151
|
Cherian S, Figueroa CR, Nair H. 'Movers and shakers' in the regulation of fruit ripening: a cross-dissection of climacteric versus non-climacteric fruit. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4705-22. [PMID: 24994760 DOI: 10.1093/jxb/eru280] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fruit ripening is a complex and highly coordinated developmental process involving the expression of many ripening-related genes under the control of a network of signalling pathways. The hormonal control of climacteric fruit ripening, especially ethylene perception and signalling transduction in tomato has been well characterized. Additionally, great strides have been made in understanding some of the major regulatory switches (transcription factors such as RIPENING-INHIBITOR and other transcriptional regulators such as COLOURLESS NON-RIPENING, TOMATO AGAMOUS-LIKE1 and ETHYLENE RESPONSE FACTORs), that are involved in tomato fruit ripening. In contrast, the regulatory network related to non-climacteric fruit ripening remains poorly understood. However, some of the most recent breakthrough research data have provided several lines of evidences for abscisic acid- and sucrose-mediated ripening of strawberry, a non-climacteric fruit model. In this review, we discuss the most recent research findings concerning the hormonal regulation of fleshy fruit ripening and their cross-talk and the future challenges taking tomato as a climacteric fruit model and strawberry as a non-climacteric fruit model. We also highlight the possible contribution of epigenetic changes including the role of plant microRNAs, which is opening new avenues and great possibilities in the fields of fruit-ripening research and postharvest biology.
Collapse
Affiliation(s)
- Sam Cherian
- Faculty of Integrative Sciences and Technology, Quest International University Perak, Jalan Raja Permaisuri Bainun, 30250 Ipoh, Perak Darul Ridzuan, Malaysia
| | - Carlos R Figueroa
- Faculty of Forest Sciences and Biotechnology Center, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile
| | - Helen Nair
- Faculty of Integrative Sciences and Technology, Quest International University Perak, Jalan Raja Permaisuri Bainun, 30250 Ipoh, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
152
|
Genome-wide comparison of microRNAs and their targeted transcripts among leaf, flower and fruit of sweet orange. BMC Genomics 2014; 15:695. [PMID: 25142253 PMCID: PMC4158063 DOI: 10.1186/1471-2164-15-695] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In plants, microRNAs (miRNAs) regulate gene expression mainly at the post-transcriptional level. Previous studies have demonstrated that miRNA-mediated gene silencing pathways play vital roles in plant development. Here, we used a high-throughput sequencing approach to characterize the miRNAs and their targeted transcripts in the leaf, flower and fruit of sweet orange. RESULTS A total of 183 known miRNAs and 38 novel miRNAs were identified. An in-house script was used to identify all potential secondary siRNAs derived from miRNA-targeted transcripts using sRNA and degradome sequencing data. Genome mapping revealed that these miRNAs were evenly distributed across the genome with several small clusters, and 69 pre-miRNAs were co-localized with simple sequence repeats (SSRs). Noticeably, the loop size of pre-miR396c was influenced by the repeat number of CUU unit. The expression pattern of miRNAs among different tissues and developmental stages were further investigated by both qRT-PCR and RNA gel blotting. Interestingly, Csi-miR164 was highly expressed in fruit ripening stage, and was validated to target a NAC transcription factor. This study depicts a global picture of miRNAs and their target genes in the genome of sweet orange, and focused on the comparison among leaf, flower and fruit tissues. CONCLUSIONS This study provides a global view of miRNAs and their target genes in different tissue of sweet orange, and focused on the identification of miRNA involved in the regulation of fruit ripening. The results of this study lay a foundation for unraveling key regulators of orange fruit development and ripening on post-transcriptional level.
Collapse
|
153
|
Gong L, Kakrana A, Arikit S, Meyers BC, Wendel JF. Composition and expression of conserved microRNA genes in diploid cotton (Gossypium) species. Genome Biol Evol 2014; 5:2449-59. [PMID: 24281048 PMCID: PMC3879982 DOI: 10.1093/gbe/evt196] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs are ubiquitous in plant genomes but vary greatly in their abundance within and conservation among plant lineages. To gain insight into the evolutionary birth/death dynamics of microRNA families, we sequenced small RNA and 5′-end PARE libraries generated from two closely related species of Gossypium. Here, we demonstrate that 33 microRNA families, with similar copy numbers and average evolutionary rates, are conserved in the two congeneric cottons. Analysis of the presence/absence of these microRNA families in other land plants sheds light on their depth of phylogenetic origin and lineage-specific loss/gain. Conserved microRNA families in Gossypium exhibit a striking interspecific asymmetry in expression, potentially connected to relative proximity to neighboring transposable elements. A complex correlated expression pattern of microRNA target genes with their controlling microRNAs indicates that possible functional divergence of conserved microRNA families can also exist even within a single plant genus.
Collapse
Affiliation(s)
- Lei Gong
- Department of Ecology, Evolution and Organismal Biology, Iowa State University
| | | | | | | | | |
Collapse
|
154
|
Tsuzuki M, Takeda A, Watanabe Y. Recovery of dicer-like 1-late flowering phenotype by miR172 expressed by the noncanonical DCL4-dependent biogenesis pathway. RNA (NEW YORK, N.Y.) 2014; 20:1320-7. [PMID: 24966167 PMCID: PMC4105755 DOI: 10.1261/rna.044966.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/05/2014] [Indexed: 05/20/2023]
Abstract
MicroRNAs (miRNAs) act as down-regulators of gene expression, and play a dominant role in eukaryote development. In Arabidopsis thaliana, DICER-LIKE 1 (DCL1) is the main processor in miRNA biogenesis, and dcl1 mutants show various developmental defects at the early stage of embryogenesis or at gamete formation. However, miRNAs responsible for the respective developmental stages of the dcl1 defects have not been identified. Here, we developed a DCL1-independent miRNA expression system using the unique DCL4-dependent miRNA, miR839. By replacing the mature sequence in the miR839 precursor sequence with that of miR172, one of the most widely conserved miRNAs in angiosperms, we succeeded in expressing miR172 from a chimeric miR839 precursor in dcl1-7 plants and observed the repression of miR172 target gene expression. In parallel, the DCL4-dependent miR172 expression rescued the late flowering phenotype of dcl1-7 by acceleration of flowering. We established the DCL1-independent miRNA expression system, and revealed that the reduction of miR172 expression is responsible for the dcl1-7 late flowering phenotype.
Collapse
Affiliation(s)
- Masayuki Tsuzuki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Atsushi Takeda
- Graduate School of Life Sciences, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu, Shiga 525-8577, Japan
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
155
|
Quinn CR, Iriyama R, Fernando DD. Expression patterns of conserved microRNAs in the male gametophyte of loblolly pine (Pinus taeda). PLANT REPRODUCTION 2014; 27:69-78. [PMID: 24664256 DOI: 10.1007/s00497-014-0241-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 03/13/2014] [Indexed: 06/03/2023]
Abstract
MicroRNAs (miRNAs) are small RNAs that regulate genes involved in various aspects of plant development, but their presence and expression patterns in the male gametophytes of gymnosperms have not yet been established. Therefore, this study identified and compared the expression patterns of conserved miRNAs from two stages of the male gametophyte of loblolly pine (Pinus taeda), which are the mature (ungerminated) and germinated pollen. Microarray was used to identify conserved miRNAs that varied in expression between these two stages of the loblolly pine male gametophyte. Forty-seven conserved miRNAs showed significantly different expression levels between mature and germinated loblolly pine pollen. In particular, miRNAs representing 14 and 8 families were up- and down-regulated in germinated loblolly pine pollen, respectively. qRT-PCR was used to validate their expression patterns using representative miRNAs. Target genes and proteins were identified using psRNATarget program. Predicted targets of the 22 miRNA families belong mostly to classes of genes involved in defense/stress response, metabolism, regulation, and signaling. qRT-PCR was also used to validate the expression patterns of representative target genes. This study shows that conserved miRNAs are expressed in mature and germinated loblolly pine pollen. Many of these miRNAs are differentially expressed, which indicates that the two stages of the male gametophyte examined are regulated at the miRNA level. This study also expands our knowledge of the male gametophytes of seed plants by providing insights on some similarities and differences in the types and expression patterns of conserved miRNAs between loblolly pine with those of rice and Arabidopsis.
Collapse
Affiliation(s)
- Christina R Quinn
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, One Forestry Drive, Syracuse, NY, 13210, USA
| | | | | |
Collapse
|
156
|
Liu N, Wu S, Van Houten J, Wang Y, Ding B, Fei Z, Clarke TH, Reed JW, van der Knaap E. Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2507-20. [PMID: 24723401 PMCID: PMC4036516 DOI: 10.1093/jxb/eru141] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Auxin regulates the expression of diverse genes that affect plant growth and development. This regulation requires AUXIN RESPONSE FACTORS (ARFs) that bind to the promoter regions of these genes. ARF6 and ARF8 in Arabidopsis thaliana are required to promote inflorescence stem elongation and late stages of petal, stamen, and gynoecium development. All seed plants studied thus far have ARF6 and ARF8 orthologues as well as the microRNA miR167, which targets ARF6 and ARF8. Whether these genes have broadly conserved roles in flower development is not known. To address this question, the effects of down-regulation of ARF6 and ARF8 were investigated through transgenic expression of Arabidopsis MIR167a in tomato, which diverged from Arabidopsis before the radiation of dicotyledonous plants approximately 90-112 million years ago. The transgenic tomato plants overexpressing MIR167a exhibited reductions in leaf size and internode length as well as shortened petals, stamens, and styles. More significantly, the transgenic plants were female-sterile as a result of failure of wild-type pollen to germinate on the stigma surface and/or to grow through the style. RNA-Seq analysis identified many genes with significantly altered expression patterns, including those encoding products with functions in 'transcription regulation', 'cell wall' and 'lipid metabolism' categories. Putative orthologues of a subset of these genes were also differentially expressed in Arabidopsis arf6 arf8 mutant flowers. These results thus suggest that ARF6 and ARF8 have conserved roles in controlling growth and development of vegetative and flower organs in dicots.
