokinesis.
Collapse
Affiliation(s)
- Liang Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Peng Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huaiqing Hao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jing Bo Jin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jinxing Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
172
|
Fukuda M, Satoh-Cruz M, Wen L, Crofts AJ, Sugino A, Washida H, Okita TW, Ogawa M, Kawagoe Y, Maeshima M, Kumamaru T. The small GTPase Rab5a is essential for intracellular transport of proglutelin from the Golgi apparatus to the protein storage vacuole and endosomal membrane organization in developing rice endosperm. PLANT PHYSIOLOGY 2011; 157:632-44. [PMID: 21825104 PMCID: PMC3192576 DOI: 10.1104/pp.111.180505] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 08/03/2011] [Indexed: 05/18/2023]
Abstract
Rice (Oryza sativa) glutelins are synthesized on the endoplasmic reticulum as larger precursors, which are then transported via the Golgi to the protein storage vacuole (PSV), where they are processed into acidic and basic subunits. Three independent glutelin precursor mutant4 (glup4) rice lines, which accumulated elevated levels of proglutelin over the wild type, were identified as loss-of-function mutants of Rab5a, the small GTPase involved in vesicular membrane transport. In addition to the plasma membrane, Rab5a colocalizes with glutelins on the Golgi apparatus, Golgi-derived dense vesicles, and the PSV, suggesting that Rab5a participates in the transport of the proglutelin from the Golgi to the PSV. This spatial distribution pattern was dramatically altered in the glup4 mutants. Numerous smaller protein bodies containing glutelin and α-globulin were evident, and the proteins were secreted extracellularly. Moreover, all three independent glup4 allelic lines displayed the novel appearance of a large dilated, structurally complex paramural body containing proglutelins, α-globulins, membrane biomarkers for the Golgi apparatus, prevacuolar compartment, PSV, and the endoplasmic reticulum luminal chaperones BiP and protein disulfide isomerase as well as β-glucan. These results indicate that the formation of the paramural bodies in glup4 endosperm was due to a significant disruption of endocytosis and membrane vesicular transport by Rab5a loss of function. Overall, Rab5a is required not only for the intracellular transport of proglutelins from the Golgi to the PSV in rice endosperm but also in the maintenance of the general structural organization of the endomembrane system in developing rice seeds.
Collapse
|
173
|
Miao Y, Li HY, Shen J, Wang J, Jiang L. QUASIMODO 3 (QUA3) is a putative homogalacturonan methyltransferase regulating cell wall biosynthesis in Arabidopsis suspension-cultured cells. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5063-78. [PMID: 21725030 PMCID: PMC3193014 DOI: 10.1093/jxb/err211] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 05/28/2011] [Accepted: 06/02/2011] [Indexed: 05/18/2023]
Abstract
Pectins are complex polysaccharides that are essential components of the plant cell wall. In this study, a novel putative Arabidopsis S-adenosyl-L-methionine (SAM)-dependent methyltransferase, termed QUASIMODO 3 (QUA3, At4g00740), has been characterized and it was demonstrated that it is a Golgi-localized, type II integral membrane protein that functions in methylesterification of the pectin homogalacturonan (HG). Although transgenic Arabidopsis seedlings with overexpression, or knock-down, of QUA3 do not show altered phenotypes or changes in pectin methylation, this enzyme is highly expressed and abundant in Arabidopsis suspension-cultured cells. In contrast, in cells subjected to QUA3 RNA interference (RNAi) knock-down there is less pectin methylation as well as altered composition and assembly of cell wall polysaccharides. Taken together, these observations point to a Golgi-localized QUA3 playing an essential role in controlling pectin methylation and cell wall biosynthesis in Arabidopsis suspension cell cultures.
Collapse
Affiliation(s)
| | | | | | | | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
174
|
Sun QY, Ding LW, Lomonossoff GP, Sun YB, Luo M, Li CQ, Jiang L, Xu ZF. Improved expression and purification of recombinant human serum albumin from transgenic tobacco suspension culture. J Biotechnol 2011; 155:164-72. [PMID: 21762733 DOI: 10.1016/j.jbiotec.2011.06.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/24/2011] [Accepted: 06/28/2011] [Indexed: 12/11/2022]
Abstract
Most human serum albumin (HSA) for medical applications is derived from human plasma due to the lack of suitable heterologous expression systems for recombinant HSA (rHSA). To determine whether plant cell cultures could provide an alternative source, we employed the hyper-translatable cowpea mosaic virus protein expression system (CPMV-HT) to stably express rHSA in tobacco Bright Yellow-2 (BY-2) cells. rHSA was stably produced with yield up to 11.88μg/ml in the culture medium, accounting for 0.7% of total soluble protein, in a 25-ml flask. Cultivation of transgenic cells in modified Murashige and Skoog medium with a pH of 8.0 improved the yield of rHSA two-fold, which may be the result of reduced proteolytic activity in the modified medium. A simple purification scheme was developed to purify the rHSA from culture medium, resulting in a recovery of 48.41% of the secreted rHSA. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and N-terminal sequence analysis of the purified rHSA revealed that plant cell-derived rHSA is identical to that of the plasma-derived HSA. Our results show that the CPMV-HT system, which was originally developed as a transient expression system for use in whole plants, can also be used for high-level expression of rHSA, a protein highly susceptible to proteolysis, in transgenic tobacco cells.
