151
|
Chao WS, Doğramaci M, Horvath DP, Anderson JV, Foley ME. Phytohormone balance and stress-related cellular responses are involved in the transition from bud to shoot growth in leafy spurge. BMC PLANT BIOLOGY 2016; 16:47. [PMID: 26897527 PMCID: PMC4761131 DOI: 10.1186/s12870-016-0735-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/09/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Leafy spurge (Euphorbia esula L.) is an herbaceous weed that maintains a perennial growth pattern through seasonal production of abundant underground adventitious buds (UABs) on the crown and lateral roots. During the normal growing season, differentiation of bud to shoot growth is inhibited by physiological factors external to the affected structure; a phenomenon referred to as paradormancy. Initiation of shoot growth from paradormant UABs can be accomplished through removal of the aerial shoots (hereafter referred to as paradormancy release). RESULTS In this study, phytohormone abundance and the transcriptomes of paradormant UABs vs. shoot-induced growth at 6, 24, and 72 h after paradormancy release were compared based on hormone profiling and RNA-seq analyses. Results indicated that auxin, abscisic acid (ABA), and flavonoid signaling were involved in maintaining paradormancy in UABs of leafy spurge. However, auxin, ABA, and flavonoid levels/signals decreased by 6 h after paradormancy release, in conjunction with increase in gibberellic acid (GA), cytokinin, jasmonic acid (JA), ethylene, and brassinosteroid (BR) levels/signals. Twenty four h after paradormancy release, auxin and ABA levels/signals increased, in conjunction with increase in GA levels/signals. Major cellular changes were also identified in UABs at 24 h, since both principal component and Venn diagram analysis of transcriptomes clearly set the 24 h shoot-induced growth apart from other time groups. In addition, increase in auxin and ABA levels/signals and the down-regulation of 40 over-represented AraCyc pathways indicated that stress-derived cellular responses may be involved in the activation of stress-induced re-orientation required for initiation of shoot growth. Seventy two h after paradormancy release, auxin, cytokinin, and GA levels/signals were increased, whereas ABA, JA, and ethylene levels/signals were decreased. CONCLUSION Combined results were consistent with different phytohormone signals acting in concert to direct cellular changes involved in bud differentiation and shoot growth. In addition, shifts in balance of these phytohormones at different time points and stress-related cellular responses after paradormancy release appear to be critical factors driving transition of bud to shoot growth.
Collapse
Affiliation(s)
- Wun S Chao
- USDA-Agricultural Research Service, Biosciences Research Laboratory, 1605 Albrecht Boulevard, Fargo, ND, 58102-2765, USA.
| | - Münevver Doğramaci
- USDA-Agricultural Research Service, Biosciences Research Laboratory, 1605 Albrecht Boulevard, Fargo, ND, 58102-2765, USA.
| | - David P Horvath
- USDA-Agricultural Research Service, Biosciences Research Laboratory, 1605 Albrecht Boulevard, Fargo, ND, 58102-2765, USA.
| | - James V Anderson
- USDA-Agricultural Research Service, Biosciences Research Laboratory, 1605 Albrecht Boulevard, Fargo, ND, 58102-2765, USA.
| | - Michael E Foley
- USDA-Agricultural Research Service, Biosciences Research Laboratory, 1605 Albrecht Boulevard, Fargo, ND, 58102-2765, USA.
| |
Collapse
|
152
|
Zhao Y, Chan Z, Gao J, Xing L, Cao M, Yu C, Hu Y, You J, Shi H, Zhu Y, Gong Y, Mu Z, Wang H, Deng X, Wang P, Bressan RA, Zhu JK. ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc Natl Acad Sci U S A 2016; 113:1949-54. [PMID: 26831097 PMCID: PMC4763734 DOI: 10.1073/pnas.1522840113] [Citation(s) in RCA: 395] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Drought stress is an important environmental factor limiting plant productivity. In this study, we screened drought-resistant transgenic plants from 65 promoter-pyrabactin resistance 1-like (PYL) abscisic acid (ABA) receptor gene combinations and discovered that pRD29A::PYL9 transgenic lines showed dramatically increased drought resistance and drought-induced leaf senescence in both Arabidopsis and rice. Previous studies suggested that ABA promotes senescence by causing ethylene production. However, we found that ABA promotes leaf senescence in an ethylene-independent manner by activating sucrose nonfermenting 1-related protein kinase 2s (SnRK2s), which subsequently phosphorylate ABA-responsive element-binding factors (ABFs) and Related to ABA-Insensitive 3/VP1 (RAV1) transcription factors. The phosphorylated ABFs and RAV1 up-regulate the expression of senescence-associated genes, partly by up-regulating the expression of Oresara 1. The pyl9 and ABA-insensitive 1-1 single mutants, pyl8-1pyl9 double mutant, and snrk2.2/3/6 triple mutant showed reduced ABA-induced leaf senescence relative to the WT, whereas pRD29A::PYL9 transgenic plants showed enhanced ABA-induced leaf senescence. We found that leaf senescence may benefit drought resistance by helping to generate an osmotic potential gradient, which is increased in pRD29A::PYL9 transgenic plants and causes water to preferentially flow to developing tissues. Our results uncover the molecular mechanism of ABA-induced leaf senescence and suggest an important role of PYL9 and leaf senescence in promoting resistance to extreme drought stress.
Collapse
Affiliation(s)
- Yang Zhao
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907
| | - Zhulong Chan
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jinghui Gao
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; College of Animal Science and Technology, Northwest A&F University, Shaan'xi 712100, China
| | - Lu Xing
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Minjie Cao
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chunmei Yu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; College of Life Sciences, Nantong University, Jiangsu 226019, China
| | - Yuanlei Hu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; College of Life Sciences, Peking University, Beijing 100871, China
| | - Jun You
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Haitao Shi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yingfang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907
| | - Yuehua Gong
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; College of Life Science and Food Engineering, Yibin University, Sichuan 644000, China
| | - Zixin Mu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; College of Life Science, Northwest A&F University, Shaan'xi 712100, China
| | - Haiqing Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Xin Deng
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
| | - Pengcheng Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907
| | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907;
| |
Collapse
|
153
|
Xu H, Cao D, Chen Y, Wei D, Wang Y, Stevenson RA, Zhu Y, Lin J. Gene expression and proteomic analysis of shoot apical meristem transition from dormancy to activation in Cunninghamia lanceolata (Lamb.) Hook. Sci Rep 2016; 6:19938. [PMID: 26832850 PMCID: PMC4735791 DOI: 10.1038/srep19938] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/21/2015] [Indexed: 11/17/2022] Open
Abstract
In contrast to annual plants, in perennial plants, the shoot apical meristem (SAM) can undergo seasonal transitions between dormancy and activity; understanding this transition is crucial for understanding growth in perennial plants. However, little is known about the molecular mechanisms of SAM development in trees. Here, light and transmission electron microscopy revealed that evident changes in starch granules, lipid bodies, and cell walls thickness of the SAM in C. lanceolata during the transition from dormancy to activation. HPLC-ESI-MS/MS analysis showed that levels of indole-3-acetic acid (IAA) increased and levels of abscisic acid (ABA) decreased from dormant to active stage. Examination of 20 genes and 132 differentially expressed proteins revealed that the expression of genes and proteins potentially involved in cell division and expansion significantly increased in the active stage, whereas those related to the abscisic acid insensitive 3(ABI3), the cytoskeleton and energy metabolism decreased in the dormant stage. These findings provide new insights into the complex mechanism of gene and protein expression and their relation to cytological and physiological changes of SAM in this coniferous species.
Collapse
Affiliation(s)
- Huimin Xu
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Dechang Cao
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yanmei Chen
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dongmei Wei
- School of Life Science, Taizhou University, Zhejiang 318000, China
| | - Yanwei Wang
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Rebecca Ann Stevenson
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Yingfang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Jinxing Lin
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
154
|
Ding J, Nilsson O. Molecular regulation of phenology in trees-because the seasons they are a-changin'. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:73-9. [PMID: 26748352 DOI: 10.1016/j.pbi.2015.11.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/05/2015] [Accepted: 11/18/2015] [Indexed: 05/05/2023]
Abstract
The perennial trees, in contrast to the much more studied annual plants, have to adapt their vegetative growth and development to the sometimes extremely contrasting environmental conditions that occur over the different seasons. Recently, studies of the molecular framework underlying this adaptation in Populus trees is reinforcing the notion that the genetic pathways controlling growth and dormancy cycles have a remarkable conservation with the pathways controlling the regulation of flowering time in annual plants. Insight into these mechanisms will be important for our understanding of how trees will respond to various future global climate scenarios.