Collapse
Affiliation(s)
- Ning Liu
- The Ohio State University, Ohio Agricultural Research and Development Center, Department of Horticulture and Crop Science, Wooster, OH 44691, USA
| | - Shan Wu
- The Ohio State University, Ohio Agricultural Research and Development Center, Department of Horticulture and Crop Science, Wooster, OH 44691, USA
| | - Jason Van Houten
- The Ohio State University, Ohio Agricultural Research and Development Center, Department of Horticulture and Crop Science, Wooster, OH 44691, USA
| | - Ying Wang
- The Ohio State University, Department of Molecular Genetics, Columbus, OH 43210, USA
| | - Biao Ding
- The Ohio State University, Department of Molecular Genetics, Columbus, OH 43210, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Thomas H Clarke
- University of North Carolina, Department of Biology, Chapel Hill, NC 27599-3280, USA
| | - Jason W Reed
- University of North Carolina, Department of Biology, Chapel Hill, NC 27599-3280, USA
| | - Esther van der Knaap
- The Ohio State University, Ohio Agricultural Research and Development Center, Department of Horticulture and Crop Science, Wooster, OH 44691, USA
| |
Collapse
|
157
|
Burklew CE, Xie F, Ashlock J, Zhang B. Expression of microRNAs and their targets regulates floral development in tobacco (Nicotiana tabacum). Funct Integr Genomics 2014; 14:299-306. [PMID: 24448659 DOI: 10.1007/s10142-014-0359-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/27/2013] [Accepted: 01/06/2014] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNAs) are an extensive class of endogenous posttranscriptional gene regulators that function to mediate gene expression by cleaving target mRNAs or by preventing protein translation. Because of their importance in mediating gene regulation, identifying and elucidating the function of miRNAs have been the primary focus of many researchers. Now that many miRNAs have been identified and assessed for their functionality, the next step is to create expression profiles for miRNAs, so that gene expression studies can be further enhanced with knowledge of the basal expression levels of miRNAs and their targets. In a previous study, 259 putative miRNAs were identified in tobacco, in which 11 of them were confirmed. The primary goal of this study was to further expand on that study and create an expression profile for nine miRNAs and their targets in a tissue-specific manner in tobacco. We chose to study miRNAs that largely play a role in floral development and nutrient stress response. The results of our study show that all tested miRNAs and their targets were expressed in a differential manner. The results of our study also show that out of the tested miRNAs and their targets, miR159, miR157, miR167, miR172, and superoxide dismutase were expressed the highest, suggesting that these genes may play a vital role in the growth and development of tobacco. Corrected expression of miRNAs and their targets regulates floral development.
Collapse
Affiliation(s)
- Caitlin E Burklew
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | | | | | | |
Collapse
|
158
|
Luan Y, Wang W, Liu P. Identification and functional analysis of novel and conserved microRNAs in tomato. Mol Biol Rep 2014; 41:5385-94. [PMID: 24844213 DOI: 10.1007/s11033-014-3410-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 05/11/2014] [Indexed: 12/29/2022]
Abstract
MicroRNAs are ~22 nt non-coding endogenous RNAs which play important regulation roles in various species. By using homology-based computational research, 14 novel and conserved tomato miRNAs belonging to ten families were identified from EST, GSS, and nucleotide sequences. Real-time PCR analysis of these miRNAs demonstrated their expression in tomato afterwards. Meanwhile, a total of 36 potential targets were predicted for the ten miRNAs using psRNATarget. The target genes were mainly involved in metabolism, transmembrane transport, stress response, and transcription regulation. According to our experiment, miR398 was down-regulated on different levels under biotic and abiotic stresses, suggesting that miR398 might be involved in tomato stress regulatory network. Our results supplement the findings of tomato miRNAs and also suggest crucial regulatory functions of miRNAs in stress responses.
Collapse
Affiliation(s)
- Yushi Luan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116023, China,
| | | | | |
Collapse
|
159
|
Wang TZ, Zhang WH. Genome-wide identification of microRNAs in Medicago truncatula by high-throughput sequencing. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2014; 1069:67-80. [PMID: 23996309 DOI: 10.1007/978-1-62703-613-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
MicroRNAs (miRNAs) are small, endogenous RNAs that play important regulatory roles in development and stress response in plants by negatively regulating gene expression post-transcriptionally. Medicago truncatula has been used as a model plant to study functional genomics of legume plants. It has also been widely used to functionally study miRNAs. Identification of miRNAs at the whole-genome level is essential for functional characterization of miRNAs in plants. High-throughput sequencing is a powerful technology to identify miRNAs. In this chapter, the methods used for construction of a small RNA library and high-throughput sequencing involving total RNA isolation, small RNA purification, adapter ligation, reverse transcription, PCR amplification, and Solexa sequencing are described. Bioinformatics and analysis of differential expression of miRNAs including primary disposal, miRNA identification, target prediction, and expression analysis are also discussed. These methodologies associated with identification and functional characterization of miRNAs may provide useful tools for readers to study miRNAs in plants in general and Medicago truncatula in particular.
Collapse
Affiliation(s)
- Tian-Zuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
160
|
miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature 2014; 508:411-5. [PMID: 24670663 PMCID: PMC4074602 DOI: 10.1038/nature13069] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 01/22/2014] [Indexed: 11/09/2022]
Abstract
In plants, post-transcriptional gene silencing (PTGS) is mediated by DICER-LIKE1 (DCL1)-dependent miRNAs, that also trigger 21-nt secondary siRNA via RNA DEPENDENT RNA POLYMERASE6 (RDR6), DCL4, and ARGONAUTE1 (AGO1)1–3, while transcriptional gene silencing (TGS) of transposons is mediated by 24-nt heterochromatic (het)siRNA RDR2, DCL3 and AGO44. Transposons can also give rise to abundant 21-nt “epigenetically activated” small interfering RNAs (easiRNAs) in DECREASE IN DNA METHYLATION1 (ddm1) and DNA METHYLTRANSFERASE1 (met1) mutants, as well as in the vegetative nucleus of pollen grains5, and in dedifferentiated plant cell cultures6. Here we show that easiRNAs resemble secondary siRNAs, in that thousands of transposon transcripts are specifically targeted by more than fifty miRNAs for cleavage and processing by RDR6. Loss of RDR6, DCL4 or DCL1 in a ddm1 background results in loss of 21-nt easiRNA, and severe infertility, but 24-nt hetsiRNA are partially restored, supporting an antagonistic relationship between PTGS and TGS. Thus miRNA-directed easiRNA biogenesis is a latent mechanism that specifically targets transposon transcripts, but only when they are epigenetically reactivated during reprogramming of the germline. This ancient recognition mechanism may have been retained both by transposons to evade long-term heterochromatic silencing, and by their hosts for genome defence.
Collapse
|
161
|
Chao YT, Su CL, Jean WH, Chen WC, Chang YCA, Shih MC. Identification and characterization of the microRNA transcriptome of a moth orchid Phalaenopsis aphrodite. PLANT MOLECULAR BIOLOGY 2014; 84:529-48. [PMID: 24173913 PMCID: PMC3920020 DOI: 10.1007/s11103-013-0150-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/24/2013] [Indexed: 05/21/2023]
Abstract
Orchids display unique phenotypes, functional characteristics and ecological adaptations that are not found in model plants. In this study, we aimed to characterize the microRNA (miRNA) transcriptome and identify species- and tissue-specific miRNAs in Phalaenopsis aphrodite. After data filtering and cleanup, a total of 59,387,374 reads, representing 1,649,996 unique reads, were obtained from four P. aphrodite small RNA libraries. A systematic bioinformatics analysis pipeline was developed that can be used for miRNA and precursor mining, and target gene prediction in non-model plants. A total of 3,251 unique reads for 181 known plant miRNAs (belonging to 88 miRNA families), 23 new miRNAs and 91 precursors were identified. All the miRNA star sequences (miRNA*), the complementary strands of miRNA that from miRNA/miRNA* duplexes, of the predicted new miRNAs were detected in our small RNA libraries, providing additional evidence for their existence as new miRNAs in P. aphrodite. Furthermore, 240 potential miRNA-targets that appear to be involved in many different biological activities and molecular functions, especially transcription factors, were identified, suggesting that miRNAs can impact multiple processes in P. aphrodite. We also verified the cleavage sites for six targets using RNA ligase-mediated rapid amplification of 5' ends assay. The results provide valuable information about the composition, expression and function of miRNA in P. aphrodite, and will aid functional genomics studies of orchids.
Collapse
Affiliation(s)
- Ya-Ting Chao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529 Taiwan
| | - Chun-Lin Su
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529 Taiwan
| | - Wen-Han Jean
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529 Taiwan
| | - Wan-Chieh Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529 Taiwan
| | - Yao-Chien Alex Chang
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, 10617 Taiwan
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529 Taiwan
| |
Collapse
|
162
|
Taylor RS, Tarver JE, Hiscock SJ, Donoghue PCJ. Evolutionary history of plant microRNAs. TRENDS IN PLANT SCIENCE 2014; 19:175-82. [PMID: 24405820 DOI: 10.1016/j.tplants.2013.11.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/18/2013] [Accepted: 11/28/2013] [Indexed: 05/11/2023]
Abstract
microRNAs (miRNAs) are short noncoding regulatory genes that perform important roles in plant development and physiology. With the increasing power of next generation sequencing technologies and the development of bioinformatic tools, there has been a dramatic increase in the number of studies surveying the miRNAomes of plant species, which has led to an explosion in the number of described miRNAs. Unfortunately, very many of these new discoveries have been incompletely annotated and thus fail to discriminate genuine miRNAs from small interfering RNAs (siRNAs), fragments of longer RNAs, and random sequence. We review the published repertoire of plant miRNAs, discriminating those that have been correctly annotated. We use these data to explore prevailing hypotheses on the tempo and mode of miRNA evolution within the plant kingdom.
Collapse
Affiliation(s)
- Richard S Taylor
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
| | - James E Tarver
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK; Genome Evolution Laboratory, Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Simon J Hiscock
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK.
| |
Collapse
|
163
|
Glazińska P, Wojciechowski W, Wilmowicz E, Zienkiewicz A, Frankowski K, Kopcewicz J. The involvement of InMIR167 in the regulation of expression of its target gene InARF8, and their participation in the vegetative and generative development of Ipomoea nil plants. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:225-34. [PMID: 24094462 DOI: 10.1016/j.jplph.2013.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 05/13/2023]
Abstract
The plant hormone auxin plays a critical role in regulating plant growth and development. Recent advances have been made that having improved our understanding of auxin response pathways, primarily by characterizing the genes encoding auxin response factors (ARFs) in Arabidopsis. In addition, the expression of some ARFs is regulated by microRNAs (miRNAs). In Arabidopsis thaliana, ARF6 and ARF8 are targeted by miR167, whereas ARF10, ARF16 and ARF17 are targeted by miR160. Nevertheless, little is known about any possible interactions between miRNAs and the auxin signaling pathway during plant development. In this study, we isolated the miR167 target gene InARF8 cDNA from the cotyledons of the short day plant (SDP) Ipomoea nil (named also Pharbitis nil). Additionally, the In-miR167 precursor was identified from the I. nil EST database and analyses of InARF8 mRNA, In-pre-miR167 and mature miR167 accumulation in the plant's vegetative and generative organs were performed. The identified cDNA of InARF8 contains a miR167 complementary sequence and shows significant similarity to ARF8 cDNAs of other plant species. The predicted amino acid sequence of InARF8 includes all of the characteristic domains for ARF family transcription factors (B3 DNA-binding domain, AUX/IAA-CTD and a glutamine-rich region). Quantitative RT-PCR reactions and in situ hybridization indicated that InARF8 was expressed primarily in the shoot apices, leaf primordia and hypocotyls of I. nil seedlings, as well as in flower pistils and petals. The InARF8 transcript level increased consistently during the entire period of pistil development, whereas in the stamens, the greatest transcriptional activity occurred only during the intensive elongation phase. Additionally, an expression analysis of both the precursor In-pre-miR167 molecules identified and mature miRNA was performed. We observed that, in most of the organs examined, the InARF8 expression pattern was opposite to that of MIR167, indicating that the gene's activity was regulated by mRNA cleavage. Our findings suggested that InARF8 and InMIR167 participated in the development of young tissues, especially the shoot apices and flower elements. The main function of MIR167 appears to be to regulate InARF8 organ localization.