Collapse
Affiliation(s)
- Qiao-Yang Sun
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Du C, Xu Y, Wang Y, Chong K. Adenosine diphosphate ribosylation factor-GTPase-activating protein stimulates the transport of AUX1 endosome, which relies on actin cytoskeletal organization in rice root development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:698-709. [PMID: 21631728 DOI: 10.1111/j.1744-7909.2011.01059.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Polar auxin transport, which depends on polarized subcellular distribution of AUXIN RESISTANT 1/LIKE AUX1 (AUX1/LAX) influx carriers and PIN-FORMED (PIN) efflux carriers, mediates various processes of plant growth and development. Endosomal recycling of PIN1 is mediated by an adenosine diphosphate (ADP)ribosylation factor (ARF)-GTPase exchange factor protein, GNOM. However, the mediation of auxin influx carrier recycling is poorly understood. Here, we report that overexpression of OsAGAP, an ARF-GTPase-activating protein in rice, stimulates vesicle transport from the plasma membrane to the Golgi apparatus in protoplasts and transgenic plants and induces the accumulation of early endosomes and AUX1. AUX1 endosomes could partially colocalize with FM4-64 labeled early endosome after actin disruption. Furthermore, OsAGAP is involved in actin cytoskeletal organization, and its overexpression tends to reduce the thickness and bundling of actin filaments. Fluorescence recovery after photobleaching analysis revealed exocytosis of the AUX1 recycling endosome was not affected in the OsAGAP overexpression cells, and was only slightly promoted when the actin filaments were completely disrupted by Lat B. Thus, we propose that AUX1 accumulation in the OsAGAP overexpression and actin disrupted cells may be due to the fact that endocytosis of the auxin influx carrier AUX1 early endosome was greatly promoted by actin cytoskeleton disruption.
Collapse
Affiliation(s)
- Cheng Du
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | |
Collapse
|
176
|
Shen Y, Wang J, Ding Y, Lo SW, Gouzerh G, Neuhaus JM, Jiang L. The rice RMR1 associates with a distinct prevacuolar compartment for the protein storage vacuole pathway. MOLECULAR PLANT 2011; 4:854-68. [PMID: 21493745 DOI: 10.1093/mp/ssr025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Transport of vacuolar proteins from Golgi apparatus or trans-Golgi network (TGN) to vacuoles is a receptor-mediated process via an intermediate membrane-bound prevacuolar compartment (PVC) in plant cells. Both vacuolar sorting receptor (VSR) and receptor homology region-transmembrane domain-RING-H2 (RMR) proteins have been shown to function in transporting storage proteins to protein storage vacuole (PSV), but little is known about the nature of the PVC for the PSV pathway. Here, we use the rice RMR1 (OsRMR1) as a probe to study the PSV pathway in plants. Immunogold electron microscopy (EM) with specific OsRMR1 antibodies showed that OsRMR1 proteins were found in the Golgi apparatus, TGN, and a distinct organelle with characteristics of PVC in both rice culture cells and developing rice seeds, as well as the protein body type II (PBII) or PSV in developing rice seeds. This organelle, also found in both tobacco BY-2 and Arabidopsis suspension cultured cells, is morphologically distinct from the VSR-positive multivesicular lytic PVC or multivesicular body (MVB) and thus represent a PVC for the PSV pathway that we name storage PVC (sPVC). Further in vivo and in vitro interaction studies using truncated OsRMR1 proteins secreted into the culture media of transgenic BY-2 suspension cells demonstrated that OsRMR1 functions as a sorting receptor in transporting vicilin-like storage proteins.
Collapse
Affiliation(s)
- Yun Shen
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
177
|
Wang H, Zhuang XH, Hillmer S, Robinson DG, Jiang LW. Vacuolar sorting receptor (VSR) proteins reach the plasma membrane in germinating pollen tubes. MOLECULAR PLANT 2011; 4:845-53. [PMID: 21430175 DOI: 10.1093/mp/ssr011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Vacuolar sorting receptors (VSRs) are type I integral membrane proteins that mediate the vacuolar transport of soluble cargo proteins via prevacuolar compartments (PVCs) in plants. Confocal immunofluorescent and immunogold Electron Microscope (EM) studies have localized VSRs to PVCs or multivesicular bodies (MVBs) and trans-Golgi network (TGN) in various plant cell types, including suspension culture cells, root cells, developing and germinating seeds. Here, we provide evidence that VSRs reach plasma membrane (PM) in growing pollen tubes. Both immunofluorescent and immunogold EM studies with specific VSR antibodies show that, in addition to the previously demonstrated PVC/MVB localization, VSRs also localize to PM in lily and tobacco pollen tubes prepared from chemical fixation or high-pressure freezing/frozen substitution. Such a PM localization suggests an additional role of VSR proteins in mediating protein transport to PM and endocytosis in growing pollen tubes. Using a high-speed Spinning Disc Confocal Microscope, the possible fusion between VSR-positive PVC organelles and the PM was also observed in living tobacco pollen tubes transiently expressing the PVC reporter GFP-VSR. In contrast, the lack of a prominent PM localization of GFP-VSR in living pollen tubes may be due to the highly dynamic situation of vesicular transport in this fast-growing cell type.
Collapse
Affiliation(s)
- Hao Wang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|
178
|
Scheuring D, Viotti C, Krüger F, Künzl F, Sturm S, Bubeck J, Hillmer S, Frigerio L, Robinson DG, Pimpl P, Schumacher K. Multivesicular bodies mature from the trans-Golgi network/early endosome in Arabidopsis. THE PLANT CELL 2011; 23:3463-81. [PMID: 21934143 PMCID: PMC3203422 DOI: 10.1105/tpc.111.086918] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 08/19/2011] [Accepted: 08/31/2011] [Indexed: 05/17/2023]
Abstract
The plant trans-Golgi network/early endosome (TGN/EE) is a major hub for secretory and endocytic trafficking with complex molecular mechanisms controlling sorting and transport of cargo. Vacuolar transport from the TGN/EE to multivesicular bodies/late endosomes (MVBs/LEs) is assumed to occur via clathrin-coated vesicles, although direct proof for their participation is missing. Here, we present evidence that post-TGN transport toward lytic vacuoles occurs independently of clathrin and that MVBs/LEs are derived from the TGN/EE through maturation. We show that the V-ATPase inhibitor concanamycin A significantly reduces the number of MVBs and causes TGN and MVB markers to colocalize in Arabidopsis thaliana roots. Ultrastructural analysis reveals the formation of MVBs from the TGN/EE and their fusion with the vacuole. The localization of the ESCRT components VPS28, VPS22, and VPS2 at the TGN/EE and MVBs/LEs indicates that the formation of intraluminal vesicles starts already at the TGN/EE. Accordingly, a dominant-negative mutant of VPS2 causes TGN and MVB markers to colocalize and blocks vacuolar transport. RNA interference-mediated knockdown of the annexin ANNAT3 also yields the same phenotype. Together, these data indicate that MVBs originate from the TGN/EE in a process that requires the action of ESCRT for the formation of intraluminal vesicles and annexins for the final step of releasing MVBs as a transport carrier to the vacuole.