Collapse
Affiliation(s)
- Jihua Ding
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden.
| |
Collapse
|
155
|
Ito A, Saito T, Sakamoto D, Sugiura T, Bai S, Moriguchi T. Physiological differences between bud breaking and flowering after dormancy completion revealed by DAM and FT/TFL1 expression in Japanese pear (Pyrus pyrifolia). TREE PHYSIOLOGY 2016; 36:109-20. [PMID: 26546364 DOI: 10.1093/treephys/tpv115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/02/2015] [Indexed: 05/04/2023]
Abstract
The regulatory mechanisms underlying bud breaking (scale leaf elongation) and flowering in the lateral flower buds of Japanese pear (Pyrus pyrifolia Nakai 'Kosui') are unknown. To more fully characterize these processes, we treated pear trees with different amounts of chilling initiated at different times. Chilling for ∼900 h at 6 °C always induced bud breaking (scale elongation in ≥70% lateral flower bud) when provided between October and February, whereas chilling provided earlier (between October and December) was less effective on flowering (floret growth and development) than later chilling and the flowering rate increased with longer chilling durations. During chilling, the expression of pear DAMs (PpMADS13-1, 13-2 and 13-3) in lateral flower buds decreased as chilling accumulated irrespective of the timing of chilling. In addition, pear TFL1 (PpTFL1-1a) in the lateral flower buds was expressed at higher levels when the time interval for chilling was earlier. On the other hand, during forcing at 15 °C after chilling, the expression pattern of all three PpMADS13 genes was similar among the treatments, and the expression levels seemed lower in the treatment where scale leaves of the lateral flower bud elongated faster, whereas pear FT (PpFT2a) was expressed at higher levels in the buds whose flower clusters elongated more vigorously during forcing. From these results, we infer that flowering time may be mediated via the balance of flowering-related genes FT and TFL1, whereas bud breaking may be regulated via the DAM genes in Japanese pear.
Collapse
Affiliation(s)
- Akiko Ito
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Takanori Saito
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan Present address: Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Daisuke Sakamoto
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Toshihiko Sugiura
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Songling Bai
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan Present address: Department of Horticulture, The State Agricultural Ministry's Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Takaya Moriguchi
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| |
Collapse
|
156
|
Parmentier-Line CM, Coleman GD. Constitutive expression of the Poplar FD-like basic leucine zipper transcription factor alters growth and bud development. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:260-70. [PMID: 25915693 PMCID: PMC11389003 DOI: 10.1111/pbi.12380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 05/08/2023]
Abstract
In poplar, the CO/FT regulatory module mediates seasonal growth cessation. Although FT interacts with the basic leucine zipper transcription factor FD, surprisingly little is known about the possible role of FD in bud development and growth cessation in trees. In this study, we examined the expression and localization of the poplar FD homolog, PtFD1, during short-day (SD)-induced bud development, and the consequences of overexpressing PtFD1 on bud development and shoot growth. PtFD1 was primarily expressed in apical and axillary buds and exhibited a transient increase in expression during the initial stages of SD-induced bud development. This transient increase declined with continued SD treatment. When PtFD1 was overexpressed in poplar, SD-induced growth cessation and bud formation were abolished. PTFD1 overexpression also resulted in precocious flowering of juvenile plants in long-day (LD) photoperiods. Because the phenotypes associated with overexpression of PtFD1 are similar to those observe when poplar FT1 is overexpressed (Science, 312, 2006, 1040), the expression and diurnal patterns of expression of both poplar FT1 and FT2 were characterized in PtFD1 overexpression poplars and found to be altered. DNA microarray analysis revealed few differences in gene expression between PtFD1 overexpressing poplars in LD conditions while extensive levels of differential gene expression occur in SD-treated plants. These results enforce the connection between the regulation of flowering and the regulation of growth cessation and bud development in poplar.
Collapse
Affiliation(s)
- Cécile M Parmentier-Line
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Gary D Coleman
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| |
Collapse
|
157
|
Zhang H, Li H, Lai B, Xia H, Wang H, Huang X. Morphological Characterization and Gene Expression Profiling during Bud Development in a Tropical Perennial, Litchi chinensis Sonn. FRONTIERS IN PLANT SCIENCE 2016; 7:1517. [PMID: 27833615 PMCID: PMC5080376 DOI: 10.3389/fpls.2016.01517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/26/2016] [Indexed: 05/11/2023]
Abstract
Tropical evergreen perennials undergo recurrent flush growth, and their terminal buds alternate between growth and dormancy. In sharp contrast to the intensive studies on bud development in temperate deciduous trees, there is little information about bud development regulation in tropical trees. In this study, litchi (Litchi chinensis Sonn.) was used as a model tropical perennial for morphological characterization and transcriptomic analysis of bud development. Litchi buds are naked with apical meristem embraced by rudimentary leaves, which are brown at dormant stage (Stage I). They swell and turn greenish as buds break (Stage II), and as growth accelerates, the rudimentary leaves elongate and open exposing the inner leaf primodia. With the outgrowth of the needle-like leaflets, bud growth reaches a maximum (Stage III). When leaflets expand, bud growth cease with the abortion of the rudimentary leaves at upper positions (Stage IV). Then buds turn brown and reenter dormant status. Budbreak occurs again when new leaves become hard green. Buds at four stages (Stage I to IV) were collected for respiration measurements and in-depth RNA sequencing. Respiration rate was the lowest at Stage I and highest at Stage II, decreasing toward growth cessation. RNA sequencing obtained over 5 Gb data from each of the bud samples and de novo assembly generated a total of 59,999 unigenes, 40,119 of which were annotated. Pair-wise comparison of gene expression between stages, gene profiling across stages, GO/KEGG enrichment analysis, and the expression patterns of 17 major genes highlighted by principal component (PC) analysis displayed significant changes in stress resistance, hormone signal pathways, circadian rhythm, photosynthesis, cell division, carbohydrate metabolism, programmed cell death during bud development, which might be under epigenetic control involving chromatin methylation. The qPCR results of 8 selected unigenes with high PC scores agreed with the RPKM values obtained from RNA-seq. Three Short Vegetative Phase (SVP) genes, namely LcSVP1, LcSVP2, and LcSVP3 displayed different expression patterns, suggesting their differential roles in bud development regulation. The study brought an understanding about biological processes associated with the phase transitions, molecular regulation of bud development, as well as cyclic bud growth as a strategy to survive tropical conditions.
Collapse
Affiliation(s)
- Huifen Zhang
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Hua Li
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Biao Lai
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Haoqiang Xia
- Gene Denovo Biotechnology Co. Ltd.Guangzhou, China
| | - Huicong Wang
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Xuming Huang
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural UniversityGuangzhou, China
- *Correspondence: Xuming Huang
| |
Collapse
|
158
|
Prunier J, Tessier G, Bousquet J, MacKay J. From genotypes to phenotypes: expression levels of genes encompassing adaptive SNPs in black spruce. PLANT CELL REPORTS 2015; 34:2111-2125. [PMID: 26260097 DOI: 10.1007/s00299-015-1855-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
Measuring transcript levels for adaptive genes revealed polymorphisms having cis -effect upon gene expression levels related to phenotype variation in a black spruce natural population. Trees growing in temperate and boreal regions must acclimate to changes in climatic factors such as low winter temperatures to survive to seasonal variations. Common garden studies have shown that genetic variation in quantitative traits helps species to survive and adapt to environmental changes and local conditions. Twenty-four genes carrying SNPs were previously associated with genetic adaptation in black spruce (Picea mariana [Mill.] BSP). The objectives of this study were to investigate the potential role of these genes in regulation of winter acclimation and adaptation by studying their patterns of expression as a function of the physiological stage during the annual growth cycle, tissue type, and their SNP genotypic class. Considerable variability in gene expression was observed between different vegetative tissues or organs, and between physiological stages. The genes were expressed predominantly in tissues that could be linked more directly to winter acclimation and adaptation. The expression levels of several of the genes were significantly related to variation in tree height growth or budset timing and expression level variation related to SNP genotypic classes was observed in four of the genes. An interaction between genotypic classes and physiological stages was also observed for some genes, indicating genotypes with different reaction norms in terms of gene expression.