Collapse
Affiliation(s)
- Paulina Glazińska
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Torun, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 4 Wilenska Street, 87-100 Torun, Poland.
| | - Waldemar Wojciechowski
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Torun, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 4 Wilenska Street, 87-100 Torun, Poland
| | - Emilia Wilmowicz
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Torun, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 4 Wilenska Street, 87-100 Torun, Poland
| | - Agnieszka Zienkiewicz
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Torun, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 4 Wilenska Street, 87-100 Torun, Poland
| | - Kamil Frankowski
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Torun, Poland
| | - Jan Kopcewicz
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Torun, Poland
| |
Collapse
|
164
|
Shangguan L, Song C, Han J, Leng X, Kibet KN, Mu Q, Kayesh E, Fang J. Characterization of regulatory mechanism of Poncirus trifoliata microRNAs on their target genes with an integrated strategy of newly developed PPM-RACE and RLM-RACE. Gene 2014; 535:42-52. [PMID: 24275346 DOI: 10.1016/j.gene.2013.10.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 09/25/2013] [Accepted: 10/27/2013] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) play an important role in post-transcriptional gene regulation that involved various biological and metabolic processes. Many extensive studies have been done in model plant species, to discover miRNAs' regulating expression of their target genes and analyze their functions. But, the function of Poncirus trifoliata miRNAs has not been properly investigated. In this study, we employed the RNA ligase-mediated 5' rapid amplification of cDNA ends (RLM-RACE) and the newly developed method called poly (A) polymerase-mediated 3' rapid amplification of cDNA ends (PPM-RACE), which mapped the cleavage site of target mRNAs and detected expression patterns of cleaved fragments that could in turn indicate the regulatory functions of the miRNAs on their target genes. Furthermore, the spatiotemporal expression levels of target genes were analyzed by qRT-PCR, with exhibiting different expression trends from their corresponding miRNAs, thus indicating the cleavage mode of miRNAs on their target genes. The expression patterns of miRNAs, their target mRNAs and cleaved target mRNAs in different organs of juvenile and adult trifoliate orange were studied. The results showed that the expression of miRNAs and their target mRNAs was in a trade-off trend. When the miRNA expression was high, its corresponding target mRNA expression was low, while the cleaved target mRNA expression was high; when the miRNA expression was low, its target mRNA expression was high, while the expression of cleaved target mRNAs follows that of the miRNA. The validation of the cleavage site of target mRNAs and the detection of expression patterns of cleaved fragments can further broaden the knowledge of small RNA-mediated regulation in P. trifoliate.
Collapse
Affiliation(s)
- Lingfei Shangguan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Changnian Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jian Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiangpeng Leng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Korir Nicholas Kibet
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qian Mu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Emrul Kayesh
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
165
|
Verma SS, Rahman MH, Deyholos MK, Basu U, Kav NNV. Differential expression of miRNAs in Brassica napus root following infection with Plasmodiophora brassicae. PLoS One 2014; 9:e86648. [PMID: 24497962 PMCID: PMC3909011 DOI: 10.1371/journal.pone.0086648] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/17/2013] [Indexed: 12/29/2022] Open
Abstract
Canola (oilseed rape, Brassica napus L.) is susceptible to infection by the biotrophic protist Plasmodiophora brassicae, the causal agent of clubroot. To understand the roles of microRNAs (miRNAs) during the post-transcriptional regulation of disease initiation and progression, we have characterized the changes in miRNA expression profiles in canola roots during clubroot disease development and have compared these to uninfected roots. Two different stages of clubroot development were targeted in this miRNA profiling study: an early time of 10-dpi for disease initiation and a later 20-dpi, by which time the pathogen had colonized the roots (as evident by visible gall formation and histological observations). P. brassicae responsive miRNAs were identified and validated by qRT-PCR of miRNAs and the subsequent validation of the target mRNAs through starBase degradome analysis, and through 5' RLM-RACE. This study identifies putative miRNA-regulated genes with roles during clubroot disease initiation and development. Putative target genes identified in this study included: transcription factors (TFs), hormone-related genes, as well as genes associated with plant stress response regulation such as cytokinin, auxin/ethylene response elements. The results of our study may assist in elucidating the role of miRNAs in post-transcriptional regulation of target genes during disease development and may contribute to the development of strategies to engineer durable resistance to this important phytopathogen.
Collapse
Affiliation(s)
- Shiv S. Verma
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Muhammad H. Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Michael K. Deyholos
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Urmila Basu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Nat N. V. Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
166
|
Ghorecha V, Patel K, Ingle S, Sunkar R, Krishnayya NSR. Analysis of biochemical variations and microRNA expression in wild ( Ipomoea campanulata ) and cultivated ( Jacquemontia pentantha ) species exposed to in vivo water stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2014; 20:57-67. [PMID: 24554839 PMCID: PMC3925483 DOI: 10.1007/s12298-013-0207-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 05/27/2023]
Abstract
The current study analyses few important biochemical parameters and microRNA expression in two closely related species (wild but tolerant Ipomoea campanulata L. and cultivated but sensitive Jacquemontia pentantha Jacq.G.Don) exposed to water deficit conditions naturally occurring in the field. Under soil water deficit, both the species showed reduction in their leaf area and SLA as compared to well-watered condition. A greater decrease in chlorophyll was noticed in J. pentantha (~50 %) as compared to I. campanulata (20 %) under stress. By contrast, anthocyanin and MDA accumulation was greater in J. pentantha as compared to I. campanulata. Multiple isoforms of superoxide dismutases (SODs) with differing activities were observed under stress in these two plant species. CuZnSOD isoforms showed comparatively higher induction (~10-40 %) in I. campanulata than J. pentantha. MicroRNAs, miR398, miR319, miR395 miR172, and miR408 showed opposing expression under water deficit in these two plant species. Expression of miR156, miR168, miR171, miR172, miR393, miR319, miR396, miR397 and miR408 from either I. campanulata or J. pentantha or both demonstrated opposite pattern of expression to that of drought stressed Arabidopsis. The better tolerance of the wild species (I. campanulata) to water deficit could be attributed to lesser variations in chlorophyll and anthocyanin levels; and relatively higher levels of SODs than J. pentantha. miRNA expression was different in I. campanulata than J. pentantha.
Collapse
Affiliation(s)
- Vallabhi Ghorecha
- />Ecology Laboratory, Botany Department, Faculty of Science, M.S.University of Baroda, Baroda, 390002 India
| | - Ketan Patel
- />Microbiology Department, Faculty of Science, M.S.University of Baroda, Baroda, 390002 India
| | - S. Ingle
- />Microbiology Department, Faculty of Science, M.S.University of Baroda, Baroda, 390002 India
| | - Ramanjulu Sunkar
- />Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74074 USA
| | - N. S. R. Krishnayya
- />Ecology Laboratory, Botany Department, Faculty of Science, M.S.University of Baroda, Baroda, 390002 India
| |
Collapse
|
167
|
microRNAs in a multicellular green alga Volvox carteri. SCIENCE CHINA-LIFE SCIENCES 2013; 57:36-45. [DOI: 10.1007/s11427-013-4580-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/20/2013] [Indexed: 10/25/2022]
|
168
|
Han J, Li A, Liu H, Wen X, Zhao M, Korir NB, Korir NK, Wang C, Fang J. Computational identification of microRNAs in the strawberry (Fragaria x ananassa) genome sequence and validation of their precise sequences by miR-RACE. Gene 2013; 536:151-62. [PMID: 24333854 DOI: 10.1016/j.gene.2013.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 11/06/2013] [Accepted: 11/12/2013] [Indexed: 12/20/2022]
Abstract
In plants, microRNAs (miRNAs) play significant roles in post-transcriptional gene regulation and have been found to control many genes involved in different biological and metabolic processes. Extensive studies were carried out to discover miRNAs and analyze their functions in model plant species, such as in Arabidopsis and rice that have been reported. In this research, we used bioinformatics to predict microRNAs in an important strawberry rootstock cultivar to discover and validate precise sequences of microRNAs in strawberry. By adopting a range of filtering criteria, we obtained 59 potential miRNAs belonging to 40 miRNA families from the Fragaria vesca genome. Using two specific 5' and 3' miRNA RACE PCR reactions and a sequence-directed cloning method, we accurately determined 34 precise sequences of candidate miRNAs, while six other sequences exhibited some minor divergence in their termini nucleotides, and 19 miRNAs that could not be cloned owing to expression abundance may be too low or these mirRNAs predicted could not be existing in strawberry. Potential target genes were further predicted for the miRNAs above. The expression of the 16 miRNAs unreported and having exact sequences and their targets by experiment could be detected in different tissues of strawberry ranging from roots, stems, leaves, flowers and fruits by qRT-PCR and some of them showed differential expression in various tissues. The functional analysis of 16 miRNAs and their targets was carried out. Finally, we conclude that there are 34 mirRNAs in strawberry and their targets play vital roles not only in growth and development, but also in diverse physiological processes. These results show that regulatory miRNAs exist in agronomically important strawberry and might have an important function in strawberry growth and development.
