151
|
Betsuyaku S, Takahashi F, Kinoshita A, Miwa H, Shinozaki K, Fukuda H, Sawa S. Mitogen-activated protein kinase regulated by the CLAVATA receptors contributes to shoot apical meristem homeostasis. PLANT & CELL PHYSIOLOGY 2011; 52:14-29. [PMID: 20965998 PMCID: PMC3023851 DOI: 10.1093/pcp/pcq157] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 10/13/2010] [Indexed: 05/18/2023]
Abstract
In Arabidopsis, the CLAVATA (CLV) pathway operates in the regulation of the size of the stem cell population in the shoot apical meristem (SAM). CLV3 functions as a small peptide ligand to negatively regulate the expression of the WUSCHEL (WUS) transcription factor through three major receptor kinase complexes of CLV1, CLV2-SUPPRESSOR OF LLP1-2 (SOL2)/CORYNE (CRN) and recently identified RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2)/TOADSTOOL 2 (TOAD2). Aiming to understand the precise molecular details of CLV3 signaling, we investigated the contribution of phospho-signaling, potentially regulated by these kinase complexes, to the CLV pathway. We detected CLV3-triggered CLV1 phosphorylation, which is also conditioned by the rest of the CLV receptors, presumably by their direct association. Our comprehensive analysis of the activities of the respective CLV receptors on mitogen-activated protein kinases (MAPKs) suggested that the precise balanced regulation of MAPK activity by the CLV receptors is likely to be key for SAM homeostasis.
Collapse
Affiliation(s)
- Shigeyuki Betsuyaku
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
152
|
Ni J, Guo Y, Jin H, Hartsell J, Clark SE. Characterization of a CLE processing activity. PLANT MOLECULAR BIOLOGY 2011; 75:67-75. [PMID: 21052783 DOI: 10.1007/s11103-010-9708-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 10/19/2010] [Indexed: 05/29/2023]
Abstract
Proteins containing a conserved motif known as the CLE domain are found widely distributed across land plants. While the functions of most CLE proteins are unknown, specific CLE proteins have been shown to control shoot meristem, root and vascular development. This has been best studied for CLV3 which is required for stem cell differentiation at shoot and flower meristems. In vivo evidence indicates that the CLE domain is the functional region for CLV3, and that it is proteolytically processed from the CLV3 precursor protein. But the mechanism and activity responsible for this processing is poorly understood. Here we extend analysis of an in vitro CLE processing activity and show that in vitro cleavage occurs at Arg70, exactly matching in vivo maturation. We provide evidence that related processing activities are present in multiple tissues and species. We show that efficient protease recognition can occur with as little as four residues upstream of the CLE domain, and that the conserved arginine at position +1 and conserved acidic residues at positions -2 and/or -3 are required for efficient cleavage. Finally, we provide evidence that the N-terminal processing enzyme is a secreted serine protease while C-terminal processing may occur via a progressive carboxypeptidase.
Collapse
Affiliation(s)
- Jun Ni
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | | | | | | | |
Collapse
|
153
|
Jun J, Fiume E, Roeder AH, Meng L, Sharma VK, Osmont KS, Baker C, Ha CM, Meyerowitz EM, Feldman LJ, Fletcher JC. Comprehensive analysis of CLE polypeptide signaling gene expression and overexpression activity in Arabidopsis. PLANT PHYSIOLOGY 2010; 154:1721-36. [PMID: 20884811 PMCID: PMC2996011 DOI: 10.1104/pp.110.163683] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Intercellular signaling is essential for the coordination of growth and development in higher plants. Although hundreds of putative receptors have been identified in Arabidopsis (Arabidopsis thaliana), only a few families of extracellular signaling molecules have been discovered, and their biological roles are largely unknown. To expand our insight into the developmental processes potentially regulated by ligand-mediated signal transduction pathways, we undertook a systematic expression analysis of the members of the Arabidopsis CLAVATA3/ESR-RELATED (CLE) small signaling polypeptide family. Using reporter constructs, we show that the CLE genes have distinct and specific patterns of promoter activity. We find that each Arabidopsis tissue expresses at least one CLE gene, indicating that CLE-mediated signaling pathways are likely to play roles in many biological processes during the plant life cycle. Some CLE genes that are closely related in sequence have dissimilar expression profiles, yet in many tissues multiple CLE genes have overlapping patterns of promoter-driven reporter activity. This observation, plus the general absence of detectable morphological phenotypes in cle null mutants, suggest that a high degree of functional redundancy exists among CLE gene family members. Our work establishes a community resource of CLE-related biological materials and provides a platform for understanding and ultimately manipulating many different plant signaling systems.
Collapse
|
154
|
Kinoshita A, Betsuyaku S, Osakabe Y, Mizuno S, Nagawa S, Stahl Y, Simon R, Yamaguchi-Shinozaki K, Fukuda H, Sawa S. RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis. Development 2010; 137:3911-20. [PMID: 20978082 DOI: 10.1242/dev.048199] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The shoot apical meristem (SAM) is the fundamental structure that is located at the growing tip and gives rise to all aerial parts of plant tissues and organs, such as leaves, stems and flowers. In Arabidopsis thaliana, the CLAVATA3 (CLV3) pathway regulates the stem cell pool in the SAM, in which a small peptide ligand derived from CLV3 is perceived by two major receptor complexes, CLV1 and CLV2-CORYNE (CRN)/SUPPRESSOR OF LLP1 2 (SOL2), to restrict WUSCHEL (WUS) expression. In this study, we used the functional, synthetic CLV3 peptide (MCLV3) to isolate CLV3-insensitive mutants and revealed that a receptor-like kinase, RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2), also known as TOADSTOOL 2 (TOAD2), is another key regulator of meristem maintenance. Mutations in the RPK2 gene result in stem cell expansion and increased number of floral organs, as seen in the other clv mutants. These phenotypes are additive with both clv1 and clv2 mutations. Moreover, our biochemical analyses using Nicotiana benthamiana revealed that RPK2 forms homo-oligomers but does not associate with CLV1 or CLV2. These genetic and biochemical findings suggest that three major receptor complexes, RPK2 homomers, CLV1 homomers and CLV2-CRN/SOL2 heteromers, are likely to mediate three signalling pathways, mainly in parallel but with potential crosstalk, to regulate the SAM homeostasis.
Collapse
Affiliation(s)
- Atsuko Kinoshita
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Zhou W, Wei L, Xu J, Zhai Q, Jiang H, Chen R, Chen Q, Sun J, Chu J, Zhu L, Liu CM, Li C. Arabidopsis Tyrosylprotein sulfotransferase acts in the auxin/PLETHORA pathway in regulating postembryonic maintenance of the root stem cell niche. THE PLANT CELL 2010; 22:3692-709. [PMID: 21045165 PMCID: PMC3015123 DOI: 10.1105/tpc.110.075721] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recent identification of the Arabidopsis thaliana tyrosylprotein sulfotransferase (TPST) and a group of Tyr-sulfated peptides known as root meristem growth factors (RGFs) highlights the importance of protein Tyr sulfation in plant growth and development. Here, we report the action mechanism of TPST in maintenance of the root stem cell niche, which in the Arabidopsis root meristem is an area of four mitotically inactive quiescent cells plus the surrounding mitotically active stem cells. Mutation of TPST leads to defective maintenance of the root stem cell niche, decreased meristematic activity, and stunted root growth. We show that TPST expression is positively regulated by auxin and that mutation of this gene affects auxin distribution by reducing local expression levels of several PIN genes and auxin biosynthetic genes in the stem cell niche region. We also show that mutation of TPST impairs basal- and auxin-induced expression of the PLETHORA (PLT) stem cell transcription factor genes and that overexpression of PLT2 rescues the root meristem defects of the loss-of-function mutant of TPST. Together, these results support that TPST acts to maintain root stem cell niche by regulating basal- and auxin-induced expression of PLT1 and PLT2. TPST-dependent sulfation of RGFs provides a link between auxin and PLTs in regulating root stem cell niche maintenance.