Collapse
Affiliation(s)
- Julien Prunier
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for System and Integrative Biology, Université Laval, 1030 Avenue de la Médecine, Québec, G1V0A6, Canada.
| | - Guillaume Tessier
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for System and Integrative Biology, Université Laval, 1030 Avenue de la Médecine, Québec, G1V0A6, Canada
| | - Jean Bousquet
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for System and Integrative Biology, Université Laval, 1030 Avenue de la Médecine, Québec, G1V0A6, Canada
| | - John MacKay
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for System and Integrative Biology, Université Laval, 1030 Avenue de la Médecine, Québec, G1V0A6, Canada
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
159
|
Herrmann S, Recht S, Boenn M, Feldhahn L, Angay O, Fleischmann F, Tarkka MT, Grams TEE, Buscot F. Endogenous rhythmic growth in oak trees is regulated by internal clocks rather than resource availability. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7113-27. [PMID: 26320242 PMCID: PMC4765786 DOI: 10.1093/jxb/erv408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Common oak trees display endogenous rhythmic growth with alternating shoot and root flushes. To explore the mechanisms involved, microcuttings of the Quercus robur L. clone DF159 were used for (13)C/(15)N labelling in combination with RNA sequencing (RNASeq) transcript profiling of shoots and roots. The effect of plant internal resource availability on the rhythmic growth of the cuttings was tested through inoculation with the ectomycorrhizal fungus Piloderma croceum. Shoot and root flushes were related to parallel shifts in above- and below-ground C and, to a lesser extent, N allocation. Increased plant internal resource availability by P. croceum inoculation with enhanced plant growth affected neither the rhythmic growth nor the associated resource allocation patterns. Two shifts in transcript abundance were identified during root and shoot growth cessation, and most concerned genes were down-regulated. Inoculation with P. croceum suppressed these transcript shifts in roots, but not in shoots. To identify core processes governing the rhythmic growth, functions [Gene Ontology (GO) terms] of the genes differentially expressed during the growth cessation in both leaves and roots of non-inoculated plants and leaves of P. croceum-inoculated plants were examined. Besides genes related to resource acquisition and cell development, which might reflect rather than trigger rhythmic growth, genes involved in signalling and/or regulated by the circadian clock were identified. The results indicate that rhythmic growth involves dramatic oscillations in plant metabolism and gene regulation between below- and above-ground parts. Ectomycorrhizal symbiosis may play a previously unsuspected role in smoothing these oscillations without modifying the rhythmic growth pattern.
Collapse
Affiliation(s)
- S Herrmann
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120 Halle/Saale, Germany Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research,Theodor-Lieser-Str. 4, D-06120 Halle/Saale, Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
| | - S Recht
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120 Halle/Saale, Germany
| | - M Boenn
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120 Halle/Saale, Germany
| | - L Feldhahn
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120 Halle/Saale, Germany
| | - O Angay
- Section Pathology of Woody Plants, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, D-85354 Freising, Germany Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, D-85354 Freising, Germany
| | - F Fleischmann
- Section Pathology of Woody Plants, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, D-85354 Freising, Germany
| | - M T Tarkka
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120 Halle/Saale, Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
| | - T E E Grams
- Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, D-85354 Freising, Germany
| | - F Buscot
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120 Halle/Saale, Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
| |
Collapse
|
160
|
Porth I, Klápště J, McKown AD, La Mantia J, Guy RD, Ingvarsson PK, Hamelin R, Mansfield SD, Ehlting J, Douglas CJ, El-Kassaby YA. Evolutionary Quantitative Genomics of Populus trichocarpa. PLoS One 2015; 10:e0142864. [PMID: 26599762 PMCID: PMC4658102 DOI: 10.1371/journal.pone.0142864] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/27/2015] [Indexed: 11/23/2022] Open
Abstract
Forest trees generally show high levels of local adaptation and efforts focusing on understanding adaptation to climate will be crucial for species survival and management. Here, we address fundamental questions regarding the molecular basis of adaptation in undomesticated forest tree populations to past climatic environments by employing an integrative quantitative genetics and landscape genomics approach. Using this comprehensive approach, we studied the molecular basis of climate adaptation in 433 Populus trichocarpa (black cottonwood) genotypes originating across western North America. Variation in 74 field-assessed traits (growth, ecophysiology, phenology, leaf stomata, wood, and disease resistance) was investigated for signatures of selection (comparing QST -FST) using clustering of individuals by climate of origin (temperature and precipitation). 29,354 SNPs were investigated employing three different outlier detection methods and marker-inferred relatedness was estimated to obtain the narrow-sense estimate of population differentiation in wild populations. In addition, we compared our results with previously assessed selection of candidate SNPs using the 25 topographical units (drainages) across the P. trichocarpa sampling range as population groupings. Narrow-sense QST for 53% of distinct field traits was significantly divergent from expectations of neutrality (indicating adaptive trait variation); 2,855 SNPs showed signals of diversifying selection and of these, 118 SNPs (within 81 genes) were associated with adaptive traits (based on significant QST). Many SNPs were putatively pleiotropic for functionally uncorrelated adaptive traits, such as autumn phenology, height, and disease resistance. Evolutionary quantitative genomics in P. trichocarpa provides an enhanced understanding regarding the molecular basis of climate-driven selection in forest trees and we highlight that important loci underlying adaptive trait variation also show relationship to climate of origin. We consider our approach the most comprehensive, as it uncovers the molecular mechanisms of adaptation using multiple methods and tests. We also provide a detailed outline of the required analyses for studying adaptation to the environment in a population genomics context to better understand the species’ potential adaptive capacity to future climatic scenarios.
Collapse
Affiliation(s)
- Ilga Porth
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Département des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval, Québec, QC, G1V 0A6 Canada
| | - Jaroslav Klápště
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Genetics and Physiology of Forest Trees, Czech University of Life Sciences, Prague, 165 21, Czech Republic
| | - Athena D. McKown
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jonathan La Mantia
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Corn, Soybean and Wheat Quality Research Unit, United States Department of Agriculture, Wooster, Ohio, 44691 United States of America
| | - Robert D. Guy
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Pär K. Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, SE-901 87, Sweden
| | - Richard Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Shawn D. Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jürgen Ehlting
- Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Carl J. Douglas
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- * E-mail:
| |
Collapse
|
161
|
Fennell AY, Schlauch KA, Gouthu S, Deluc LG, Khadka V, Sreekantan L, Grimplet J, Cramer GR, Mathiason KL. Short day transcriptomic programming during induction of dormancy in grapevine. FRONTIERS IN PLANT SCIENCE 2015; 6:834. [PMID: 26582400 PMCID: PMC4632279 DOI: 10.3389/fpls.2015.00834] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 09/23/2015] [Indexed: 05/05/2023]
Abstract
Bud dormancy in grapevine is an adaptive strategy for the survival of drought, high and low temperatures and freeze dehydration stress that limit the range of cultivar adaptation. Therefore, development of a comprehensive understanding of the biological mechanisms involved in bud dormancy is needed to promote advances in selection and breeding, and to develop improved cultural practices for existing grape cultivars. The seasonally indeterminate grapevine, which continuously develops compound axillary buds during the growing season, provides an excellent system for dissecting dormancy, because the grapevine does not transition through terminal bud development prior to dormancy. This study used gene expression patterns and targeted metabolite analysis of two grapevine genotypes that are short photoperiod responsive (Vitis riparia) and non-responsive (V. hybrid, Seyval) for dormancy development to determine differences between bud maturation and dormancy commitment. Grapevine gene expression and metabolites were monitored at seven time points under long (LD, 15 h) and short (SD, 13 h) day treatments. The use of age-matched buds and a small (2 h) photoperiod difference minimized developmental differences and allowed us to separate general photoperiod from dormancy specific gene responses. Gene expression profiles indicated three distinct phases (perception, induction and dormancy) in SD-induced dormancy development in V. riparia. Different genes from the NAC DOMAIN CONTAINING PROTEIN 19 and WRKY families of transcription factors were differentially expressed in each phase of dormancy. Metabolite and transcriptome analyses indicated ABA, trehalose, raffinose and resveratrol compounds have a potential role in dormancy commitment. Finally, a comparison between V. riparia compound axillary bud dormancy and dormancy responses in other species emphasized the relationship between dormancy and the expression of RESVERATROL SYNTHASE and genes associated with C3HC4-TYPE RING FINGER and NAC DOMAIN CONTAINING PROTEIN 19 transcription factors.
