151
|
Min X, Jin X, Liu W, Wei X, Zhang Z, Ndayambaza B, Wang Y. Transcriptome-wide characterization and functional analysis of MATE transporters in response to aluminum toxicity in Medicago sativa L. PeerJ 2019; 7:e6302. [PMID: 30723620 PMCID: PMC6360082 DOI: 10.7717/peerj.6302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/14/2018] [Indexed: 11/20/2022] Open
Abstract
Multidrug and toxic compound extrusion (MATE) transporters contribute to multidrug resistance and play major determinants of aluminum (Al) tolerance in plants. Alfalfa (Medicago sativa L.) is the most extensively cultivated forage crop in the world, yet most alfalfa cultivars are not Al tolerant. The basic knowledge of the MATE transcripts family and the characterisation of specific MATE members involved in alfalfa Al stress remain unclear. In this study, 88 alfalfa MATE (MsMATE) transporters were identified at the whole transcriptome level. Phylogenetic analysis classified them into four subfamilies comprising 11 subgroups. Generally, five kinds of motifs were found in group G1, and most were located at the N-terminus, which might confer these genes with Al detoxification functions. Furthermore, 10 putative Al detoxification-related MsMATE genes were identified and the expression of five genes was significantly increased after Al treatment, indicating that these genes might play important roles in conferring Al tolerance to alfalfa. Considering the limited functional understanding of MATE transcripts in alfalfa, our findings will be valuable for the functional investigation and application of this family in alfalfa.
Collapse
Affiliation(s)
- Xueyang Min
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou, P. R. China.,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, P. R. China.,Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou, P. R. China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Xiaoyu Jin
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou, P. R. China.,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, P. R. China.,Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou, P. R. China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Wenxian Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou, P. R. China.,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, P. R. China.,Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou, P. R. China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Xingyi Wei
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou, P. R. China.,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, P. R. China.,Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou, P. R. China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Zhengshe Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou, P. R. China.,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, P. R. China.,Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou, P. R. China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Boniface Ndayambaza
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou, P. R. China.,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, P. R. China.,Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou, P. R. China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou, P. R. China.,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, P. R. China.,Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou, P. R. China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China
| |
Collapse
|
152
|
Behrens CE, Smith KE, Iancu CV, Choe JY, Dean JV. Transport of Anthocyanins and other Flavonoids by the Arabidopsis ATP-Binding Cassette Transporter AtABCC2. Sci Rep 2019; 9:437. [PMID: 30679715 PMCID: PMC6345954 DOI: 10.1038/s41598-018-37504-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/29/2018] [Indexed: 01/16/2023] Open
Abstract
Flavonoids have important developmental, physiological, and ecological roles in plants and are primarily stored in the large central vacuole. Here we show that both an ATP-binding cassette (ABC) transporter(s) and an H+-antiporter(s) are involved in the uptake of cyanidin 3-O-glucoside (C3G) by Arabidopsis vacuolar membrane-enriched vesicles. We also demonstrate that vesicles isolated from yeast expressing the ABC protein AtABCC2 are capable of MgATP-dependent uptake of C3G and other anthocyanins. The uptake of C3G by AtABCC2 depended on the co-transport of glutathione (GSH). C3G was not altered during transport and a GSH conjugate was not formed. Vesicles from yeast expressing AtABCC2 also transported flavone and flavonol glucosides. We performed ligand docking studies to a homology model of AtABCC2 and probed the putative binding sites of C3G and GSH through site-directed mutagenesis and functional studies. These studies identified residues important for substrate recognition and transport activity in AtABCC2, and suggest that C3G and GSH bind closely, mutually enhancing each other’s binding. In conclusion, we suggest that AtABCC2 along with possibly other ABCC proteins are involved in the vacuolar transport of anthocyanins and other flavonoids in the vegetative tissue of Arabidopsis.
Collapse
Affiliation(s)
- Claire E Behrens
- Department of Biological Sciences, DePaul University, 2325 N. Clifton Ave., Chicago, 60614, IL, USA
| | - Kaila E Smith
- Department of Biological Sciences, DePaul University, 2325 N. Clifton Ave., Chicago, 60614, IL, USA
| | - Cristina V Iancu
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, 60064, IL, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27834, USA
| | - Jun-Yong Choe
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, 60064, IL, USA. .,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27834, USA.
| | - John V Dean
- Department of Biological Sciences, DePaul University, 2325 N. Clifton Ave., Chicago, 60614, IL, USA.
| |
Collapse
|
153
|
Li YJ, Li P, Wang T, Zhang FJ, Huang XX, Hou BK. The maize secondary metabolism glycosyltransferase UFGT2 modifies flavonols and contributes to plant acclimation to abiotic stresses. ANNALS OF BOTANY 2018; 122:1203-1217. [PMID: 29982479 PMCID: PMC6324750 DOI: 10.1093/aob/mcy123] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/13/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Nowadays, the plant family 1 glycosyltransferases (UGTs) are attracting more and more attention since members of this family can improve the properties of secondary metabolites and have significantly enriched the chemical species in plants. Over the past decade, most studies on UGTs have been conducted in Arabidopsis thaliana and they were proved to play diverse roles during the plant life cycle. The Zea mays (maize) GT1 family comprises a large number of UDP-glycosyltransferase (UGT) members. However, their enzyme activities and the biological functions are rarely revealed. In this study, a maize flavonol glycosyltransferase, UFGT2, is identified and its biological role is characterized in detail. METHODS The UFGT2 enzyme activity, the flavonol and glycoside levels in planta were examined by high- performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS). The functions of UFGT2 in modifying flavonols, mediating flavonol accumulation and improving stress tolerance were analysed using two ufgt2 mutants and transgenic arabidopsis plants. KEY RESULTS By in vitro enzyme assay, the maize UFGT2 was found to show strong activity towards two flavonols: kaemferol and quercetin. Two ufgt2 knockout mutants, Mu689 and Mu943, exhibited obvious sensitivity to salt and drought stresses. The endogenous quercetin and kaempferol glycosides, as well as the total flavonol levels were found to be substantially decreased in the two ufgt2 mutants, with declined H2O2-scavenging capacity. In contrast, ectopic expression of UFGT2 in arabidopsis led to increased flavonol contents and enhanced oxidative tolerance. Moreover, expression of typical stress-related genes in arabidopsis and maize were affected in UFGT2 overexpression plants or knockout mutants in response to abiotic stresses. UFGT2 was also transferred into the arabidopsis ugt78d2 mutant and it was found to recover the deficient flavonol glycoside pattern in the ugt78d2 mutant, which confirmed its catalysing activity in planta. CONCLUSION It is demonstrated in our study that a maize glycosyltransferase, UFGT2, involved in modifying flavonols, contributes to improving plant tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Yan-jie Li
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Sciences, Shandong University, Jinan, Shandong, PR China
| | - Pan Li
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Sciences, Shandong University, Jinan, Shandong, PR China
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong, China
| | - Ting Wang
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Sciences, Shandong University, Jinan, Shandong, PR China
| | - Feng-ju Zhang
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Sciences, Shandong University, Jinan, Shandong, PR China
| | - Xu-xu Huang
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Sciences, Shandong University, Jinan, Shandong, PR China
| | - Bing-kai Hou
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Sciences, Shandong University, Jinan, Shandong, PR China
- For correspondence. E-mail
| |
Collapse
|
154
|
Li Y, He H, He LF. Genome-wide analysis of the MATE gene family in potato. Mol Biol Rep 2018; 46:403-414. [PMID: 30446960 DOI: 10.1007/s11033-018-4487-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
Abstract
The multidrug and toxic compound extrusion (MATE) protein family is a newly discovered family of secondary transporters that extrude metabolic waste and a variety of antibiotics out of the cell using an electrochemical gradient of H+ or Na+ across the membrane. The main function of MATE gene family is to participate in the process of plant detoxification and morphogenesis. The genome-wide analysis of the MATE genes in potato genome was conducted. At least 48 genes were initially identified and classified into six subfamilies. The chromosomal localization of MATE gene family showed that they could be distributed on 11 chromosomes except chromosome 9. The number of amino acids is 145-616, the molecular weight of proteins is 15.96-66.13 KD, the isoelectric point is 4.97-9.17, and they were located on the endoplasmic reticulum with having 4-13 transmembrane segments. They contain only two parts of the exons and UTR without introns. Some members of the first subfamily of potato MATE gene family are clustered with At2g04070 and they may be related to the transport of toxic compounds such as alkaloids and heavy metal. The function of the members of the second subfamily may be similar to that of At3g23560, which is related to tetramethylammonium transport. Some members of the third subfamily are clustered with At3g59030 and they may be involved in the transport of flavonoids. The fifth subfamily may be related to the transport of iron ions. The function of the sixth subfamily may be similar to that of At4g39030, which is related to salicylic acid transport. There are three kinds of conserved motifs in potato MATE genes, including the motif 1, motif 2, and motif 3. Each motif has 50 amino acids. The number of each motif is different in the gene sequence, of which 45 MATE genes contain at least a motif, but there is no motif in ST0015301, ST0045283, and ST0082336. These results provide a reference for further research on the function of potato MATE genes.
Collapse
Affiliation(s)
- Yinqiu Li
- College of Agronomy, Guangxi University, Nanning, 530004, People's Republic of China
| | - Huyi He
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China.
| | - Long-Fei He
- College of Agronomy, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
155
|
Cheng R, Cheng Y, Lü J, Chen J, Wang Y, Zhang S, Zhang H. The gene PbTMT4 from pear (Pyrus bretschneideri) mediates vacuolar sugar transport and strongly affects sugar accumulation in fruit. PHYSIOLOGIA PLANTARUM 2018; 164:307-319. [PMID: 29603749 DOI: 10.1111/ppl.12742] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/20/2018] [Accepted: 03/26/2018] [Indexed: 05/29/2023]
Abstract
Tonoplast monosaccharide transporters (TMTs) play important roles in vacuolar sugar accumulation in plants. In this study, six TMT genes (PbTMT1-6) were identified in the Pyrus bretschneideri genome database, and their expression profiles were correlated with soluble sugar contents during the pear (P. bretschneideri cv. Ya Li) fruit development process. Subsequently, PbTMT4 was identified as a strong contributor to fructose, glucose and sucrose accumulation in fructescence of pears. Heterologous expression of PbTMT4, in the hexose transporter-deficient yeast strain EBY.VW4000, facilitated growth in media containing low levels of glucose, fructose, sucrose or sorbitol. In addition, PbTMT4-transformed tomato plants flowered and bore fruit significantly earlier than wild-type (WT) plants, and glucose and fructose levels in mature tomatoes were increased by about 32 and 21% compared with those in WT plants. However, no obvious alterations in sucrose content, plant height and weight per fruit were observed. Finally, subcellular localization experiments in transformed Arabidopsis plants showed that PbTMT4 is localized to tonoplast vesicles of protoplasts. These preliminary results suggest that PbTMT4 participates in vacuolar accumulation of sugars, and thus affects plant growth and development.
Collapse
Affiliation(s)
- Rui Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinsheng Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahong Lü
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianqiu Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingzhen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huping Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
156
|
Yuan X, Sun W, Zou X, Liu B, Huang W, Chen Z, Li Y, Qiu MY, Liu ZJ, Mao Y, Zou SQ. Sequencing of Euscaphis konishii Endocarp Transcriptome Points to Molecular Mechanisms of Endocarp Coloration. Int J Mol Sci 2018; 19:ijms19103209. [PMID: 30336592 PMCID: PMC6214000 DOI: 10.3390/ijms19103209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 02/07/2023] Open
Abstract
Flower and fruit colors are of vital importance to the ecology and economic market value of plants. The mechanisms of flower and fruit coloration have been well studied, especially among ornamental flower plants and cultivated fruits. As people pay more attention to exocarp coloration, the endocarp coloration in some species has often been ignored. Here, we report on the molecular mechanism of endocarp coloration in three development stages of Euscaphis konishii. The results show that endocarp reddening is closely related to anthocyanin accumulation, and a total of 86,120 unigenes were assembled, with a mean length of 893 bp (N50 length of 1642 bp). We identified a large number of differentially expressed genes associated with endocarp coloration, including anthocyanin biosynthesis, carotenoid biosynthesis, and chlorophyll breakdown. The genes participating in each step of the anthocyanin biosynthesis were found in the transcriptome dataset, but a few genes were found in the carotenoid biosynthesis and chlorophyll breakdown. In addition, the candidate R2R3-MYB transcription factors and candidate glutathione S-transferase transport genes, which likely regulate the anthocyanin biosynthesis, were identified. This study offers a platform for E. konishii functional genomic research and provides a reference for revealing the regulatory mechanisms of endocarp reddening.