Collapse
Affiliation(s)
- Jian Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aying Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Liu
- Department of Horticulture, Nanjing Jinling Institute of Technology, Nanjing 210038, China
| | - Xicheng Wen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mizhen Zhao
- Department of Horticulture, Nanjing Jinling Institute of Technology, Nanjing 210038, China
| | | | - Nicholas Kibet Korir
- Department of Agricultural Technology, Kenyatta University, P.O. Box, 43844-00100 Nairobi, Kenya
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
169
|
Ding Y, Qu A, Gong S, Huang S, Lv B, Zhu C. Molecular identification and analysis of Cd-responsive microRNAs in rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11668-11675. [PMID: 23909695 DOI: 10.1021/jf401359q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cadmium (Cd) is a non-essential heavy metal with high toxicity to plants. MicroRNAs (miRNAs) are a class of small non-coding RNAs that play important roles in plant abiotic stress responses. To investigate whether miRNAs function in Cd stress response, miRNA expression profiles in rice ( Oryza sativa ) under Cd stress were monitored using microarray assays. A total of 12 Cd-responsive novel miRNAs predicted previously were identified, of which 4 were further validated experimentally. A total of 44 target genes were predicted for the Cd-responsive miRNAs, many of which appeared to regulate gene networks mediating environmental stresses. Several target genes were validated to show a reciprocal regulation by miRNAs. A transgenic approach was also used to determine the role of miRNAs in rice response to Cd stress. Overexpression of miR192 retarded seed germination and seedling growth under Cd stress. These results implied the role of novel miRNAs in the involvement of Cd tolerance of rice.
Collapse
Affiliation(s)
- Yanfei Ding
- College of Life Sciences, China Jiliang University , Hangzhou 310018, People's Republic of China
| | | | | | | | | | | |
Collapse
|
170
|
Barik S, SarkarDas S, Singh A, Gautam V, Kumar P, Majee M, Sarkar AK. Phylogenetic analysis reveals conservation and diversification of micro RNA166 genes among diverse plant species. Genomics 2013; 103:114-21. [PMID: 24275521 DOI: 10.1016/j.ygeno.2013.11.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 11/01/2013] [Accepted: 11/12/2013] [Indexed: 12/12/2022]
Abstract
Similar to the majority of the microRNAs, mature miR166s are derived from multiple members of MIR166 genes (precursors) and regulate various aspects of plant development by negatively regulating their target genes (Class III HD-ZIP). The evolutionary conservation or functional diversification of miRNA166 family members remains elusive. Here, we show the phylogenetic relationships among MIR166 precursor and mature sequences from three diverse model plant species. Despite strong conservation, some mature miR166 sequences, such as ppt-miR166m, have undergone sequence variation. Critical sequence variation in ppt-miR166m has led to functional diversification, as it targets non-HD-ZIPIII gene transcript (s). MIR166 precursor sequences have diverged in a lineage specific manner, and both precursors and mature osa-miR166i/j are highly conserved. Interestingly, polycistronic MIR166s were present in Physcomitrella and Oryza but not in Arabidopsis. The nature of cis-regulatory motifs on the upstream promoter sequences of MIR166 genes indicates their possible contribution to the functional variation observed among miR166 species.
Collapse
Affiliation(s)
- Suvakanta Barik
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shabari SarkarDas
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Archita Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vibhav Gautam
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pramod Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Majee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ananda K Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
171
|
Peculiar evolutionary history of miR390-guided TAS3-like genes in land plants. ScientificWorldJournal 2013; 2013:924153. [PMID: 24302881 PMCID: PMC3835848 DOI: 10.1155/2013/924153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 08/27/2013] [Indexed: 11/17/2022] Open
Abstract
PCR-based approach was used as a phylogenetic profiling tool to probe genomic DNA samples from representatives of evolutionary distant moss taxa, namely, classes Bryopsida, Tetraphidopsida, Polytrichopsida, Andreaeopsida, and Sphagnopsida. We found relatives of all Physcomitrella patens miR390 and TAS3-like loci in these plant taxa excluding Sphagnopsida. Importantly, cloning and sequencing of Marchantia polymorpha genomic DNA showed miR390 and TAS3-like sequences which were also found among genomic reads of M. polymorpha at NCBI database. Our data suggest that the ancient plant miR390-dependent TAS molecular machinery firstly evolved to target AP2-like mRNAs in Marchantiophyta and only then both ARF- and AP2-specific mRNAs in mosses. The presented analysis shows that moss TAS3 families may undergone losses of tasiAP2 sites during evolution toward ferns and seed plants. These data confirm that miR390-guided genes coding for ARF- and AP2-specific ta-siRNAs have been gradually changed during land plant evolution.
Collapse
|
172
|
Rhee JK, Shin SY, Zhang BT. Construction of microRNA functional families by a mixture model of position weight matrices. PeerJ 2013; 1:e199. [PMID: 24255813 PMCID: PMC3817585 DOI: 10.7717/peerj.199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/10/2013] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are small regulatory molecules that repress the translational processes of their target genes by binding to their 3′ untranslated regions (3′ UTRs). Because the target genes are predominantly determined by their sequence complementarity to the miRNA seed regions (nucleotides 2–7) which are evolutionarily conserved, it is inferred that the target relationships and functions of the miRNA family members are conserved across many species. Therefore, detecting the relevant miRNA families with confidence would help to clarify the conserved miRNA functions, and elucidate miRNA-mediated biological processes. We present a mixture model of position weight matrices for constructing miRNA functional families. This model systematically finds not only evolutionarily conserved miRNA family members but also functionally related miRNAs, as it simultaneously generates position weight matrices representing the conserved sequences. Using mammalian miRNA sequences, in our experiments, we identified potential miRNA groups characterized by similar sequence patterns that have common functions. We validated our results using score measures and by the analysis of the conserved targets. Our method would provide a way to comprehensively identify conserved miRNA functions.
Collapse
Affiliation(s)
- Je-Keun Rhee
- Interdisciplinary Program in Bioinformatics, Seoul National University , Seoul , Korea
| | | | | |
Collapse
|
173
|
Li H, Mao W, Liu W, Dai H, Liu Y, Ma Y, Zhang Z. Deep sequencing discovery of novel and conserved microRNAs in wild type and a white-flesh mutant strawberry. PLANTA 2013; 238:695-713. [PMID: 23807373 DOI: 10.1007/s00425-013-1917-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/07/2013] [Indexed: 05/06/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by base pairing to mRNA target sequences, and play crucial roles in plant development and stress responses. The knowledge on post-transcriptional regulation by miRNAs in strawberry is rather limited so far. In order to understand the role of miRNA in the molecular control during strawberry fruit development, small RNA libraries were constructed from fruits at the turning stage of strawberry cultivar 'Sachinoka' and its white-flesh mutant by using the Solexa platform. One hundred and twenty conserved miRNAs belonging to 27 miRNA families and 33 putative novel strawberry miRNAs were identified in both libraries. Their target genes were predicted using the Fragaria vesca genome. Nine of all miRNAs showed significant expression differences between two types of samples. Four miRNAs were up-regulated and five were down-regulated in white-flesh mutant. The sequencing results were partially validated by quantitative RT-PCR. Among them, the expression of miR399a shows the biggest change between the two samples. The prediction of its target gene showed that miR399 may play an important role in phosphate homeostasis of strawberry fruits. Furthermore, we deduce that the expression of miR399 has negative correlation with the content of sugars.
Collapse
Affiliation(s)
- He Li
- College of Horticulture, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, Liaoning, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
174
|
Zhou Z, Wang Z, Li W, Fang C, Shen Y, Li C, Wu Y, Tian Z. Comprehensive analyses of microRNA gene evolution in paleopolyploid soybean genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:332-44. [PMID: 23876088 DOI: 10.1111/tpj.12293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/16/2013] [Indexed: 06/02/2023]
Abstract
miRNA genes are thought to undergo quick birth and death processes in genomes and the emergence of a MIRNA-like hairpin provides the base for functional miRNA gene formation. However, the factors affecting the formation of an active miRNA gene from a MIRNA-like hairpin within a genome remain unclear. We performed a genome-wide investigation of MIRNA-like hairpin accumulation, expression, structural changes and relationships with annotated genomic features in the paleopolyploid soybean genome. Our results showed that adjacent gene and transposable element content, rates of genetic recombination at location of emergence, along with its own gene structure divergence greatly affected miRNA gene evolution. Further investigation suggested that miRNA genes from different duplication sources followed distinct evolutionary trajectories and that the accumulation of MIRNA-like hairpins might be an important factor in causing long terminal repeat retrotransposons to lose activity during genome evolution.
Collapse
Affiliation(s)
- Zhengkui Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Galla G, Volpato M, Sharbel TF, Barcaccia G. Computational identification of conserved microRNAs and their putative targets in the Hypericum perforatum L. flower transcriptome. PLANT REPRODUCTION 2013; 26:209-29. [PMID: 23846415 DOI: 10.1007/s00497-013-0227-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/28/2013] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) have recently emerged as important regulators of gene expression in plants. Many miRNA families and their targets have been extensively studied in model species and major crops. We have characterized mature miRNAs along with their precursors and potential targets in Hypericum to generate a comprehensive list of conserved miRNA families and to investigate the regulatory role of selected miRNAs in biological processes that occur in the flower. St. John's wort (Hypericum perforatum L., 2n = 4x = 32), a medicinal plant that produces pharmaceutically important metabolites with therapeutic activities, was chosen because it is regarded as an attractive model system for the study of apomixis. A computational in silico prediction of structure, in combination with an in vitro validation, allowed us to identify 7 pre-miRNAs, including miR156, miR166, miR390, miR394, miR396, and miR414. We demonstrated that H. perforatum flowers share highly conserved miRNAs and that these miRNAs potentially target dozens of genes with a wide range of molecular functions, including metabolism, response to stress, flower development, and plant reproduction. Our analysis paves the way toward identifying flower-specific miRNAs that may differentiate the sexual and apomictic reproductive pathways.
Collapse
Affiliation(s)
- Giulio Galla
- Laboratory of Genetics and Genomics, DAFNAE, University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Italy
| | | | | | | |
Collapse
|
176
|
Shao F, Lu S. Genome-wide identification, molecular cloning, expression profiling and posttranscriptional regulation analysis of the Argonaute gene family in Salvia miltiorrhiza, an emerging model medicinal plant. BMC Genomics 2013; 14:512. [PMID: 23889895 PMCID: PMC3750313 DOI: 10.1186/1471-2164-14-512] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 07/27/2013] [Indexed: 12/27/2022] Open
Abstract
Background Argonaute (AGO) is the core component of RNA-induced silencing complex. The AGO gene family has been analyzed in various plant species; however, there is no report about AGOs in the well-known Traditional Chinese Medicine (TCM) plant, Salvia miltiorrhiza. Results Through a genome-wide analysis, we identified ten SmAGO genes in S. miltiorrhiza. Full-length cDNAs of all SmAGOs were subsequently cloned and sequenced. These SmAGOs were characterized using a comprehensive approach. Sequence features, gene structures and conserved domains were analyzed by the comparison of SmAGOs and AtAGOs. Phylogenetic relationships among AGO proteins from S. miltiorrhiza, Arabidopsis and rice were revealed. The expression levels of SmAGO genes in various tissues of S. miltiorrhiza were investigated. The results implied that some SmAGOs, such as SmAGO1, SmAGO2, SmAGO3, SmAGO7 and SmAGO10, probably played similar roles as their counterparts in Arabidopsis; whereas the others could be more species-specialized. It suggests the conservation and diversity of AGOs in plants. Additionally, we identified a total of 24 hairpin structures, representing six miRNA gene families, to be miRNA precursors. Using the modified 5′-RACE method, we confirmed that SmAGO1 and SmAGO2 were targeted by S. miltiorrhiza miR168a/b and miR403, respectively. It suggests the conservation of AGO1-miR168 and AGO2-miR403 regulatory modules in S. miltiorrhiza and Arabidopsis. Conclusions This is the first attempt to explore SmAGOs and miRNAs in S. miltiorrhiza. The results provide useful information for further elucidation of gene silencing pathways in S. miltiorrhiza.