Collapse
Affiliation(s)
- Anne Y. Fennell
- Northern Plains BioStress Laboratory, Plant Science Department, South Dakota State UniversityBrookings, SD, USA
| | - Karen A. Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, RenoReno, NV, USA
| | | | - Laurent G. Deluc
- Department of Horticulture, Oregon State UniversityCorvallis, OR, USA
| | - Vedbar Khadka
- Northern Plains BioStress Laboratory, Plant Science Department, South Dakota State UniversityBrookings, SD, USA
| | - Lekha Sreekantan
- Northern Plains BioStress Laboratory, Plant Science Department, South Dakota State UniversityBrookings, SD, USA
| | - Jerome Grimplet
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja)Logroño, Spain
| | - Grant R. Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, RenoReno, NV, USA
| | - Katherine L. Mathiason
- Northern Plains BioStress Laboratory, Plant Science Department, South Dakota State UniversityBrookings, SD, USA
| |
Collapse
|
162
|
Rinne PLH, Paul LK, Vahala J, Ruonala R, Kangasjärvi J, van der Schoot C. Long and short photoperiod buds in hybrid aspen share structural development and expression patterns of marker genes. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6745-60. [PMID: 26248666 PMCID: PMC4623686 DOI: 10.1093/jxb/erv380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tree architecture develops over time through the collective activity of apical and axillary meristems. Although the capacity of both meristems to form buds is crucial for perennial life, a comparative analysis is lacking. As shown here for hybrid aspen, axillary meristems engage in an elaborate process of axillary bud (AXB) formation, while apical dominance prevents outgrowth of branches. Development ceased when AXBs had formed an embryonic shoot (ES) with a predictable number of embryonic leaves at the bud maturation point (BMP). Under short days, terminal buds (TBs) formed an ES similar to that of AXBs, and both the TB and young AXBs above the BMP established dormancy. Quantitative PCR and in situ hybridizations showed that this shared ability and structural similarity was reflected at the molecular level. TBs and AXBs similarly regulated expression of meristem-specific and bud/branching-related genes, including CENTRORADIALIS-LIKE1 (CENL1), BRANCHED1 (BRC1), BRC2, and the strigolactone biosynthesis gene MORE AXILLARY BRANCHES1 (MAX1). Below the BMP, AXBs maintained high CENL1 expression at the rib meristem, suggesting that it serves to maintain poise for growth. In support of this, decapitation initiated outgrowth of CENL1-expressing AXBs, but not of dormant AXBs that had switched CENL1 off. This singles out CENL1 as a rib meristem marker for para-dormancy. BRC1 and MAX1 genes, which may counterbalance CENL1, were down-regulated in decapitation-activated AXBs. The results showed that removal of apical dominance shifted AXB gene expression toward that of apices, while developing TBs adopted the expression pattern of para-dormant AXBs. Bud development thus follows a shared developmental pattern at terminal and axillary positions, despite being triggered by short days and apical dominance, respectively.
Collapse
Affiliation(s)
- Päivi L H Rinne
- Department of Plant Sciences, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Laju K Paul
- Department of Plant Sciences, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Jorma Vahala
- Division of Plant Biology, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Raili Ruonala
- Division of Plant Biology, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jaakko Kangasjärvi
- Division of Plant Biology, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
163
|
Takemura Y, Kuroki K, Shida Y, Araki S, Takeuchi Y, Tanaka K, Ishige T, Yajima S, Tamura F. Comparative Transcriptome Analysis of the Less-Dormant Taiwanese Pear and the Dormant Japanese Pear during Winter Season. PLoS One 2015; 10:e0139595. [PMID: 26451604 PMCID: PMC4599857 DOI: 10.1371/journal.pone.0139595] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 09/14/2015] [Indexed: 11/25/2022] Open
Abstract
The flower bud transcriptome in the less dormant Taiwanese pear ‘Hengshanli’ and high-chilling requiring Japanese pear strain TH3 subjected to the same chilling exposure time were analyzed during winter using next-generation sequencing. In buds sampled on January 10th and on February 7th in 2014, 6,978 and 7,096 genes, respectively, were significantly differentially expressed in the TH3 and ‘Hengshanli’ libraries. A comparative GO analysis revealed that oxidation-reduction process (biological process) and ATP binding (molecular function), were overrepresented during the ecodormancy period (EP) when compared to the endodormancy deepest period (DP), indicating that ATP synthesis was activated during the transition between these dormancy stages. Among the 11 differently expressed genes (DEGs) annotated as probable dehydrins or LEA protein-related genes, 9 DEGs showed higher transcript levels in the DP than in the EP. In order to focus on transcription factors induced by low temperature or drought, 7 differently expressed genes (DEGs) annotated as probable ICE1 or DREB proteins were analyzed by real-time PCR. Expression levels of 3 genes were higher in TH3 than in ‘Hengshanli’ on all sampling days. Their expression increased during the endodormancy deepest period (DP) and then decreased before endodormancy breaking in TH3 buds. Taken together, these results suggest that these genes annotated as ICE1, DREB and ERF are involved in endodormancy maintenance and in the transition from endodormancy to ecodormancy.
Collapse
Affiliation(s)
- Yoshihiro Takemura
- Faculty of Agriculture, Tottori University, Koyama, Tottori, 680-8553, Japan
| | - Katsuou Kuroki
- Faculty of Agriculture, Tottori University, Koyama, Tottori, 680-8553, Japan
| | - Yoji Shida
- Faculty of Agriculture, Tottori University, Koyama, Tottori, 680-8553, Japan
| | - Shungo Araki
- Faculty of Agriculture, Tottori University, Koyama, Tottori, 680-8553, Japan
| | - Yukari Takeuchi
- Faculty of Agriculture, Tottori University, Koyama, Tottori, 680-8553, Japan
| | - Keisuke Tanaka
- NODA Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Taichiro Ishige
- NODA Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Shunsuke Yajima
- NODA Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, 156-8502, Japan; Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Fumio Tamura
- Faculty of Agriculture, Tottori University, Koyama, Tottori, 680-8553, Japan
| |
Collapse
|
164
|
Meitha K, Konnerup D, Colmer TD, Considine JA, Foyer CH, Considine MJ. Spatio-temporal relief from hypoxia and production of reactive oxygen species during bud burst in grapevine (Vitis vinifera). ANNALS OF BOTANY 2015; 116:703-11. [PMID: 26337519 PMCID: PMC4578006 DOI: 10.1093/aob/mcv123] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 07/01/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Plants regulate cellular oxygen partial pressures (pO2), together with reduction/oxidation (redox) state in order to manage rapid developmental transitions such as bud burst after a period of quiescence. However, our understanding of pO2 regulation in complex meristematic organs such as buds is incomplete and, in particular, lacks spatial resolution. METHODS The gradients in pO2 from the outer scales to the primary meristem complex were measured in grapevine (Vitis vinifera) buds, together with respiratory CO2 production rates and the accumulation of superoxide and hydrogen peroxide, from ecodormancy through the first 72 h preceding bud burst, triggered by the transition from low to ambient temperatures. KEY RESULTS Steep internal pO2 gradients were measured in dormant buds with values as low as 2·5 kPa found in the core of the bud prior to bud burst. Respiratory CO2 production rates increased soon after the transition from low to ambient temperatures and the bud tissues gradually became oxygenated in a patterned process. Within 3 h of the transition to ambient temperatures, superoxide accumulation was observed in the cambial meristem, co-localizing with lignified cellulose associated with pro-vascular tissues. Thereafter, superoxide accumulated in other areas subtending the apical meristem complex, in the absence of significant hydrogen peroxide accumulation, except in the cambial meristem. By 72 h, the internal pO2 gradient showed a biphasic profile, where the minimum pO2 was external to the core of the bud complex. CONCLUSIONS Spatial and temporal control of the tissue oxygen environment occurs within quiescent buds, and the transition from quiescence to bud burst is accompanied by a regulated relaxation of the hypoxic state and accumulation of reactive oxygen species within the developing cambium and vascular tissues of the heterotrophic grapevine buds.