Collapse
Affiliation(s)
- David Scheuring
- Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Corrado Viotti
- Developmental Biology of Plants, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Falco Krüger
- Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Fabian Künzl
- Developmental Genetics, Centre for Plant Molecular Biology, University of Tübingen, 72076 Tuebingen, Germany
| | - Silke Sturm
- Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Julia Bubeck
- Developmental Biology of Plants, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Stefan Hillmer
- Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Lorenzo Frigerio
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David G. Robinson
- Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Peter Pimpl
- Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
- Developmental Genetics, Centre for Plant Molecular Biology, University of Tübingen, 72076 Tuebingen, Germany
- Address correspondence to
| | - Karin Schumacher
- Developmental Biology of Plants, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
179
|
Abstract
Subcellular trafficking is required for a multitude of functions in eukaryotic cells. It involves regulation of cargo sorting, vesicle formation, trafficking and fusion processes at multiple levels. Adaptor protein (AP) complexes are key regulators of cargo sorting into vesicles in yeast and mammals but their existence and function in plants have not been demonstrated. Here we report the identification of the protein-affected trafficking 4 (pat4) mutant defective in the putative δ subunit of the AP-3 complex. pat4 and pat2, a mutant isolated from the same GFP imaging-based forward genetic screen that lacks a functional putative AP-3 β, as well as dominant negative AP-3 μ transgenic lines display undistinguishable phenotypes characterized by largely normal morphology and development, but strong intracellular accumulation of membrane proteins in aberrant vacuolar structures. All mutants are defective in morphology and function of lytic and protein storage vacuoles (PSVs) but show normal sorting of reserve proteins to PSVs. Immunoprecipitation experiments and genetic studies revealed tight functional and physical associations of putative AP-3 β and AP-3 δ subunits. Furthermore, both proteins are closely linked with putative AP-3 μ and σ subunits and several components of the clathrin and dynamin machineries. Taken together, these results demonstrate that AP complexes, similar to those in other eukaryotes, exist in plants, and that AP-3 plays a specific role in the regulation of biogenesis and function of vacuoles in plant cells.
Collapse
|
180
|
Miao Y, Ding Y, Sun QY, Xu ZF, Jiang L. Plant bioreactors for pharmaceuticals. Biotechnol Genet Eng Rev 2011; 25:363-80. [PMID: 21412362 DOI: 10.5661/bger-25-363] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Plant bioreactors are attractive expression systems for economic production of pharmaceuticals. Various plant expression systems or platforms have been tested with certain degrees of success over the past years. However, further development and improvement are needed for more effective plant bioreactors. In this review we first summarize recent progress in various plant bioreactor expression systems and then focus on discussing protein compartmentation to unique organelles and various strategies for developing better plant bioreactors.
Collapse
Affiliation(s)
- Yansong Miao
- Department of Biology and Molecular Biotechnology Program, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|
181
|
Wang H, Jiang L. Transient expression and analysis of fluorescent reporter proteins in plant pollen tubes. Nat Protoc 2011; 6:419-26. [PMID: 21412270 DOI: 10.1038/nprot.2011.309] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The pollen tube is an excellent single-cell model system for studying cellular processes in plant cell biology. This protocol describes a detailed step-by-step procedure with optimized conditions for introducing various fluorescent reporter proteins into lily, tobacco and Arabidopsis pollen grains by means of biolistics for their transient expression and subsequent analysis in germinating pollen tubes. The whole experiment consists of four major stages: coating gold microcarriers with DNA constructs, preparation of pollen grains, transformation of plasmid DNA into pollen grains by particle delivery system and germination of bombarded pollen grains in optimized germination media to obtain pollen tubes for protein trafficking, protein localization, drug treatment and organelle dynamics analysis. This protocol takes about 4-12 h from pollen preparation to protein detection.
Collapse
Affiliation(s)
- Hao Wang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
182
|
Cai Y, Jia T, Lam SK, Ding Y, Gao C, San MWY, Pimpl P, Jiang L. Multiple cytosolic and transmembrane determinants are required for the trafficking of SCAMP1 via an ER-Golgi-TGN-PM pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:882-96. [PMID: 21251105 DOI: 10.1111/j.1365-313x.2010.04469.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
How polytopic plasma membrane (PM) proteins reach their destination in plant cells remains elusive. Using transgenic tobacco BY-2 cells, we previously showed that the rice secretory carrier membrane protein 1 (SCAMP1), an integral membrane protein with four transmembrane domains (TMDs), is localized to the PM and trans-Golgi network (TGN). Here, we study the transport pathway and sorting signals of SCAMP1 by following its transient expression in tobacco BY-2 protoplasts and show that SCAMP1 reaches the PM via an endoplasmic reticulum (ER)-Golgi-TGN-PM pathway. Loss-of-function and gain-of-function analysis of various green fluorescent protein (GFP) fusions with SCAMP1 mutations further demonstrates that: (i) the cytosolic N-terminus of SCAMP1 contains an ER export signal; (ii) the transmembrane domain 2 (TMD2) and TMD3 of SCAMP1 are essential for Golgi export; (iii) SCAMP1 TMD1 is essential for TGN-to-PM targeting; (iv) the predicted topology of SCAMP1 and its various mutants remain identical as demonstrated by protease protection assay. Therefore, both the cytosolic N-terminus and TMD sequences of SCAMP1 play integral roles in mediating its transport to the PM via an ER-Golgi-TGN pathway.