Collapse
Affiliation(s)
- Xueyan Yuan
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weihong Sun
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaoxing Zou
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Bobin Liu
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wei Huang
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zeming Chen
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yanlei Li
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Meng-Yuan Qiu
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yanling Mao
- Co-Innovation Center for Soil and Water Conservation in Red Soil Region of the Cross-Straits, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shuang-Quan Zou
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Co-Innovation Center for Soil and Water Conservation in Red Soil Region of the Cross-Straits, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
157
|
Kovinich N, Wang Y, Adegboye J, Chanoca AA, Otegui MS, Durkin P, Grotewold E. Arabidopsis MATE45 antagonizes local abscisic acid signaling to mediate development and abiotic stress responses. PLANT DIRECT 2018; 2:e00087. [PMID: 31245687 PMCID: PMC6508792 DOI: 10.1002/pld3.87] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 09/22/2018] [Accepted: 09/26/2018] [Indexed: 05/11/2023]
Abstract
Anthocyanins provide ideal visual markers for the identification of mutations that disrupt molecular responses to abiotic stress. We screened Arabidopsis mutants of ABC (ATP-Binding Cassette) and MATE (Multidrug And Toxic compound Extrusion) transporter genes under nutritional stress and identified four genes (ABCG25,ABCG9,ABCG5, and MATE45) required for normal anthocyanin pigmentation. ABCG25 was previously demonstrated to encode a vascular-localized cellular exporter of abscisic acid (ABA). Our results show that MATE45 encodes an aerial meristem- and a vascular-localized transporter associated with the trans-Golgi, and that it plays an important role in controlling the levels and distribution of ABA in growing aerial meristems and non-meristematic tissues. MATE45 promoter-GUS reporter fusions revealed the activity localized to the leaf and influorescence meristems and the vasculature. Loss-of-function mate45 mutants exhibited accelerated rates of aerial organ initiation suggesting at least partial functional conservation with the maize ortholog bige1. The aba2-1 mutant, which is deficient in ABA biosynthesis, exhibited a number of phenotypes that were rescued in the mate45-1 aba2-1 double mutant. mate45 exhibited enhanced the seed dormancy, and germination was hypersensitive to ABA. Enhanced frequency of leaf primordia growth in mate45 seedlings grown in nutrient imbalance stress was ABA-dependent. The ABA signaling reporter construct pRD29B::GUS revealed elevated levels of ABA signaling in the true leaf primordia of mate45 seedlings grown under nutritional stress, and gradually reduced signaling in surrounding cotyledon and hypocotyl tissues concomitant with reduced expressions of ABCG25. Our results suggest a role of MATE45 in reducing meristematic ABA and in maintaining ABA distribution in adjacent non-meristematic tissues.
Collapse
Affiliation(s)
- Nik Kovinich
- Center for Applied Plant Sciences and Department of Molecular GeneticsThe Ohio State UniversityColumbusOhio
- Davis College of Agriculture, Natural Resources and DesignWest Virginia UniversityMorgantownWest Virginia
- Present address:
Davis College of Agriculture, Natural Resources and DesignWest Virginia UniversityMorgantownWest Virginia
| | - Yiqun Wang
- Center for Applied Plant Sciences and Department of Molecular GeneticsThe Ohio State UniversityColumbusOhio
- Present address:
Department of Molecular and Cellular BiologyHarvard UniversityCambridgeMassachusetts
| | - Janet Adegboye
- Center for Applied Plant Sciences and Department of Molecular GeneticsThe Ohio State UniversityColumbusOhio
- Present address:
Cleveland Clinic Lerner College of MedicineClevelandOhio
| | - Alexandra A. Chanoca
- Davis College of Agriculture, Natural Resources and DesignWest Virginia UniversityMorgantownWest Virginia
- Department of Botany and Department of GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsin
- Present address:
VIB‐UGENT Center for Plant Systems BiologyZwijnaardeBelgium
| | - Marisa S. Otegui
- Department of Botany and Department of GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsin
- Laboratory of Molecular and Cellular BiologyUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Paige Durkin
- Davis College of Agriculture, Natural Resources and DesignWest Virginia UniversityMorgantownWest Virginia
- Present address:
West Virginia University School of DentistryMorgantownWest Virginia
| | - Erich Grotewold
- Center for Applied Plant Sciences and Department of Molecular GeneticsThe Ohio State UniversityColumbusOhio
- Present address:
Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichigan
| |
Collapse
|
158
|
Ma Q, Yi R, Li L, Liang Z, Zeng T, Zhang Y, Huang H, Zhang X, Yin X, Cai Z, Mu Y, Cheng Y, Zeng Q, Li X, Nian H. GsMATE encoding a multidrug and toxic compound extrusion transporter enhances aluminum tolerance in Arabidopsis thaliana. BMC PLANT BIOLOGY 2018; 18:212. [PMID: 30268093 PMCID: PMC6162897 DOI: 10.1186/s12870-018-1397-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/27/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Multidrug and toxic compound extrusion (MATE) transporters, which exist widely in plants, function as crucial regulators in plant resistance to aluminum (Al) toxicity by inducing citrate efflux. However, the functions of most MATE family members in soybean (Glycine soja) remain to be elucidated. RESULTS Expression pattern analysis showed that GsMATE was constitutively expressed in different soybean organs, with the highest level in root compared with those in stem, leaf and cotyledon. In addition, Al stress induced expression of GsMATE in soybean. Temporal analysis indicated that GsMATE expression was greatly enhanced by increasing concentrations of aluminum [Al3+] after short exposure, reaching the high levels detected in the BW69 (Al-resistant) and the JW81 (Al-sensitive) lines of Glycine soja of wild soybean at 6 h and 8 h, respectively. Furthermore, transient GsMATE expression in Arabidopsis protoplasts showed that GsMATE protein localized to the plasma membrane. Overexpression of GsMATE on an Arabidopsis columbia-0 (Col-0) background resulted in increased Al tolerance in transgenic plants. Analysis of hematoxylin staining showed that the roots of GsMATE transgenic lines were stained less intensely than those of the wild-type exposured to the same AlCl3 concentrations. Therefore, GsMATE enhanced the resistance of transgenic plants to Al toxicity by reducing Al accumulation in Arabidopsis roots. CONCLUSIONS In summary, our results indicate that GsMATE is responsive to aluminum stress and may participate in the regulation of sensitivity to Al toxicity in Arabidopsis. In addition, the GsMATE protein is an Al-induced citrate transporter of the MATE family and exerts an essential role in Al tolerance in Glycine soja.
Collapse
Affiliation(s)
- Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Rong Yi
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Lu Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Zhongyi Liang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Tingting Zeng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Yu Zhang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - He Huang
- The Experimental Teaching Center of Public Basic Courses, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Xiao Zhang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Xiangli Yin
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Yinghui Mu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Qiaoying Zeng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Guangdong Provincial Bioengineering Institute, Guangzhou, Guangdong 510316 People’s Republic of China
| | - Xiuping Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Guangdong AIB Polytechnic, Guangzhou, Guangdong 510316 People’s Republic of China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| |
Collapse
|
159
|
Soto-Cerda BJ, Cloutier S, Quian R, Gajardo HA, Olivos M, You FM. Genome-Wide Association Analysis of Mucilage and Hull Content in Flax ( Linum usitatissimum L.) Seeds. Int J Mol Sci 2018; 19:ijms19102870. [PMID: 30248911 PMCID: PMC6213135 DOI: 10.3390/ijms19102870] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 01/20/2023] Open
Abstract
New flaxseed cultivars differing in seed mucilage content (MC) with low hull content (HC) represent an attractive option to simultaneously target the food and feed markets. Here, a genome-wide association study (GWAS) was conducted for MC and HC in 200 diverse flaxseed accessions genotyped with 1.7 million single nucleotide polymorphism (SNP) markers. The data obtained for MC and HC indicated a broad phenotypic variation and high (~70%) and a moderate (~49%) narrow sense heritability, respectively. MC and HC did not differ statistically between fiber and oil morphotypes, but yellow-seeded accessions had 2.7% less HC than brown-seeded ones. The genome-wide linkage disequilibrium (LD) decayed to r2 = 0.1 at a physical distance of ~100 kb. Seven and four quantitative trait loci (QTL) were identified for MC and HC, respectively. Promising candidate genes identified include Linum usitatissimum orthologs of the Arabidopsis thaliana genes TRANSPARENT TESTA 8, SUBTILISIN-LIKE SERINE PROTEASE, GALACTUROSYL TRANSFERASE-LIKE 5, MUCILAGE-MODIFIED 4, AGAMOUS-LIKE MADS-BOX PROTEIN AGL62, GLYCOSYL HYDROLASE FAMILY 17, and UDP-GLUCOSE FLAVONOL 3-O-GLUCOSYLTRANSFERASE. These genes have been shown to play a role in mucilage synthesis and release, seed coat development and anthocyanin biosynthesis in A. thaliana. The favorable alleles will be useful in flaxseed breeding towards the goal of achieving the ideal MC and HC composition for food and feed by genomic-based breeding.
Collapse
Affiliation(s)
- Braulio J Soto-Cerda
- Agriaquaculture Nutritional Genomic Center (CGNA), Las Heras 350, Temuco 4781158, Chile.
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Rocío Quian
- Agriaquaculture Nutritional Genomic Center (CGNA), Las Heras 350, Temuco 4781158, Chile.
| | - Humberto A Gajardo
- Agriaquaculture Nutritional Genomic Center (CGNA), Las Heras 350, Temuco 4781158, Chile.
| | - Marcos Olivos
- Agriaquaculture Nutritional Genomic Center (CGNA), Las Heras 350, Temuco 4781158, Chile.
| | - Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| |
Collapse
|
160
|
Das N, Bhattacharya S, Bhattacharyya S, Maiti MK. Expression of rice MATE family transporter OsMATE2 modulates arsenic accumulation in tobacco and rice. PLANT MOLECULAR BIOLOGY 2018; 98:101-120. [PMID: 30121733 DOI: 10.1007/s11103-018-0766-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
KEY MESSAGE The OsMATE2 upon constitutive expression in tobacco decreases root-to-shoot As transfer coefficient and its endosperm-specific silencing in rice reduces grain As content, broadening the role of MATE proteins in planta. Rice (Oryza sativa) is capable of accumulating significant amount of arsenic (As) in grains, causing serious health hazard for rice consuming population. The multidrug and toxic compound extrusion (MATE) protein family comprises a large group of secondary transporters present universally in living organisms, and transports metabolites and/or xenobiotic compounds. OsMATE2, one of the MATE family members of rice was found to be transcriptionally up-regulated (sixfolds) in the developing seeds during As stress, and showed positive correlation with the As content in mature grains. Therefore, to understand the role of OsMATE2 in As accumulation, constitutive expression in tobacco was carried out. Transgenic tobacco plants exhibited decreased root-to-shoot As transfer coefficient (33.3-39.6%) along with augmented As sensitivity by increasing oxidative stress compared to untransformed control plants, indicating the involvement of OsMATE2 in As accumulation. Consequently, RNAi strategy was utilized for endosperm-specific silencing of endogenous OsMATE2 to mitigate As accumulation in rice grains. Transgenic rice lines demonstrated significant reduction of both OsMATE2 transcript (~ 38-87%) and grain As content (36.9-47.8%) compared to the control plants without undesirable effects on agronomical traits. Together, the present findings indicate the connection of OsMATE2 in As accumulation, and could expand the functional role of MATE proteins in planta.
Collapse
Affiliation(s)
- Natasha Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Surajit Bhattacharya
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
- Amity Institute of Biotechnology, Amity University, Rajarhat, Newtown, Kolkata, 700135, India
| | - Somnath Bhattacharyya
- Department of Genetics, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
161
|
Yamagishi M, Uchiyama H, Handa T. Floral pigmentation pattern in Oriental hybrid lily (Lilium spp.) cultivar 'Dizzy' is caused by transcriptional regulation of anthocyanin biosynthesis genes. JOURNAL OF PLANT PHYSIOLOGY 2018; 228:85-91. [PMID: 29879604 DOI: 10.1016/j.jplph.2018.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/19/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Flower color patterns are the result of spatially and temporally restricted pigment deposition, and clarifying the mechanisms responsible for restricted pigment deposition is a topic of broad interest for both theoretical and practical reasons. The Oriental hybrid lily cultivar 'Dizzy' develops red stripes along the tepal midribs; in order to clarify the genetic basis of these stripes, we isolated most of the genes related to anthocyanin accumulation from 'Dizzy' tepals and compared their expression levels between the red stripe region and the white marginal region of the tepals. RNA-seq revealed a complete set of genes necessary for anthocyanin biosynthesis and transport, including anthocyanidin 3-O-glucosyltransferase and glutathione S-transferase. Most of these genes were expressed at higher rates in the red stripe region than in the white region, suggesting that transcriptional regulation of these genes is primarily responsible for the spatially restricted anthocyanin deposition in 'Dizzy' tepals. Subgroup 6 R2R3-MYB is a major factor regulating anthocyanin biosynthesis: RNA-seq clarified three subgroup 6 R2R3-MYB genes expressed in 'Dizzy' tepals, of which MYB12 was predominantly expressed. Expression of MYB12 was six-fold higher in the red-pigmented region than in the white region. Thus, MYB12 is more likely to be involved in the regulation of the restricted anthocyanin deposition in 'Dizzy', even though MYB12 is expressed in the entire tepal region of many Oriental hybrid lily cultivars. Diversity of the expression profiles of MYB12 among lily cultivars and species is also discussed.