Collapse
Affiliation(s)
- Wenkun Zhou
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Azpeitia E, Benítez M, Vega I, Villarreal C, Alvarez-Buylla ER. Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche. BMC SYSTEMS BIOLOGY 2010; 4:134. [PMID: 20920363 PMCID: PMC2972269 DOI: 10.1186/1752-0509-4-134] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 10/05/2010] [Indexed: 12/15/2022]
Abstract
BACKGROUND Recent experimental work has uncovered some of the genetic components required to maintain the Arabidopsis thaliana root stem cell niche (SCN) and its structure. Two main pathways are involved. One pathway depends on the genes SHORTROOT and SCARECROW and the other depends on the PLETHORA genes, which have been proposed to constitute the auxin readouts. Recent evidence suggests that a regulatory circuit, composed of WOX5 and CLE40, also contributes to the SCN maintenance. Yet, we still do not understand how the niche is dynamically maintained and patterned or if the uncovered molecular components are sufficient to recover the observed gene expression configurations that characterize the cell types within the root SCN. Mathematical and computational tools have proven useful in understanding the dynamics of cell differentiation. Hence, to further explore root SCN patterning, we integrated available experimental data into dynamic Gene Regulatory Network (GRN) models and addressed if these are sufficient to attain observed gene expression configurations in the root SCN in a robust and autonomous manner. RESULTS We found that an SCN GRN model based only on experimental data did not reproduce the configurations observed within the root SCN. We developed several alternative GRN models that recover these expected stable gene configurations. Such models incorporate a few additional components and interactions in addition to those that have been uncovered. The recovered configurations are stable to perturbations, and the models are able to recover the observed gene expression profiles of almost all the mutants described so far. However, the robustness of the postulated GRNs is not as high as that of other previously studied networks. CONCLUSIONS These models are the first published approximations for a dynamic mechanism of the A. thaliana root SCN cellular pattering. Our model is useful to formally show that the data now available are not sufficient to fully reproduce root SCN organization and genetic profiles. We then highlight some experimental holes that remain to be studied and postulate some novel gene interactions. Finally, we suggest the existence of a generic dynamical motif that can be involved in both plant and animal SCN maintenance.
Collapse
Affiliation(s)
- Eugenio Azpeitia
- Instituto de Ecología & Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, México DF, México
| | | | | | | | | |
Collapse
|
157
|
Shinohara H, Matsubayashi Y. Arabinosylated glycopeptide hormones: new insights into CLAVATA3 structure. CURRENT OPINION IN PLANT BIOLOGY 2010; 13:515-519. [PMID: 20580598 DOI: 10.1016/j.pbi.2010.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 05/29/2010] [Indexed: 05/27/2023]
Abstract
Secreted peptides are now recognized as important members of hormones that coordinate and specify cellular functions in plants. Recent accumulating evidence shows that secreted peptide hormones are often post-translationally modified, and such modification is critical for their function. In this review, we highlight hydroxyproline arabinosylation, which has been found in several peptide hormones including CLAVATA3 (CLV3), a key peptide controlling stem cell renewal and differentiation in Arabidopsis shoot apical meristem. Arabinosylation of CLV3 is important for its biological activity and for high-affinity binding to its receptor, CLV1. We discuss the physiological functions of known glycopeptide hormones, the structural information on sugar chains, and possible mechanisms of glycosylation.
Collapse
Affiliation(s)
- Hidefumi Shinohara
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | |
Collapse
|
158
|
Meng L, Feldman LJ. CLE14/CLE20 peptides may interact with CLAVATA2/CORYNE receptor-like kinases to irreversibly inhibit cell division in the root meristem of Arabidopsis. PLANTA 2010; 232:1061-74. [PMID: 20697738 PMCID: PMC2940047 DOI: 10.1007/s00425-010-1236-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 07/15/2010] [Indexed: 05/03/2023]
Abstract
Towards an understanding of the interacting nature of the CLAVATA (CLV) complex, we predicted the 3D structures of CLV3/ESR-related (CLE) peptides and the ectodomain of their potential receptor proteins/kinases, and docking models of these molecules. The results show that the ectodomain of CLV1 can form homodimers and that the 12-/13-amino-acid CLV3 peptide fits into the binding clefts of the CLV1 dimers. Our results also demonstrate that the receptor domain of CORYNE (CRN), a recently identified receptor-like kinase, binds tightly to the ectodomain of CLV2, and this likely leads to an increased possibility for docking with CLV1. Furthermore, our docking models reveal that two CRN-CLV2 ectodomain heterodimers are able to form a tetramer receptor complex. Peptides of CLV3, CLE14, CLE19, and CLE20 are also able to bind a potential CLV2-CRN heterodimer or heterotetramer complex. Using a cell-division reporter line, we found that synthetic 12-amino-acid CLE14 and CLE20 peptides inhibit, irreversibly, root growth by reducing cell division rates in the root apical meristem, resulting in a short-root phenotype. Intriguingly, we observed that exogenous application of cytokinin can partially rescue the short-root phenotype induced by over-expression of either CLE14 or CLE20 in planta. However, cytokinin treatment does not rescue the short-root phenotype caused by exogenous application of the synthetic CLE14/CLE20 peptides, suggesting a requirement for a condition provided only in living plants. These results therefore imply that the CLE14/CLE20 peptides may act through the CLV2-CRN receptor kinase, and that their availabilities and/or abundances may be affected by cytokinin activity in planta.
Collapse
Affiliation(s)
- Ling Meng
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720-3102 USA
| | - Lewis J. Feldman
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720-3102 USA
| |
Collapse
|
159
|
Guo Y, Han L, Hymes M, Denver R, Clark SE. CLAVATA2 forms a distinct CLE-binding receptor complex regulating Arabidopsis stem cell specification. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:889-900. [PMID: 20626648 PMCID: PMC2974754 DOI: 10.1111/j.1365-313x.2010.04295.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
CLAVATA1 (CLV1), CLV2, CLV3, CORYNE (CRN), BAM1 and BAM2 are key regulators that function at the shoot apical meristem (SAM) of plants to promote differentiation by limiting the size of the organizing center that maintains stem cell identity in neighboring cells. Previous results have indicated that the extracellular domain of the receptor kinase CLV1 binds to the CLV3-derived CLE ligand. The biochemical role of the receptor-like protein CLV2 has remained largely unknown. Although genetic analysis suggested that CLV2, together with the membrane kinase CRN, acts in parallel with CLV1, recent studies using transient expression indicated that CLV2 and CRN from a complex with CLV1. Here, we report detection of distinct CLV2-CRN heteromultimeric and CLV1-BAM multimeric complexes in transient expression in tobacco and in Arabidopsis meristems. Weaker interactions between the two complexes were detectable in transient expression. We also find that CLV2 alone generates a membrane-localized CLE binding activity independent of CLV1. CLV2, CLV1 and the CLV1 homologs BAM1 and BAM2 all bind to the CLV3-derived CLE peptide with similar kinetics, but BAM receptors show a broader range of interactions with different CLE peptides. Finally, we show that BAM and CLV1 overexpression can compensate for the loss of CLV2 function in vivo. These results suggest two parallel ligand-binding receptor complexes controlling stem cell specification in Arabidopsis.
Collapse
Affiliation(s)
- Yongfeng Guo
- Department of Molecular, Cellular and Developmental Biologym, University of Michigan, Ann Arbor, MI 48109-1048
| | - Linqu Han
- Department of Molecular, Cellular and Developmental Biologym, University of Michigan, Ann Arbor, MI 48109-1048
| | | | - Robert Denver
- Department of Molecular, Cellular and Developmental Biologym, University of Michigan, Ann Arbor, MI 48109-1048
| | - Steven E. Clark
- Department of Molecular, Cellular and Developmental Biologym, University of Michigan, Ann Arbor, MI 48109-1048
| |
Collapse
|
160
|
Song X, Guo P, Li C, Liu CM. The cysteine pairs in CLV2 are not necessary for sensing the CLV3 peptide in shoot and root meristems. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:774-781. [PMID: 20738721 DOI: 10.1111/j.1744-7909.2010.00978.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Receptor-like proteins (RLPs) are involved in both plant defense and developmental processes. Previous genetic and biochemical studies show that the leucine-rich repeat (LRR) receptor-like protein CLAVATA2 (CLV2) functions together with CLAVATA1 (CLV1) and CORYNE (CRN) in Arabidopsis to limit the stem cell number in shoot apical meristem, while in root it acts with CRN to trigger a premature differentiation of the stem cells after sensing the exogenously applied peptides of CLV3p, CLE19p or CLE40p. It has been proposed that disulfide bonds might be formed through two cysteine pairs in the extracellular LRR domains of CLV1 and CLV2 to stabilize the receptor complex. Here we tested the hypothesis by replacing these cysteines with alanines and showed that depletions of one or both of the cysteine pairs do not hamper the function of CLV2 in SAM maintenance. In vitro peptide assay also showed that removal of the cysteine pairs did not affect the perception of CLV3 peptides in roots. These observations allow us to conclude that the formation of disulfide bonds is not needed for the function of CLV2.
Collapse
Affiliation(s)
- Xiufen Song
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
161
|
Wang J, Lee C, Replogle A, Joshi S, Korkin D, Hussey R, Baum TJ, Davis EL, Wang X, Mitchum MG. Dual roles for the variable domain in protein trafficking and host-specific recognition of Heterodera glycines CLE effector proteins. THE NEW PHYTOLOGIST 2010; 187:1003-1017. [PMID: 20497349 DOI: 10.1111/j.1469-8137.2010.03300.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
*Soybean cyst nematodes (Heterodera glycines) produce secreted effector proteins that function as peptide mimics of plant CLAVATA3/ESR (CLE)-like peptides probably involved in the developmental reprogramming of root cells to form specialized feeding cells called syncytia. *The site of action and mechanism of delivery of CLE effectors to host plant cells by the nematode, however, have not been established. In this study, immunologic, genetic and biochemical approaches were used to reveal the localization and site of action of H. glycines-secreted CLE proteins in planta. *We present evidence indicating that the nematode CLE propeptides are delivered to the cytoplasm of syncytial cells, but ultimately function in the apoplast, consistent with their proposed role as ligand mimics of plant CLE peptides. We determined that the nematode 12-amino-acid CLE motif peptide is not sufficient for biological activity in vivo, pointing to an important role for sequences upstream of the CLE motif in function. *Genetic and biochemical analysis confirmed the requirement of the variable domain in planta for host-specific recognition and revealed a novel role in trafficking cytoplasmically delivered CLEs to the apoplast in order to function as ligand mimics.