Collapse
Affiliation(s)
- Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Bandmann V, Kreft M, Homann U. Modes of exocytotic and endocytotic events in tobacco BY-2 protoplasts. MOLECULAR PLANT 2011; 4:241-51. [PMID: 21135068 DOI: 10.1093/mp/ssq072] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
To analyze the kinetics and size of single exo- and endocytotic events in BY-2 protoplasts, we employed cell-attached membrane capacitance measurements. These measurements revealed different modes of fusion and fission of single vesicles. In about half of the observed exocytotic events, fusion occurred transiently, which facilitates rapid recycling of vesicles. In addition, transient sequential or multi-vesicular exocytosis observed in some recordings can contribute to an increase in efficiency of secretory product release. Microscopic analysis of the timescale of cellulose and pectin deposition in protoplasts demonstrates that rebuilding of the cell wall starts soon after isolation of protoplasts and that transient fusion events can fully account for secretion of the required soluble material. The capacitance measurements also allowed us to investigate formation of the fusion pore. We speculate that regulation of secretion may involve control of the length and/or size of fusion pore opening. Together, the different kinetic modes of exo- and endocytosis revealed by capacitance measurements underline the complexity of this process in plants and provide a basis for future research into the underlying mechanisms. The fact that similar fusion/fission kinetics are present in plant and animal cells suggests that many of these mechanisms are highly conserved among eukaryotes.
Collapse
Affiliation(s)
- Vera Bandmann
- Institut für Botanik, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | | | | |
Collapse
|
184
|
Park M, Jürgens G. Membrane traffic and fusion at post-Golgi compartments. FRONTIERS IN PLANT SCIENCE 2011; 2:111. [PMID: 22645561 PMCID: PMC3355779 DOI: 10.3389/fpls.2011.00111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 12/19/2011] [Indexed: 05/18/2023]
Abstract
Complete sequencing of the Arabidopsis genome a decade ago has facilitated the functional analysis of various biological processes including membrane traffic by which many proteins are delivered to their sites of action and turnover. In particular, membrane traffic between post-Golgi compartments plays an important role in cell signaling, taking care of receptor-ligand interaction and inactivation, which requires secretion, endocytosis, and recycling or targeting to the vacuole for degradation. Here, we discuss recent studies that address the identity of post-Golgi compartments, the machinery involved in traffic and fusion or functionally characterized cargo proteins that are delivered to or pass through post-Golgi compartments. We also provide an outlook on future challenges in this area of research.
Collapse
Affiliation(s)
- Misoon Park
- Entwicklungsgenetik, Zentrum für Molekularbiologie der Pflanzen, University of TübingenTübingen, Germany
| | - Gerd Jürgens
- Entwicklungsgenetik, Zentrum für Molekularbiologie der Pflanzen, University of TübingenTübingen, Germany
- *Correspondence: Gerd Jürgens, Entwicklungsgenetik, Zentrum für Molekularbiologie der Pflanzen, University of Tübingen, Auf der Morgenstelle 3, 72076 Tübingen, Germany. e-mail:
| |
Collapse
|
185
|
Kasai K, Takano J, Miwa K, Toyoda A, Fujiwara T. High boron-induced ubiquitination regulates vacuolar sorting of the BOR1 borate transporter in Arabidopsis thaliana. J Biol Chem 2010; 286:6175-83. [PMID: 21148314 DOI: 10.1074/jbc.m110.184929] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Boron homeostasis is important for plants, as boron is essential but is toxic in excess. Under high boron conditions, the Arabidopsis thaliana borate transporter BOR1 is trafficked from the plasma membrane (PM) to the vacuole via the endocytic pathway for degradation to avoid excess boron transport. Here, we show that boron-induced ubiquitination is required for vacuolar sorting of BOR1. We found that a substitution of lysine 590 with alanine (K590A) in BOR1 blocked degradation. BOR1 was mono- or diubiquitinated within several minutes after applying a high concentration of boron, whereas the K590A mutant was not. The K590A mutation abolished vacuolar transport of BOR1 but did not apparently affect polar localization to the inner PM domains. Furthermore, brefeldin A and wortmannin treatment suggested that Lys-590 is required for BOR1 translocation from an early endosomal compartment to multivesicular bodies. Our results show that boron-induced ubiquitination of BOR1 is not required for endocytosis from the PM but is crucial for the sorting of internalized BOR1 to multivesicular bodies for subsequent degradation in vacuoles.
Collapse
Affiliation(s)
- Koji Kasai
- Biotechnology Research Center, University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
186
|
Wang J, Ding Y, Wang J, Hillmer S, Miao Y, Lo SW, Wang X, Robinson DG, Jiang L. EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. THE PLANT CELL 2010; 22:4009-30. [PMID: 21193573 PMCID: PMC3027174 DOI: 10.1105/tpc.110.080697] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 11/29/2010] [Accepted: 12/09/2010] [Indexed: 05/17/2023]
Abstract
The exocyst protein complex mediates vesicle fusion with the plasma membrane. By expressing an (X)FP-tagged Arabidopsis thaliana homolog of the exocyst protein Exo70 in suspension-cultured Arabidopsis and tobacco (Nicotiana tabacum) BY-2 cells, and using antibodies specific for Exo70, we detected a compartment, which we term EXPO (for exocyst positive organelles). Standard markers for the Golgi apparatus, the trans-Golgi network/early endosome, and the multivesicular body/late endosome in plants do not colocalize with EXPO. Inhibitors of the secretory and endocytic pathways also do not affect EXPO. Exo70E2-(X)FP also locates to the plasma membrane (PM) as discrete punctae and is secreted outside of the cells. Immunogold labeling of sections cut from high-pressure frozen samples reveal EXPO to be spherical double membrane structures resembling autophagosomes. However, unlike autophagosomes, EXPOs are not induced by starvation and do not fuse with the lytic compartment or with endosomes. Instead, they fuse with the PM, releasing a single membrane vesicle into the cell wall. EXPOs are also found in other cell types, including root tips, root hair cells, and pollen grains. EXPOs therefore represent a form of unconventional secretion unique to plants.