Collapse
Affiliation(s)
- Masumi Yamagishi
- Research Faculty of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo 060-8589, Japan.
| | - Hirohide Uchiyama
- Graduate School of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo 060-8589, Japan
| | - Takashi Handa
- School of Agriculture, Meiji University, Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| |
Collapse
|
162
|
Genome-Wide Analysis of Multidrug and Toxic Compound Extrusion ( MATE) Family in Gossypium raimondii and Gossypium arboreum and Its Expression Analysis Under Salt, Cadmium, and Drought Stress. G3-GENES GENOMES GENETICS 2018; 8:2483-2500. [PMID: 29794162 PMCID: PMC6027885 DOI: 10.1534/g3.118.200232] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The extrusion of toxins and substances at a cellular level is a vital life process in plants under abiotic stress. The multidrug and toxic compound extrusion (MATE) gene family plays a large role in the exportation of toxins and other substrates. We carried out a genome-wide analysis of MATE gene families in Gossypium raimondii and Gossypium arboreum and assessed their expression levels under salt, cadmium and drought stresses. We identified 70 and 68 MATE genes in G. raimondii and G. arboreum, respectively. The majority of the genes were predicted to be localized within the plasma membrane, with some distributed in other cell parts. Based on phylogenetic analysis, the genes were subdivided into three subfamilies, designated as M1, M2 and M3. Closely related members shared similar gene structures, and thus were highly conserved in nature and have mainly evolved through purifying selection. The genes were distributed in all chromosomes. Twenty-nine gene duplication events were detected, with segmental being the dominant type. GO annotation revealed a link to salt, drought and cadmium stresses. The genes exhibited differential expression, with GrMATE18, GrMATE34, GaMATE41 and GaMATE51 significantly upregulated under drought, salt and cadmium stress, and these could possibly be the candidate genes. Our results provide the first data on the genome-wide and functional characterization of MATE genes in diploid cotton, and are important for breeders of more stress-tolerant cotton genotypes.
Collapse
|
163
|
de Brito Francisco R, Martinoia E. The Vacuolar Transportome of Plant Specialized Metabolites. PLANT & CELL PHYSIOLOGY 2018; 59:1326-1336. [PMID: 29452376 DOI: 10.1093/pcp/pcy039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/05/2018] [Indexed: 05/21/2023]
Abstract
The plant vacuole is a cellular compartment that is essential to plant development and growth. Often plant vacuoles accumulate specialized metabolites, also called secondary metabolites, which constitute functionally and chemically diverse compounds that exert in planta many essential functions and improve the plant's fitness. These metabolites provide, for example, chemical defense against herbivorous and pathogens or chemical attractants (color and fragrance) to attract pollinators. The chemical composition of the vacuole is dynamic, and is altered during development and as a response to environmental changes. To some extent these alterations rely on vacuolar transporters, which import and export compounds into and out of the vacuole, respectively. During the past decade, significant progress was made in the identification and functional characterization of the transporters implicated in many aspects of plant specialized metabolism. Still, deciphering the molecular players underlying such processes remains a challenge for the future. In this review, we present a comprehensive summary of the most recent achievements in this field.
Collapse
Affiliation(s)
| | - Enrico Martinoia
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
164
|
Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, Franklin G. Secondary Metabolites in the Green Synthesis of Metallic Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E940. [PMID: 29865278 PMCID: PMC6024997 DOI: 10.3390/ma11060940] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 12/18/2022]
Abstract
The ability of organisms and organic compounds to reduce metal ions and stabilize them into nanoparticles (NPs) forms the basis of green synthesis. To date, synthesis of NPs from various metal ions using a diverse array of plant extracts has been reported. However, a clear understanding of the mechanism of green synthesis of NPs is lacking. Although most studies have neglected to analyze the green-synthesized NPs (GNPs) for the presence of compounds derived from the extract, several studies have demonstrated the conjugation of sugars, secondary metabolites, and proteins in these biogenic NPs. Despite several reports on the bioactivities (antimicrobial, antioxidant, cytotoxic, catalytic, etc.) of GNPs, only a handful of studies have compared these activities with their chemically synthesized counterparts. These comparisons have demonstrated that GNPs possess better bioactivities than NPs synthesized by other methods, which might be attributed to the presence of plant-derived compounds in these NPs. The ability of NPs to bind with organic compounds to form a stable complex has huge potential in the harvesting of precious molecules and for drug discovery, if harnessed meticulously. A thorough understanding of the mechanisms of green synthesis and high-throughput screening of stabilizing/capping agents on the physico-chemical properties of GNPs is warranted to realize the full potential of green nanotechnology.
Collapse
Affiliation(s)
- Gregory Marslin
- Ratnam Institute of Pharmacy and Research, Nellore 524346, India.
| | - Karthik Siram
- Department of Pharmaceutics, PSG College of Pharmacy, Coimbatore 641004, India.
| | - Qaisar Maqbool
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| | | | - Dariusz Kruszka
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| | - Piotr Kachlicki
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| | - Gregory Franklin
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| |
Collapse
|
165
|
Abstract
Plant vacuoles are multifunctional organelles. On the one hand, most vegetative tissues develop lytic vacuoles that have a role in degradation. On the other hand, seed cells have two types of storage vacuoles: protein storage vacuoles (PSVs) in endosperm and embryonic cells and metabolite storage vacuoles in seed coats. Vacuolar proteins and metabolites are synthesized on the endoplasmic reticulum and then transported to the vacuoles via Golgi-dependent and Golgi-independent pathways. Proprotein precursors delivered to the vacuoles are converted into their respective mature forms by vacuolar processing enzyme, which also regulates various kinds of programmed cell death in plants. We summarize two types of vacuolar membrane dynamics that occur during defense responses: vacuolar membrane collapse to attack viral pathogens and fusion of vacuolar and plasma membranes to attack bacterial pathogens. We also describe the chemical defense against herbivores brought about by the presence of PSVs in the idioblast myrosin cell.
Collapse
Affiliation(s)
- Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
| | - Junpei Takagi
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| | - Takuji Ichino
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Makoto Shirakawa
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Ikuko Hara-Nishimura
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| |
Collapse
|
166
|
Luo H, Dai C, Li Y, Feng J, Liu Z, Kang C. Reduced Anthocyanins in Petioles codes for a GST anthocyanin transporter that is essential for the foliage and fruit coloration in strawberry. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2595-2608. [PMID: 29538703 PMCID: PMC5920330 DOI: 10.1093/jxb/ery096] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/04/2018] [Indexed: 05/18/2023]
Abstract
The red color of the foliage and fruit in strawberry comes from anthocyanins stored in the vacuole; however, how this anthocyanin accumulation is regulated remains unclear. A reduced anthocyanin in petioles (rap) mutant was identified in an N-ethyl-N-nitrosourea (ENU) mutagenized population of YW5AF7, a white-fruited variety of the wild strawberry Fragaria vesca. The causative mutation was identified to be a premature stop codon in a glutathione S-transferase (GST) gene. In addition to the foliage coloration, RAP also mediates fruit pigmentation and acts downstream of the fruit-specific transcription factor FvMYB10. Among all eight GST genes in the same subfamily, RAP is most abundantly expressed in the ripening fruit. Expression analysis and transient expression assays demonstrated that RAP is the principal transporter of anthocyanins among the paralogs. Moreover, domain-swap experiments showed that both the N- and C-terminals of RAP are essential for the binding capability of anthocyanins. In addition, transient knock-down of RAP resulted in reduced fruit coloration in cultivated strawberry. Collectively, our results demonstrate that RAP encodes the principal GST transporter of anthocyanins in the strawberry foliage and fruit, and it could be modified to alter the fruit color in strawberry.
Collapse
Affiliation(s)
- Huifeng Luo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Cheng Dai
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongping Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jia Feng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Zhongchi Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Chunying Kang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Correspondence:
| |
Collapse
|
167
|
Duwadi K, Austin RS, Mainali HR, Bett K, Marsolais F, Dhaubhadel S. Slow darkening of pinto bean seed coat is associated with significant metabolite and transcript differences related to proanthocyanidin biosynthesis. BMC Genomics 2018; 19:260. [PMID: 29661146 PMCID: PMC5903001 DOI: 10.1186/s12864-018-4550-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/14/2018] [Indexed: 11/29/2022] Open
Abstract
Background Postharvest seed coat darkening in pinto bean is an undesirable trait resulting in a loss in the economic value of the crop. The extent of darkening varies between the bean cultivars and their storage conditions. Results Metabolite analysis revealed that the majority of flavonoids including proanthocyanidin monomer catechin accumulated at higher level in a regular darkening (RD) pinto line CDC Pintium than in a slow darkening (SD) line 1533–15. A transcriptome analysis was conducted to compare gene expression between CDC Pintium and 1533–15 and identify the gene (s) that may play a role in slow darkening processes in 1533–15 pinto. RNAseq against total RNA from RD and SD cultivars found several phenylpropanoid genes, metabolite transporter genes and genes involved in gene regulation or modification to be differentially expressed between CDC Pintium and 1533–15. Conclusion RNAseq analysis and metabolite data of seed coat tissue from CDC Pintium and 1533–15 revealed that the whole proanthocyanidin biosynthetic pathway was downregulated in 1533–15. Additionally, genes that encode for putative transporter proteins were also downregulated in 1533–15 suggesting both synthesis and accumulation of proanthocyanidin is reduced in SD pintos. Electronic supplementary material The online version of this article (10.1186/s12864-018-4550-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kishor Duwadi
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Ryan S Austin
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada.,Department of Biology, University of Western Ontario, London, ON, Canada
| | - Hemanta R Mainali
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Kirstin Bett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Frédéric Marsolais
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada.,Department of Biology, University of Western Ontario, London, ON, Canada
| | - Sangeeta Dhaubhadel
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada. .,Department of Biology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
168
|
Martinoia E. Vacuolar Transporters - Companions on a Longtime Journey. PLANT PHYSIOLOGY 2018; 176:1384-1407. [PMID: 29295940 PMCID: PMC5813537 DOI: 10.1104/pp.17.01481] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/15/2017] [Indexed: 05/15/2023]
Abstract
Biochemical and electrophysiological studies on plant vacuolar transporters became feasible in the late 1970s and early 1980s, when methods to isolate large quantities of intact vacuoles and purified vacuolar membrane vesicles were established. However, with the exception of the H+-ATPase and H+-PPase, which could be followed due to their hydrolytic activities, attempts to purify tonoplast transporters were for a long time not successful. Heterologous complementation, T-DNA insertion mutants, and later proteomic studies allowed the next steps, starting from the 1990s. Nowadays, our knowledge about vacuolar transporters has increased greatly. Nevertheless, there are several transporters of central importance that have still to be identified at the molecular level or have even not been characterized biochemically. Furthermore, our knowledge about regulation of the vacuolar transporters is very limited, and much work is needed to get a holistic view about the interplay of the vacuolar transportome. The huge amount of information generated during the last 35 years cannot be summarized in such a review. Therefore, I decided to concentrate on some aspects where we were involved during my research on vacuolar transporters, for some our laboratories contributed more, while others contributed less.
Collapse
Affiliation(s)
- Enrico Martinoia
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| |
Collapse
|
169
|
Sasse J, Martinoia E, Northen T. Feed Your Friends: Do Plant Exudates Shape the Root Microbiome? TRENDS IN PLANT SCIENCE 2018; 23:25-41. [PMID: 29050989 DOI: 10.1016/j.tplants.2017.09.003] [Citation(s) in RCA: 845] [Impact Index Per Article: 120.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/25/2017] [Accepted: 09/07/2017] [Indexed: 05/18/2023]
Abstract
Plant health in natural environments depends on interactions with complex and dynamic communities comprising macro- and microorganisms. While many studies have provided insights into the composition of rhizosphere microbiomes (rhizobiomes), little is known about whether plants shape their rhizobiomes. Here, we discuss physiological factors of plants that may govern plant-microbe interactions, focusing on root physiology and the role of root exudates. Given that only a few plant transport proteins are known to be involved in root metabolite export, we suggest novel families putatively involved in this process. Finally, building off of the features discussed in this review, and in analogy to well-known symbioses, we elaborate on a possible sequence of events governing rhizobiome assembly.