Collapse
Affiliation(s)
- Karlia Meitha
- School of Plant Biology, and The Institute of Agriculture, The University of Western Australia, Crawley, WA, 6009 Australia
| | - Dennis Konnerup
- School of Plant Biology, and The Institute of Agriculture, The University of Western Australia, Crawley, WA, 6009 Australia, Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen, Denmark
| | - Timothy D Colmer
- School of Plant Biology, and The Institute of Agriculture, The University of Western Australia, Crawley, WA, 6009 Australia
| | - John A Considine
- School of Plant Biology, and The Institute of Agriculture, The University of Western Australia, Crawley, WA, 6009 Australia
| | - Christine H Foyer
- School of Plant Biology, and The Institute of Agriculture, The University of Western Australia, Crawley, WA, 6009 Australia, Centre for Plant Sciences, University of Leeds, Leeds, Yorkshire LS29JT, UK and
| | - Michael J Considine
- School of Plant Biology, and The Institute of Agriculture, The University of Western Australia, Crawley, WA, 6009 Australia, Centre for Plant Sciences, University of Leeds, Leeds, Yorkshire LS29JT, UK and Department of Agriculture and Food Western Australia, South Perth, WA, 6151 Australia
| |
Collapse
|
165
|
OuYang F, Mao JF, Wang J, Zhang S, Li Y. Transcriptome Analysis Reveals that Red and Blue Light Regulate Growth and Phytohormone Metabolism in Norway Spruce [Picea abies (L.) Karst]. PLoS One 2015; 10:e0127896. [PMID: 26237749 PMCID: PMC4523189 DOI: 10.1371/journal.pone.0127896] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/20/2015] [Indexed: 12/22/2022] Open
Abstract
The mechanisms by which different light spectra regulate plant shoot elongation vary, and phytohormones respond differently to such spectrum-associated regulatory effects. Light supplementation can effectively control seedling growth in Norway spruce. However, knowledge of the effective spectrum for promoting growth and phytohormone metabolism in this species is lacking. In this study, 3-year-old Norway spruce clones were illuminated for 12 h after sunset under blue or red light-emitting diode (LED) light for 90 d, and stem increments and other growth traits were determined. Endogenous hormone levels and transcriptome differences in the current needles were assessed to identify genes related to the red and blue light regulatory responses. The results showed that the stem increment and gibberellin (GA) levels of the seedlings illuminated by red light were 8.6% and 29.0% higher, respectively, than those of the seedlings illuminated by blue light. The indoleacetic acid (IAA) level of the seedlings illuminated by red light was 54.6% lower than that of the seedlings illuminated by blue light, and there were no significant differences in abscisic acid (ABA) or zeatin riboside [ZR] between the two groups of seedlings. The transcriptome results revealed 58,736,166 and 60,555,192 clean reads for the blue-light- and red-light-illuminated samples, respectively. Illumina sequencing revealed 21,923 unigenes, and 2744 (approximately 93.8%) out of 2926 differentially expressed genes (DEGs) were found to be upregulated under blue light. The main KEGG classifications of the DEGs were metabolic pathway (29%), biosynthesis of secondary metabolites (20.49%) and hormone signal transduction (8.39%). With regard to hormone signal transduction, AUXIN-RESISTANT1 (AUX1), AUX/IAA genes, auxin-inducible genes, and early auxin-responsive genes [(auxin response factor (ARF) and small auxin-up RNA (SAUR)] were all upregulated under blue light compared with red light, which might have yielded the higher IAA level. DELLA and phytochrome-interacting factor 3 (PIF3), involved in negative GA signaling, were also upregulated under blue light, which may be related to the lower GA level. Light quality also affects endogenous hormones by influencing secondary metabolism. Blue light promoted phenylpropanoid biosynthesis, phenylalanine metabolism, flavonoid biosynthesis and flavone and flavonol biosynthesis, accompanied by upregulation of most of the genes in their pathways. In conclusion, red light may promote stem growth by regulating biosynthesis of GAs, and blue light may promote flavonoid, lignin, phenylpropanoid and some hormones (such as jasmonic acid) which were related to plant defense in Norway spruce, which might reduce the primary metabolites available for plant growth.
Collapse
Affiliation(s)
- Fangqun OuYang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy Forestry, Beijing, 100091, PR China
- National Engineering laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plant of Ministry of Education, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Jian-Feng Mao
- National Engineering laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plant of Ministry of Education, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy Forestry, Beijing, 100091, PR China
| | - Shougong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy Forestry, Beijing, 100091, PR China
| | - Yue Li
- National Engineering laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plant of Ministry of Education, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, PR China
| |
Collapse
|
166
|
Menon M, Barnes WJ, Olson MS. Population genetics of freeze tolerance among natural populations of Populus balsamifera across the growing season. THE NEW PHYTOLOGIST 2015; 207:710-22. [PMID: 25809016 DOI: 10.1111/nph.13381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/16/2015] [Indexed: 05/07/2023]
Abstract
Protection against freeze damage during the growing season influences the northern range limits of plants. Freeze tolerance and freeze avoidance are the two major freeze resistance strategies. Winter survival strategies have been extensively studied in perennials, but few have addressed them and their genetic basis during the growing season. We examined intraspecific phenotypic variation in freeze resistance of Populus balsamifera across latitude and the growing season. To investigate the molecular basis of this variation, we surveyed nucleotide diversity and examined patterns of gene expression in the poplar C-repeat binding factor (CBF) gene family. Foliar freeze tolerance exhibited latitudinal and seasonal variation indicative of natural genotypic variation. CBF6 showed signatures of recent selective sweep. Of the 46 SNPs surveyed across the six CBF homologs, only CBF2_619 exhibited latitudinal differences consistent with increased freeze tolerance in the north. All six CBF genes were cold inducible, but showed varying patterns of expression across the growing season. Some Poplar CBF homologs exhibited patterns consistent with historical selection and clinal variation in freeze tolerance documented here. However, the CBF genes accounted for only a small amount of the variation, indicating that other genes in this and other molecular pathways likely play significant roles in nature.
Collapse
Affiliation(s)
- Mitra Menon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - William J Barnes
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Matthew S Olson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
167
|
Hao X, Chao W, Yang Y, Horvath D. Coordinated Expression of FLOWERING LOCUS T and DORMANCY ASSOCIATED MADS-BOX-Like Genes in Leafy Spurge. PLoS One 2015; 10:e0126030. [PMID: 25961298 PMCID: PMC4427404 DOI: 10.1371/journal.pone.0126030] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/27/2015] [Indexed: 11/18/2022] Open
Abstract
Leafy spurge (Euphorbia esula L.) is a noxious perennial weed that produces underground adventitious buds, which are crucial for generating new vegetative shoots following periods of freezing temperatures or exposure to various control measures. It is also capable of flowering and producing seeds, but requires vernalization in some cases. DORMANCY ASSOCIATED MADS-BOX (DAM) genes have been proposed to play a direct role in the transition to winter-induced dormancy and maintenance through regulation of the FLOWERING LOCUS T (FT) gene, which also is likely involved in the vernalization process. To explore the regulation of FT and DAM during dormancy transitions in leafy spurge, the transcript accumulation of two previously cloned DAM splice variants and two different previously cloned FT genes was characterized. Under long-photoperiods (16 h light), both DAM and FT transcripts accumulate in a diurnal manner. Tissue specific expression patterns indicated the tissues with high DAM expression had low FT expression and vice versa. DAM expression is detected in leaves, stems, shoot tips, and crown buds. FT transcripts were detected mainly in leaves and flowers. Under dormancy inducing conditions, DAM and FT genes had an inverse expression pattern. Additionally, chromatin immunoprecipitation assays were performed using DAM-like protein specific antibodies to demonstrate that DAM or related proteins likely bind to cryptic and/or conserved CArG boxes in the promoter regions of FT genes isolated from endodormant crown buds. These results are consistent with the hypothesis that DAM proteins play a crucial role in leafy spurge dormancy transition and maintenance, potentially by negatively regulating the expression of FT.
Collapse
Affiliation(s)
- Xinyuan Hao
- Tea Research Institute, Chinese Academy of Agricultural Sciences; National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, No. 9 south Meiling Road, Hangzhou, Zhejiang 310008, China
- United States Department of Agriculture, Agriculture Research Services, Bioscience Research Laboratory, 1605 Albrecht Blvd, Fargo, North Dakota, 58105, United States of America
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wun Chao
- United States Department of Agriculture, Agriculture Research Services, Bioscience Research Laboratory, 1605 Albrecht Blvd, Fargo, North Dakota, 58105, United States of America
| | - Yajun Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences; National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, No. 9 south Meiling Road, Hangzhou, Zhejiang 310008, China
| | - David Horvath
- United States Department of Agriculture, Agriculture Research Services, Bioscience Research Laboratory, 1605 Albrecht Blvd, Fargo, North Dakota, 58105, United States of America
- * E-mail:
| |
Collapse
|
168
|
Porto DD, Bruneau M, Perini P, Anzanello R, Renou JP, dos Santos HP, Fialho FB, Revers LF. Transcription profiling of the chilling requirement for bud break in apples: a putative role for FLC-like genes. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2659-72. [PMID: 25750421 DOI: 10.1093/jxb/erv061] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Apple production depends on the fulfilment of a chilling requirement for bud dormancy release. Insufficient winter chilling results in irregular and suboptimal bud break in the spring, with negative impacts on apple yield. Trees from apple cultivars with contrasting chilling requirements for bud break were used to investigate the expression of the entire set of apple genes in response to chilling accumulation in the field and controlled conditions. Total RNA was analysed on the AryANE v.1.0 oligonucleotide microarray chip representing 57,000 apple genes. The data were tested for functional enrichment, and differential expression was confirmed by real-time PCR. The largest number of differentially expressed genes was found in samples treated with cold temperatures. Cold exposure mostly repressed expression of transcripts related to photosynthesis, and long-term cold exposure repressed flavonoid biosynthesis genes. Among the differentially expressed selected candidates, we identified genes whose annotations were related to the circadian clock, hormonal signalling, regulation of growth, and flower development. Two genes, annotated as FLOWERING LOCUS C-like and MADS AFFECTING FLOWERING, showed strong differential expression in several comparisons. One of these two genes was upregulated in most comparisons involving dormancy release, and this gene's chromosomal position co-localized with the confidence interval of a major quantitative trait locus for the timing of bud break. These results indicate that photosynthesis and auxin transport are major regulatory nodes of apple dormancy and unveil strong candidates for the control of bud dormancy.