Collapse
Affiliation(s)
- Juan Wang
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yu Ding
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Junqi Wang
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Stefan Hillmer
- Department of Cell Biology, Heidelberg Institute for Plant Science, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Yansong Miao
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Sze Wan Lo
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiangfeng Wang
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - David G. Robinson
- Department of Cell Biology, Heidelberg Institute for Plant Science, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
187
|
Foresti O, Gershlick DC, Bottanelli F, Hummel E, Hawes C, Denecke J. A recycling-defective vacuolar sorting receptor reveals an intermediate compartment situated between prevacuoles and vacuoles in tobacco. THE PLANT CELL 2010; 22:3992-4008. [PMID: 21177482 PMCID: PMC3027165 DOI: 10.1105/tpc.110.078436] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/04/2010] [Accepted: 11/11/2010] [Indexed: 05/18/2023]
Abstract
Plant vacuolar sorting receptors (VSRs) display cytosolic Tyr motifs (YMPL) for clathrin-mediated anterograde transport to the prevacuolar compartment. Here, we show that the same motif is also required for VSR recycling. A Y612A point mutation in Arabidopsis thaliana VSR2 leads to a quantitative shift in VSR2 steady state levels from the prevacuolar compartment to the trans-Golgi network when expressed in Nicotiana tabacum. By contrast, the L615A mutant VSR2 leaks strongly to vacuoles and accumulates in a previously undiscovered compartment. The latter is shown to be distinct from the Golgi stacks, the trans-Golgi network, and the prevacuolar compartment but is characterized by high concentrations of soluble vacuolar cargo and the rab5 GTPase Rha1(RabF2a). The results suggest that the prevacuolar compartment matures by gradual receptor depletion, leading to the formation of a late prevacuolar compartment situated between the prevacuolar compartment and the vacuole.
Collapse
Affiliation(s)
- Ombretta Foresti
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - David C. Gershlick
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Francesca Bottanelli
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Eric Hummel
- School of Life Sciences, Oxford Brookes, Oxford OX3 0BP, United Kingdom
| | - Chris Hawes
- School of Life Sciences, Oxford Brookes, Oxford OX3 0BP, United Kingdom
| | - Jürgen Denecke
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
188
|
Wang H, Rogers JC, Jiang L. Plant RMR proteins: unique vacuolar sorting receptors that couple ligand sorting with membrane internalization. FEBS J 2010; 278:59-68. [PMID: 21078125 DOI: 10.1111/j.1742-4658.2010.07923.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In receptor-mediated sorting of soluble protein ligands in the endomembrane system of eukaryotic cells, three completely different receptor proteins for mammalian (mannose 6-phosphate receptor), yeast (Vps10p) and plant cells (vacuolar sorting receptor; VSR) have in common the features of pH-dependent ligand binding and receptor recycling. In striking contrast, the plant receptor homology-transmembrane-RING-H2 (RMR) proteins serve as sorting receptors to a separate type of vacuole, the protein storage vacuole, but do not recycle, and their trafficking pathway results in their internalization into the destination vacuole. Even though plant RMR proteins share high sequence similarity with the best-characterized mammalian PA-TM-RING family proteins, these two families of proteins appear to play distinctly different roles in plant and animal cells. Thus, this minireview focuses on this unique sorting mechanism and traffic of RMR proteins via dense vesicles in various plant cell types.
Collapse
Affiliation(s)
- Hao Wang
- Department of Biology, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | |
Collapse
|
189
|
Liao F, Wang L, Yang LB, Peng X, Sun M. NtGNL1 plays an essential role in pollen tube tip growth and orientation likely via regulation of post-Golgi trafficking. PLoS One 2010; 5:e13401. [PMID: 20976165 PMCID: PMC2955533 DOI: 10.1371/journal.pone.0013401] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/19/2010] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Tobacco GNOM LIKE 1 (NtGNL1), a new member of the Big/GBF family, is characterized by a sec 7 domain. Thus, we proposed that NtGNL1 may function in regulating pollen tube growth for vesicle trafficking. METHODOLOGY/PRINCIPAL FINDINGS To test this hypothesis, we used an RNAi technique to down-regulate NtGNL1 expression and found that pollen tube growth and orientation were clearly inhibited. Cytological observations revealed that both timing and behavior of endocytosis was disrupted, and endosome trafficking to prevacuolar compartments (PVC) or multivesicular bodies (MVB) was altered in pollen tube tips. Moreover, NtGNL1 seemed to partially overlap with Golgi bodies, but clearly colocalized with putative late endosome compartments. We also observed that in such pollen tubes, the Golgi apparatus disassembled and fused with the endoplasmic reticulum, indicating abnormal post-Golgi trafficking. During this process, actin organization was also remodeled. CONCLUSIONS/SIGNIFICANCE Thus, we revealed that NtGNL1 is essential for pollen tube growth and orientation and it likely functions via stabilizing the structure of the Golgi apparatus and ensuring post-Golgi trafficking.
Collapse
Affiliation(s)
- Fanglei Liao
- Key Laboratory of Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, China
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, China
| | - Lu Wang
- Key Laboratory of Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, China
- Biotechnology Department, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Li-Bo Yang
- Key Laboratory of Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiongbo Peng
- Key Laboratory of Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mengxiang Sun
- Key Laboratory of Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
190
|
Kim H, Kang H, Jang M, Chang JH, Miao Y, Jiang L, Hwang I. Homomeric interaction of AtVSR1 is essential for its function as a vacuolar sorting receptor. PLANT PHYSIOLOGY 2010; 154:134-48. [PMID: 20625000 PMCID: PMC2938145 DOI: 10.1104/pp.110.159814] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Vacuolar sorting receptors, BP80/VSRs, play a critical role in vacuolar trafficking of soluble proteins in plant cells. However, the mechanism of action of BP80 is not well understood. Here, we investigate the action mechanism of AtVSR1, a member of BP80 proteins in Arabidopsis (Arabidopsis thaliana), in vacuolar trafficking. AtVSR1 exists as multiple forms, including a high molecular mass homomeric complex in vivo. Both the transmembrane and carboxyl-terminal cytoplasmic domains of AtVSR1 are necessary for the homomeric interaction. The carboxyl-terminal cytoplasmic domain contains specific sequence information, whereas the transmembrane domain has a structural role in the homomeric interaction. In protoplasts, an AtVSR1 mutant, C2A, that contained alanine substitution of the region involved in the homomeric interaction, was defective in trafficking to the prevacuolar compartment and localized primarily to the trans-Golgi network. In addition, overexpression of C2A, but not wild-type AtVSR1, inhibited trafficking of soluble proteins to the vacuole and caused their secretion into the medium. Furthermore, C2A:hemagglutinin in transgenic plants interfered with the homomeric interaction of endogenous AtVSR1 and inhibited vacuolar trafficking of sporamin:green fluorescent protein. These data suggest that homomeric interaction of AtVSR1 is critical for its function as a vacuolar sorting receptor.