Collapse
Affiliation(s)
- Joelle Sasse
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Enrico Martinoia
- Department of Plant and Microbial Biology, University of Zurich, Zurich 8008, Switzerland
| | - Trent Northen
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Joint Genome Institute, Walnut Creek, CA 94958, USA.
| |
Collapse
|
170
|
Liu C, Ha CM, Dixon RA. Functional Genomics in the Study of Metabolic Pathways in Medicago truncatula: An Overview. Methods Mol Biol 2018; 1822:315-337. [PMID: 30043312 DOI: 10.1007/978-1-4939-8633-0_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In addition to its value as a model system for studies on symbiotic nitrogen fixation, Medicago truncatula has recently become an organism of choice for dissection of complex pathways of secondary metabolism. This work has been driven by two main reasons, both with practical implications. First Medicago species possess a wide range of flavonoid and terpenoid natural products, many of which, for example, the isoflavonoids and triterpene saponins, have important biological activities impacting both plant and animal (including human) health. Second, M. truncatula serves as an excellent model for alfalfa, the world's major forage legume, and forage quality is determined in large part by the concentrations of products of secondary metabolism, particularly lignin and condensed tannins. We here review recent progress in understanding the pathways leading to flavonoids, lignin, and triterpene saponins through utilization of genetic resources in M. truncatula.
Collapse
Affiliation(s)
- Chenggang Liu
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Chan Man Ha
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA.
| |
Collapse
|
171
|
Singer SD, Weselake RJ, Acharya S. Molecular Enhancement of Alfalfa: Improving Quality Traits for Superior Livestock Performance and Reduced Environmental Impact. CROP SCIENCE 2018; 58:55-71. [PMID: 0 DOI: 10.2135/cropsci2017.07.0434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Stacy D. Singer
- Agriculture and Agri-Food Canada; Lethbridge Research and Development Centre; Lethbridge AB Canada T1J 4B1
| | - Randall J. Weselake
- Dep. of Agricultural, Food and Nutritional Science; Univ. of Alberta; Edmonton AB Canada T6G 2P5
| | - Surya Acharya
- Agriculture and Agri-Food Canada; Lethbridge Research and Development Centre; Lethbridge AB Canada T1J 4B1
| |
Collapse
|
172
|
Biała W, Jasiński M. The Phenylpropanoid Case - It Is Transport That Matters. FRONTIERS IN PLANT SCIENCE 2018; 9:1610. [PMID: 30443262 PMCID: PMC6221964 DOI: 10.3389/fpls.2018.01610] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/17/2018] [Indexed: 05/19/2023]
Abstract
Phenylpropanoids fulfill numerous physiological functions, essential for plant growth and development, as well as plant-environment interactions. Over the last few decades, many studies have shown that exquisite regulatory mechanisms at multiple levels control the phenylpropanoid metabolic pathway. Deciphering this pathway not only provides a greater, basic understanding of plant specialized metabolism, but also enhances our ability to rationally design plant metabolic pathways for future applications. Despite the identification of the participating enzymes of this complex, biosynthetic machinery, we still lack a complete picture of other genes, enzymes, and metabolites essential for regulation and compartmentation/distribution of phenylpropanoids. Compartmentation, as well as distribution, are critical for the fate/functioning of those molecules, and their effective biosynthesis. At the cellular level, we have narrowed down our understanding of these processes to organelles. Furthermore, various, overlapping, but not exclusive scenarios of phenylpropanoid distribution within the cell have also been described. The cross-membrane dynamics, but also intercellular communication of different branches from phenylpropanoid biosynthesis have become an exciting research frontier in plant science. The intra- and intercellular channeling of intermediates by various transport mechanisms and notably membrane transporters could be a meaningful tool that ensures, inter alia, efficient metabolite production.
Collapse
Affiliation(s)
- Wanda Biała
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
- *Correspondence: Michał Jasiński,
| |
Collapse
|
173
|
Miyauchi H, Moriyama S, Kusakizako T, Kumazaki K, Nakane T, Yamashita K, Hirata K, Dohmae N, Nishizawa T, Ito K, Miyaji T, Moriyama Y, Ishitani R, Nureki O. Structural basis for xenobiotic extrusion by eukaryotic MATE transporter. Nat Commun 2017; 8:1633. [PMID: 29158478 PMCID: PMC5696359 DOI: 10.1038/s41467-017-01541-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 09/27/2017] [Indexed: 01/10/2023] Open
Abstract
Mulitidrug and toxic compound extrusion (MATE) family transporters export xenobiotics to maintain cellular homeostasis. The human MATE transporters mediate the excretion of xenobiotics and cationic clinical drugs, whereas some plant MATE transporters are responsible for aluminum tolerance and secondary metabolite transport. Here we report the crystal structure of the eukaryotic MATE transporter from Arabidopsis thaliana, at 2.6 Å resolution. The structure reveals that its carboxy-terminal lobe (C-lobe) contains an extensive hydrogen-bonding network with well-conserved acidic residues, and their importance is demonstrated by the structure-based mutational analysis. The structural and functional analyses suggest that the transport mechanism involves the structural change of transmembrane helix 7, induced by the formation of a hydrogen-bonding network upon the protonation of the conserved acidic residue in the C-lobe. Our findings provide insights into the transport mechanism of eukaryotic MATE transporters, which is important for the improvement of the pharmacokinetics of the clinical drugs. Mulitidrug and toxic compound extrusion (MATE) family transporters export xenobiotics and some plant MATE transporters are involved in secondary metabolite transport. Here, the authors present the structure of the Arabidopsis thaliana MATE transporter AtDTX14 and propose a model for eukaryotic MATE transport mechanism.
Collapse
Affiliation(s)
- Hirotake Miyauchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Satomi Moriyama
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8530, Japan
| | - Tsukasa Kusakizako
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kaoru Kumazaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | | | - Kunio Hirata
- RIKEN SPring-8 Center, Sayo-gun, Hyogo, 679-5148, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Koichi Ito
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Takaaki Miyaji
- Advanced Science Research Center, Okayama University, Okayama, 700-8530, Japan
| | - Yoshinori Moriyama
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8530, Japan
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
174
|
Vaca E, Behrens C, Theccanat T, Choe JY, Dean JV. Mechanistic differences in the uptake of salicylic acid glucose conjugates by vacuolar membrane-enriched vesicles isolated from Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2017; 161:322-338. [PMID: 28665551 DOI: 10.1111/ppl.12602] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/15/2017] [Accepted: 06/24/2017] [Indexed: 05/24/2023]
Abstract
Salicylic acid (SA) is a plant hormone involved in a number of physiological responses including both local and systemic resistance of plants to pathogens. In Arabidopsis, SA is glucosylated to form either SA 2-O-β-d-glucose (SAG) or SA glucose ester (SGE). In this study, we show that SAG accumulates in the vacuole of Arabidopsis, while the majority of SGE was located outside the vacuole. The uptake of SAG by vacuolar membrane-enriched vesicles isolated from Arabidopsis was stimulated by the addition of MgATP and was inhibited by both vanadate (ABC transporter inhibitor) and bafilomycin A1 (vacuolar H+ -ATPase inhibitor), suggesting that SAG uptake involves both an ABC transporter and H+ -antiporter. Despite its absence in the vacuole, we observed the MgATP-dependent uptake of SGE by Arabidopsis vacuolar membrane-enriched vesicles. SGE uptake was not inhibited by vanadate but was inhibited by bafilomycin A1 and gramicidin D providing evidence that uptake was dependent on an H+ -antiporter. The uptake of both SAG and SGE was also inhibited by quercetin and verapamil (two known inhibitors of multidrug efflux pumps) and salicin and arbutin. MgATP-dependent SAG and SGE uptake exhibited Michaelis-Menten-type saturation kinetics. The vacuolar enriched-membrane vesicles had a 46-fold greater affinity and a 10-fold greater transport activity with SGE than with SAG. We propose that in Arabidopsis, SAG is transported into the vacuole to serve as a long-term storage form of SA while SGE, although also transported into the vacuole, is easily hydrolyzed to release the active hormone which can then be remobilized to other cellular locations.
Collapse
Affiliation(s)
- Elizabeth Vaca
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | - Claire Behrens
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | - Tiju Theccanat
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | - Jun-Yong Choe
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - John V Dean
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| |
Collapse
|
175
|
Santos ALD, Chaves-Silva S, Yang L, Maia LGS, Chalfun-Júnior A, Sinharoy S, Zhao J, Benedito VA. Global analysis of the MATE gene family of metabolite transporters in tomato. BMC PLANT BIOLOGY 2017; 17:185. [PMID: 29084510 PMCID: PMC5663081 DOI: 10.1186/s12870-017-1115-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/09/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Species in the Solanaceae family are known for producing plethora of specialized metabolites. In addition to biosynthesis pathways, a full comprehension of secondary metabolism must also take into account the transport and subcellular compartmentalization of substances. Here, we examined the MATE (Multidrug and Toxic Compound Extrusion, or Multi-Antimicrobial Extrusion) gene family in the tomato (Solanum lycopersicum) genome with the objective of better understanding the transport of secondary metabolites in this model species. MATE membrane effluxers encompass an ancient gene family of secondary transporters present in all kingdoms of life, but with a remarkable expansion in plants. They mediate the transport of primary and secondary metabolites using the proton motive force through several membrane systems of the cell. RESULTS We identified 67 genes coding for MATE transporters in the tomato genome, 33 of which are expressed constitutively whereas 34 are expressed in specific cell types or environmental conditions. Synteny analyses revealed bona fide paralogs and Arabidopsis orthologs. Co-expression analysis between MATE and regulatory genes revealed 78 positive and 8 negative strong associations (ρ≥|0.8|). We found no evidence of MATE transporters belonging to known metabolic gene clusters in tomato. CONCLUSIONS Altogether, our expression data, phylogenetic analyses, and synteny study provide strong evidence of functional homologies between MATE genes of tomato and Arabidopsis thaliana. Our co-expression study revealed potential transcriptional regulators of MATE genes that warrant further investigation. This work sets the stage for genome-wide functional analyses of MATE transporters in tomato and other Solanaceae species of economic relevance.
Collapse
Affiliation(s)
- Adolfo Luís Dos Santos
- Division of Plant and Soil Sciences, West Virginia University, 3425 New Agricultural Sciences Building, Morgantown, WV, 26506-6108, USA
- Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), Lavras, MG, Brazil
| | - Samuel Chaves-Silva
- Division of Plant and Soil Sciences, West Virginia University, 3425 New Agricultural Sciences Building, Morgantown, WV, 26506-6108, USA
- Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), Lavras, MG, Brazil
| | - Lina Yang
- Division of Plant and Soil Sciences, West Virginia University, 3425 New Agricultural Sciences Building, Morgantown, WV, 26506-6108, USA
| | - Lucas Gontijo Silva Maia
- Division of Plant and Soil Sciences, West Virginia University, 3425 New Agricultural Sciences Building, Morgantown, WV, 26506-6108, USA
| | - Antonio Chalfun-Júnior
- Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), Lavras, MG, Brazil
| | - Senjuti Sinharoy
- Department of Biotechnology, University of Calcutta, Kolkata, India
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Vagner Augusto Benedito
- Division of Plant and Soil Sciences, West Virginia University, 3425 New Agricultural Sciences Building, Morgantown, WV, 26506-6108, USA.
| |
Collapse
|
176
|
Lloyd A, Brockman A, Aguirre L, Campbell A, Bean A, Cantero A, Gonzalez A. Advances in the MYB-bHLH-WD Repeat (MBW) Pigment Regulatory Model: Addition of a WRKY Factor and Co-option of an Anthocyanin MYB for Betalain Regulation. PLANT & CELL PHYSIOLOGY 2017; 58:1431-1441. [PMID: 28575507 PMCID: PMC5914458 DOI: 10.1093/pcp/pcx075] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/11/2017] [Indexed: 05/19/2023]
Abstract
Flavonoids are secondary metabolites derived from the general phenylpropanoid pathway and are widespread throughout the plant kingdom. The functions of flavonoids are diverse, including defense against phytopathogens, protection against UV light damage and oxidative stress, regulation of auxin transport and allelopathy. One of the most conspicuous functions of flavonoids has long attracted the attention of pollinators and scientist alike: the vivid shades of red, pink, orange, blue and purple on display in the flowers of angiosperms. Thus, flavonoid pigments have perhaps been the most intensely studied phenylpropanoids. From Mendel to McClintock and up to the present, studies centered on flavonoid pigments have resulted in some of the most important scientific discoveries of the last 150 years, including the first examples of transcriptional regulation in plants. Here we focus on the highly conserved MYB-bHLH-WD repeat (MBW) transcriptional complex model for the regulation of the flavonoid pigment pathway. We will survey the history of the MBW model spanning the last three decades, highlighting the major findings that have contributed to our current understanding. In particular, recent discoveries regarding WRKY protein control of the flavonoid pigment pathway and its relationship to the MBW complex will be emphasized. In addition, we will discuss recent findings about the regulation of the beet betalain pigment pathway, and how a MYB member of the MBW complex was co-opted to regulate this chemically unrelated but functionally equivalent pathway.