Collapse
Affiliation(s)
- Fenjuan Shao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | | |
Collapse
|
177
|
Higashi Y, Takechi K, Takano H, Takio S. Involvement of MicroRNA in Copper Deficiency-Induced Repression of Chloroplastic CuZn-Superoxide Dismutase Genes in the Moss Physcomitrella patens. ACTA ACUST UNITED AC 2013; 54:1345-55. [DOI: 10.1093/pcp/pct084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
178
|
Ponomarenko MP, Suslov VV, Ponomarenko PM, Gunbin KV, Stepanenko IL, Vishnevsky OV, Kolchanov NA. Abundances of microRNAs in human cells can be estimated as a function of the abundances of YRHB and RHHK tetranucleotides in these microRNAs as an ill-posed inverse problem solution. Front Genet 2013; 4:122. [PMID: 23847649 PMCID: PMC3697047 DOI: 10.3389/fgene.2013.00122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 06/06/2013] [Indexed: 02/03/2023] Open
Abstract
Mature microRNAs (miRNAs) are small endogenous non-coding RNAs 18–25 nt in length. They program the RNA Induced Silencing Complex (RISC) to make it inhibit either messenger RNAs or promoter DNAs. We have found that the mean abundance of miRNAs in Arabidopsis is correlated with the abundance of DRYD tetranucleotides near the 3′-end and the abundance of WRHB tetranucleotides in the center of the miRNA sequence. Based on this correlation, we have estimated miRNA abundances in seven organs of this plant, namely: inflorescences, stems, siliques, seedlings, roots, cauline, and rosette leaves. We have also found that the mean affinity of miRNAs for two proteins in the Argonaute family (Ago2 and Ago3) in man is correlated with the abundance of YRHB tetranucleotides near the 3′-end and that the preference of miRNAs for Ago2 is correlated with the abundance of RHHK tetranucleotides in the center of the miRNA sequence. This allowed us to obtain statistically significant estimates of miRNA abundances in human embryonic kidney cells, HEK293T. These findings in relation to two taxonomically distant entities (man and Arabidopsis) fit one another like pieces of a jigsaw puzzle, which allowed us to heuristically generalize them and state that the miRNA abundance in the human brain may be determined by the abundance of YRHB and RHHK tetranucleotides in these miRNAs.
Collapse
Affiliation(s)
- Mikhail P Ponomarenko
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS Novosibirsk, Russia
| | | | | | | | | | | | | |
Collapse
|
179
|
Ge A, Shangguan L, Zhang X, Dong Q, Han J, Liu H, Wang X, Fang J. Deep sequencing discovery of novel and conserved microRNAs in strawberry (Fragaria×ananassa). PHYSIOLOGIA PLANTARUM 2013; 148:387-96. [PMID: 23061771 DOI: 10.1111/j.1399-3054.2012.01713.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 03/30/2012] [Accepted: 09/27/2012] [Indexed: 05/18/2023]
Abstract
In plants, microRNAs (miRNAs) play a critical role in post-transcriptional gene regulation and have been shown to control many genes involved in various biological and metabolic processes. There have been extensive studies to discover miRNAs and analyze their functions in model plant species, such as Arabidopsis and rice. Deep sequencing technologies have facilitated identification of species-specific or lowly expressed as well as conserved or highly expressed miRNAs in plants. In this research, we used Solexa sequencing to discover new miRNAs in cultivated strawberry (Fragaria×ananassa). A total of 23,282 ,309 reads representing 22,500 ,402 distinct sequences were obtained from a short RNA library generated from small RNAs extracted from strawberry fruit tissues. On the basis of sequence similarity and hairpin structure prediction, we found that 156,639 reads representing 153 sequences have good matches to known miRNAs. We also identified 37 novel miRNA candidates. These sequences had not been previously described in other plant species. Potential target genes were predicted for the majority of and novel miRNAs. These results show that regulatory miRNAs exist in the agriculturally important cultivated strawberry and may play an important role in its growth, development and response to disease.
Collapse
Affiliation(s)
- Anjing Ge
- Beijing Key Laboratory of New Technology in Agricultural Application, Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Hwang DG, Park JH, Lim JY, Kim D, Choi Y, Kim S, Reeves G, Yeom SI, Lee JS, Park M, Kim S, Choi IY, Choi D, Shin C. The hot pepper (Capsicum annuum) microRNA transcriptome reveals novel and conserved targets: a foundation for understanding MicroRNA functional roles in hot pepper. PLoS One 2013; 8:e64238. [PMID: 23737975 PMCID: PMC3667847 DOI: 10.1371/journal.pone.0064238] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/10/2013] [Indexed: 01/26/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs approximately 21 nt in length which play important roles in regulating gene expression in plants. Although many miRNA studies have focused on a few model plants, miRNAs and their target genes remain largely unknown in hot pepper (Capsicum annuum), one of the most important crops cultivated worldwide. Here, we employed high-throughput sequencing technology to identify miRNAs in pepper extensively from 10 different libraries, including leaf, stem, root, flower, and six developmental stage fruits. Based on a bioinformatics pipeline, we successfully identified 29 and 35 families of conserved and novel miRNAs, respectively. Northern blot analysis was used to validate further the expression of representative miRNAs and to analyze their tissue-specific or developmental stage-specific expression patterns. Moreover, we computationally predicted miRNA targets, many of which were experimentally confirmed using 5′ rapid amplification of cDNA ends analysis. One of the validated novel targets of miR-396 was a domain rearranged methyltransferase, the major de novo methylation enzyme, involved in RNA-directed DNA methylation in plants. This work provides the first reliable draft of the pepper miRNA transcriptome. It offers an expanded picture of pepper miRNAs in relation to other plants, providing a basis for understanding the functional roles of miRNAs in pepper.
Collapse
Affiliation(s)
- Dong-Gyu Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Evolutionary conservation of microRNA regulatory programs in plant flower development. Dev Biol 2013; 380:133-44. [PMID: 23707900 DOI: 10.1016/j.ydbio.2013.05.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 05/05/2013] [Accepted: 05/09/2013] [Indexed: 11/20/2022]
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of growth and development in both plants and animals. Flowering is critical for the reproduction of angiosperms. Flower development entails the transition from vegetative growth to reproductive growth, floral organ initiation, and the development of floral organs. These developmental processes are genetically regulated by miRNAs, which participate in complex genetic networks of flower development. A survey of the literature shows that miRNAs, their specific targets, and the regulatory programs in which they participate are conserved throughout the plant kingdom. This review summarizes the role of miRNAs and their targets in the regulation of gene expression during the floral developmental phase, which includes the floral transition stage, followed by floral patterning, and then the development of floral organs. The conservation patterns observed in each component of the miRNA regulatory system suggest that these miRNAs play important roles in the evolution of flower development.
Collapse
|
182
|
Yin X, Wang J, Cheng H, Wang X, Yu D. Detection and evolutionary analysis of soybean miRNAs responsive to soybean mosaic virus. PLANTA 2013; 237:1213-25. [PMID: 23328897 DOI: 10.1007/s00425-012-1835-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/26/2012] [Indexed: 05/22/2023]
Abstract
MicroRNAs (miRNA) are a class of non-coding RNAs that have important gene regulatory roles in various organisms. However, the miRNAs involved in soybean's response to soybean mosaic virus (SMV) are unknown. To identify novel miRNAs and biotic-stress regulated small RNAs that are involved in soybean's response to SMV, two small RNA libraries were constructed from mock-inoculated and SMV-infected soybean leaves and sequenced. This led to the discovery of 179 miRNAs, representing 52 families, among which five miRNAs belonging to three families were novel miRNAs in soybean. A large proportion (71.5 %) of miRNAs arose from segmental duplication, similar to the process that drives the evolution of protein-coding genes. In addition, we predicted 346 potential targets of these identified miRNAs, and verified 12 targets by modified 5'-RACE analysis. Finally, three miRNAs (miR160, miR393 and miR1510) that are involved in plant resistance were observed to respond to SMV infection. The interaction between miRNAs and resistance-related genes provides a novel mechanism for pathogens to evade host recognition.
Collapse
Affiliation(s)
- Xianchao Yin
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | |
Collapse
|
183
|
Rodriguez RE, Debernardi JM, Palatnik JF. Morphogenesis of simple leaves: regulation of leaf size and shape. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 3:41-57. [PMID: 24902833 DOI: 10.1002/wdev.115] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plants produce new organs throughout their life span. Leaves first initiate as rod-like structures protruding from the shoot apical meristem, while they need to pass through different developmental stages to become the flat organ specialized in photosynthesis. Leaf morphogenesis is an active process regulated by many genes and pathways that can generate organs with a wide variety of sizes and shapes. Important differences in leaf architecture can be seen among different species, but also in single individuals. A key aspect of leaf morphogenesis is the precise control of cell proliferation. Modification or manipulation of this process may lead to leaves with different sizes and shapes, and changes in the organ margins and curvature. Many genes required for leaf development have been identified in Arabidopsis thaliana, and the mechanisms underlying leaf morphogenesis are starting to be unraveled at the molecular level.