Collapse
|
191
|
Feraru E, Paciorek T, Feraru MI, Zwiewka M, De Groodt R, De Rycke R, Kleine-Vehn J, Friml J. The AP-3 β adaptin mediates the biogenesis and function of lytic vacuoles in Arabidopsis. THE PLANT CELL 2010; 22:2812-24. [PMID: 20729380 PMCID: PMC2947184 DOI: 10.1105/tpc.110.075424] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 07/16/2010] [Accepted: 07/23/2010] [Indexed: 05/18/2023]
Abstract
Plant vacuoles are essential multifunctional organelles largely distinct from similar organelles in other eukaryotes. Embryo protein storage vacuoles and the lytic vacuoles that perform a general degradation function are the best characterized, but little is known about the biogenesis and transition between these vacuolar types. Here, we designed a fluorescent marker-based forward genetic screen in Arabidopsis thaliana and identified a protein affected trafficking2 (pat2) mutant, whose lytic vacuoles display altered morphology and accumulation of proteins. Unlike other mutants affecting the vacuole, pat2 is specifically defective in the biogenesis, identity, and function of lytic vacuoles but shows normal sorting of proteins to storage vacuoles. PAT2 encodes a putative β-subunit of adaptor protein complex 3 (AP-3) that can partially complement the corresponding yeast mutant. Manipulations of the putative AP-3 β adaptin functions suggest a plant-specific role for the evolutionarily conserved AP-3 β in mediating lytic vacuole performance and transition of storage into the lytic vacuoles independently of the main prevacuolar compartment-based trafficking route.
Collapse
Affiliation(s)
- Elena Feraru
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Tomasz Paciorek
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Mugurel I. Feraru
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Marta Zwiewka
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium
| | - Ruth De Groodt
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium
| | - Riet De Rycke
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium
| | - Jürgen Kleine-Vehn
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Jiří Friml
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium
| |
Collapse
|
192
|
Saint-Jean B, Seveno-Carpentier E, Alcon C, Neuhaus JM, Paris N. The cytosolic tail dipeptide Ile-Met of the pea receptor BP80 is required for recycling from the prevacuole and for endocytosis. THE PLANT CELL 2010; 22:2825-37. [PMID: 20807880 PMCID: PMC2947187 DOI: 10.1105/tpc.109.072215] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 06/24/2010] [Accepted: 08/05/2010] [Indexed: 05/18/2023]
Abstract
Pea (Pisum sativum) BP80 is a vacuolar sorting receptor for soluble proteins and has a cytosolic domain essential for its intracellular trafficking between the trans-Golgi network and the prevacuole. Based on mammalian knowledge, we introduced point mutations in the cytosolic region of the receptor and produced chimeras of green fluorescent protein fused to the transmembrane domain of pea BP80 along with the modified cytosolic tails. By analyzing the subcellular location of these chimera, we found that mutating Glu-604, Asp-616, or Glu-620 had mild effects, whereas mutating the Tyr motif partially redistributed the chimera to the plasma membrane. Replacing both Ile-608 and Met-609 by Ala (IMAA) led to a massive redistribution of fluorescence to the vacuole, indicating that recycling is impaired. When the chimera uses the alternative route, the IMAA mutation led to a massive accumulation at the plasma membrane. Using Arabidopsis thaliana plants expressing a fluorescent reporter with the full-length sequence of At VSR4, we demonstrated that the receptor undergoes brefeldin A-sensitive endocytosis. We conclude that the receptors use two pathways, one leading directly to the lytic vacuole and the other going via the plasma membrane, and that the Ileu-608 Met-609 motif has a role in the retrieval step in both pathways.
Collapse
Affiliation(s)
- Bruno Saint-Jean
- Laboratoire de Physiologie et Biotechnologie des Algues, Institut Français de Recherche pour l'Exploitation de la Mer, 44311 Nantes Cedex 03, France
| | - Emilie Seveno-Carpentier
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 1, France
| | - Carine Alcon
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 1, France
| | - Jean-Marc Neuhaus
- Laboratoire de Biologie Moléculaire et Cellulaire, Université de Neuchâtel, CH-2009 Neuchâtel, Switzerland
| | - Nadine Paris
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 1, France
| |
Collapse
|
193
|
Niemes S, Labs M, Scheuring D, Krueger F, Langhans M, Jesenofsky B, Robinson DG, Pimpl P. Sorting of plant vacuolar proteins is initiated in the ER. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:601-14. [PMID: 20149141 DOI: 10.1111/j.1365-313x.2010.04171.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Transport of soluble cargo molecules to the lytic vacuole of plants requires vacuolar sorting receptors (VSRs) to divert transport of vacuolar cargo from the default secretory route to the cell surface. Just as important is the trafficking of the VSRs themselves, a process that encompasses anterograde transport of receptor-ligand complexes from a donor compartment, dissociation of these complexes upon arrival at the target compartment, and recycling of the receptor back to the donor compartment for a further round of ligand transport. We have previously shown that retromer-mediated recycling of the plant VSR BP80 starts at the trans-Golgi network (TGN). Here we demonstrate that inhibition of retromer function by either RNAi knockdown of sorting nexins (SNXs) or co-expression of mutants of SNX1/2a specifically inhibits the ER export of VSRs as well as soluble vacuolar cargo molecules, but does not influence cargo molecules destined for the COPII-mediated transport route. Retention of soluble cargo despite ongoing COPII-mediated bulk flow can only be explained by an interaction with membrane-bound proteins. Therefore, we examined whether VSRs are capable of binding their ligands in the lumen of the ER by expressing ER-anchored VSR derivatives. These experiments resulted in drastic accumulation of soluble vacuolar cargo molecules in the ER. This demonstrates that the ER, rather than the TGN, is the location of the initial VSR-ligand interaction. It also implies that the retromer-mediated recycling route for the VSRs leads from the TGN back to the ER.