Collapse
Affiliation(s)
- Alan Lloyd
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Austen Brockman
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lyndsey Aguirre
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Annabelle Campbell
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Alex Bean
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Araceli Cantero
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Antonio Gonzalez
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
177
|
Escaray FJ, Passeri V, Perea-García A, Antonelli CJ, Damiani F, Ruiz OA, Paolocci F. The R2R3-MYB TT2b and the bHLH TT8 genes are the major regulators of proanthocyanidin biosynthesis in the leaves of Lotus species. PLANTA 2017; 246:243-261. [PMID: 28429079 DOI: 10.1007/s00425-017-2696-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/12/2017] [Indexed: 05/26/2023]
Abstract
By exploiting interspecific hybrids and their progeny, we identified key regulatory and transporter genes intimately related to proanthocyanidin biosynthesis in leaves of Lotus spp. Proanthocyanidins (PAs), known as condensed tannins, are polymeric flavonoids enriching forage legumes of key nutritional value to prevent bloating in ruminant animals. Unfortunately, major forage legumes such as alfalfa and clovers lack PAs in edible tissues. Therefore, engineering the PA trait in herbage of forage legumes is paramount to improve both ecological and economical sustainability of cattle production system. Progresses on the understanding of genetic determinants controlling PA biosynthesis and accumulation have been mainly made studying mutants of Arabidopsis, Medicago truncatula and Lotus japonicus, model species unable to synthesize PAs in the leaves. Here, we exploited interspecific hybrids between Lotus corniculatus, with high levels of PAs in the leaves, and Lotus tenuis, with no PAs in these organs, and relative F2 progeny, to identify among candidate PA regulators and transporters the genes mainly affecting this trait. We found that the levels of leaf PAs significantly correlate with the expression of MATE1, the putative transporter of glycosylated PA monomers, and, among the candidate regulatory genes, with the expression of the MYB genes TT2a, TT2b and MYB14 and the bHLH gene TT8. The expression levels of TT2b and TT8 also correlated with those of all key structural genes of the PA pathways investigated, MATE1 included. Our study unveils a different involvement of the three Lotus TT2 paralogs to the PA trait and highlights differences in the regulation of this trait in our Lotus genotypes with respect to model species. This information opens new avenues for breeding bloat safe forage legumes.
Collapse
Affiliation(s)
- Francisco José Escaray
- Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECh) / Universidad Nacional de San Martín. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Valentina Passeri
- Institute of Biosciences and BioResources (CNR-IBBR), Perugia, Italy
| | - Ana Perea-García
- Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECh) / Universidad Nacional de San Martín. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Cristian Javier Antonelli
- Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECh) / Universidad Nacional de San Martín. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Francesco Damiani
- Institute of Biosciences and BioResources (CNR-IBBR), Perugia, Italy
| | - Oscar Adolfo Ruiz
- Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECh) / Universidad Nacional de San Martín. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | | |
Collapse
|
178
|
Muleke EM, Fan L, Wang Y, Xu L, Zhu X, Zhang W, Cao Y, Karanja BK, Liu L. Coordinated Regulation of Anthocyanin Biosynthesis Genes Confers Varied Phenotypic and Spatial-Temporal Anthocyanin Accumulation in Radish ( Raphanus sativus L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1243. [PMID: 28769952 PMCID: PMC5515825 DOI: 10.3389/fpls.2017.01243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/30/2017] [Indexed: 05/20/2023]
Abstract
Anthocyanins are natural pigments that have important functions in plant growth and development. Radish taproots are rich in anthocyanins which confer different taproot colors and are potentially beneficial to human health. The crop differentially accumulates anthocyanin during various stages of growth, yet molecular mechanisms underlying this differential anthocyanin accumulation remains unknown. In the present study, transcriptome analysis was used to concisely identify putative genes involved in anthocyanin biosynthesis in radish. Spatial-temporal transcript expressions were then profiled in four color variant radish cultivars. From the total transcript sequences obtained through illumina sequencing, 102 assembled unigenes, and 20 candidate genes were identified to be involved in anthocyanin biosynthesis. Fifteen genomic sequences were isolated and sequenced from radish taproot. The length of these sequences was between 900 and 1,579 bp, and the unigene coverage to all of the corresponding cloned sequences was more than 93%. Gene structure analysis revealed that RsF3'H is intronless and anthocyanin biosynthesis genes (ABGs) bear asymmetrical exons, except RsSAM. Anthocyanin accumulation showed a gradual increase in the leaf of the red radish and the taproot of colored cultivars during development, with a rapid increase at 30 days after sowing (DAS), and the highest content at maturity. Spatial-temporal transcriptional analysis of 14 genes revealed detectable expressions of 12 ABGs in various tissues at different growth levels. The investigation of anthocyanin accumulation and gene expression in four color variant radish cultivars, at different stages of development, indicated that total anthocyanin correlated with transcript levels of ABGs, particularly RsUFGT, RsF3H, RsANS, RsCHS3 and RsF3'H1. Our results suggest that these candidate genes play key roles in phenotypic and spatial-temporal anthocyanin accumulation in radish through coordinated regulation and the major control point in anthocyanin biosynthesis in radish is RsUFGT. The present findings lend invaluable insights into anthocyanin biosynthesis and may facilitate genetic manipulation for enhanced anthocyanin content in radish.
Collapse
Affiliation(s)
- Everlyne M'mbone Muleke
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Lianxue Fan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State UniversityFargo, ND, United States
| | - Wei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yang Cao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Benard K. Karanja
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
179
|
Dai X, Zhuang J, Wu Y, Wang P, Zhao G, Liu Y, Jiang X, Gao L, Xia T. Identification of a Flavonoid Glucosyltransferase Involved in 7-OH Site Glycosylation in Tea plants (Camellia sinensis). Sci Rep 2017; 7:5926. [PMID: 28725058 PMCID: PMC5517534 DOI: 10.1038/s41598-017-06453-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/13/2017] [Indexed: 11/22/2022] Open
Abstract
Flavonol glycosides, which are often converted from aglycones in a process catalyzed by UDP-glycosyltransferases (UGTs), play an important role for the health of plants and animals. In the present study, a gene encoding a flavonoid 7-O-glycosyltransferase (CsUGT75L12) was identified in tea plants. Recombinant CsUGT75L12 protein displayed glycosyltransferase activity on the 7-OH position of multiple phenolic compounds. In relative comparison to wild-type seeds, the levels of flavonol-glucosides increased in Arabidopsis seeds overexpressing CsUGT75L12. In order to determine the key amino acid residues responsible for the catalytic activity of the protein, a series of site-directed mutagenesis and enzymatic assays were performed based on the 3D structural modeling and docking analyses. These results suggested that residue Q54 is a double binding site that functions as both a sugar receptor and donor. Residues H56 and T151, corresponding to the basic active residues H20 and D119 of VvGT1, were not irreplaceable for CsUGT75L12. In addition, residues Y182, S223, P238, T239, and F240 were demonstrated to be responsible for a ‘reversed’ sugar receptor binding model. The results of single and triple substitutions confirmed that the function of residues P238, T239, and F240 may substitute or compensate with each other for the flavonoid 7-O-glycosyltransferase activity.
Collapse
Affiliation(s)
- Xinlong Dai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China.,School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Juhua Zhuang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yingling Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Peiqiang Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Guifu Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| |
Collapse
|
180
|
Tohge T, de Souza LP, Fernie AR. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4013-4028. [PMID: 28922752 DOI: 10.1093/jxb/erx177] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Flavonoids are a signature class of secondary metabolites formed from a relatively simple collection of scaffolds. They are extensively decorated by chemical reactions including glycosylation, methylation, and acylation. They are present in a wide variety of fruits and vegetables and as such in Western populations it is estimated that 20-50 mg of flavonoids are consumed daily per person. In planta they have demonstrated to contribute to both flower color and UV protection. Their consumption has been suggested to presenta wide range of health benefits. Recent technical advances allowing affordable whole genome sequencing, as well as a better inventory of species-by-species chemical diversity, have greatly advanced our understanding as to how flavonoid biosynthesis pathways vary across species. In parallel, reverse genetics combined with detailed molecular phenotyping is currently allowing us to elucidate the functional importance of individual genes and metabolites and by this means to provide further mechanistic insight into their biological roles. Here we provide an inventory of current knowledge of pathways of flavonoid biosynthesis in both the model plant Arabidopsis thaliana and a range of crop species, including tomato, maize, rice, and bean.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm
| | | | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm
| |
Collapse
|
181
|
Takanashi K, Yamada Y, Sasaki T, Yamamoto Y, Sato F, Yazaki K. A multidrug and toxic compound extrusion transporter mediates berberine accumulation into vacuoles in Coptis japonica. PHYTOCHEMISTRY 2017; 138:76-82. [PMID: 28318534 DOI: 10.1016/j.phytochem.2017.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/21/2017] [Accepted: 03/07/2017] [Indexed: 05/20/2023]
Abstract
Plants produce a large variety of alkaloids, which have diverse chemical structures and biological activities. Many of these alkaloids accumulate in vacuoles. Although some membrane proteins on tonoplasts have been identified as alkaloid uptake transporters, few have been characterized to date, and relatively little is known about the mechanisms underlying alkaloid transport and accumulation in plant cells. Berberine is a model alkaloid. Although all genes involved in berberine biosynthesis, as well as the master regulator, have been identified, the gene responsible for the final accumulation of berberine at tonoplasts has not been determined. This study showed that a multidrug and toxic compound extrusion protein 1 (CjMATE1) may act as a berberine transporter in cultured Coptis japonica cells. CjMATE1 was found to localize at tonoplasts in C. japonica cells and, in intact plants, to be expressed preferentially in rhizomes, the site of abundant berberine accumulation. Cellular transport analysis using a yeast expression system showed that CjMATE1 could transport berberine. Expression analysis showed that RNAi suppression of CjbHLH1, a master transcription factor of the berberine biosynthetic pathway, markedly reduced the expression of CjMATE1 in a manner similar to the suppression of berberine biosynthetic genes. These results strongly suggest that CjMATE1 is the transporter that mediates berberine accumulation in vacuoles.
Collapse
Affiliation(s)
- Kojiro Takanashi
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan.
| | - Yasuyuki Yamada
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| | - Takayuki Sasaki
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan.
| | - Yoko Yamamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan.
| | - Fumihiko Sato
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan.
| |
Collapse
|
182
|
James AM, Ma D, Mellway R, Gesell A, Yoshida K, Walker V, Tran L, Stewart D, Reichelt M, Suvanto J, Salminen JP, Gershenzon J, Séguin A, Constabel CP. Poplar MYB115 and MYB134 Transcription Factors Regulate Proanthocyanidin Synthesis and Structure. PLANT PHYSIOLOGY 2017; 174:154-171. [PMID: 28348066 PMCID: PMC5411147 DOI: 10.1104/pp.16.01962] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/20/2017] [Indexed: 05/15/2023]
Abstract
The accumulation of proanthocyanidins is regulated by a complex of transcription factors composed of R2R3 MYB, basic helix-loop-helix, and WD40 proteins that activate the promoters of biosynthetic genes. In poplar (genus Populus), MYB134 is known to regulate proanthocyanidin biosynthesis by activating key flavonoid genes. Here, we characterize a second MYB regulator of proanthocyanidins, MYB115. Transgenic poplar overexpressing MYB115 showed a high-proanthocyanidin phenotype and reduced salicinoid accumulation, similar to the effects of MYB134 overexpression. Transcriptomic analysis of MYB115- and MYB134-overexpressing poplar plants identified a set of common up-regulated genes encoding proanthocyanidin biosynthetic enzymes and several novel uncharacterized MYB transcriptional repressors. Transient expression experiments demonstrated the capacity of both MYB134 and MYB115 to activate flavonoid promoters, but only in the presence of a basic helix-loop-helix cofactor. Yeast two-hybrid experiments confirmed the direct interaction of these transcription factors. The unexpected identification of dihydromyricetin in leaf extracts of both MYB115- and MYB134-overexpressing poplar led to the discovery of enhanced flavonoid B-ring hydroxylation and an increased proportion of prodelphinidins in proanthocyanidin of the transgenics. The dramatic hydroxylation phenotype of MYB115 overexpressors is likely due to the up-regulation of both flavonoid 3',5'-hydroxylases and cytochrome b5 Overall, this work provides new insight into the complexity of the gene regulatory network for proanthocyanidin synthesis in poplar.
Collapse
Affiliation(s)
- Amy Midori James
- Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5 (A.M.J., D.M., R.M., A.G., K.Y., V.W., L.T., C.P.C.)
- Max-Planck Institute for Chemical Ecology, Department of Biochemistry, 07745 Jena, Germany (M.R., J.G.)
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, FI-20500 Turku, Finland (J.S., J.-P.S.); and
- Laurentian Forestry Centre, Natural Resources Canada, St. Foy, Quebec, Canada G1V 4C7 (D.S., A.S.)
| | - Dawei Ma
- Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5 (A.M.J., D.M., R.M., A.G., K.Y., V.W., L.T., C.P.C.)
- Max-Planck Institute for Chemical Ecology, Department of Biochemistry, 07745 Jena, Germany (M.R., J.G.)