Collapse
Affiliation(s)
- Jianying Wang
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Chris Lee
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Amy Replogle
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Sneha Joshi
- Informatics Institute, Department of Computer Science and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Dmitry Korkin
- Informatics Institute, Department of Computer Science and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Richard Hussey
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | - Thomas J Baum
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| | - Eric L Davis
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Xiaohong Wang
- USDA-ARS, Robert W. Holley Center for Agriculture and Health and Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
162
|
Meng L, Ruth KC, Fletcher JC, Feldman L. The roles of different CLE domains in Arabidopsis CLE polypeptide activity and functional specificity. MOLECULAR PLANT 2010; 3:760-772. [PMID: 20494950 DOI: 10.1093/mp/ssq021] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The CLE (CLVATA3/ESR-related) family of plant polypeptide signaling molecules shares a conserved 14-amino-acid (aa) motif, designated the CLE motif, which recent studies suggest is sufficient for CLE function in vitro. In this study, we report that Arabidopsis CLE proteins can function in a tissue-specific manner and confirm some CLE factors can act through different receptors. Using domain swapping, we show for the first time that the CLE motif likely determines much of the functional tissue-specificity of the proteins in planta. However, we also provide evidence in support of the new view that sequences outside the CLE motif (14 aa) contribute to CLE function and functional specificity in vivo. Additionally, we report that deletion of the putative signal peptide from different CLE proteins completely inactivates CLE function in vivo, whereas exchanging the CLE signal peptides with a conventional signal peptide from a rice glycine-rich cell wall protein also influences CLE function. We thus propose that the CLE motif itself determines its functional tissue-specificity by dictating the direct recognition and interaction of each CLE peptide with its optimal receptor(s), whereas the receptor(s) may be available in a tissue-specific manner. On the other hand, the sequences outside the CLE motif may influence CLE function by affecting the processing of CLE peptides, resulting in a change in the availability and/or abundance of CLE peptides in specific tissues and/or cells.
Collapse
Affiliation(s)
- Ling Meng
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California Berkeley, CA 94720-3102, USA
| | | | | | | |
Collapse
|
163
|
Etchells JP, Turner SR. Orientation of vascular cell divisions in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2010; 5:730-2. [PMID: 20404542 PMCID: PMC3001573 DOI: 10.4161/psb.5.6.11665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 03/01/2010] [Indexed: 05/21/2023]
Abstract
Orientation of cell division is essential for plant development as the direction of growth is determined by the direction of cell expansion and orientation of cell division. We have demonstrated that cell division orientation in vascular tissue is regulated by the interactions between a receptor kinase (PXY) expressed in dividing cells and its peptide ligand (CLE41) that is localized to adjacent phloem cells. Given that other receptor kinases have been identified as orienting the cell division plane in several developmental processes, we suggest that localized signaling from adjacent cells may be a general mechanism for defining the plane of cell division.
Collapse
|
164
|
Mortier V, Den Herder G, Whitford R, Van de Velde W, Rombauts S, D'haeseleer K, Holsters M, Goormachtig S. CLE peptides control Medicago truncatula nodulation locally and systemically. PLANT PHYSIOLOGY 2010; 153:222-37. [PMID: 20348212 PMCID: PMC2862434 DOI: 10.1104/pp.110.153718] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 03/23/2010] [Indexed: 05/19/2023]
Abstract
The CLAVATA3/embryo-surrounding region (CLE) peptides control the fine balance between proliferation and differentiation in plant development. We studied the role of CLE peptides during indeterminate nodule development and identified 25 MtCLE peptide genes in the Medicago truncatula genome, of which two genes, MtCLE12 and MtCLE13, had nodulation-related expression patterns that were linked to proliferation and differentiation. MtCLE13 expression was up-regulated early in nodule development. A high-to-low expression gradient radiated from the inner toward the outer cortical cell layers in a region defining the incipient nodule. At later stages, MtCLE12 and MtCLE13 were expressed in differentiating nodules and in the apical part of mature, elongated nodules. Functional analysis revealed a putative role for MtCLE12 and MtCLE13 in autoregulation of nodulation, a mechanism that controls the number of nodules and involves systemic signals mediated by a leucine-rich repeat receptor-like kinase, SUNN, which is active in the shoot. When MtCLE12 and MtCLE13 were ectopically expressed in transgenic roots, nodulation was abolished at the level of the nodulation factor signal transduction, and this inhibition involved long-distance signaling. In addition, composite plants with roots ectopically expressing MtCLE12 or MtCLE13 had elongated petioles. This systemic effect was not observed in transgenic roots ectopically expressing MtCLE12 and MtCLE13 in a sunn-1 mutant background, although nodulation was still strongly reduced. These results suggest multiple roles for CLE signaling in nodulation.
Collapse
|
165
|
Stasolla C. Glutathione redox regulation of in vitro embryogenesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:319-27. [PMID: 19963394 DOI: 10.1016/j.plaphy.2009.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 10/26/2009] [Accepted: 10/30/2009] [Indexed: 05/06/2023]
Abstract
Production of embryos in culture via either somatic embryogenesis or androgenesis has long been used as a propagation tool and as a model system in the investigation of structural, physiological, and molecular events governing embryo development. Despite the similar external morphology to their zygotic counterparts, cultured embryos often fail to develop properly and convert into viable plants during post-embryonic growth. These deficiencies are the results of structural and physiological deviations ascribed to sub-optimal culture conditions. In an attempt to enhance embryo yield and quality we have conducted a series of investigations into the role of glutathione during embryogenesis. Changes in the glutathione redox state represent a key metabolic switch which triggers embryo growth. The imposition of a reduced environment during the early embryonic phases promotes cellular proliferation and increases the number of immature embryos, possibly by promoting the synthesis of nucleotides in support of energetic processes and mitotic activity. Continuation of embryo development is best achieved if the glutathione pool is experimentally switched towards an oxidized state; a condition which favors histodifferentiation and post-embryonic growth in both angiosperm and gymnosperms species. Among the structural events favored by the imposed oxidized environment is the proper formation of the shoot apical meristem (SAM), which acquires a "zygotic-like" appearance. The apical poles of treated embryos are well organized and display a proper expression and localization of meristem marker genes. These conditions are not met in control embryos which form abnormal SAMs characterized by the presence of intercellular spaces and differentiation of meristematic cells. Such meristems fail to reactivate at germination resulting in embryo abortion. Physiological and molecular studies have further demonstrated that the oxidized glutathione environment induces several responses, including changes in ascorbate metabolism, abscisic acid and ethylene synthesis, as well as alterations in storage product deposition patterns. This review attempts to relate these responses to the improved embryonic performance and proposes improved culture conditions to be applied for those cell lines and species recalcitrant to in vitro embryogenesis.
Collapse
Affiliation(s)
- Claudio Stasolla
- Dept. Plant Science, University of Manitoba, Winnipeg R3T2N2, Manitoba, Canada.
| |
Collapse
|
166
|
Busch W, Benfey PN. Information processing without brains--the power of intercellular regulators in plants. Development 2010; 137:1215-26. [PMID: 20332147 DOI: 10.1242/dev.034868] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plants exhibit different developmental strategies than animals; these are characterized by a tight linkage between environmental conditions and development. As plants have neither specialized sensory organs nor a nervous system, intercellular regulators are essential for their development. Recently, major advances have been made in understanding how intercellular regulation is achieved in plants on a molecular level. Plants use a variety of molecules for intercellular regulation: hormones are used as systemic signals that are interpreted at the individual-cell level; receptor peptide-ligand systems regulate local homeostasis; moving transcriptional regulators act in a switch-like manner over small and large distances. Together, these mechanisms coherently coordinate developmental decisions with resource allocation and growth.