Collapse
Affiliation(s)
- Ramiro E Rodriguez
- IBR (Instituto de Biología Molecular y Celular de Rosario) - CONICET/UNR, Rosario, Argentina
| | | | | |
Collapse
|
184
|
Barvkar VT, Pardeshi VC, Kale SM, Qiu S, Rollins M, Datla R, Gupta VS, Kadoo NY. Genome-wide identification and characterization of microRNA genes and their targets in flax (Linum usitatissimum): Characterization of flax miRNA genes. PLANTA 2013; 237:1149-61. [PMID: 23291876 DOI: 10.1007/s00425-012-1833-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 12/18/2012] [Indexed: 05/11/2023]
Abstract
MicroRNAs (miRNAs) are small (20-24 nucleotide long) endogenous regulatory RNAs that play important roles in plant growth and development. They regulate gene expression at the post-transcriptional level by translational repression or target degradation and gene silencing. In this study, we identified 116 conserved miRNAs belonging to 23 families from the flax (Linum usitatissimum L.) genome using a computational approach. The precursor miRNAs varied in length; while most of the mature miRNAs were 21 nucleotide long, intergenic and showed conserved signatures of RNA polymerase II transcripts in their upstream regions. Promoter region analysis of the flax miRNA genes indicated prevalence of MYB transcription factor binding sites. Four miRNA gene clusters containing members of three phylogenetic groups were identified. Further, 142 target genes were predicted for these miRNAs and most of these represent transcriptional regulators. The miRNA encoding genes were expressed in diverse tissues as determined by digital expression analysis as well as real-time PCR. The expression of fourteen miRNAs and nine target genes was independently validated using the quantitative reverse transcription PCR (qRT-PCR). This study suggests that a large number of conserved plant miRNAs are also found in flax and these may play important roles in growth and development of flax.
Collapse
Affiliation(s)
- Vitthal T Barvkar
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Hou H, Li J, Gao M, Singer SD, Wang H, Mao L, Fei Z, Wang X. Genomic organization, phylogenetic comparison and differential expression of the SBP-box family genes in grape. PLoS One 2013; 8:e59358. [PMID: 23527172 PMCID: PMC3601960 DOI: 10.1371/journal.pone.0059358] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/13/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The SBP-box gene family is specific to plants and encodes a class of zinc finger-containing transcription factors with a broad range of functions. Although SBP-box genes have been identified in numerous plants including green algae, moss, silver birch, snapdragon, Arabidopsis, rice and maize, there is little information concerning SBP-box genes, or the corresponding miR156/157, function in grapevine. METHODOLOGY/PRINCIPAL FINDINGS Eighteen SBP-box gene family members were identified in Vitis vinifera, twelve of which bore sequences that were complementary to miRNA156/157. Phylogenetic reconstruction demonstrated that plant SBP-domain proteins could be classified into seven subgroups, with the V. vinifera SBP-domain proteins being more closely related to SBP-domain proteins from dicotyledonous angiosperms than those from monocotyledonous angiosperms. In addition, synteny analysis between grape and Arabidopsis demonstrated that homologs of several grape SBP genes were found in corresponding syntenic blocks of Arabidopsis. Expression analysis of the grape SBP-box genes in various organs and at different stages of fruit development in V. quinquangularis 'Shang-24' revealed distinct spatiotemporal patterns. While the majority of the grape SBP-box genes lacking a miR156/157 target site were expressed ubiquitously and constitutively, most genes bearing a miR156/157 target site exhibited distinct expression patterns, possibly due to the inhibitory role of the microRNA. Furthermore, microarray data mining and quantitative real-time RT-PCR analysis identified several grape SBP-box genes that are potentially involved in the defense against biotic and abiotic stresses. CONCLUSION The results presented here provide a further understanding of SBP-box gene function in plants, and yields additional insights into the mechanism of stress management in grape, which may have important implications for the future success of this crop.
Collapse
Affiliation(s)
- Hongmin Hou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Stacy D. Singer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Hao Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Linyong Mao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, United States of America
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, United States of America
- USDA Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
186
|
Gentile A, Ferreira TH, Mattos RS, Dias LI, Hoshino AA, Carneiro MS, Souza GM, Calsa T, Nogueira RM, Endres L, Menossi M. Effects of drought on the microtranscriptome of field-grown sugarcane plants. PLANTA 2013; 237:783-98. [PMID: 23129215 PMCID: PMC3579473 DOI: 10.1007/s00425-012-1795-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/21/2012] [Indexed: 05/20/2023]
Abstract
Sugarcane (Saccharum spp.) is the most promising crop for renewable energy. Among the diverse stresses that affect plant productivity, drought stress frequently causes losses in sugarcane fields. Although several studies have addressed plant responses to drought using controlled environments, plant responses under field conditions are largely unknown. Recently, microRNA (miRNA)-mediated post-transcriptional regulation has been described as an important and decisive component in vegetal development and stress resistance modulation. The role of miRNAs in sugarcane responses to drought under field conditions is currently not known. Two sugarcane cultivars differing in drought tolerance were grown in the field with and without irrigation (rainfed) for 7 months. By using small RNA deep sequencing, we were able to identify 18 miRNA families comprising 30 mature miRNA sequences. Among these families, we found 13 mature miRNAs that were differentially expressed in drought-stressed plants. Seven miRNAs were differentially expressed in both cultivars. The target genes for many of the differentially expressed mature miRNAs were predicted, and some of them were validated by quantitative reverse transcription PCR. Among the targets, we found transcription factors, transporters, proteins associated with senescence, and proteins involved with flower development. All of these data increase our understanding of the role of miRNAs in the complex regulation of drought stress in field-grown sugarcane, providing valuable tools to develop new sugarcane cultivars tolerant to drought stress.
Collapse
Affiliation(s)
- Agustina Gentile
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP Brazil
| | - Thaís H. Ferreira
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP Brazil
| | - Raphael S. Mattos
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP Brazil
| | - Lara I. Dias
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP Brazil
| | - Andrea A. Hoshino
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP Brazil
| | - Monalisa S. Carneiro
- Departamento de Biotecnologia Vegetal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Araras, SP Brazil
| | - Glaucia M. Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Tercílio Calsa
- Laboratório de Genômica e Proteômica de Plantas, Departamento de Genética, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, PE Brazil
| | - Rejane M. Nogueira
- Laboratório de Fisiologia Vegetal, Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, PE Brazil
| | - Laurício Endres
- Centro de Ciências Agrárias, Universidade Federal de Alagoas, Rio Largo, AL Brazil
| | - Marcelo Menossi
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP Brazil
| |
Collapse
|
187
|
Huang D, Koh C, Feurtado JA, Tsang EWT, Cutler AJ. MicroRNAs and their putative targets in Brassica napus seed maturation. BMC Genomics 2013; 14:140. [PMID: 23448243 PMCID: PMC3602245 DOI: 10.1186/1471-2164-14-140] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 02/21/2013] [Indexed: 01/07/2023] Open
Abstract
Background MicroRNAs (miRNAs) are 20–21 nucleotide RNA molecules that suppress the transcription of target genes and may also inhibit translation. Despite the thousands of miRNAs identified and validated in numerous plant species, only small numbers have been identified from the oilseed crop plant Brassica napus (canola) – especially in seeds. Results Using next-generation sequencing technologies, we performed a comprehensive analysis of miRNAs during seed maturation at 9 time points from 10 days after flowering (DAF) to 50 DAF using whole seeds and included separate analyses of radicle, hypocotyl, cotyledon, embryo, endosperm and seed coat tissues at 4 selected time points. We identified more than 500 conserved miRNA or variant unique sequences with >300 sequence reads and also found 10 novel miRNAs. Only 27 of the conserved miRNA sequences had been previously identified in B. napus (miRBase Release 18). More than 180 MIRNA loci were identified/annotated using the B. rapa genome as a surrogate for the B.napus A genome. Numerous miRNAs were expressed in a stage- or tissue-specific manner suggesting that they have specific functions related to the fine tuning of transcript abundance during seed development. miRNA targets in B. napus were predicted and their expression patterns profiled using microarray analyses. Global correlation analysis of the expression patterns of miRNAs and their targets revealed complex miRNA-target gene regulatory networks during seed development. The miR156 family was the most abundant and the majority of the family members were primarily expressed in the embryo. Conclusions Large numbers of miRNAs with diverse expression patterns, multiple-targeting and co-targeting of many miRNAs, and complex relationships between expression of miRNAs and targets were identified in this study. Several key miRNA-target expression patterns were identified and new roles of miRNAs in regulating seed development are suggested. miR156, miR159, miR172, miR167, miR158 and miR166 are the major contributors to the network controlling seed development and maturation through their pivotal roles in plant development. miR156 may regulate the developmental transition to germination.
Collapse
Affiliation(s)
- Daiqing Huang
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon S7N 0W9, Canada
| | | | | | | | | |
Collapse
|
188
|
Role of RNA interference (RNAi) in the Moss Physcomitrella patens. Int J Mol Sci 2013; 14:1516-40. [PMID: 23344055 PMCID: PMC3565333 DOI: 10.3390/ijms14011516] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/09/2012] [Accepted: 12/10/2012] [Indexed: 01/21/2023] Open
Abstract
RNA interference (RNAi) is a mechanism that regulates genes by either transcriptional (TGS) or posttranscriptional gene silencing (PTGS), required for genome maintenance and proper development of an organism. Small non-coding RNAs are the key players in RNAi and have been intensively studied in eukaryotes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs are synthesized from a short hairpin structure while siRNAs are derived from long double-stranded RNAs (dsRNA). Both miRNA and siRNAs control the expression of cognate target RNAs by binding to reverse complementary sequences mediating cleavage or translational inhibition of the target RNA. They also act on the DNA and cause epigenetic changes such as DNA methylation and histone modifications. In the last years, the analysis of plant RNAi pathways was extended to the bryophyte Physcomitrella patens, a non-flowering, non-vascular ancient land plant that diverged from the lineage of seed plants approximately 450 million years ago. Based on a number of characteristic features and its phylogenetic key position in land plant evolution P. patens emerged as a plant model species to address basic as well as applied topics in plant biology. Here we summarize the current knowledge on the role of RNAi in P. patens that shows functional overlap with RNAi pathways from seed plants, and also unique features specific to this species.
Collapse
|
189
|
Geuten K, Coenen H. Heterochronic genes in plant evolution and development. FRONTIERS IN PLANT SCIENCE 2013; 4:381. [PMID: 24093023 PMCID: PMC3782661 DOI: 10.3389/fpls.2013.00381] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/06/2013] [Indexed: 05/05/2023]
Abstract
Evolution of morphology includes evolutionary shifts of developmental processes in space or in time. Heterochronic evolution is defined as a temporal shift. The concept of heterochrony has been very rewarding to investigators of both animal and plant developmental evolution, because it has strong explanatory power when trying to understand morphological diversity. While for animals, extensive literature on heterochrony developed along with the field of evolution of development, in plants the concept has been applied less often and is less elaborately developed. Yet novel genetic findings highlight heterochrony as a developmental and evolutionary process in plants. Similar to what has been found for the worm Caenorhabditis, a heterochronic gene pathway controlling developmental timing has been elucidated in flowering plants. Two antagonistic microRNA's miR156 and miR172 target two gene families of transcription factors, SQUAMOSA PROMOTOR BINDING PROTEIN-LIKE and APETALA2-like, respectively. Here, we propose that this finding now allows the molecular investigation of cases of heterochronic evolution in plants. We illustrate this point by examining microRNA expression patterns in the Antirrhinum majus incomposita and choripetala heterochronic mutants. Some of the more beautiful putative cases of heterochronic evolution can be found outside flowering plants, but little is known about the extent of conservation of this flowering plant pathway in other land plants. We show that the expression of an APETALA2-like gene decreases with age in a fern species. This contributes to the idea that ferns share some heterochronic gene functions with flowering plants.