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, FI-20500 Turku, Finland (J.S., J.-P.S.); and
- Laurentian Forestry Centre, Natural Resources Canada, St. Foy, Quebec, Canada G1V 4C7 (D.S., A.S.)
| | - Robin Mellway
- Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5 (A.M.J., D.M., R.M., A.G., K.Y., V.W., L.T., C.P.C.)
- Max-Planck Institute for Chemical Ecology, Department of Biochemistry, 07745 Jena, Germany (M.R., J.G.)
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, FI-20500 Turku, Finland (J.S., J.-P.S.); and
- Laurentian Forestry Centre, Natural Resources Canada, St. Foy, Quebec, Canada G1V 4C7 (D.S., A.S.)
| | - Andreas Gesell
- Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5 (A.M.J., D.M., R.M., A.G., K.Y., V.W., L.T., C.P.C.)
- Max-Planck Institute for Chemical Ecology, Department of Biochemistry, 07745 Jena, Germany (M.R., J.G.)
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, FI-20500 Turku, Finland (J.S., J.-P.S.); and
- Laurentian Forestry Centre, Natural Resources Canada, St. Foy, Quebec, Canada G1V 4C7 (D.S., A.S.)
| | - Kazuko Yoshida
- Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5 (A.M.J., D.M., R.M., A.G., K.Y., V.W., L.T., C.P.C.)
- Max-Planck Institute for Chemical Ecology, Department of Biochemistry, 07745 Jena, Germany (M.R., J.G.)
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, FI-20500 Turku, Finland (J.S., J.-P.S.); and
- Laurentian Forestry Centre, Natural Resources Canada, St. Foy, Quebec, Canada G1V 4C7 (D.S., A.S.)
| | - Vincent Walker
- Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5 (A.M.J., D.M., R.M., A.G., K.Y., V.W., L.T., C.P.C.)
- Max-Planck Institute for Chemical Ecology, Department of Biochemistry, 07745 Jena, Germany (M.R., J.G.)
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, FI-20500 Turku, Finland (J.S., J.-P.S.); and
- Laurentian Forestry Centre, Natural Resources Canada, St. Foy, Quebec, Canada G1V 4C7 (D.S., A.S.)
| | - Lan Tran
- Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5 (A.M.J., D.M., R.M., A.G., K.Y., V.W., L.T., C.P.C.)
- Max-Planck Institute for Chemical Ecology, Department of Biochemistry, 07745 Jena, Germany (M.R., J.G.)
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, FI-20500 Turku, Finland (J.S., J.-P.S.); and
- Laurentian Forestry Centre, Natural Resources Canada, St. Foy, Quebec, Canada G1V 4C7 (D.S., A.S.)
| | - Don Stewart
- Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5 (A.M.J., D.M., R.M., A.G., K.Y., V.W., L.T., C.P.C.)
- Max-Planck Institute for Chemical Ecology, Department of Biochemistry, 07745 Jena, Germany (M.R., J.G.)
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, FI-20500 Turku, Finland (J.S., J.-P.S.); and
- Laurentian Forestry Centre, Natural Resources Canada, St. Foy, Quebec, Canada G1V 4C7 (D.S., A.S.)
| | - Michael Reichelt
- Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5 (A.M.J., D.M., R.M., A.G., K.Y., V.W., L.T., C.P.C.)
- Max-Planck Institute for Chemical Ecology, Department of Biochemistry, 07745 Jena, Germany (M.R., J.G.)
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, FI-20500 Turku, Finland (J.S., J.-P.S.); and
- Laurentian Forestry Centre, Natural Resources Canada, St. Foy, Quebec, Canada G1V 4C7 (D.S., A.S.)
| | - Jussi Suvanto
- Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5 (A.M.J., D.M., R.M., A.G., K.Y., V.W., L.T., C.P.C.)
- Max-Planck Institute for Chemical Ecology, Department of Biochemistry, 07745 Jena, Germany (M.R., J.G.)
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, FI-20500 Turku, Finland (J.S., J.-P.S.); and
- Laurentian Forestry Centre, Natural Resources Canada, St. Foy, Quebec, Canada G1V 4C7 (D.S., A.S.)
| | - Juha-Pekka Salminen
- Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5 (A.M.J., D.M., R.M., A.G., K.Y., V.W., L.T., C.P.C.)
- Max-Planck Institute for Chemical Ecology, Department of Biochemistry, 07745 Jena, Germany (M.R., J.G.)
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, FI-20500 Turku, Finland (J.S., J.-P.S.); and
- Laurentian Forestry Centre, Natural Resources Canada, St. Foy, Quebec, Canada G1V 4C7 (D.S., A.S.)
| | - Jonathan Gershenzon
- Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5 (A.M.J., D.M., R.M., A.G., K.Y., V.W., L.T., C.P.C.)
- Max-Planck Institute for Chemical Ecology, Department of Biochemistry, 07745 Jena, Germany (M.R., J.G.)
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, FI-20500 Turku, Finland (J.S., J.-P.S.); and
- Laurentian Forestry Centre, Natural Resources Canada, St. Foy, Quebec, Canada G1V 4C7 (D.S., A.S.)
| | - Armand Séguin
- Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5 (A.M.J., D.M., R.M., A.G., K.Y., V.W., L.T., C.P.C.)
- Max-Planck Institute for Chemical Ecology, Department of Biochemistry, 07745 Jena, Germany (M.R., J.G.)
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, FI-20500 Turku, Finland (J.S., J.-P.S.); and
- Laurentian Forestry Centre, Natural Resources Canada, St. Foy, Quebec, Canada G1V 4C7 (D.S., A.S.)
| | - C Peter Constabel
- Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5 (A.M.J., D.M., R.M., A.G., K.Y., V.W., L.T., C.P.C.);
- Max-Planck Institute for Chemical Ecology, Department of Biochemistry, 07745 Jena, Germany (M.R., J.G.);
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, FI-20500 Turku, Finland (J.S., J.-P.S.); and
- Laurentian Forestry Centre, Natural Resources Canada, St. Foy, Quebec, Canada G1V 4C7 (D.S., A.S.)
| |
Collapse
|
183
|
Qu S, Chapman N, Xia Z, Feng M, Feng S, Wang Z, Liu L. Ultramicroscopy reveals a layer of multiply folded membranes around the tannin-accumulating vacuole in honeysuckle petal trichomes. Micron 2017; 99:1-8. [PMID: 28395186 DOI: 10.1016/j.micron.2017.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 12/17/2022]
Abstract
Transmission electron microscopy was used to reveal a layer of multiply folded membranes that closely surrounded the tannin-accumulating vacuole in cells of honeysuckle petal trichomes. A huge amount of tannins were deposited in the peripheral region and the center of the vacuole. The prolific membranes extended to the tannins deposited along the vacuole periphery. It was difficult to distinguish the vacuole membrane, and it seemed as if it was the layer of multiply folded membranes that separated the vacuole lumen from the cytoplasm. In addition, there were also membrane assemblies in the cytoplasm away from the vacuole, which were continuous with the proliferated membranes bordering the vacuole. Therefore, the tannin-accumulating vacuole was in close association with a very large network of proliferated membranes. The occurrence of such a layer of multiply folded membranes around the tannin-accumulating vacuole might be a structural strategy for improvement of the efficiency of vacuolar accumulation of tannins.
Collapse
Affiliation(s)
- Shengnan Qu
- College of Pharmacy, Linyi University, Linyi 276000, China
| | - Navid Chapman
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA
| | - Zhengyan Xia
- College of Pharmacy, Linyi University, Linyi 276000, China
| | - Mingxiao Feng
- Department of Life Science, Linyi University, Linyi 276000, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA(1)
| | - Shangcai Feng
- College of Pharmacy, Linyi University, Linyi 276000, China
| | - Zhen Wang
- College of Pharmacy, Linyi University, Linyi 276000, China
| | - Lin Liu
- College of Pharmacy, Linyi University, Linyi 276000, China.
| |
Collapse
|
184
|
Zhang H, Zhao FG, Tang RJ, Yu Y, Song J, Wang Y, Li L, Luan S. Two tonoplast MATE proteins function as turgor-regulating chloride channels in Arabidopsis. Proc Natl Acad Sci U S A 2017; 114:E2036-E2045. [PMID: 28202726 PMCID: PMC5347570 DOI: 10.1073/pnas.1616203114] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The central vacuole in a plant cell occupies the majority of the cellular volume and plays a key role in turgor regulation. The vacuolar membrane (tonoplast) contains a large number of transporters that mediate fluxes of solutes and water, thereby adjusting cell turgor in response to developmental and environmental signals. We report that two tonoplast Detoxification efflux carrier (DTX)/Multidrug and Toxic Compound Extrusion (MATE) transporters, DTX33 and DTX35, function as chloride channels essential for turgor regulation in Arabidopsis Ectopic expression of each transporter in Nicotiana benthamiana mesophyll cells elicited a large voltage-dependent inward chloride current across the tonoplast, showing that DTX33 and DTX35 each constitute a functional channel. Both channels are highly expressed in Arabidopsis tissues, including root hairs and guard cells that experience rapid turgor changes during root-hair elongation and stomatal movements. Disruption of these two genes, either in single or double mutants, resulted in shorter root hairs and smaller stomatal aperture, with double mutants showing more severe defects, suggesting that these two channels function additively to facilitate anion influx into the vacuole during cell expansion. In addition, dtx35 single mutant showed lower fertility as a result of a defect in pollen-tube growth. Indeed, patch-clamp recording of isolated vacuoles indicated that the inward chloride channel activity across the tonoplast was impaired in the double mutant. Because MATE proteins are widely known transporters of organic compounds, finding MATE members as chloride channels expands the functional definition of this large family of transporters.
Collapse
Affiliation(s)
- Haiwen Zhang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Technology, School of Life Sciences, Nanjing University, Nanjing 210093, China
- College of Life Sciences, Capital Normal University, Beijing 100048, China
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fu-Geng Zhao
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Technology, School of Life Sciences, Nanjing University, Nanjing 210093, China;
| | - Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Yuexuan Yu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jiali Song
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuan Wang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Technology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Legong Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China;
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720;
| |
Collapse
|
185
|
Payne RME, Xu D, Foureau E, Teto Carqueijeiro MIS, Oudin A, de Bernonville TD, Novak V, Burow M, Olsen CE, Jones DM, Tatsis EC, Pendle A, Halkier BA, Geu-Flores F, Courdavault V, Nour-Eldin HH, O’Connor SE. An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole. NATURE PLANTS 2017; 3:16208. [PMID: 28085153 PMCID: PMC5238941 DOI: 10.1038/nplants.2016.208] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/29/2016] [Indexed: 05/17/2023]
Abstract
Plants sequester intermediates of metabolic pathways into different cellular compartments, but the mechanisms by which these molecules are transported remain poorly understood. Monoterpene indole alkaloids, a class of specialized metabolites that includes the anticancer agent vincristine, antimalarial quinine and neurotoxin strychnine, are synthesized in several different cellular locations. However, the transporters that control the movement of these biosynthetic intermediates within cellular compartments have not been discovered. Here we present the discovery of a tonoplast localized nitrate/peptide family (NPF) transporter from Catharanthus roseus, CrNPF2.9, that exports strictosidine, the central intermediate of this pathway, into the cytosol from the vacuole. This discovery highlights the role that intracellular localization plays in specialized metabolism, and sets the stage for understanding and controlling the central branch point of this pharmacologically important group of compounds.