Collapse
Affiliation(s)
- Wolfgang Busch
- Department of Biology, Institute of Genome Sciences & Policy, Center for Systems Biology, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
167
|
Wang G, Fiers M. CLE peptide signaling during plant development. PROTOPLASMA 2010; 240:33-43. [PMID: 20016993 PMCID: PMC2841256 DOI: 10.1007/s00709-009-0095-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 05/18/2023]
Abstract
Peptide signaling in plants is a rapid developing area of research which focuses on so called peptide hormones. These signaling molecules are utilized for inter-cellular communication in different developmental processes, beside the usage of the more well-known phytohormones. Probably the best studied peptide ligands in plants are the CLAVATA3 (CLV3)/ENDOSPERM SURROUNDING REGION (ESR)-related (CLE) proteins. This family of signaling polypeptides is comprised of 32 members in Arabidopsis and, with the exception of the presence of related proteins in some parasitic worms, is restricted to the plant kingdom. CLV3 is one of the founding CLE genes and is involved in stem cell niche maintenance in apical meristems during plant development. While the CLV signaling pathway is well characterized with the identification of three receptors and a stem-cell-promoting transcription factor as target, the functioning of other family members is not or poorly understood. The recent discoveries of a new type of receptor involved in CLV signaling and a functional pathway for CLE40 in root development mark the rapid progress that is made in the area of CLE peptide signaling. This review gives an overview how CLE peptides are used as signaling molecules, and how they are involved in cell-to-cell communication in concert with different known and unknown receptors in a range of developmental processes during plant development.
Collapse
Affiliation(s)
- Guodong Wang
- Centre for Biosystems Genomics (CBSG), P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Laboratory of Phytopathology, Wageningen University, P.O. Box 8025, 6700 EE Wageningen, The Netherlands
| | - Martijn Fiers
- Plant Research International, Bioscience, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Centre for Biosystems Genomics (CBSG), P.O. Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
168
|
Etchells JP, Turner SR. The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 2010; 137:767-74. [PMID: 20147378 DOI: 10.1242/dev.044941] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Controlling the orientation of cell division is fundamental to the development of complex body plans. This is particularly apparent in plants, where development is determined by differential growth that results solely from changes in cell expansion and orientation of the cell division plane. Despite the fundamental importance of cell division orientation to plant development, the mechanisms regulating this process remain almost completely unknown. During vascular development, the meristematic cambial cells divide down their long axis in a highly orientated manner to generate clear files of cells. The receptor kinase PXY has previously be shown to be essential for this orientation. Here, we demonstrate that the division plane is determined by the interactions of PXY and its peptide ligand, CLE41. PXY is expressed within dividing meristematic cells of the procambium, whereas CLE41 localises to the adjacent phloem cells. Altering the pattern of CLE41 expression leads to a loss of cell division orientation and a dramatic loss of ordered vascular tissue development. By contrast, increasing phloem-specific expression of CLE41 results in more cell divisions, but the orientation of cell division is retained, leading to both increased and well-ordered vascular development. We demonstrate that PXY signalling is down-regulated by CLE41. This feedback mechanism is crucial in integrating the different roles of PXY signalling in controlling xylem differentiation, regulating the rate of vascular cell division and determining the orientation of cell division. Parallels with animal systems indicate that localised signalling from adjacent cells is a general mechanism for defining the plane of cell division.
Collapse
Affiliation(s)
- J Peter Etchells
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | |
Collapse
|
169
|
Gagne JM, Clark SE. The Arabidopsis stem cell factor POLTERGEIST is membrane localized and phospholipid stimulated. THE PLANT CELL 2010; 22:729-43. [PMID: 20348433 PMCID: PMC2861466 DOI: 10.1105/tpc.109.068734] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 03/03/2010] [Accepted: 03/09/2010] [Indexed: 05/18/2023]
Abstract
Stem cell maintenance and differentiation are tightly regulated in multicellular organisms. In plants, proper control of the stem cell populations is critical for extensive postembryonic organogenesis. The Arabidopsis thaliana protein phosphatase type 2C proteins POLTERGEIST (POL) and PLL1 are essential for maintenance of both the root and shoot stem cells. Specifically, POL and PLL1 are required for proper specification of key asymmetric cell divisions during stem cell initiation and maintenance. POL and PLL1 are known to be integral components of the CLE/WOX signaling pathways, but the location and mechanisms by which POL and PLL1 are regulated within these pathways are unclear. Here, we show that POL and PLL1 are dual-acylated plasma membrane proteins whose membrane localization is required for proper function. Furthermore, this localization places POL and PLL1 in proximity of the upstream plasma membrane receptors that regulate their activity. Additionally, we find that POL and PLL1 directly bind to multiple lipids and that POL is catalytically activated by phosphatidylinositol (4) phosphate [PI(4)P] in vitro. Based on these results, we propose that the upstream receptors in the CLE/WOX signaling pathways may function to either limit PI(4)P availability or antagonize PI(4)P stimulation of POL/PLL1. Significantly, the findings presented here suggest that phospholipids play an important role in promoting stem cell specification.
Collapse
Affiliation(s)
| | - Steven E. Clark
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
| |
Collapse
|
170
|
Koizumi A, Yamanaka K, Nishihara K, Kazama Y, Abe T, Kawano S. Two separate pathways including SlCLV1, SlSTM and SlCUC that control carpel development in a bisexual mutant of Silene latifolia. PLANT & CELL PHYSIOLOGY 2010; 51:282-293. [PMID: 20064843 DOI: 10.1093/pcp/pcp187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Carpel suppression is a trigger for sexual dimorphism in the dioecious plant Silene latifolia. To clarify what kind of genes are involved in carpel suppression in this species, we generated a bisexual mutant, R025, by C-ion beam irradiation. R025 produces bisexual flowers with a mature gynoecium and mature stamens. Genetic analysis of R025 attributed the bisexual trait to mutations on the Y chromosome. Scanning electron microscopy (SEM) analysis of early floral development revealed that the carpel size of R025 was different from that of wild-type males in spite of the male background in R025. We also identified an S. latifolia CLAVATA1-like gene (SlCLV1) as a candidate of the CLAVATA-WUSCHEL (CLV-WUS) pathway. Two separate pathways, the CLV-WUS pathway and the CUP-SHAPED COTYLEDON (CUC)-SHOOT MERISTEMLESS (STM) pathway, contribute to carpel development in the Arabidopsis floral meristem. SlSTM1 and SlSTM2 (orthologs of STM) and SlCUC (an ortholog of CUC1 and CUC2) have already been identified in S. latifolia. We therefore examined the expression patterns of SlCLV1, SlSTM (SlSTM1 and SlSTM2) and SlCUC in young flowers of R025 and wild-type males and females. The expression patterns of the three genes in the two pathways differ between the wild-type male and the bisexual mutant, and the differences in expression patterns of the three genes occur at the same stage. These results suggest that in addition to SlSTM1, SlSTM2 and SlCUC, SlCLV1 is also involved in carpel suppression in S. latifolia. They also suggest that a gynoecium-suppressing factor (GSF), which is lost in the R025 Y chromosome, acts on an upstream gene that is common to the two pathways, triggering sexual dimorphism in S. latifolia.
Collapse
Affiliation(s)
- Ayako Koizumi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, FSB-601, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562 Japan
| | | | | | | | | | | |
Collapse
|
171
|
Zhu Y, Wang Y, Li R, Song X, Wang Q, Huang S, Jin JB, Liu CM, Lin J. Analysis of interactions among the CLAVATA3 receptors reveals a direct interaction between CLAVATA2 and CORYNE in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:223-33. [PMID: 19843317 DOI: 10.1111/j.1365-313x.2009.04049.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In Arabidopsis, CORYNE (CRN), a new member of the receptor kinase family, was recently isolated as a key player involved in the CLAVATA3 (CLV3) signaling pathway, thereby playing an important role in regulating the development of shoot and root apical meristems. However, the precise relationships among CLAVATA1 (CLV1), CLAVATA2 (CLV2), and CRN receptors remain unclear. Here, we demonstrate the subcellular localization of CRN and analyze the interactions among CLV1, CLV2, and CRN using firefly luciferase complementation imaging (LCI) assays in both Arabidopsis mesophyll protoplasts and Nicotiana benthamiana leaves. Fluorescence targeting showed that CRN was localized to the plasma membrane. The LCI assays coupled with co-immunoprecipitation assays demonstrated that CLV2 can directly interact with CRN in the absence of CLV3. Additional LCI assays showed that CLV1 did not interact with CLV2, but can interact weakly with CRN. We also found that CLV1 can interact with CLV2-CRN heterodimers, implying that these three proteins may form a complex. Moreover, CRN, rather than CLV1 and CLV2, was able to form homodimers without CLV3 stimulation. Taken together, our results add direct evidence to the newly proposed two-parallel receptor pathways model and therefore provide new insights into the CLV3 signaling pathway.