Collapse
Affiliation(s)
- Koen Geuten
- *Correspondence: Koen Geuten, Department of Biology, Laboratory of Molecular Plant Biology, University of Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium e-mail:
| | | |
Collapse
|
190
|
Zhang Y, Bai Y, Han J, Chen M, Kayesh E, Jiang W, Fang J. Bioinformatics prediction of miRNAs in the Prunus persica genome with validation of their precise sequences by miR-RACE. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:80-92. [PMID: 23107282 DOI: 10.1016/j.jplph.2012.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/17/2012] [Accepted: 08/21/2012] [Indexed: 06/01/2023]
Abstract
We predicted 262 potential MicroRNAs (miRNAs) belonging to 70 miRNA families from the peach (Prunus persica) genome and two specific 5' and 3' miRNA rapid amplification of cDNA ends (miR-RACE) PCR reactions and sequence-directed cloning were employed to accurately validate 61 unique P. persica miRNAs (Ppe-miRNAs) sequences belonging to 61 families comprising 97 Ppe-miRNAs. Validation of the termini nucleotides in particular can define the real sequences of the Ppe-miRNAs on peach genome. Comparison between predicted and validated Ppe-miRNAs through alignment revealed that 43 unique orthologous sequences were identical, while the remaining 18 exhibited some divergences at their termini nucleotides. Quantitative real-time polymerase chain reaction (qRT-PCR) was further employed to analyze the expression of all the 61 miRNAs and 10 putative targets of 8 randomly selected Ppe-miRNAs in peach leaves, flowers and fruits at different stages of development, where both the miRNAs and the putative target genes showed tissue-specific expression.
Collapse
Affiliation(s)
- Yanping Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
191
|
Aryal R, Yang X, Yu Q, Sunkar R, Li L, Ming R. Asymmetric purine-pyrimidine distribution in cellular small RNA population of papaya. BMC Genomics 2012; 13:682. [PMID: 23216749 PMCID: PMC3582581 DOI: 10.1186/1471-2164-13-682] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 11/29/2012] [Indexed: 11/10/2022] Open
Abstract
Background The small RNAs (sRNA) are a regulatory class of RNA mainly represented by the 21 and 24-nucleotide size classes. The cellular sRNAs are processed by RNase III family enzyme dicer (Dicer like in plant) from a self-complementary hairpin loop or other type of RNA duplexes. The papaya genome has been sequenced, but its microRNAs and other regulatory RNAs are yet to be analyzed. Results We analyzed the genomic features of the papaya sRNA population from three sRNA deep sequencing libraries made from leaves, flowers, and leaves infected with Papaya Ringspot Virus (PRSV). We also used the deep sequencing data to annotate the micro RNA (miRNA) in papaya. We identified 60 miRNAs, 24 of which were conserved in other species, and 36 of which were novel miRNAs specific to papaya. In contrast to the Chargaff’s purine-pyrimidine equilibrium, cellular sRNA was significantly biased towards a purine rich population. Of the two purine bases, higher frequency of adenine was present in 23nt or longer sRNAs, while 22nt or shorter sRNAs were over represented by guanine bases. However, this bias was not observed in the annotated miRNAs in plants. The 21nt species were expressed from fewer loci but expressed at higher levels relative to the 24nt species. The highly expressed 21nt species were clustered in a few isolated locations of the genome. The PRSV infected leaves showed higher accumulation of 21 and 22nt sRNA compared to uninfected leaves. We observed higher accumulation of miRNA* of seven annotated miRNAs in virus-infected tissue, indicating the potential function of miRNA* under stressed conditions. Conclusions We have identified 60 miRNAs in papaya. Our study revealed the asymmetric purine-pyrimidine distribution in cellular sRNA population. The 21nt species of sRNAs have higher expression levels than 24nt sRNA. The miRNA* of some miRNAs shows higher accumulation in PRSV infected tissues, suggesting that these strands are not totally functionally redundant. The findings open a new avenue for further investigation of the sRNA silencing pathway in plants.
Collapse
Affiliation(s)
- Rishi Aryal
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
192
|
Eldem V, Çelikkol Akçay U, Ozhuner E, Bakır Y, Uranbey S, Unver T. Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing. PLoS One 2012; 7:e50298. [PMID: 23227166 PMCID: PMC3515591 DOI: 10.1371/journal.pone.0050298] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/18/2012] [Indexed: 12/13/2022] Open
Abstract
Peach (Prunus persica L.) is one of the most important worldwide fresh fruits. Since fruit growth largely depends on adequate water supply, drought stress is considered as the most important abiotic stress limiting fleshy fruit production and quality in peach. Plant responses to drought stress are regulated both at transcriptional and post-transcriptional level. As post-transcriptional gene regulators, miRNAs (miRNAs) are small (19–25 nucleotides in length), endogenous, non-coding RNAs. Recent studies indicate that miRNAs are involved in plant responses to drought. Therefore, Illumina deep sequencing technology was used for genome-wide identification of miRNAs and their expression profile in response to drought in peach. In this study, four sRNA libraries were constructed from leaf control (LC), leaf stress (LS), root control (RC) and root stress (RS) samples. We identified a total of 531, 471, 535 and 487 known mature miRNAs in LC, LS, RC and RS libraries, respectively. The expression level of 262 (104 up-regulated, 158 down-regulated) of the 453 miRNAs changed significantly in leaf tissue, whereas 368 (221 up-regulated, 147 down-regulated) of the 465 miRNAs had expression levels that changed significantly in root tissue upon drought stress. Additionally, a total of 197, 221, 238 and 265 novel miRNA precursor candidates were identified from LC, LS, RC and RS libraries, respectively. Target transcripts (137 for LC, 133 for LS, 148 for RC and 153 for RS) generated significant Gene Ontology (GO) terms related to DNA binding and catalytic activites. Genome-wide miRNA expression analysis of peach by deep sequencing approach helped to expand our understanding of miRNA function in response to drought stress in peach and Rosaceae. A set of differentially expressed miRNAs could pave the way for developing new strategies to alleviate the adverse effects of drought stress on plant growth and development.
Collapse
Affiliation(s)
- Vahap Eldem
- Cankırı Karatekin University, Faculty of Science, Department of Biology, Cankiri, Turkey
- Istanbul University, Faculty of Science, Department of Biology, Istanbul, Turkey
| | - Ufuk Çelikkol Akçay
- Suleyman Demirel University, Faculty of Agriculture, Department of Agricultural Biotechnology, Isparta, Turkey
| | - Esma Ozhuner
- Cankırı Karatekin University, Faculty of Science, Department of Biology, Cankiri, Turkey
| | - Yakup Bakır
- Marmara University, Faculty of Arts and Science, Department of Biology, Istanbul, Turkey
| | - Serkan Uranbey
- Cankırı Karatekin University, Faculty of Science, Department of Biology, Cankiri, Turkey
| | - Turgay Unver
- Cankırı Karatekin University, Faculty of Science, Department of Biology, Cankiri, Turkey
- * E-mail:
| |
Collapse
|
193
|
Cho SH, Coruh C, Axtell MJ. miR156 and miR390 regulate tasiRNA accumulation and developmental timing in Physcomitrella patens. THE PLANT CELL 2012; 24:4837-49. [PMID: 23263766 PMCID: PMC3556961 DOI: 10.1105/tpc.112.103176] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 05/18/2023]
Abstract
microRNA156 (miR156) affects developmental timing in flowering plants. miR156 and its target relationships with members of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene family appear universally conserved in land plants, but the specific functions of miR156 outside of flowering plants are unknown. We find that miR156 promotes a developmental change from young filamentous protonemata to leafy gametophores in the moss Physcomitrella patens, opposite to its role as an inhibitor of development in flowering plants. P. patens miR156 also influences accumulation of trans-acting small interfering RNAs (tasiRNAs) dependent upon a second ancient microRNA, miR390. Both miR156 and miR390 directly target a single major tasiRNA primary transcript. Inhibition of miR156 function causes increased miR390-triggered tasiRNA accumulation and decreased accumulation of tasiRNA targets. Overexpression of miR390 also caused a slower formation of gametophores, elevated miR390-triggered tasiRNA accumulation, and reduced level of tasiRNA targets. We conclude that a gene regulatory network controlled by miR156, miR390, and their targets controls developmental change in P. patens. The broad outlines and regulatory logic of this network are conserved in flowering plants, albeit with some modifications. Partially conserved small RNA networks thus influence developmental timing in plants with radically different body plans.
Collapse
Affiliation(s)
- Sung Hyun Cho
- Department of Biology, Penn State University, University Park, Pennsylvania 16802
| | - Ceyda Coruh
- Department of Biology, Penn State University, University Park, Pennsylvania 16802
- Plant Biology PhD Program, Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802
| | - Michael J. Axtell
- Department of Biology, Penn State University, University Park, Pennsylvania 16802
- Plant Biology PhD Program, Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802
- Address correspondence to
| |
Collapse
|
194
|
Kim B, Yu HJ, Park SG, Shin JY, Oh M, Kim N, Mun JH. Identification and profiling of novel microRNAs in the Brassica rapa genome based on small RNA deep sequencing. BMC PLANT BIOLOGY 2012; 12:218. [PMID: 23163954 PMCID: PMC3554443 DOI: 10.1186/1471-2229-12-218] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 11/14/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are one of the functional non-coding small RNAs involved in the epigenetic control of the plant genome. Although plants contain both evolutionary conserved miRNAs and species-specific miRNAs within their genomes, computational methods often only identify evolutionary conserved miRNAs. The recent sequencing of the Brassica rapa genome enables us to identify miRNAs and their putative target genes. In this study, we sought to provide a more comprehensive prediction of B. rapa miRNAs based on high throughput small RNA deep sequencing. RESULTS We sequenced small RNAs from five types of tissue: seedlings, roots, petioles, leaves, and flowers. By analyzing 2.75 million unique reads that mapped to the B. rapa genome, we identified 216 novel and 196 conserved miRNAs that were predicted to target approximately 20% of the genome's protein coding genes. Quantitative analysis of miRNAs from the five types of tissue revealed that novel miRNAs were expressed in diverse tissues but their expression levels were lower than those of the conserved miRNAs. Comparative analysis of the miRNAs between the B. rapa and Arabidopsis thaliana genomes demonstrated that redundant copies of conserved miRNAs in the B. rapa genome may have been deleted after whole genome triplication. Novel miRNA members seemed to have spontaneously arisen from the B. rapa and A. thaliana genomes, suggesting the species-specific expansion of miRNAs. We have made this data publicly available in a miRNA database of B. rapa called BraMRs. The database allows the user to retrieve miRNA sequences, their expression profiles, and a description of their target genes from the five tissue types investigated here. CONCLUSIONS This is the first report to identify novel miRNAs from Brassica crops using genome-wide high throughput techniques. The combination of computational methods and small RNA deep sequencing provides robust predictions of miRNAs in the genome. The finding of numerous novel miRNAs, many with few target genes and low expression levels, suggests the rapid evolution of miRNA genes. The development of a miRNA database, BraMRs, enables us to integrate miRNA identification, target prediction, and functional annotation of target genes. BraMRs will represent a valuable public resource with which to study the epigenetic control of B. rapa and other closely related Brassica species. The database is available at the following link: http://bramrs.rna.kr [1].