Collapse
Affiliation(s)
- Diogo Denardi Porto
- Centro de Pesquisa Agropecuária do Trópico Semi-Árido, Empresa Brasileira de Pesquisa Agropecuária, BR-428, Km 152, 56302-970, Petrolina, PE, Brazil
| | - Maryline Bruneau
- Institut de Recherche en Horticulture et Semences (IRHS), A, 42 rue Georges Morel, 49071 Beaucouzé Cedex, France
| | - Pâmela Perini
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Rua General Osório, 348, Centro, 95700-000, Bento Gonçalves, RS, Brazil
| | - Rafael Anzanello
- Fundação Estadual de Pesquisa Agropecuária, RSC-470, Km 170, 95330-000, Veranópolis, RS, Brazil
| | - Jean-Pierre Renou
- Institut de Recherche en Horticulture et Semences (IRHS), A, 42 rue Georges Morel, 49071 Beaucouzé Cedex, France
| | - Henrique Pessoa dos Santos
- Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Rua Livramento, 515, 95700-000, Bento Gonçalves, RS, Brazil
| | - Flávio Bello Fialho
- Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Rua Livramento, 515, 95700-000, Bento Gonçalves, RS, Brazil
| | - Luís Fernando Revers
- Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Rua Livramento, 515, 95700-000, Bento Gonçalves, RS, Brazil
| |
Collapse
|
169
|
Strømme CB, Julkunen-Tiitto R, Krishna U, Lavola A, Olsen JE, Nybakken L. UV-B and temperature enhancement affect spring and autumn phenology in Populus tremula. PLANT, CELL & ENVIRONMENT 2015; 38:867-877. [PMID: 24689776 DOI: 10.1111/pce.12338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/18/2014] [Accepted: 03/23/2014] [Indexed: 06/03/2023]
Abstract
Perennial plants growing at high latitudes synchronize growth and dormancy to appropriate seasons by sensing environmental cues. Autumnal growth cessation, bud set and dormancy induction are commonly driven by the length of photoperiod and light quality, and the responses are modified by temperature. However, although ultraviolet (UV)-B radiation is well known to affect plant growth and development, information on the effects on bud phenology is scarce. We examined the separate and combined effects of enhanced temperature and UV-B on autumnal bud set and spring bud break in female and male clones of Populus tremula in an outdoor experiment in Joensuu, Eastern Finland. Enhancements of UV-B and temperature were modulated to +30% and +2 °C, respectively, from June to October 2012. Enhanced UV-B accelerated bud set, while increased temperature delayed it. For both UV-B and temperature, we found sex-related differences in responsiveness. Temperature increase had a stronger delaying effect on bud maturation in male compared with female clones. Also, male clones were more responsive to UV-B increase than female clones. Increasing autumnal temperature enhanced bud break in spring for both sexes, while UV-B enhanced bud break in male clones. In conclusion, we found that UV-B affected phenological shifts in P. tremula, and that temperature and UV-B affected genders differently.
Collapse
Affiliation(s)
- C B Strømme
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, 1432, Ås, Norway
| | | | | | | | | | | |
Collapse
|
170
|
Zheng C, Halaly T, Acheampong AK, Takebayashi Y, Jikumaru Y, Kamiya Y, Or E. Abscisic acid (ABA) regulates grape bud dormancy, and dormancy release stimuli may act through modification of ABA metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1527-42. [PMID: 25560179 PMCID: PMC4339608 DOI: 10.1093/jxb/eru519] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In warm-winter regions, induction of dormancy release by hydrogen cyanamide (HC) is mandatory for commercial table grape production. Induction of respiratory stress by HC leads to dormancy release via an uncharacterized biochemical cascade that could reveal the mechanism underlying this phenomenon. Previous studies proposed a central role for abscisic acid (ABA) in the repression of bud meristem activity, and suggested its removal as a critical step in the HC-induced cascade. In the current study, support for these assumptions was sought. The data show that ABA indeed inhibits dormancy release in grape (Vitis vinifera) buds and attenuates the advancing effect of HC. However, HC-dependent recovery was detected, and was affected by dormancy status. HC reduced VvXERICO and VvNCED transcript levels and induced levels of VvABA8'OH homologues. Regulation of these central players in ABA metabolism correlated with decreased ABA and increased ABA catabolite levels in HC-treated buds. Interestingly, an inhibitor of ethylene signalling attenuated these effects of HC on ABA metabolism. HC also modulated the expression of ABA signalling regulators, in a manner that supports a decreased ABA level and response. Taken together, the data support HC-induced removal of ABA-mediated repression via regulation of ABA metabolism and signalling. Expression profiling during the natural dormancy cycle revealed that at maximal dormancy, the HC-regulated VvNCED1 transcript level starts to drop. In parallel, levels of VvA8H-CYP707A4 transcript and ABA catabolites increase sharply. This may provide initial support for the involvement of ABA metabolism also in the execution of natural dormancy.
Collapse
Affiliation(s)
- Chuanlin Zheng
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel Institute of Plant Sciences and Genetics in Agriculture, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Tamar Halaly
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel
| | - Atiako Kwame Acheampong
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel Institute of Plant Sciences and Genetics in Agriculture, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | - Yusuke Jikumaru
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Yuji Kamiya
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Etti Or
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel
| |
Collapse
|
171
|
Dual role of tree florigen activation complex component FD in photoperiodic growth control and adaptive response pathways. Proc Natl Acad Sci U S A 2015; 112:3140-5. [PMID: 25713384 DOI: 10.1073/pnas.1423440112] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A complex consisting of evolutionarily conserved FD, flowering locus T (FT) proteins is a regulator of floral transition. Intriguingly, FT orthologs are also implicated in developmental transitions distinct from flowering, such as photoperiodic control of bulbing in onions, potato tuberization, and growth cessation in trees. However, whether an FT-FD complex participates in these transitions and, if so, its mode of action, are unknown. We identified two closely related FD homologs, FD-like 1 (FDL1) and FD-like 2 (FDL2), in the model tree hybrid aspen. Using gain of function and RNAi-suppressed FDL1 and FDL2 transgenic plants, we show that FDL1 and FDL2 have distinct functions and a complex consisting of FT and FDL1 mediates in photoperiodic control of seasonal growth. The downstream target of the FT-FD complex in photoperiodic control of growth is Like AP1 (LAP1), a tree ortholog of the floral meristem identity gene APETALA1. Intriguingly, FDL1 also participates in the transcriptional control of adaptive response and bud maturation pathways, independent of its interaction with FT, presumably via interaction with abscisic acid insensitive 3 (ABI3) transcription factor, a component of abscisic acid (ABA) signaling. Our data reveal that in contrast to its primary role in flowering, FD has dual roles in the photoperiodic control of seasonal growth and stress tolerance in trees. Thus, the functions of FT and FD have diversified during evolution, and FD homologs have acquired roles that are independent of their interaction with FT.
Collapse
|
172
|
Eriksson ME, Hoffman D, Kaduk M, Mauriat M, Moritz T. Transgenic hybrid aspen trees with increased gibberellin (GA) concentrations suggest that GA acts in parallel with FLOWERING LOCUS T2 to control shoot elongation. THE NEW PHYTOLOGIST 2015; 205:1288-1295. [PMID: 25382585 DOI: 10.1111/nph.13144] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/24/2014] [Indexed: 05/21/2023]
Abstract
Bioactive gibberellins (GAs) have been implicated in short day (SD)-induced growth cessation in Populus, because exogenous applications of bioactive GAs to hybrid aspens (Populus tremula × tremuloides) under SD conditions delay growth cessation. However, this effect diminishes with time, suggesting that plants may cease growth following exposure to SDs due to a reduction in sensitivity to GAs. In order to validate and further explore the role of GAs in growth cessation, we perturbed GA biosynthesis or signalling in hybrid aspen plants by overexpressing AtGA20ox1, AtGA2ox2 and PttGID1.3 (encoding GA biosynthesis enzymes and a GA receptor). We found trees with elevated concentrations of bioactive GA, due to overexpression of AtGA20ox1, continued to grow in SD conditions and were insensitive to the level of FLOWERING LOCUS T2 (FT2) expression. As transgenic plants overexpressing the PttGID1.3 GA receptor responded in a wild-type (WT) manner to SD conditions, this insensitivity did not result from limited receptor availability. As high concentrations of bioactive GA during SD conditions were sufficient to sustain shoot elongation growth in hybrid aspen trees, independent of FT2 expression levels, we conclude elongation growth in trees is regulated by both GA- and long day-responsive pathways, similar to the regulation of flowering in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Maria E Eriksson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87, Umeå, Sweden
| | - Daniel Hoffman
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
| | - Mateusz Kaduk
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
| | - Mélanie Mauriat
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
| | - Thomas Moritz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
| |
Collapse
|
173
|
Lesur I, Bechade A, Lalanne C, Klopp C, Noirot C, Leplé JC, Kremer A, Plomion C, Le Provost G. A unigene set for European beech (Fagus sylvatica L.) and its use to decipher the molecular mechanisms involved in dormancy regulation. Mol Ecol Resour 2015; 15:1192-204. [PMID: 25594128 DOI: 10.1111/1755-0998.12373] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/06/2015] [Accepted: 01/13/2015] [Indexed: 11/27/2022]
Abstract
Systematic sequencing is the method of choice for generating genomic resources for molecular marker development and candidate gene identification in nonmodel species. We generated 47,357 Sanger ESTs and 2.2M Roche-454 reads from five cDNA libraries for European beech (Fagus sylvatica L.). This tree species of high ecological and economic value in Europe is among the most representative trees of deciduous broadleaf forests. The sequences generated were assembled into 21,057 contigs with MIRA software. Functional annotations were obtained for 85% of these contigs, from the proteomes of four plant species, Swissprot accessions and the Gene Ontology database. We were able to identify 28,079 in silico SNPs for future marker development. Moreover, RNAseq and qPCR approaches identified genes and gene networks regulated differentially between two critical phenological stages preceding vegetative bud burst (the quiescent and swelling buds stages). According to climatic model-based projection, some European beech populations may be endangered, particularly at the southern and eastern edges of the European distribution range, which are strongly affected by current climate change. This first genomic resource for the genus Fagus should facilitate the identification of key genes for beech adaptation and management strategies for preserving beech adaptability.