Collapse
Affiliation(s)
- Yingfang Zhu
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Wang G, Long Y, Thomma BP, de Wit PJ, Angenent GC, Fiers M. Functional analyses of the CLAVATA2-like proteins and their domains that contribute to CLAVATA2 specificity. PLANT PHYSIOLOGY 2010; 152:320-31. [PMID: 19897604 PMCID: PMC2799366 DOI: 10.1104/pp.109.148197] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 11/05/2009] [Indexed: 05/18/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) CLAVATA2 (CLV2) gene encodes a leucine-rich repeat receptor-like protein (RLP) that is involved in controlling the stem cell population size in the shoot apical meristem. Our previous genome-wide functional analysis of 57 AtRLP genes revealed only a few phenotypes for mutant alleles, despite screening a wide range of growth and developmental stages and assaying sensitivity to various stress responses, including susceptibility toward pathogens. To gain further insight into the biological role of AtRLPs, in particular CLV2-related AtRLP genes, we tested their ability to complement the clv2 mutant phenotype. We found that out of four close CLV2 homologs tested, AtRLP2 and AtRLP12 could functionally complement the clv2 mutant when expressed under the control of the CLV2 promoter. This indicates that the functional specificity of these three genes is determined at the level of their transcriptional regulation. Single and double mutant combinations with impaired AtRLP2 and/or AtRLP12 did not show an aberrant phenotype, suggesting that other genes are redundant with these CLV2-like genes. To understand which protein domains are essential for CLV2 function and which parts are interchangeable between related CLV2-like proteins, we performed domain-deletion and domain-swap experiments. These experiments revealed that CLV2 remains functional without the island domain, whereas the C1 and C3 regions of the leucine-rich repeat domain are essential for functionality. Analysis of domain-swap constructs showed that the C3-G region of CLV2 can be replaced by that of AtRLP38, although it could not complement the clv2 mutant under control of the CLV2 promoter. This suggests that the C3-G region is conserved among related AtRLP members, whereas the C1 domain may determine the functional specificity of CLV2.
Collapse
|
173
|
Xie M, Tataw M, Venugopala Reddy G. Towards a functional understanding of cell growth dynamics in shoot meristem stem-cell niche. Semin Cell Dev Biol 2009; 20:1126-33. [DOI: 10.1016/j.semcdb.2009.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Accepted: 09/08/2009] [Indexed: 12/15/2022]
|
174
|
Pike S, Patel A, Stacey G, Gassmann W. Arabidopsis OPT6 is an oligopeptide transporter with exceptionally broad substrate specificity. PLANT & CELL PHYSIOLOGY 2009; 50:1923-32. [PMID: 19808809 DOI: 10.1093/pcp/pcp136] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Oligopeptide transporters (OPTs) are found in fungi, bacteria and plants. The nine Arabidopsis thaliana OPT genes are expressed mainly in the vasculature and are thought to transport tetra- and pentapeptides, and peptide-like substrates such as glutathione. Expression of AtOPT6 in Xenopus laevis oocytes demonstrated that AtOPT6 transports many tetra- and pentapeptides. In addition, AtOPT6 transported reduced glutathione (GSH), a tripeptide, but not oxidized glutathione (GSSG). Recent data showed that Candida albicans OPTs can transport peptides up to eight amino acids in length. AtOPT6 transported mammalian signaling peptides up to 10 amino acids in length and, in addition, known plant development- and nematode pathogenesis-associated peptides up to 13 amino acids long. AtOPT6 displayed high affinity for penta- and dodecapeptides, but low affinity for GSH. In comparison the Saccharomyces cerevisiae ScOPT1 was incapable of transporting any of the longer peptides tested. These data demonstrate the necessity of experimentally determining substrate specificity of individual OPTs, and lay a foundation for structure/function studies. Characterization of the AtOPT6 substrate range provides a basis for investigating the possible physiological function of AtOPT6 in peptide signaling and thiol transport in response to stress.
Collapse
Affiliation(s)
- Sharon Pike
- Division of Plant Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310, USA
| | | | | | | |
Collapse
|
175
|
McKenna ST, Kunkel JG, Bosch M, Rounds CM, Vidali L, Winship LJ, Hepler PK. Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes. THE PLANT CELL 2009; 21:3026-40. [PMID: 19861555 PMCID: PMC2782290 DOI: 10.1105/tpc.109.069260] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/28/2009] [Accepted: 10/14/2009] [Indexed: 05/18/2023]
Abstract
We examined exocytosis during oscillatory growth in lily (Lilium formosanum and Lilium longiflorum) and tobacco (Nicotiana tabacum) pollen tubes using three markers: (1) changes in cell wall thickness by Nomarski differential interference contrast (DIC), (2) changes in apical cell wall fluorescence in cells stained with propidium iodide (PI), and (3) changes in apical wall fluorescence in cells expressing tobacco pectin methyl esterase fused to green fluorescent protein (PME-GFP). Using PI fluorescence, we quantified oscillatory changes in the amount of wall material from both lily and tobacco pollen tubes. Measurement of wall thickness by DIC was only possible with lily due to limitations of microscope resolution. PME-GFP, a direct marker for exocytosis, only provides information in tobacco because its expression in lily causes growth inhibition and cell death. We show that exocytosis in pollen tubes oscillates and leads the increase in growth rate; the mean phase difference between exocytosis and growth is -98 degrees +/- 3 degrees in lily and -124 degrees +/- 4 degrees in tobacco. Statistical analyses reveal that the anticipatory increase in wall material predicts, to a high degree, the rate and extent of the subsequent growth surge. Exocytosis emerges as a prime candidate for the initiation and regulation of oscillatory pollen tube growth.
Collapse
Affiliation(s)
| | - Joseph G. Kunkel
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Maurice Bosch
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University Plas Gogerddan, Aberystwyth, SY23 3EB, United Kingdom
| | - Caleb M. Rounds
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | | | - Peter K. Hepler
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
176
|
|
177
|
Hormonal input in plant meristems: A balancing act. Semin Cell Dev Biol 2009; 20:1149-56. [PMID: 19765666 DOI: 10.1016/j.semcdb.2009.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 08/25/2009] [Accepted: 09/08/2009] [Indexed: 11/23/2022]
Abstract
Plant hormones are a group of chemically diverse molecules that control virtually all aspects of plant development. Classical plant hormones were identified many decades ago in physiology studies that addressed plant growth regulation. In recent years, biochemical and genetic approaches led to the identification of many molecular components that mediate hormone activity, such as hormone receptors and hormone-regulated genes. This has greatly contributed to the understanding of the mechanisms underlying hormone activity and highlighted the intricate crosstalk and integration of hormone signalling and developmental pathways. Here we review and discuss recent findings on how hormones regulate the activity of shoot and root apical meristems.
Collapse
|
178
|
Lu SW, Chen S, Wang J, Yu H, Chronis D, Mitchum MG, Wang X. Structural and functional diversity of CLAVATA3/ESR (CLE)-like genes from the potato cyst nematode Globodera rostochiensis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1128-42. [PMID: 19656047 DOI: 10.1094/mpmi-22-9-1128] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant CLAVATA3/ESR-related (CLE) peptides have diverse roles in plant growth and development. Here, we report the isolation and functional characterization of five new CLE genes from the potato cyst nematode Globodera rostochiensis. Unlike typical plant CLE peptides that contain a single CLE motif, four of the five Gr-CLE genes encode CLE proteins with multiple CLE motifs. These Gr-CLE genes were found to be specifically expressed within the dorsal esophageal gland cell of nematode parasitic stages, suggesting a role for their encoded proteins in plant parasitism. Overexpression phenotypes of Gr-CLE genes in Arabidopsis mimicked those of plant CLE genes, and Gr-CLE proteins could rescue the Arabidopsis clv3-2 mutant phenotype when expressed within meristems. A short root phenotype was observed when synthetic GrCLE peptides were exogenously applied to roots of Arabidopsis or potato similar to the overexpression of Gr-CLE genes in Arabidopsis and potato hairy roots. These results reveal that G. rostochiensis CLE proteins with either single or multiple CLE motifs function similarly to plant CLE proteins and that CLE signaling components are conserved in both Arabidopsis and potato roots. Furthermore, our results provide evidence to suggest that the evolution of multiple CLE motifs may be an important mechanism for generating functional diversity in nematode CLE proteins to facilitate parasitism.
Collapse
Affiliation(s)
- Shun-Wen Lu
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| | | | | | | | | | | | | |
Collapse
|
179
|
Stahl Y, Simon R. Is the Arabidopsis root niche protected by sequestration of the CLE40 signal by its putative receptor ACR4? PLANT SIGNALING & BEHAVIOR 2009; 4:634-5. [PMID: 19820344 PMCID: PMC2710560 DOI: 10.4161/psb.4.7.8970] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 05/07/2009] [Indexed: 05/18/2023]
Abstract
A tight but also dynamic regulation is necessary to control the size of stem cell populations in response to internal and external cues. The stem cells of the Arabidopsis shoot and root meristems are governed by the niche cells of the organizing centre (OC) and the quiescent centre (QC), respectively. The well characterized CLV3/WUS negative feedback loop adjusts homeostasis of the stem cell population in the shoot. Here, the CLAVATA3 (CLV3) dodecapeptide, expressed by the stem cells, signals to repress WUSCHEL (WUS), which is expressed in the subjacent OC cells, and in turn activates CLV3 expression non-cell autonomously. However, a similar signaling module controlling the root stem cell population was as yet unknown. In the June issue of Current Biology we report on such a signaling module comprising CLE40 (a CLV3 homologue) that acts via the receptor kinase Arabidopsis Crinkly4 (ACR4) to repress the WUS homologue WOX5 which maintains distal root stem cells. Furthermore, we showed that CLE40 peptide (CLE40p) treatment upregulates ACR4 expression. In this Addendum, we are further elaborating our hypothesis in which the upregulation of ACR4 as a consequence of ectopic CLE40p builds a protective barrier for the QC niche cells.