Collapse
Affiliation(s)
- Silke Niemes
- Department of Cell Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Viotti C, Bubeck J, Stierhof YD, Krebs M, Langhans M, van den Berg W, van Dongen W, Richter S, Geldner N, Takano J, Jürgens G, de Vries SC, Robinson DG, Schumacher K. Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. THE PLANT CELL 2010; 22:1344-57. [PMID: 20435907 PMCID: PMC2879741 DOI: 10.1105/tpc.109.072637] [Citation(s) in RCA: 365] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 03/22/2010] [Accepted: 04/09/2010] [Indexed: 05/17/2023]
Abstract
Plants constantly adjust their repertoire of plasma membrane proteins that mediates transduction of environmental and developmental signals as well as transport of ions, nutrients, and hormones. The importance of regulated secretory and endocytic trafficking is becoming increasingly clear; however, our knowledge of the compartments and molecular machinery involved is still fragmentary. We used immunogold electron microscopy and confocal laser scanning microscopy to trace the route of cargo molecules, including the BRASSINOSTEROID INSENSITIVE1 receptor and the REQUIRES HIGH BORON1 boron exporter, throughout the plant endomembrane system. Our results provide evidence that both endocytic and secretory cargo pass through the trans-Golgi network/early endosome (TGN/EE) and demonstrate that cargo in late endosomes/multivesicular bodies is destined for vacuolar degradation. Moreover, using spinning disc microscopy, we show that TGN/EEs move independently and are only transiently associated with an individual Golgi stack.
Collapse
Affiliation(s)
- Corrado Viotti
- Department of Cell Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Julia Bubeck
- Department of Developmental Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - York-Dieter Stierhof
- Microscopy Unit, Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Melanie Krebs
- Department of Developmental Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Markus Langhans
- Department of Cell Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Willy van den Berg
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Walter van Dongen
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Sandra Richter
- Developmental Genetics, Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Junpei Takano
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Gerd Jürgens
- Developmental Genetics, Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Sacco C. de Vries
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - David G. Robinson
- Department of Cell Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Karin Schumacher
- Department of Developmental Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
- Address correspondence to
| |
Collapse
|
195
|
Zhang Y, He J, Lee D, McCormick S. Interdependence of endomembrane trafficking and actin dynamics during polarized growth of Arabidopsis pollen tubes. PLANT PHYSIOLOGY 2010; 152:2200-10. [PMID: 20181757 PMCID: PMC2850033 DOI: 10.1104/pp.109.142349] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
During polarized growth of pollen tubes, endomembrane trafficking and actin polymerization are two critical processes that establish membrane/wall homeostasis and maintain growth polarity. Fine-tuned interactions between these two processes are therefore necessary but poorly understood. To better understand such cross talk in the model plant Arabidopsis (Arabidopsis thaliana), we first established optimized concentrations of drugs that interfere with either endomembrane trafficking or the actin cytoskeleton, then examined pollen tube growth using fluorescent protein markers that label transport vesicles, endosomes, or the actin cytoskeleton. Both brefeldin A (BFA) and wortmannin disturbed the motility and structural integrity of ARA7- but not ARA6-labeled endosomes, suggesting heterogeneity of the endosomal populations. Disrupting endomembrane trafficking by BFA or wortmannin perturbed actin polymerization at the apical region but not in the longitudinal actin cables in the shank. The interference of BFA/wortmannin with actin polymerization was progressive rather than rapid, suggesting an indirect effect, possibly due to perturbed endomembrane trafficking of certain membrane-localized signaling proteins. Both the actin depolymerization drug latrunculin B and the actin stabilization drug jasplakinolide rapidly disrupted transport of secretory vesicles, but each drug caused distinct responses on different endosomal populations labeled by ARA6 or ARA7, indicating that a dynamic actin cytoskeleton was critical for some steps in endomembrane trafficking. Our results provide evidence of cross talk between endomembrane trafficking and the actin cytoskeleton in pollen tubes.
Collapse
|
196
|
Wang H, Tse YC, Law AHY, Sun SSM, Sun YB, Xu ZF, Hillmer S, Robinson DG, Jiang L. Vacuolar sorting receptors (VSRs) and secretory carrier membrane proteins (SCAMPs) are essential for pollen tube growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:826-38. [PMID: 20030753 DOI: 10.1111/j.1365-313x.2009.04111.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Vacuolar sorting receptors (VSRs) are type-I integral membrane proteins that mediate biosynthetic protein traffic in the secretory pathway to the vacuole, whereas secretory carrier membrane proteins (SCAMPs) are type-IV membrane proteins localizing to the plasma membrane and early endosome (EE) or trans-Golgi network (TGN) in the plant endocytic pathway. As pollen tube growth is an extremely polarized and highly dynamic process, with intense anterograde and retrograde membrane trafficking, we have studied the dynamics and functional roles of VSR and SCAMP in pollen tube growth using lily (Lilium longiflorum) pollen as a model. Using newly cloned lily VSR and SCAMP cDNA (termed LIVSR and LISCAMP, respectively), as well as specific antibodies against VSR and SCAMP1 as tools, we have demonstrated that in growing lily pollen tubes: (i) transiently expressed GFP-VSR/GFP-LIVSR is located throughout the pollen tubes, excepting the apical clear-zone region, whereas GFP-LISCAMP is mainly concentrated in the tip region; (ii) VSRs are localized to the multivesicular body (MVB) and vacuole, whereas SCAMPs are localized to apical endocytic vesicles, TGN and vacuole; and (iii) microinjection of VSR or SCAMP antibodies and LlVSR small interfering RNAs (siRNAs) significantly reduced the growth rate of the lily pollen tubes. Taken together, both VSR and SCAMP are required for pollen tube growth, probably working together in regulating protein trafficking in the secretory and endocytic pathways, which need to be coordinated in order to support pollen tube elongation.