Collapse
Affiliation(s)
- Isabelle Lesur
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.,Univ. Bordeaux, BIOGECO, UMR 1202, F-33615, Pessac, France.,Helix Venture, F-33700, Mérignac, France
| | - Alison Bechade
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.,Univ. Bordeaux, BIOGECO, UMR 1202, F-33615, Pessac, France
| | - Céline Lalanne
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.,Univ. Bordeaux, BIOGECO, UMR 1202, F-33615, Pessac, France
| | - Christophe Klopp
- Plateforme bioinformatique Genotoul, UR875UR875 Mathématique et Informatique Appliquée de Toulouse, INRA, 31326, Castanet-Tolosan, France
| | - Céline Noirot
- Plateforme bioinformatique Genotoul, UR875UR875 Mathématique et Informatique Appliquée de Toulouse, INRA, 31326, Castanet-Tolosan, France
| | - Jean-Charles Leplé
- INRA, UR0588 Amélioration Génétique et Physiologie Forestières, F-45075, Orléans, France
| | - Antoine Kremer
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.,Univ. Bordeaux, BIOGECO, UMR 1202, F-33615, Pessac, France
| | - Christophe Plomion
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.,Univ. Bordeaux, BIOGECO, UMR 1202, F-33615, Pessac, France
| | - Grégoire Le Provost
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.,Univ. Bordeaux, BIOGECO, UMR 1202, F-33615, Pessac, France
| |
Collapse
|
174
|
Wisniewski M, Norelli J, Artlip T. Overexpression of a peach CBF gene in apple: a model for understanding the integration of growth, dormancy, and cold hardiness in woody plants. FRONTIERS IN PLANT SCIENCE 2015; 6:85. [PMID: 25774159 PMCID: PMC4343015 DOI: 10.3389/fpls.2015.00085] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/02/2015] [Indexed: 05/18/2023]
Abstract
The timing of cold acclimation and deacclimation, dormancy, and budbreak play an integral role in the life cycle of woody plants. The molecular events that regulate these parameters have been the subject of much study, however, in most studies these events have been investigated independently of each other. Ectopic expression of a peach CBF (PpCBF1) in apple increases the level of both non-acclimated and acclimated freezing tolerance relative to the non-transformed control, and also inhibits growth, induces early bud set and leaf senescence, and delays bud break in the spring. The current study examined differences in the seasonal expression of genes (CBF, DAM, RGL, and EBB) that have been reported to be associated with freezing tolerance, dormancy, growth, and bud break, respectively, in the PpCBF1 T166 transgenic apple line and the non-transformed M.26 control. Results indicated that expression of several of these key genes, including MdDAM, MdRGL, and MdEBB was altered in transgenic T166 trees relative to non-transformed M.26 trees. In particular, several putative MdDAM genes, associated with the dormancy-cycle in other species of woody plants in the Rosaceae, exhibited different patterns of expression in the T166 vs. M.26 trees. Additionally, for the first time a putative APETALA2/Ethylene-responsive transcription factor, originally described in poplar and shown to regulate the timing of bud break, was shown to be associated with the timing of bud break in apple. Since the overexpression of PpCBF1 in apple results in a dramatic alteration in cold acclimation, dormancy, and growth, this transgenic line (T166) may represent a useful model for studying the integration of these seasonal life-cycle parameters.
Collapse
Affiliation(s)
- Michael Wisniewski
- *Correspondence: Michael Wisniewski, United States Department of Agriculture – Agricultural Research Service, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA e-mail:
| | | | | |
Collapse
|
175
|
Wang D, Gao Z, Du P, Xiao W, Tan Q, Chen X, Li L, Gao D. Expression of ABA Metabolism-Related Genes Suggests Similarities and Differences Between Seed Dormancy and Bud Dormancy of Peach (Prunus persica). FRONTIERS IN PLANT SCIENCE 2015; 6:1248. [PMID: 26793222 PMCID: PMC4707674 DOI: 10.3389/fpls.2015.01248] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/21/2015] [Indexed: 05/07/2023]
Abstract
Dormancy inhibits seed and bud growth of perennial plants until the environmental conditions are optimal for survival. Previous studies indicated that certain co-regulation pathways exist in seed and bud dormancy. In our study, we found that seed and bud dormancy are similar to some extent but show different reactions to chemical treatments that induce breaking of dormancy. Whether the abscisic acid (ABA) regulatory networks are similar in dormant peach seeds and buds is not well known; however, ABA is generally believed to play a critical role in seed and bud dormancy. In peach, some genes putatively involved in ABA synthesis and catabolism were identified and their expression patterns were studied to learn more about ABA homeostasis and the possible crosstalk between bud dormancy and seed dormancy mechanisms. The analysis demonstrated that two 9-cis-epoxycarotenoid dioxygenase-encoding genes seem to be key in regulating ABA biosynthesis to induce seed and bud dormancy. Three CYP707As play an overlapping role in controlling ABA inactivation, resulting in dormancy-release. In addition, Transcript analysis of ABA metabolism-related genes was much similar demonstrated that ABA pathways was similar in the regulation of vegetative and flower bud dormancy, whereas, expression patterns of ABA metabolism-related genes were different in seed dormancy showed that ABA pathway maybe different in regulating seed dormancy in peach.
Collapse
Affiliation(s)
- Dongling Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Zhenzhen Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Peiyong Du
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Wei Xiao
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Qiuping Tan
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Xiude Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Ling Li
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
- *Correspondence: Ling Li
| | - Dongsheng Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
- Dongsheng Gao
| |
Collapse
|
176
|
Howe GT, Horvath DP, Dharmawardhana P, Priest HD, Mockler TC, Strauss SH. Extensive Transcriptome Changes During Natural Onset and Release of Vegetative Bud Dormancy in Populus. FRONTIERS IN PLANT SCIENCE 2015; 6:989. [PMID: 26734012 PMCID: PMC4681841 DOI: 10.3389/fpls.2015.00989] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/29/2015] [Indexed: 05/19/2023]
Abstract
To survive winter, many perennial plants become endodormant, a state of suspended growth maintained even in favorable growing environments. To understand vegetative bud endodormancy, we collected paradormant, endodormant, and ecodormant axillary buds from Populus trees growing under natural conditions. Of 44,441 Populus gene models analyzed using NimbleGen microarrays, we found that 1,362 (3.1%) were differentially expressed among the three dormancy states, and 429 (1.0%) were differentially expressed during only one of the two dormancy transitions (FDR p-value < 0.05). Of all differentially expressed genes, 69% were down-regulated from paradormancy to endodormancy, which was expected given the lower metabolic activity associated with endodormancy. Dormancy transitions were accompanied by changes in genes associated with DNA methylation (via RNA-directed DNA methylation) and histone modifications (via Polycomb Repressive Complex 2), confirming and extending knowledge of chromatin modifications as major features of dormancy transitions. Among the chromatin-associated genes, two genes similar to SPT (SUPPRESSOR OF TY) were strongly up-regulated during endodormancy. Transcription factor genes and gene sets that were atypically up-regulated during endodormancy include a gene that seems to encode a trihelix transcription factor and genes associated with proteins involved in responses to ethylene, cold, and other abiotic stresses. These latter transcription factors include ETHYLENE INSENSITIVE 3 (EIN3), ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEIN (EBP), ETHYLENE RESPONSE FACTOR (ERF), ZINC FINGER PROTEIN 10 (ZAT10), ZAT12, and WRKY DNA-binding domain proteins. Analyses of phytohormone-associated genes suggest important changes in responses to ethylene, auxin, and brassinosteroids occur during endodormancy. We found weaker evidence for changes in genes associated with salicylic acid and jasmonic acid, and little evidence for important changes in genes associated with gibberellins, abscisic acid, and cytokinin. We identified 315 upstream sequence motifs associated with eight patterns of gene expression, including novel motifs and motifs associated with the circadian clock and responses to photoperiod, cold, dehydration, and ABA. Analogies between flowering and endodormancy suggest important roles for genes similar to SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL), DORMANCY ASSOCIATED MADS-BOX (DAM), and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1).