Collapse
Affiliation(s)
- Bumjin Kim
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, 150 Suin-ro Gwonseon-gu, Suwon, 441-707, Korea
| | - Hee-Ju Yu
- Department of Life Sciences, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon, 420-743, Korea
| | - Sin-Gi Park
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, 150 Suin-ro Gwonseon-gu, Suwon, 441-707, Korea
| | - Ja Young Shin
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, 150 Suin-ro Gwonseon-gu, Suwon, 441-707, Korea
| | - Mijin Oh
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, 150 Suin-ro Gwonseon-gu, Suwon, 441-707, Korea
| | - Namshin Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro Yuseong-gu, Daejeon, 305-806, Korea
| | - Jeong-Hwan Mun
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, 150 Suin-ro Gwonseon-gu, Suwon, 441-707, Korea
| |
Collapse
|
195
|
Bologna NG, Schapire AL, Palatnik JF. Processing of plant microRNA precursors. Brief Funct Genomics 2012; 12:37-45. [DOI: 10.1093/bfgp/els050] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
196
|
Arabidopsis ribosomal proteins control developmental programs through translational regulation of auxin response factors. Proc Natl Acad Sci U S A 2012; 109:19537-44. [PMID: 23144218 DOI: 10.1073/pnas.1214774109] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Upstream ORFs are elements found in the 5'-leader sequences of specific mRNAs that modulate the translation of downstream ORFs encoding major gene products. In Arabidopsis, the translational control of auxin response factors (ARFs) by upstream ORFs has been proposed as a regulatory mechanism required to respond properly to complex auxin-signaling inputs. In this study, we identify and characterize the aberrant auxin responses in specific ribosomal protein mutants in which multiple ARF transcription factors are simultaneously repressed at the translational level. This characteristic lends itself to the use of these mutants as genetic tools to bypass the genetic redundancy among members of the ARF family in Arabidopsis. Using this approach, we were able to assign unique functions for ARF2, ARF3, and ARF6 in plant development.
Collapse
|
197
|
Romanel E, Silva TF, Corrêa RL, Farinelli L, Hawkins JS, Schrago CEG, Vaslin MFS. Global alteration of microRNAs and transposon-derived small RNAs in cotton (Gossypium hirsutum) during Cotton leafroll dwarf polerovirus (CLRDV) infection. PLANT MOLECULAR BIOLOGY 2012; 80:443-60. [PMID: 22987114 DOI: 10.1007/s11103-012-9959-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 08/22/2012] [Indexed: 05/13/2023]
Abstract
Small RNAs (sRNAs) are a class of non-coding RNAs ranging from 20- to 40-nucleotides (nts) that are present in most eukaryotic organisms. In plants, sRNAs are involved in the regulation of development, the maintenance of genome stability and the antiviral response. Viruses, however, can interfere with and exploit the silencing-based regulatory networks, causing the deregulation of sRNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs). To understand the impact of viral infection on the plant sRNA pathway, we deep sequenced the sRNAs in cotton leaves infected with Cotton leafroll dwarf virus (CLRDV), which is a member of the economically important virus family Luteoviridae. A total of 60 putative conserved cotton miRNAs were identified, including 19 new miRNA families that had not been previously described in cotton. Some of these miRNAs were clearly misregulated during viral infection, and their possible role in symptom development and disease progression is discussed. Furthermore, we found that the 24-nt heterochromatin-associated siRNAs were quantitatively and qualitatively altered in the infected plant, leading to the reactivation of at least one cotton transposable element. This is the first study to explore the global alterations of sRNAs in virus-infected cotton plants. Our results indicate that some CLRDV-induced symptoms may be correlated with the deregulation of miRNA and/or epigenetic networks.
Collapse
Affiliation(s)
- Elisson Romanel
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | |
Collapse
|
198
|
Ni Z, Hu Z, Jiang Q, Zhang H. Overexpression of gma-MIR394a confers tolerance to drought in transgenic Arabidopsis thaliana. Biochem Biophys Res Commun 2012; 427:330-5. [PMID: 23000164 DOI: 10.1016/j.bbrc.2012.09.055] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 09/08/2012] [Indexed: 10/27/2022]
Abstract
MicroRNAs, key posttranscriptional regulators of eukaryotic gene expression, play important roles in plant development and response to stress. In this study, a soybean gma-MIR394a gene was functionally characterized, especially with regard to its role in drought stress resistance. Expression analysis revealed that gma-MIR394a was expressed differentially in various soybean tissues and was induced by drought, high salinity, low temperature stress, and abscisic acid treatment in leaves. One target gene of gma-miR394a, Glyma08g11030, was predicted and verified using a modified 5' RLM-RACE (RNA ligase-mediated rapid amplification of 5' cDNA ends) assay. Overexpression of gma-MIR394a resulted in plants with lowered leaf water loss and enhanced drought tolerance. Furthermore, overexpression of gma-MIR394a in Arabidopsis reduced the transcript of an F-box gene (At1g27340) containing a miR394 complementary target site. These results suggest that the gma-MIR394a gene functions in positive modulation of drought stress tolerance and has potential applications in molecular breeding to enhance drought tolerance in crops.
Collapse
Affiliation(s)
- Zhiyong Ni
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | | | | | | |
Collapse
|
199
|
Wang K, Li M, Gao F, Li S, Zhu Y, Yang P. Identification of conserved and novel microRNAs from Liriodendron chinense floral tissues. PLoS One 2012; 7:e44696. [PMID: 23028583 PMCID: PMC3445533 DOI: 10.1371/journal.pone.0044696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 08/09/2012] [Indexed: 12/02/2022] Open
Abstract
Background Liriodendron chinense (L. chinense) is an endangered basal angiosperm plant in China because of its low reproductive efficiency. Recently, miRNAs have obtained great attention because they can play important roles. Through high throughput sequencing technique, large amount of miRNAs were identified from different plant species. But there were few studies about the miRNAs in the basal angiosperms especially in the sexual reproduction process. Results Deep sequencing technology was applied to discover miRNAs in L. chinense flowers at different stages. After bioinformatic analysis, 496 putative conserved miRNAs representing 97 families and 2 novel miRNAs were found. Among them, one is previously regarded as gymnosperm specific. Their expressions were further validated by Real-time PCR for 13 selected miRNAs. Putative targeting genes were predicted and categorized with gene ontology (GO) analysis. About ten percents of the targets are involved in the reproduction process. Further expressional analysis showed that many of these miRNAs were highly related to the reproductive growth. Conclusions This is the first comprehensive identification of conserved and novel miRNAs in L. chinense. The data presented here might not only help to fill the gap of miRNA registered about basal angiosperm plants but also contribute to understanding the evolution of miRNAs. The differential expression of some of the miRNAs and the prediction of their target genes are also helpful in understanding the regulation of L. chinense sexual reproduction.
Collapse
Affiliation(s)
- Kun Wang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, China
- College of Life Science, Wuhan University, Wuhan, China
| | - Ming Li
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, China
| | - Feng Gao
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, China
- College of Life Science, Wuhan University, Wuhan, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, China
- College of Life Science, Wuhan University, Wuhan, China
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, China
- College of Life Science, Wuhan University, Wuhan, China
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, China
- * E-mail:
| |
Collapse
|
200
|
Finet C, Berne-Dedieu A, Scutt CP, Marlétaz F. Evolution of the ARF gene family in land plants: old domains, new tricks. Mol Biol Evol 2012; 30:45-56. [PMID: 22977118 DOI: 10.1093/molbev/mss220] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Auxin response factors (ARF) are key players in plant development. They mediate the cellular response to the plant hormone auxin by activating or repressing the expression of downstream developmental genes. The pivotal activation function of ARF proteins is enabled by their four-domain architecture, which includes both DNA-binding and protein dimerization motifs. To determine the evolutionary origin of this characteristic architecture, we built a comprehensive data set of 224 ARF-related protein sequences that represents all major living divisions of land plants, except hornworts. We found that ARFs are split into three subfamilies that could be traced back to the origin of the land plants. We also show that repeated events of extensive gene duplication contributed to the expansion of those three original subfamilies. Further examination of our data set uncovered a broad diversity in the structure of ARF transcripts and allowed us to identify an additional conserved motif in ARF proteins. We found that additional structural diversity in ARF proteins is mainly generated by two mechanisms: genomic truncation and alternative splicing. We propose that the loss of domains from the canonical, four-domain ARF structure has promoted functional shifts within the ARF family by disrupting either dimerization or DNA-binding capabilities. For instance, the loss of dimerization domains in some ARFs from moss and spikemoss genomes leads to proteins that are reminiscent of Aux/IAA proteins, possibly providing a clue on the evolution of these modulators of ARF function. We also assessed the functional impact of alternative splicing in the case of ARF4, for which we have identified a novel isoform in Arabidopsis thaliana. Genetic analysis showed that these two transcripts exhibit markedly different developmental roles in A. thaliana. Gene duplications, domain rearrangement, and post-transcriptional regulation have thus enabled a subtle control of auxin signaling through ARF proteins that may have contributed to the critical importance of these regulators in plant development and evolution.
Collapse
Affiliation(s)
- Cédric Finet
- Université de Lyon, Laboratoire de Reproduction et Développement des Plantes, UMR 5667, CNRS, INRA, Université Claude Bernard Lyon I, Ecole Normale Supérieure de Lyon, Lyon, France.
| | | | | | | |
Collapse
|