Collapse
Affiliation(s)
- Hao Wang
- Department of Biology, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
A developmental framework for endodermal differentiation and polarity. Proc Natl Acad Sci U S A 2010; 107:5214-9. [PMID: 20142472 DOI: 10.1073/pnas.0910772107] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The endodermis is a root cell layer common to higher plants and of fundamental importance for root function and nutrient uptake. The endodermis separates outer (peripheral) from inner (central) cell layers by virtue of its Casparian strips, precisely aligned bands of specialized wall material. Here we reveal that the membrane at the Casparian strip is a diffusional barrier between the central and peripheral regions of the plasma membrane and that it mediates attachment to the extracellular matrix. This membrane region thus functions like a tight junction in animal epithelia, although plants lack the molecular modules that establish tight junction in animals. We have also identified a pair of influx and efflux transporters that mark both central and peripheral domains of the plasma membrane. These transporters show opposite polar distributions already in meristems, but their localization becomes refined and restricted upon differentiation. This "central-peripheral" polarity coexists with the apical-basal polarity defined by PIN proteins within the same cells, but utilizes different polarity determinants. Central-peripheral polarity can be already observed in early embryogenesis, where it reveals a cellular polarity within the quiescent center precursor cell. A strict diffusion block between polar domains is common in animals, but had never been described in plants. Yet, its relevance to endodermal function is evident, as central and peripheral membranes of the endodermis face fundamentally different root compartments. Further analysis of endodermal transporter polarity and manipulation of its barrier function will greatly promote our understanding of plant nutrition and stress tolerance in roots.
Collapse
|
198
|
Stierhof YD, El Kasmi F. Strategies to improve the antigenicity, ultrastructure preservation and visibility of trafficking compartments in Arabidopsis tissue. Eur J Cell Biol 2010; 89:285-97. [PMID: 20106548 DOI: 10.1016/j.ejcb.2009.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Immunolabelling of (ultra)thin thawed cryosections according to Tokuyasu is one of the most reliable and efficient immunolocalisation techniques for cells and tissues. However, chemical fixation at ambient temperature, a prerequisite of this technique, can cause problems for samples, like plant tissue, because cell walls, hydrophobic surfaces and intercellular air slow down diffusion of fixative molecules into the sample. We show that a hybrid technique, based on a combination of cryofixation/freeze-substitution and Tokuyasu cryosection immunolabelling, circumvents the disadvantages associated with chemical fixation and results in an improved ultrastructure and antigenicity preservation of Tokuyasu cryosections used for light and electron microscopic immunolabelling (as shown for Myc- or mRFP-tagged proteins, KNOLLE and carbohydrate epitopes). In combination with the most sensitive particulate marker systems, like 1-nm gold or quantum dot markers, we were able to obtain a differentiated labelling pattern which allows a more detailed evaluation of plant Golgi, trans-Golgi network and multivesicular body/prevacuolar compartment markers (COPI-specific gammaCOP, the ADP-ribosylation factor GTPase ARF1, ARA7/RabF2b and the vacuolar sorting receptor VSR). We also discuss possibilities to improve membrane contrast, e.g., of transport vesicles like COPI, COPII and clathrin-coated vesicles, and of compartments of endosomal trafficking like the trans-Golgi network.
Collapse
Affiliation(s)
- York-Dieter Stierhof
- Center for Plant Molecular Biology (ZMBP), Microscopy, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany.
| | | |
Collapse
|
199
|
López-Marqués RL, Poulsen LR, Hanisch S, Meffert K, Buch-Pedersen MJ, Jakobsen MK, Pomorski TG, Palmgren MG. Intracellular targeting signals and lipid specificity determinants of the ALA/ALIS P4-ATPase complex reside in the catalytic ALA alpha-subunit. Mol Biol Cell 2010; 21:791-801. [PMID: 20053675 PMCID: PMC2828965 DOI: 10.1091/mbc.e09-08-0656] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Phospholipid flipping across cellular membranes contributes to vesicle biogenesis in eukaryotes and involves flippases (P4-ATPases). However, the minimal composition of the flippase machinery remains to be determined. We demonstrate that cellular targeting and lipid specificity of P4-ATPases require the α-subunit but are independent of the β-subunit. Members of the P4 subfamily of P-type ATPases are believed to catalyze flipping of phospholipids across cellular membranes, in this way contributing to vesicle biogenesis in the secretory and endocytic pathways. P4-ATPases form heteromeric complexes with Cdc50-like proteins, and it has been suggested that these act as β-subunits in the P4-ATPase transport machinery. In this work, we investigated the role of Cdc50-like β-subunits of P4-ATPases for targeting and function of P4-ATPase catalytic α-subunits. We show that the Arabidopsis P4-ATPases ALA2 and ALA3 gain functionality when coexpressed with any of three different ALIS Cdc50-like β-subunits. However, the final cellular destination of P4-ATPases as well as their lipid substrate specificity are independent of the nature of the ALIS β-subunit they were allowed to interact with.
Collapse
Affiliation(s)
- Rosa L López-Marqués
- Center for Membrane Pumps in Cells and Disease, PUMPKIN, Danish National Research Foundation, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Niemes S, Langhans M, Viotti C, Scheuring D, San Wan Yan M, Jiang L, Hillmer S, Robinson DG, Pimpl P. Retromer recycles vacuolar sorting receptors from the trans-Golgi network. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:107-21. [PMID: 19796370 DOI: 10.1111/j.1365-313x.2009.04034.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Receptor-mediated sorting processes in the secretory pathway of eukaryotic cells rely on mechanisms to recycle the receptors after completion of transport. Based on this principle, plant vacuolar sorting receptors (VSRs) are thought to recycle after dissociating of receptor-ligand complexes in a pre-vacuolar compartment. This recycling is mediated by retromer, a cytosolic coat complex that comprises sorting nexins and a large heterotrimeric subunit. To analyse retromer-mediated VSR recycling, we have used a combination of immunoelectron and fluorescence microscopy to localize the retromer components sorting nexin 1 (SNX1) and sorting nexin 2a (SNX2a) and the vacuolar sorting protein VPS29p. All retromer components localize to the trans-Golgi network (TGN), which is considered to represent the early endosome of plants. In addition, we show that inhibition of retromer function in vivo by expression of SNX1 or SNX2a mutants as well as transient RNAi knockdown of all sorting nexins led to accumulation of the VSR BP80 at the TGN. Quantitative protein transport studies and live-cell imaging using fluorescent vacuolar cargo molecules revealed that arrival of these VSR ligands at the vacuole is not affected under these conditions. Based on these findings, we propose that the TGN is the location of retromer-mediated recycling of VSRs, and that transport towards the lytic vacuole downstream of the TGN is receptor-independent and occurs via maturation, similar to transition of the early endosome into the late endosome in mammalian cells.
Collapse
Affiliation(s)
- Silke Niemes
- Department of Cell Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|