Collapse
Affiliation(s)
- Yvonne Stahl
- Institut für Genetik, Heinrich-Heine Universität, Düsseldorf, Germany.
| | | |
Collapse
|
180
|
Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y. A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat Chem Biol 2009. [DOI: 10.1038/nchembio.182 doi:dx.doi.org] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
181
|
A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat Chem Biol 2009; 5:578-80. [DOI: 10.1038/nchembio.182] [Citation(s) in RCA: 323] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 04/24/2009] [Indexed: 11/08/2022]
|
182
|
|
183
|
Stahl Y, Wink RH, Ingram GC, Simon R. A Signaling Module Controlling the Stem Cell Niche in Arabidopsis Root Meristems. Curr Biol 2009; 19:909-14. [DOI: 10.1016/j.cub.2009.03.060] [Citation(s) in RCA: 375] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 11/29/2022]
|
184
|
Butenko MA, Vie AK, Brembu T, Aalen RB, Bones AM. Plant peptides in signalling: looking for new partners. TRENDS IN PLANT SCIENCE 2009; 14:255-263. [PMID: 19362511 DOI: 10.1016/j.tplants.2009.02.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 02/05/2009] [Accepted: 02/09/2009] [Indexed: 01/11/2023]
Abstract
A novel candidate ligand-receptor system, INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) and the related receptor-like kinases (RLKs) HAESA (HAE) and HAESA-LIKE (HSL)2, has been shown to control floral abscission in Arabidopsis thaliana. Furthermore, several IDA-LIKE (IDL) proteins, which contain a conserved C-terminal domain resembling that of the CLAVATA (CLV)3-ENDOSPERM SURROUNDING REGION (ESR)-RELATED (CLE) protein family, have been shown to be partially redundant with IDA. Here, we use the genetic similarities between the IDA and CLV3 signalling systems to hypothesize that closely related peptide ligands are likely to interact with families of closely related RLKs. Guided by this hypothesis and with the aid of genetics and novel methods, ligand-receptor systems can be identified to improve our understanding of developmental processes in plants.
Collapse
Affiliation(s)
- Melinka A Butenko
- Department of Molecular Biosciences, University of Oslo, N-0316 Oslo, Norway
| | | | | | | | | |
Collapse
|
185
|
Motose H, Iwamoto K, Endo S, Demura T, Sakagami Y, Matsubayashi Y, Moore KL, Fukuda H. Involvement of phytosulfokine in the attenuation of stress response during the transdifferentiation of zinnia mesophyll cells into tracheary elements. PLANT PHYSIOLOGY 2009; 150:437-47. [PMID: 19270060 PMCID: PMC2675742 DOI: 10.1104/pp.109.135954] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 02/25/2009] [Indexed: 05/18/2023]
Abstract
Phytosulfokine (PSK) is a sulfated peptide hormone required for the proliferation and differentiation of plant cells. Here, we characterize the physiological roles of PSK in transdifferentiation of isolated mesophyll cells of zinnia (Zinnia elegans 'Canary Bird') into tracheary elements (TEs). Transcripts for a zinnia PSK precursor gene, ZePSK1, show two peaks of expression during TE differentiation; the first accumulation is transiently induced in response to wounding at 24 h of culture, and the second accumulation is induced in the final stage of TE differentiation and is dependent on endogenous brassinosteroids. Chlorate, a potent inhibitor of peptide sulfation, is successfully applied as an inhibitor of PSK action. Chlorate significantly suppresses TE differentiation. The chlorate-induced suppression of TE differentiation is overcome by exogenously applied PSK. In the presence of chlorate, expression of stress-related genes for proteinase inhibitors and a pathogenesis-related protein is enhanced and changed from a transient to a continuous pattern. On the contrary, administration of PSK significantly reduces the accumulation of transcripts for the stress-related genes. Even in the absence of auxin and cytokinin, addition of PSK suppresses stress-related gene expression. Microarray analysis reveals 66 genes down-regulated and 42 genes up-regulated in the presence of PSK. The large majority of down-regulated genes show significant similarity to various families of stress-related proteins, including chitinases, phenylpropanoid biosynthesis enzymes, 1-aminocyclopropane-1-carboxylic acid synthase, and receptor-like protein kinases. These results suggest the involvement of PSK in the attenuation of stress response and healing of wound-activated cells during the early stage of TE differentiation.
Collapse
Affiliation(s)
- Hiroyasu Motose
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Atta R, Laurens L, Boucheron-Dubuisson E, Guivarc'h A, Carnero E, Giraudat-Pautot V, Rech P, Chriqui D. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:626-44. [PMID: 18980654 DOI: 10.1111/j.1365-313x.2008.03715.x] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We have established a detailed framework for the process of shoot regeneration from Arabidopsis root and hypocotyl explants grown in vitro. Using transgenic plant lines in which the GUS or GFP genes were fused to promoters of developmental genes (WUS, CLV1, CLV3, STM, CUC1, PLT1, RCH1, QC25), or to promoters of genes encoding indicators of the auxin response (DR5) or transport (PIN1), cytokinin (CK) response (ARR5) or synthesis (IPT5), or mitotic activity (CYCB1), we showed that regenerated shoots originated directly or indirectly from the pericycle cells adjacent to xylem poles. In addition, shoot regeneration appeared to be partly similar to the formation of lateral root meristems (LRMs). During pre-culture on a 2, 4-dichlorophenoxyacetic acid (2, 4-D)-rich callus-inducing medium (CIM), xylem pericycle reactivation established outgrowths that were not true calli but had many characteristics of LRMs. Transfer to a CK-rich shoot-inducing medium (SIM) resulted in early LRM-like primordia changing to shoot meristems. Direct origin of shoots from the xylem pericycle occurred upon direct culture on CK-containing media without prior growth on CIM. Thus, it appeared that the xylem pericycle is more pluripotent than previously thought. This pluripotency was accompanied by the ability of pericycle derivatives to retain diploidy, even after several rounds of cell division. In contrast, the phloem pericycle did not display such developmental plasticity, and responded to CKs with only periclinal divisions. Such observations reinforce the view that the pericycle is an 'extended meristem' that comprises two types of cell populations. They also suggest that the founder cells for LRM initiation are not initially fully specified for this developmental pathway.
Collapse
Affiliation(s)
- Ramzy Atta
- Université Pierre et Marie Curie - Paris 6, CEMV-EA3494, 4 Place Jussieu, F-75005 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells. Proc Natl Acad Sci U S A 2008; 105:18625-30. [PMID: 19011104 DOI: 10.1073/pnas.0809395105] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Clavata3 (CLV3)/endosperm surrounding region (CLE) signaling peptides are encoded in large plant gene families. CLV3 and the other A-type CLE peptides promote cell differentiation in root and shoot apical meristems, whereas the B-type peptides (CLE41-CLE44) do not. Instead, CLE41 inhibits the differentiation of Zinnia elegans tracheary elements. To test whether CLE genes might code for antagonistic or synergistic functions, peptides from both types were combined through overexpression within or application onto Arabidopsis thaliana seedlings. The CLE41 peptide (CLE41p) promoted proliferation of vascular cells, although delaying differentiation into phloem and xylem cell lineages. Application of CLE41p or overexpression of CLE41 did not suppress the terminal differentiation of the root and shoot apices triggered by A-type CLE peptides. However, in combination, A-type peptides enhanced all of the phenotypes associated with CLE41 gain-of-function, leading to massive proliferation of vascular cells. This proliferation relied on auxin signaling because it was enhanced by exogenous application of a synthetic auxin, decreased by an auxin polar transport inhibitor, and abolished by a mutation in the Monopteros auxin response factor. These findings highlight that vascular patterning is a process controlled in time and space by different CLE peptides in conjunction with hormonal signaling.
Collapse
|
188
|
Miwa H, Betsuyaku S, Iwamoto K, Kinoshita A, Fukuda H, Sawa S. The receptor-like kinase SOL2 mediates CLE signaling in Arabidopsis. PLANT & CELL PHYSIOLOGY 2008; 49:1752-7. [PMID: 18854335 PMCID: PMC2582179 DOI: 10.1093/pcp/pcn148] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 10/06/2008] [Indexed: 05/18/2023]
Abstract
Arabidopsis sol2 mutants showed CLV3 peptide resistance. Twenty-six synthetic CLE peptides were examined in the clv1, clv2 and sol2 mutants. sol2 showed different levels of resistance to the various peptides, and the spectrum of peptide resistance was quite similar to that of clv2. SOL2 encoded a receptor-like kinase protein which is identical to CORYNE (CRN). GeneChip analysis revealed that the expression of several genes was altered in the sol2 root tip. Here, we suggest that SOL2, together with CLV2, plays an important role in the regulation of root meristem development through the CLE signaling pathway.