Collapse
Affiliation(s)
- Richard M. E. Payne
- The John Innes Centre, Department of Biological Chemistry, Norwich Research Park, Norwich NR4 7UK, UK
| | - Deyang Xu
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Emilien Foureau
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Département de Biologie et Physiologie Végétales, UFR Sciences et Techniques, Parc de Grandmont 37200 Tours, France
| | - Marta Ines Soares Teto Carqueijeiro
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Département de Biologie et Physiologie Végétales, UFR Sciences et Techniques, Parc de Grandmont 37200 Tours, France
| | - Audrey Oudin
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Département de Biologie et Physiologie Végétales, UFR Sciences et Techniques, Parc de Grandmont 37200 Tours, France
| | - Thomas Dugé de Bernonville
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Département de Biologie et Physiologie Végétales, UFR Sciences et Techniques, Parc de Grandmont 37200 Tours, France
| | - Vlastimil Novak
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Meike Burow
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Carl-Erik Olsen
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - D. Marc Jones
- The John Innes Centre, Department of Computational and Systems Biology, Norwich Research Park, Norwich NR4 7UK, UK
| | - Evangelos C. Tatsis
- The John Innes Centre, Department of Biological Chemistry, Norwich Research Park, Norwich NR4 7UK, UK
| | - Ali Pendle
- The John Innes Centre, Department of Cell and Developmental Biology, Norwich Research Park, Norwich NR4 7UK, UK
| | - Barbara Ann Halkier
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Fernando Geu-Flores
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Vincent Courdavault
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Département de Biologie et Physiologie Végétales, UFR Sciences et Techniques, Parc de Grandmont 37200 Tours, France
| | - Hussam Hassan Nour-Eldin
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Sarah E. O’Connor
- The John Innes Centre, Department of Biological Chemistry, Norwich Research Park, Norwich NR4 7UK, UK
- To whom correspondence should be addressed: Sarah E. O’Connor ()
| |
Collapse
|
186
|
Dastmalchi M, Chapman P, Yu J, Austin RS, Dhaubhadel S. Transcriptomic evidence for the control of soybean root isoflavonoid content by regulation of overlapping phenylpropanoid pathways. BMC Genomics 2017; 18:70. [PMID: 28077078 PMCID: PMC5225596 DOI: 10.1186/s12864-016-3463-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Isoflavonoids are a class of specialized metabolites found predominantly in legumes. They play a role in signaling for symbiosis with nitrogen-fixing bacteria and inhibiting pathogen infection. RESULTS A transcriptomic approach using soybean cultivars with high (Conrad and AC Colombe) and low (AC Glengarry and Pagoda) root isoflavonoid content was used to find elements that underlie this variation. Two genes, encoding the flavonoid-metabolizing enzymes, flavonoid 3'-hydroxylase (GmF3'H) and dihydroflavonol 4-reductase (GmDFR), had lower expression levels in high isoflavonoid cultivars. These enzymes compete with isoflavonoid biosynthetic enzymes for the important branch-point substrate naringenin and its derivatives. Differentially expressed genes, between the two sets of cultivars, encode transcription factors, transporters and enzymatic families of interest, such as oxidoreductases, hydrolases and transferases. In addition, genes annotated with stress and disease response were upregulated in high isoflavonoid cultivars. CONCLUSIONS Coordinated regulation of genes involved in flavonoid metabolism could redirect flux into the isoflavonoid branch of the phenylpropanoid pathway, by reducing competition for the flavanone substrate. These candidate genes could help identify mechanisms to overcome the endogenous bottleneck to isoflavonoid production, facilitate biosynthesis in heterologous systems, and enhance crop resistance against pathogenic infections.
Collapse
Affiliation(s)
- Mehran Dastmalchi
- Department of Biology, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| | - Patrick Chapman
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| | - Jaeju Yu
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| | - Ryan S Austin
- Department of Biology, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| | - Sangeeta Dhaubhadel
- Department of Biology, University of Western Ontario, London, ON, Canada.
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada.
| |
Collapse
|
187
|
Lian J, Lu X, Yin N, Ma L, Lu J, Liu X, Li J, Lu J, Lei B, Wang R, Chai Y. Silencing of BnTT1 family genes affects seed flavonoid biosynthesis and alters seed fatty acid composition in Brassica napus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 254:32-47. [PMID: 27964783 DOI: 10.1016/j.plantsci.2016.10.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/29/2016] [Accepted: 10/31/2016] [Indexed: 05/07/2023]
Abstract
TRANSPARENT TESTA1 (TT1) is a zinc finger protein that contains a WIP domain. It plays important roles in controlling differentiation and pigmentation of the seed coat endothelium, and can affect the expression of early biosynthetic genes and late biosynthetic genes of flavonoid biosynthesis in Arabidopsis thaliana. In Brassica napus (AACC, 2n=38), the functions of BnTT1 genes remain unknown and few studies have focused on their roles in fatty acid (FA) biosynthesis. In this study, BnTT1 family genes were silenced by RNA interference, which resulted in yellow rapeseed, abnormal testa development (a much thinner testa), decreased seed weight, and altered seed FA composition in B. napus. High-throughput sequencing of genes differentially expressed between developing transgenic B. napus and wild-type seeds revealed altered expression of numerous genes involved in flavonoid and FA biosynthesis. As a consequence of this altered expression, we detected a marked decrease of oleic acid (C18:1) and notable increases of linoleic acid (C18:2) and α-linolenic acid (C18:3) in mature transgenic B. napus seeds by gas chromatography and near-infrared reflectance spectroscopy. Meanwhile, liquid chromatography-mass spectrometry showed reduced accumulation of flavonoids in transgenic seeds. Therefore, we propose that BnTT1s are involved in the regulation of flavonoid biosynthesis, and may also play a role in FA biosynthesis in B. napus.
Collapse
Affiliation(s)
- Jianping Lian
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Xiaochun Lu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Nengwen Yin
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Lijuan Ma
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Jing Lu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Xue Liu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Jiana Li
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Jun Lu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Bo Lei
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Rui Wang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Yourong Chai
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China.
| |
Collapse
|
188
|
Root transcriptome of two contrasting indica rice cultivars uncovers regulators of root development and physiological responses. Sci Rep 2016; 6:39266. [PMID: 28000793 PMCID: PMC5175279 DOI: 10.1038/srep39266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/21/2016] [Indexed: 12/12/2022] Open
Abstract
The huge variation in root system architecture (RSA) among different rice (Oryza sativa) cultivars is conferred by their genetic makeup and different growth or climatic conditions. Unlike model plant Arabidopsis, the molecular basis of such variation in RSA is very poorly understood in rice. Cultivars with stable variation are valuable resources for identification of genes involved in RSA and related physiological traits. We have screened for RSA and identified two such indica rice cultivars, IR-64 (OsAS83) and IET-16348 (OsAS84), with stable contrasting RSA. OsAS84 produces robust RSA with more crown roots, lateral roots and root hairs than OsAS83. Using comparative root transcriptome analysis of these cultivars, we identified genes related to root development and different physiological responses like abiotic stress responses, hormone signaling, and nutrient acquisition or transport. The two cultivars differ in their response to salinity/dehydration stresses, phosphate/nitrogen deficiency, and different phytohormones. Differential expression of genes involved in salinity or dehydration response, nitrogen (N) transport, phosphate (Pi) starvation signaling, hormone signaling and root development underlies more resistance of OsAS84 towards abiotic stresses, Pi or N deficiency and its robust RSA. Thus our study uncovers gene-network involved in root development and abiotic stress responses in rice.
Collapse
|
189
|
De Novo transcriptome characterization of Dracaena cambodiana and analysis of genes involved in flavonoid accumulation during formation of dragon's blood. Sci Rep 2016; 6:38315. [PMID: 27922066 PMCID: PMC5138819 DOI: 10.1038/srep38315] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
Dragon’s blood is a red resin mainly extracted from Dracaena plants, and has been widely used as a traditional medicine in East and Southeast Asia. The major components of dragon’s blood are flavonoids. Owing to a lack of Dracaena plants genomic information, the flavonoids biosynthesis and regulation in Dracaena plants remain unknown. In this study, three cDNA libraries were constructed from the stems of D. cambodiana after injecting the inducer. Approximately 266.57 million raw sequencing reads were de novo assembled into 198,204 unigenes, of which 34,873 unique sequences were annotated in public protein databases. Many candidate genes involved in flavonoid accumulation were identified. Differential expression analysis identified 20 genes involved in flavonoid biosynthesis, 27 unigenes involved in flavonoid modification and 68 genes involved in flavonoid transport that were up-regulated in the stems of D. cambodiana after injecting the inducer, consistent with the accumulation of flavonoids. Furthermore, we have revealed the differential expression of transcripts encoding for transcription factors (MYB, bHLH and WD40) involved in flavonoid metabolism. These de novo transcriptome data sets provide insights on pathways and molecular regulation of flavonoid biosynthesis and transport, and improve our understanding of molecular mechanisms of dragon’s blood formation in D. cambodiana.
Collapse
|
190
|
Darbani B, Motawia MS, Olsen CE, Nour-Eldin HH, Møller BL, Rook F. The biosynthetic gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor contains its co-expressed vacuolar MATE transporter. Sci Rep 2016; 6:37079. [PMID: 27841372 PMCID: PMC5107947 DOI: 10.1038/srep37079] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/24/2016] [Indexed: 01/15/2023] Open
Abstract
Genomic gene clusters for the biosynthesis of chemical defence compounds are increasingly identified in plant genomes. We previously reported the independent evolution of biosynthetic gene clusters for cyanogenic glucoside biosynthesis in three plant lineages. Here we report that the gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor additionally contains a gene, SbMATE2, encoding a transporter of the multidrug and toxic compound extrusion (MATE) family, which is co-expressed with the biosynthetic genes. The predicted localisation of SbMATE2 to the vacuolar membrane was demonstrated experimentally by transient expression of a SbMATE2-YFP fusion protein and confocal microscopy. Transport studies in Xenopus laevis oocytes demonstrate that SbMATE2 is able to transport dhurrin. In addition, SbMATE2 was able to transport non-endogenous cyanogenic glucosides, but not the anthocyanin cyanidin 3-O-glucoside or the glucosinolate indol-3-yl-methyl glucosinolate. The genomic co-localisation of a transporter gene with the biosynthetic genes producing the transported compound is discussed in relation to the role self-toxicity of chemical defence compounds may play in the formation of gene clusters.
Collapse
Affiliation(s)
- Behrooz Darbani
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.,VILLUM Research Center for Plant Plasticity, University of Copenhagen, Denmark
| | - Mohammed Saddik Motawia
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.,VILLUM Research Center for Plant Plasticity, University of Copenhagen, Denmark
| | - Carl Erik Olsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.,VILLUM Research Center for Plant Plasticity, University of Copenhagen, Denmark
| | - Hussam H Nour-Eldin
- Plant Molecular Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.,VILLUM Research Center for Plant Plasticity, University of Copenhagen, Denmark
| | - Fred Rook
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.,VILLUM Research Center for Plant Plasticity, University of Copenhagen, Denmark
| |
Collapse
|
191
|
Yang S, Jiang Y, Xu L, Shiratake K, Luo Z, Zhang Q. Molecular cloning and functional characterization of DkMATE1 involved in proanthocyanidin precursor transport in persimmon (Diospyros kaki Thunb.) fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:241-250. [PMID: 27472890 DOI: 10.1016/j.plaphy.2016.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/18/2016] [Indexed: 05/01/2023]
Abstract
Persimmon fruits accumulate a large amount of proanthocyanidins (PAs) in "tannin cells" during development that cause the sensation of astringency due to coagulation of oral proteins. Pollination-constant non-astringent (PCNA) is a spontaneous mutant persimmon phenotype that loses its astringency naturally on the tree at maturity; while the more common non-PCNA fruits remain rich in PAs until they are fully ripened. Here, we isolated a DkMATE1 gene encoding a Multidrug And Toxic Compound Extrusion (MATE) family protein from the Chinese PCNA (C-PCNA) 'Eshi 1'. Expression patterns of DkMATE1 were positively correlated with the accumulation of PAs in different types of persimmons fruits during fruit development. An analysis of the inferred amino acid sequences and phylogenetic relationships indicated that DkMATE1 is a putative PA precursor transporter, and subcellular localization assays revealed that DkMATE1 is localized in the vacuolar membrane. Ectopic expression of the DkMATE1 in Arabidopsis tt12 mutant supported that DkMATE1 could complement its biological function in transporting epicatechin 3'-O-glucoside as a PAs precursor from the cytoplasm to vacuole. Furthermore, the transient over-expression and silencing of DkMATE1 in 'Mopanshi' persimmon leaves resulted in a significant increase and a decrease in PA content, respectively. The analysis of cis-elements in DkMATE1 promoter regions indicated that DkMATE1 might be regulated by DkMYB4, another well-known structural gene in persimmon. Overall, our results show that DkMATE1 may be an essential PA precursor membrane transporter that plays an important role in PA biosynthesis in persimmon.
Collapse
Affiliation(s)
- Sichao Yang
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yun Jiang
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Liqing Xu
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Zhengrong Luo
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang 438000, Hubei, China
| | - Qinglin Zhang
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang 438000, Hubei, China.
| |
Collapse
|
192
|
Wang L, Bei X, Gao J, Li Y, Yan Y, Hu Y. The similar and different evolutionary trends of MATE family occurred between rice and Arabidopsis thaliana. BMC PLANT BIOLOGY 2016; 16:207. [PMID: 27669820 PMCID: PMC5037600 DOI: 10.1186/s12870-016-0895-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 07/19/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND Multidrug and toxic compound extrusion (MATE) transporter proteins are present in all organisms. Although the functions of some MATE gene family members have been studied in plants, few studies have investigated the gene expansion patterns, functional divergence, or the effects of positive selection. RESULTS Forty-five MATE genes from rice and 56 from Arabidopsis were identified and grouped into four subfamilies. MATE family genes have similar exon-intron structures in rice and Arabidopsis; MATE gene structures are conserved in each subfamily but differ among subfamilies. In both species, the MATE gene family has expanded mainly through tandem and segmental duplications. A transcriptome atlas showed considerable differences in expression among the genes, in terms of transcript abundance and expression patterns under normal growth conditions, indicating wide functional divergence in this family. In both rice and Arabidopsis, the MATE genes showed consistent functional divergence trends, with highly significant Type-I divergence in each subfamily, while Type-II divergence mainly occurred in subfamily III. The Type-II coefficients between rice subfamilies I/III, II/III, and IV/III were all significantly greater than zero, while only the Type-II coefficient between Arabidopsis IV/III subfamilies was significantly greater than zero. A site-specific model analysis indicated that MATE genes have relatively conserved evolutionary trends. A branch-site model suggested that the extent of positive selection on each subfamily of rice and Arabidopsis was different: subfamily II of Arabidopsis showed higher positive selection than other subfamilies, whereas in rice, positive selection was highest in subfamily III. In addition, the analyses identified 18 rice sites and 7 Arabidopsis sites that were responsible for positive selection and for Type-I and Type-II functional divergence; there were no common sites between rice and Arabidopsis. Five coevolving amino acid sites were identified in rice and three in Arabidopsis; these sites might have important roles in maintaining local structural stability and protein functional domains. CONCLUSIONS We demonstrate that the MATE gene family expanded through tandem and segmental duplication in both rice and Arabidopsis. Overall, the results of our analyses contribute to improved understanding of the molecular evolution and functions of the MATE gene family in plants.