Collapse
|
189
|
Iyer-Pascuzzi AS, Benfey PN. Transcriptional networks in root cell fate specification. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:315-25. [PMID: 18973837 DOI: 10.1016/j.bbagrm.2008.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 09/09/2008] [Accepted: 09/25/2008] [Indexed: 12/13/2022]
Abstract
Cell fate in the Arabidopsis root is determined by positional information mediated by plant hormones and interpreted by transcriptional networks. In this review, we summarize recent advances in our understanding of the regulatory networks that control cell fate within the root meristem, and in the interplay of these networks with phytohormones. Recent work describing the importance of chromatin organization in tissue patterning is also highlighted. A new, high resolution root expression map detailing the transciptome of nearly all cell types in the Arabidopsis root across developmental timepoints will provide a framework for understanding these networks.
Collapse
|
190
|
Kondo T, Nakamura T, Yokomine K, Sakagami Y. Dual assay for MCLV3 activity reveals structure-activity relationship of CLE peptides. Biochem Biophys Res Commun 2008; 377:312-6. [PMID: 18848920 DOI: 10.1016/j.bbrc.2008.09.139] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 09/30/2008] [Indexed: 10/21/2022]
Abstract
The dodecapeptide MCLV3 is a functional peptide, derived from the CLV3 precursor protein, which is a candidate ligand of the CLV1/CLV2 receptor complex that restricts the stem cell population in the shoot apical meristem (SAM). MCLV3 can induce shoot and root meristem consumption, the typical phenotype of transgenic plants overexpressing CLV3. We investigated the bioactivities of a series of alanine-substituted MCLV3 and related peptides on the root growth of Arabidopsis. The structure-activity relationship (SAR) of MCLV3 had high similarity with that of tracheary element differentiation inhibitory factor (TDIF). We also evaluated the binding activities of the peptides by a competitive receptor binding assay using tritiated MCLV3 and the membrane fraction of a tobacco BY-2 cell line overexpressing the MCLV3 ectodomain. This dual assay, combining a biological and receptor binding assay for evaluating the activities of MCLV3-related peptides, uncovered the SAR of MCLV3, and indicated that the terminal residues play critical roles in exerting its activity and are important for specific binding to the receptor, CLV1.
Collapse
Affiliation(s)
- Tatsuhiko Kondo
- Graduate School of Bioagricultural Science, Nagoya University, Chikusa, Nagoya, Japan
| | | | | | | |
Collapse
|
191
|
Deyoung BJ, Clark SE. BAM receptors regulate stem cell specification and organ development through complex interactions with CLAVATA signaling. Genetics 2008; 180:895-904. [PMID: 18780746 PMCID: PMC2567389 DOI: 10.1534/genetics.108.091108] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 08/10/2008] [Indexed: 11/18/2022] Open
Abstract
The CLAVATA1 (CLV1) receptor kinase regulates stem cell specification at shoot and flower meristems of Arabidopsis. Most clv1 alleles are dominant negative, and clv1 null alleles are weak in phenotype, suggesting additional receptors functioning in parallel. We have identified two such parallel receptors, BAM1 and BAM2. We show that the weak nature of the phenotype of clv1 null alleles is dependent on BAM activity, with bam clv mutants exhibiting severe defects in stem cell specification. Furthermore, BAM activity in the meristem depends on CLV2, which is required in part for CLV1 function. In addition, clv1 mutants enhance many of the Bam(-) organ phenotypes, indicating that, contrary to current understanding, CLV1 function is not specific to the meristem. CLV3 encodes a small, secreted peptide that acts as the ligand for CLV1. Mutations in clv3 lead to increased stem cell accumulation. Surprisingly, bam1 and bam2 mutants suppress the phenotype of clv3 mutants. We speculate that in addition to redundant function in the meristem center, BAM1 and BAM2 act to sequester CLV3-like ligands in the meristem flanks.
Collapse
Affiliation(s)
- Brody J Deyoung
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | |
Collapse
|
192
|
Song SK, Hofhuis H, Lee MM, Clark SE. Key divisions in the early Arabidopsis embryo require POL and PLL1 phosphatases to establish the root stem cell organizer and vascular axis. Dev Cell 2008; 15:98-109. [PMID: 18606144 DOI: 10.1016/j.devcel.2008.05.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 04/15/2008] [Accepted: 05/16/2008] [Indexed: 11/17/2022]
Abstract
Arabidopsis development proceeds from three stem cell populations located at the shoot, flower, and root meristems. The relationship between the highly related shoot and flower stem cells and the very divergent root stem cells has been unclear. We show that the related phosphatases POL and PLL1 are required for all three stem cell populations. pol pll1 mutant embryos lack key asymmetric divisions that give rise to the root stem cell organizer and the central vascular axis. Instead, these cells divide in a superficially symmetric fashion in pol pll1 embryos, leading to a loss of embryonic and postembryonic root stem cells and vascular specification. We present data that show that POL/PLL1 drive root stem cell specification by promoting expression of the WUS homolog WOX5. We propose that POL and PLL1 are required for the proper divisions of shoot, flower, and root stem cell organizers, WUS/WOX5 gene expression, and stem cell maintenance.
Collapse
Affiliation(s)
- Sang-Kee Song
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
193
|
Suzaki T, Yoshida A, Hirano HY. Functional diversification of CLAVATA3-related CLE proteins in meristem maintenance in rice. THE PLANT CELL 2008; 20:2049-58. [PMID: 18676878 PMCID: PMC2553609 DOI: 10.1105/tpc.107.057257] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 06/04/2008] [Accepted: 07/17/2008] [Indexed: 05/19/2023]
Abstract
Postembryonic development in plants depends on the activity of the shoot apical meristem (SAM) and root apical meristem (RAM). In Arabidopsis thaliana, CLAVATA signaling negatively regulates the size of the stem cell population in the SAM by repressing WUSCHEL. In other plants, however, studies of factors involved in stem cell maintenance are insufficient. Here, we report that two proteins closely related to CLAVATA3, FLORAL ORGAN NUMBER2 (FON2) and FON2-LIKE CLE PROTEIN1 (FCP1/Os CLE402), have functionally diversified to regulate the different types of meristem in rice (Oryza sativa). Unlike FON2, which regulates the maintenance of flower and inflorescence meristems, FCP1 appears to regulate the maintenance of the vegetative SAM and RAM. Constitutive expression of FCP1 results in consumption of the SAM in the vegetative phase, and application of an FCP1 CLE peptide in vitro disturbs root development by misspecification of cell fates in the RAM. FON1, a putative receptor of FON2, is likely to be unnecessary for these FCP1 functions. Furthermore, we identify a key amino acid residue that discriminates between the actions of FCP1 and FON2. Our results suggest that, although the basic framework of meristem maintenance is conserved in the angiosperms, the functions of the individual factors have diversified during evolution.
Collapse
Affiliation(s)
- Takuya Suzaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | | | | |
Collapse
|
194
|
Strabala TJ. CLE genes in plant development: Gain-of-function analyses, pleiotropy, hypermorphy and neomorphy. PLANT SIGNALING & BEHAVIOR 2008; 3:457-9. [PMID: 19704484 PMCID: PMC2634428 DOI: 10.4161/psb.3.7.5602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 01/18/2008] [Indexed: 05/17/2023]
Abstract
In Arabidopsis, the CLE genes encode a family of at least 32 peptide ligands. Our gain-of-function studies demonstrated that all of the 18 genes we examined caused pleiotropic and often opposing phenotypes, including various combinations of increased root and rosette growth, root stunting, dwarfing, shoot apical meristem (SAM) arrest, asymmetric leaf development, and "shrublike" phenotypes. Many CLE genes caused similar phenotypes that correlated with common amino acid substitutions among subsets of the genes, suggesting key amino acids necessary for certain phenotypes. The pleiotropic phenotypes we observed were the results of integrated hypermorphic and global neomorphic responses to abundant ectopic ligands through multiple signaling pathways. The phenotypes are also suggestive of wide ranging, often antagonistic roles played by these genes in plant development. The interpretations of our findings and some apparently contradictory recent results are discussed in this context.
Collapse
|
195
|
Stasolla C, Belmonte MF, Tahir M, Elhiti M, Khamiss K, Joosen R, Maliepaard C, Sharpe A, Gjetvaj B, Boutilier K. Buthionine sulfoximine (BSO)-mediated improvement in cultured embryo quality in vitro entails changes in ascorbate metabolism, meristem development and embryo maturation. PLANTA 2008; 228:255-72. [PMID: 18458948 DOI: 10.1007/s00425-008-0735-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 04/01/2008] [Indexed: 05/07/2023]
Abstract
Applications of buthionine sulfoximine (BSO), an inhibitor of GSH (reduced glutathione), which switches the cellular glutathione pool towards the oxidized form GSSG, positively influences embryo quality by improving the structure of the shoot apical meristem and promoting embryo maturation, both of which improve the post-embryonic performance of the embryos. To investigate the mechanisms underlying BSO-mediated improvement in embryo quality the transcript profiles of developing Brassica napus microspore-derived embryos cultured in the absence (control) or presence of BSO were analyzed using a 15,000-element B. napus oligo microarray. BSO applications induced major changes in transcript accumulation patterns, especially during the late phases of embryogenesis. BSO affected the transcription and activities of key enzymes involved in ascorbate metabolism, which resulted in major fluctuations in cellular ascorbate levels. These changes were related to morphological characteristics of the embryos and their post-embryonic performance. BSO applications also activated many genes controlling meristem formation and function, including ZWILLE, SHOOTMERISTEMLESS, and ARGONAUTE 1. Increased expression of these genes may contribute to the improved structural quality of the shoot poles observed in the presence of BSO. Compared to their control counterparts, middle- and late-stage BSO-treated embryos also showed increased accumulation of transcripts associated with the maturation phase of zygotic embryo development, including genes encoding ABA-responsive proteins and storage- and late-embryogenic abundant (LEA) proteins. Overall these transcriptional changes support the observation that the BSO-induced oxidized glutathione redox state allows cultured embryos to reach both morphological and physiological maturity, which in turn guarantees successful regeneration and enhanced post-embryonic growth.
Collapse
Affiliation(s)
- Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Wang G, Ellendorff U, Kemp B, Mansfield JW, Forsyth A, Mitchell K, Bastas K, Liu CM, Woods-Tör A, Zipfel C, de Wit PJGM, Jones JDG, Tör M, Thomma BPHJ. A genome-wide functional investigation into the roles of receptor-like proteins in Arabidopsis. PLANT PHYSIOLOGY 2008; 147:503-17. [PMID: 18434605 PMCID: PMC2409048 DOI: 10.1104/pp.108.119487] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 04/11/2008] [Indexed: 05/18/2023]
Abstract
Receptor-like proteins (RLPs) are cell surface receptors that typically consist of an extracellular leucine-rich repeat domain, a transmembrane domain, and a short cytoplasmatic tail. In several plant species, RLPs have been found to play a role in disease resistance, such as the tomato (Solanum lycopersicum) Cf and Ve proteins and the apple (Malus domestica) HcrVf2 protein that mediate resistance against the fungal pathogens Cladosporium fulvum, Verticillium spp., and Venturia inaequalis, respectively. In addition, RLPs play a role in plant development; Arabidopsis (Arabidopsis thaliana) TOO MANY MOUTHS (TMM) regulates stomatal distribution, while Arabidopsis CLAVATA2 (CLV2) and its functional maize (Zea mays) ortholog FASCINATED EAR2 regulate meristem maintenance. In total, 57 RLP genes have been identified in the Arabidopsis genome and a genome-wide collection of T-DNA insertion lines was assembled. This collection was functionally analyzed with respect to plant growth and development and sensitivity to various stress responses, including susceptibility toward pathogens. A number of novel developmental phenotypes were revealed for our CLV2 and TMM insertion mutants. In addition, one AtRLP gene was found to mediate abscisic acid sensitivity and another AtRLP gene was found to influence nonhost resistance toward Pseudomonas syringae pv phaseolicola. This genome-wide collection of Arabidopsis RLP gene T-DNA insertion mutants provides a tool for future investigations into the biological roles of RLPs.
Collapse
Affiliation(s)
- Guodong Wang
- Plant Research International, B.V., Business Unit of Bioscience, 6700 AA Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Müller R, Bleckmann A, Simon R. The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1. THE PLANT CELL 2008; 20:934-46. [PMID: 18381924 PMCID: PMC2390746 DOI: 10.1105/tpc.107.057547] [Citation(s) in RCA: 339] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/02/2008] [Accepted: 03/10/2008] [Indexed: 05/18/2023]
Abstract
Stem cells in shoot and floral meristems of Arabidopsis thaliana secrete the signaling peptide CLAVATA3 (CLV3) that restricts stem cell proliferation and promotes differentiation. The CLV3 signaling pathway is proposed to comprise the receptor kinase CLV1 and the receptor-like protein CLV2. We show here that the novel receptor kinase CORYNE (CRN) and CLV2 act together, and in parallel with CLV1, to perceive the CLV3 signal. Mutations in CRN cause stem cell proliferation, similar to clv1, clv2, and clv3 mutants. CRN has additional functions during plant development, including floral organ development, that are shared with CLV2. The CRN protein lacks a distinct extracellular domain, and we propose that CRN and CLV2 interact via their transmembrane domains to establish a functional receptor.
Collapse
Affiliation(s)
- Ralf Müller
- Institut für Genetik, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
198
|
Signaling of cell fate determination by the TPD1 small protein and EMS1 receptor kinase. Proc Natl Acad Sci U S A 2008; 105:2220-5. [PMID: 18250314 DOI: 10.1073/pnas.0708795105] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sexual reproduction requires the specification of cells with distinct fates in plants and animals. The EMS1 (also known as EXS) leucine-rich repeat receptor-like kinase (LRR-RLK) and TPD1 small protein play key roles in regulating somatic and reproductive cell fate determination in Arabidopsis anthers. Here, we show that ectopic expression of TPD1 causes abnormal differentiation of somatic and reproductive cells in anthers. In addition, ectopic TPD1 activity requires functional EMS1. Yeast two-hybrid, pull-down, and coimmunoprecipitation analyses further demonstrate that TPD1 interacts with EMS1 in vitro and in vivo. Moreover, TPD1 induces EMS1 phosphorylation in planta. Thus, our results suggest that TPD1 serves as a ligand for the EMS1 receptor kinase to signal cell fate determination during plant sexual reproduction.
Collapse
|
199
|
Mitchum MG, Wang X, Davis EL. Diverse and conserved roles of CLE peptides. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:75-81. [PMID: 18078779 DOI: 10.1016/j.pbi.2007.10.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 10/23/2007] [Accepted: 10/26/2007] [Indexed: 05/19/2023]
Abstract
The function of plant CLAVATA3 (CLV3)/ENDOSPERM SURROUNDING REGION (ESR) (CLE) peptides in shoot meristem differentiation has been expanded in recent years to implicate roles in root growth and vascular development among different CLE family members. Recent evidence suggests that nematode pathogens within plant roots secrete ligand mimics of plant CLE peptides to modify selected host cells into multinucleate feeding sites. This discovery demonstrated an unprecedented adaptation of an animal gene product to functionally mimic a plant peptide involved in cellular signaling for parasitic benefit. This review highlights the diverse and conserved role of CLE peptides in these different contexts.
Collapse
Affiliation(s)
- Melissa G Mitchum
- University of Missouri, Division of Plant Sciences and Bond Life Sciences Center, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
200
|
Shishkova S, Rost TL, Dubrovsky JG. Determinate root growth and meristem maintenance in angiosperms. ANNALS OF BOTANY 2008; 101:319-40. [PMID: 17954472 PMCID: PMC2701811 DOI: 10.1093/aob/mcm251] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 07/09/2007] [Accepted: 08/17/2007] [Indexed: 05/18/2023]
Abstract
BACKGROUND The difference between indeterminate and determinate growth in plants consists of the presence or absence of an active meristem in the fully developed organ. Determinate root growth implies that the root apical meristem (RAM) becomes exhausted. As a consequence, all cells in the root tip differentiate. This type of growth is widely found in roots of many angiosperm taxa and might have evolved as a developmental adaptation to water deficit (in desert Cactaceae), or low mineral content in the soil (proteoid roots in various taxa). SCOPE AND CONCLUSIONS This review considers the mechanisms of determinate root growth to better understand how the RAM is maintained, how it functions, and the cellular and genetic bases of these processes. The role of the quiescent centre in RAM maintenance and exhaustion will be analysed. During root ageing, the RAM becomes smaller and its organization changes; however, it remains unknown whether every root is truly determinate in the sense that its RAM becomes exhausted before senescence. We define two types of determinate growth: constitutive where determinacy is a natural part of root development; and non-constitutive where determinacy is induced usually by an environmental factor. Determinate root growth is proposed to include two phases: the indeterminate growth phase, when the RAM continuously produces new cells; and the termination growth phase, when cell production gradually decreases and eventually ceases. Finally, new concepts regarding stem cells and a stem cell niche are discussed to help comprehend how the meristem is maintained in a broad taxonomic context.
Collapse
Affiliation(s)
- S. Shishkova
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250, Cuernavaca, Morelos, Mexico
| | - T. L. Rost
- Section of Plant Biology, College of Biological Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - J. G. Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250, Cuernavaca, Morelos, Mexico
| |
Collapse
|