Collapse
Affiliation(s)
- Lihui Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Xiujuan Bei
- College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Jiansheng Gao
- College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Yaxuan Li
- College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Yueming Yan
- College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Yingkao Hu
- College of Life Sciences, Capital Normal University, Beijing, 100048 China
| |
Collapse
|
193
|
Liu R, Wang Y, Qin G, Tian S. iTRAQ-based quantitative proteomic analysis reveals the role of the tonoplast in fruit senescence. J Proteomics 2016; 146:80-9. [DOI: 10.1016/j.jprot.2016.06.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 01/09/2023]
|
194
|
Suzuki K, Suzuki T, Nakatsuka T, Dohra H, Yamagishi M, Matsuyama K, Matsuura H. RNA-seq-based evaluation of bicolor tepal pigmentation in Asiatic hybrid lilies (Lilium spp.). BMC Genomics 2016; 17:611. [PMID: 27516339 PMCID: PMC4982199 DOI: 10.1186/s12864-016-2995-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Color patterns in angiosperm flowers are produced by spatially and temporally restricted deposition of pigments. Identifying the mechanisms responsible for restricted pigment deposition is a topic of broad interest. Some dicots species develop bicolor petals, which are often caused by the post-transcriptional gene silencing (PTGS) of chalcone synthase (CHS) genes. An Asiatic hybrid lily (Lilium spp.) cultivar Lollypop develops bicolor tepals with pigmented tips and white bases. Here, we analyzed the global transcription of pigmented and non-pigmented tepal parts from Lollypop, to determine the main transcriptomic differences. RESULTS De novo assembly of RNA-seq data yielded 49,239 contigs (39,426 unigenes), which included a variety of novel transcripts, such as those involved in flavonoid-glycosylation and sequestration and in regulation of anthocyanin biosynthesis. Additionally, 1258 of the unigenes exhibited significantly differential expression between the tepal parts (false discovery rates <0.05). The pigmented tepal parts accumulated more anthocyanins, and unigenes annotated as anthocyanin biosynthesis genes (e.g., CHS, dihydroflavonol 4-reductase, and anthocyanidin synthase) were expressed 7-30-fold higher than those in non-pigmented parts. These results indicate that the transcriptional regulation of biosynthesis genes is more likely involved in the development of bicolor lily tepals rather than the PTGS of CHS genes. In addition, the expression level of a unigene homologous to LhMYB12, which often regulates full-tepal anthocyanin pigmentation in lilies, was >2-fold higher in the pigmented parts. Thus, LhMYB12 should be involved in the transcriptional regulation of the biosynthesis genes in bicolor tepals. Other factors that potentially suppress or enhance the expression of anthocyanin biosynthesis genes, including a WD40 gene, were identified, and their involvement in bicolor development is discussed. CONCLUSIONS Our results indicate that the bicolor trait of Lollypop tepals is caused by the transcriptional regulation of anthocyanin biosynthesis genes and that the transcription profile of LhMYB12 provides a clue for elucidating the mechanisms of the trait. The tepal transcriptome constructed in this study will accelerate investigations of the genetic controls of anthocyanin color patterns, including the bicolor patterns, of Lilium spp.
Collapse
Affiliation(s)
- Kazuma Suzuki
- Faculty of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo, 060-8589 Japan
| | - Tomohiro Suzuki
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
- Present address: Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505 Japan
| | - Takashi Nakatsuka
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
| | - Hideo Dohra
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
| | - Masumi Yamagishi
- Research Faculty of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo, 060-8589 Japan
| | - Kohei Matsuyama
- Faculty of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo, 060-8589 Japan
| | - Hideyuki Matsuura
- Research Faculty of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo, 060-8589 Japan
| |
Collapse
|
195
|
Shitan N. Secondary metabolites in plants: transport and self-tolerance mechanisms. Biosci Biotechnol Biochem 2016; 80:1283-93. [DOI: 10.1080/09168451.2016.1151344] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Plants produce a host of secondary metabolites with a wide range of biological activities, including potential toxicity to eukaryotic cells. Plants generally manage these compounds by transport to the apoplast or specific organelles such as the vacuole, or other self-tolerance mechanisms. For efficient production of such bioactive compounds in plants or microbes, transport and self-tolerance mechanisms should function cooperatively with the corresponding biosynthetic enzymes. Intensive studies have identified and characterized the proteins responsible for transport and self-tolerance. In particular, many transporters have been isolated and their physiological functions have been proposed. This review describes recent progress in studies of transport and self-tolerance and provides an updated inventory of transporters according to their substrates. Application of such knowledge to synthetic biology might enable efficient production of valuable secondary metabolites in the future.
Collapse
Affiliation(s)
- Nobukazu Shitan
- Laboratory of Natural Medicinal Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
196
|
Li P, Dong Q, Ge S, He X, Verdier J, Li D, Zhao J. Metabolic engineering of proanthocyanidin production by repressing the isoflavone pathways and redirecting anthocyanidin precursor flux in legume. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1604-18. [PMID: 26806316 PMCID: PMC5066740 DOI: 10.1111/pbi.12524] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 05/18/2023]
Abstract
MtPAR is a proanthocyanidin (PA) biosynthesis regulator; the mechanism underlying its promotion of PA biosynthesis is not fully understood. Here, we showed that MtPAR promotes PA production by a direct repression of biosynthesis of isoflavones, the major flavonoids in legume, and by redirecting immediate precursors, such as anthocyanidins, flux into PA pathway. Ectopic expression of MtPAR repressed isoflavonoid production by directly binding and suppressing isoflavone biosynthetic genes such as isoflavone synthase (IFS). Meanwhile, MtPAR up-regulated PA-specific genes and decreased the anthocyanin levels without altering the expression of anthocyanin biosynthetic genes. MtPAR may shift the anthocyanidin precursor flux from anthocyanin pathway to PA biosynthesis. MtPAR complemented PA-deficient phenotype of Arabidopsis tt2 mutant seeds, demonstrating their similar action on PA production. We showed the direct interactions between MtPAR, MtTT8 and MtWD40-1 proteins from Medicago truncatula and Glycine max, to form a ternary complex to trans-activate PA-specific ANR gene. Finally, MtPAR expression in alfalfa (Medicago sativa) hairy roots and whole plants only promoted the production of small amount of PAs, which was significantly enhanced by co-expression of MtPAR and MtLAP1. Transcriptomic and metabolite profiling showed an additive effect between MtPAR and MtLAP1 on the production of PAs, supporting that efficient PA production requires more anthocyanidin precursors. This study provides new insights into the role and mechanism of MtPAR in partitioning precursors from isoflavone and anthocyanin pathways into PA pathways for a specific promotion of PA production. Based on this, a strategy by combining MtPAR and MtLAP1 co-expression to effectively improve metabolic engineering performance of PA production in legume forage was developed.
Collapse
Affiliation(s)
- Penghui Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qiang Dong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shujun Ge
- College of Agronomy, Agricultural University of Hebei, Baoding, China
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, USA
| | - Xianzhi He
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Jerome Verdier
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, China
| | - Dongqin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jian Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
197
|
Smeriglio A, Barreca D, Bellocco E, Trombetta D. Chemistry, Pharmacology and Health Benefits of Anthocyanins. Phytother Res 2016; 30:1265-86. [DOI: 10.1002/ptr.5642] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Antonella Smeriglio
- University of Messina; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; Viale F. Stagno d'Alcontres 31 98166 Messina Italy
| | - Davide Barreca
- University of Messina; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; Viale F. Stagno d'Alcontres 31 98166 Messina Italy
| | - Ersilia Bellocco
- University of Messina; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; Viale F. Stagno d'Alcontres 31 98166 Messina Italy
| | - Domenico Trombetta
- University of Messina; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; Viale F. Stagno d'Alcontres 31 98166 Messina Italy
| |
Collapse
|
198
|
Wang Z, Qian C, Guo X, Liu E, Mao K, Mu C, Chen N, Zhang W, Liu H. ELS1, a novel MATE transporter related to leaf senescence and iron homeostasis in Arabidopsis thaliana. Biochem Biophys Res Commun 2016; 476:319-325. [PMID: 27233612 DOI: 10.1016/j.bbrc.2016.05.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022]
Abstract
The multidrug and toxic compound extrusion (MATE) transporters mediate the coupled exchange of organic substrates and monovalent cations have been recently implicated in various plant biological activities. In this work, we isolated a dominant mutant from an Arabidopsis activation-tagging mutant pool. This mutant exhibits pleiotropic phenotype including early flowering, dwarf and bushy architecture, minified lateral organs and early leaf senescence, and is therefore designated early leaf senescence 1-Dominaint (els1-D). Genotyping assays showed that els1-D is a gain-of-function mutant of a novel MATE transporter gene, ELS1, which encodes a close homolog of the previously reported ADP1, BCD1 and DTX50. Further investigations revealed that the overexpression of ELS1 reduces iron content in els1-D, and the accelerated senescence of the detached els1-D leaves can be recovered by exogenous iron supply. In addition, we also found that ELS1 is an iron responsive gene. Based on these findings, we proposed that ELS1 is related to leaf senescence and iron homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Zhenyu Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030, China.
| | - Chongzhen Qian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030, China.
| | - Xiaochun Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030, China.
| | - Erlong Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030, China.
| | - Kaili Mao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030, China.
| | - Changjun Mu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030, China.
| | - Ni Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030, China.
| | - Wei Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Heng Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
199
|
Lv H, Li J, Wu Y, Garyali S, Wang Y. Transporter and its engineering for secondary metabolites. Appl Microbiol Biotechnol 2016; 100:6119-6130. [PMID: 27209041 DOI: 10.1007/s00253-016-7605-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 01/26/2023]
Abstract
Secondary metabolites possess a lot of biological activities, and to achieve their functions, transmembrane transportation is crucial. Elucidation of their transport mechanisms in the cell is critical for discovering ways to improve the production. Here, we have summarized the recent progresses for representative secondary metabolite transporters and also the strategies for uncovering the transporter systems in plants and microbes. We have also discussed the transporter engineering strategies being utilized for improving the heterologous natural product production, which exhibits promising future under the guide of synthetic biology.
Collapse
Affiliation(s)
- Huajun Lv
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianhua Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yingying Wu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Sanjog Garyali
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yong Wang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
200
|
Hu B, Zhao J, Lai B, Qin Y, Wang H, Hu G. LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn. PLANT CELL REPORTS 2016; 35:831-43. [PMID: 26743425 DOI: 10.1007/s00299-015-1924-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 05/03/2023]
Abstract
A novel LcGST4 was identified and characterized from Litchi chinensis . Expression and functional analysis demonstrated that it might function in anthocyanin accumulation in litchi. Glutathione S-transferases (GSTs) have been defined as detoxification enzymes for their ability to recognize reactive electrophilic xenobiotic molecules as well as endogenous secondary metabolites. Anthocyanins are among the few endogenous substrates of GSTs for vacuolar accumulation. The gene encoding a GST protein that is involved in anthocyanin sequestration from Litchi chinensis Sonn. has not been reported. Here, LcGST4, an anthocyanin-related GST, was identified and characterized. Phylogenetic analysis showed that LcGST4 was clustered with other known anthocyanin-related GSTs in the same clade. Expression analysis revealed that the expression pattern of LcGST4 was strongly correlated with anthocyanin accumulation in litchi. ABA- and light-responsive elements were found in the LcGST4 promoter, which is in agreement with the result that the expression of LcGST4 was induced by both ABA and debagging treatment. A GST activity assay in vitro verified that the LcGST4 protein shared universal activity with the GST family. Functional complementation of an Arabidopsis mutant tt19 demonstrated that LcGST4 might function in anthocyanin accumulation in litchi. Dual luciferase assay revealed that the expression of LcGST4 was activated by LcMYB1, a key R2R3-MYB transcription factor that regulates anthocyanin biosynthesis in litchi.
Collapse
Affiliation(s)
- Bing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jietang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Biao Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yonghua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Huicong Wang
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|