Collapse
Affiliation(s)
- Glenn T. Howe
- Department of Forest Ecosystems and Society, Oregon State UniversityCorvallis, OR, USA
| | - David P. Horvath
- Biosciences Research Laboratory, United States Department of Agriculture-Agricultural Research ServiceFargo, ND, USA
| | - Palitha Dharmawardhana
- Department of Forest Ecosystems and Society, Oregon State UniversityCorvallis, OR, USA
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA
| | - Henry D. Priest
- Donald Danforth Plant Science CenterSaint Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University in Saint LouisSaint Louis, MO, USA
| | - Todd C. Mockler
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA
- Donald Danforth Plant Science CenterSaint Louis, MO, USA
| | - Steven H. Strauss
- Department of Forest Ecosystems and Society, Oregon State UniversityCorvallis, OR, USA
- *Correspondence: Steven H. Strauss,
| |
Collapse
|
177
|
Zhuang W, Gao Z, Wen L, Huo X, Cai B, Zhang Z. Metabolic changes upon flower bud break in Japanese apricot are enhanced by exogenous GA4. HORTICULTURE RESEARCH 2015; 2:15046. [PMID: 26504583 PMCID: PMC4588617 DOI: 10.1038/hortres.2015.46] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 05/05/2023]
Abstract
Gibberellin (GA4) has a significant effect on promoting dormancy release in flower buds of Japanese apricot (Prunus mume Sieb. et Zucc). The transcriptomic and proteomic changes that occur after GA4 treatment have been reported previously; however, the metabolic changes brought about by GA4 remain unknown. The present study was undertaken to assess changes in metabolites in response to GA4 treatment, as determined using gas chromatography-mass spectrometry and principal component analysis. Fifty-five metabolites that exhibited more than two-fold differences in abundance (P < 0.05) between samples collected over time after a given treatment or between samples exposed to different treatments were studied further. These metabolites were categorized into six main groups: amino acids and their isoforms (10), amino acid derivatives (7), sugars and polyols (14), organic acids (12), fatty acids (4), and others (8). All of these groups are involved in various metabolic pathways, in particular galactose metabolism, glyoxylate and dicarboxylate metabolism, and starch and sucrose metabolism. These results suggested that energy metabolism is important at the metabolic level in dormancy release following GA4 treatment. We also found that more than 10-fold differences in abundance were observed for many metabolites, including sucrose, proline, linoleic acid, and linolenic acid, which might play important roles during the dormancy process. The current research extends our understanding of the mechanisms involved in budburst and dormancy release in response to GA4 and provides a theoretical basis for applying GA4 to release dormancy.
Collapse
Affiliation(s)
- Weibing Zhuang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- ()
| | - Luhua Wen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ximei Huo
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Binhua Cai
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
178
|
Ding Q, Zeng J, He XQ. Deep sequencing on a genome-wide scale reveals diverse stage-specific microRNAs in cambium during dormancy-release induced by chilling in poplar. BMC PLANT BIOLOGY 2014; 14:267. [PMID: 25269469 PMCID: PMC4189724 DOI: 10.1186/s12870-014-0267-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/25/2014] [Indexed: 05/07/2023]
Abstract
BACKGROUND Trees in temperate zones show periodicity by alternating active and dormant states to adapt to environmental conditions. Although phytohormones and transcriptional regulation were found to be involved in growth cessation and dormancy transition, little is known about the mechanisms of the dormancy-active growth transition, especially dormancy maintenance and release. Small RNAs are a group of short non-coding RNAs regulating gene expressions at the post-transcriptional level during plant development and the responses to environmental stress. No report on the expression profiling of small RNAs in the cambial meristem during the dormancy-active growth transition has been reported to date. RESULTS Three small RNA libraries from the cambium of poplar, representing endodormancy induced by short day conditions, ecodormancy induced by chilling and active growth induced by long day conditions, respectively, were generated and sequenced by Illumina high-throughput sequencing technology. This yielded 123 known microRNAs (miRNAs) with significant expression changes, which included developmental-, phytohormone- and stress-related miRNAs. Interestingly, miR156 and miR172 showed opposite expression patterns in the cambial dormancy-active growth transition. Additionally, miR160, which is involved in the auxin signaling pathway, was expressed specifically during endodormancy release by chilling. Furthermore, 275 novel miRNAs expressed in the cambial zone were identified, and 34 of them had high detection frequencies and unique expression patterns. Finally, the target genes of these novel miRNAs were predicted and some were validated experimentally by 5'RACE. CONCLUSIONS Our results provided a comprehensive analysis of small RNAs in the cambial meristem during dormancy-release at the genome-wide level and novel evidence of miRNAs involved in the regulation of this biological process.
Collapse
Affiliation(s)
- Qi Ding
- College of Life Sciences, Peking University, Beijing, 100871 China
| | - Jun Zeng
- College of Life Sciences, Peking University, Beijing, 100871 China
| | - Xin-Qiang He
- College of Life Sciences, Peking University, Beijing, 100871 China
| |
Collapse
|
179
|
Considine MJ, Foyer CH. Redox regulation of plant development. Antioxid Redox Signal 2014. [PMID: 24180689 DOI: 10.1089/ars.20135665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
SIGNIFICANCE We provide a conceptual framework for the interactions between the cellular redox signaling hub and the phytohormone signaling network that controls plant growth and development to maximize plant productivity under stress-free situations, while limiting growth and altering development on exposure to stress. RECENT ADVANCES Enhanced cellular oxidation plays a key role in the regulation of plant growth and stress responses. Oxidative signals or cycles of oxidation and reduction are crucial for the alleviation of dormancy and quiescence, activating the cell cycle and triggering genetic and epigenetic control that underpin growth and differentiation responses to changing environmental conditions. CRITICAL ISSUES The redox signaling hub interfaces directly with the phytohormone network in the synergistic control of growth and its modulation in response to environmental stress, but a few components have been identified. Accumulating evidence points to a complex interplay of phytohormone and redox controls that operate at multiple levels. For simplicity, we focus here on redox-dependent processes that control root growth and development and bud burst. FUTURE DIRECTIONS The multiple roles of reactive oxygen species in the control of plant growth and development have been identified, but increasing emphasis should now be placed on the functions of redox-regulated proteins, along with the central roles of reductants such as NAD(P)H, thioredoxins, glutathione, glutaredoxins, peroxiredoxins, ascorbate, and reduced ferredoxin in the regulation of the genetic and epigenetic factors that modulate the growth and vigor of crop plants, particularly within an agricultural context.
Collapse
Affiliation(s)
- Michael J Considine
- 1 School of Plant Biology and Institute of Agriculture, University of Western Australia , Crawley, Australia
| | | |
Collapse
|
180
|
Abstract
SIGNIFICANCE We provide a conceptual framework for the interactions between the cellular redox signaling hub and the phytohormone signaling network that controls plant growth and development to maximize plant productivity under stress-free situations, while limiting growth and altering development on exposure to stress. RECENT ADVANCES Enhanced cellular oxidation plays a key role in the regulation of plant growth and stress responses. Oxidative signals or cycles of oxidation and reduction are crucial for the alleviation of dormancy and quiescence, activating the cell cycle and triggering genetic and epigenetic control that underpin growth and differentiation responses to changing environmental conditions. CRITICAL ISSUES The redox signaling hub interfaces directly with the phytohormone network in the synergistic control of growth and its modulation in response to environmental stress, but a few components have been identified. Accumulating evidence points to a complex interplay of phytohormone and redox controls that operate at multiple levels. For simplicity, we focus here on redox-dependent processes that control root growth and development and bud burst. FUTURE DIRECTIONS The multiple roles of reactive oxygen species in the control of plant growth and development have been identified, but increasing emphasis should now be placed on the functions of redox-regulated proteins, along with the central roles of reductants such as NAD(P)H, thioredoxins, glutathione, glutaredoxins, peroxiredoxins, ascorbate, and reduced ferredoxin in the regulation of the genetic and epigenetic factors that modulate the growth and vigor of crop plants, particularly within an agricultural context.
Collapse
Affiliation(s)
- Michael J Considine
- 1 School of Plant Biology and Institute of Agriculture, University of Western Australia , Crawley, Australia
| | | |
Collapse
|
181
|
Evans LM, Slavov GT, Rodgers-Melnick E, Martin J, Ranjan P, Muchero W, Brunner AM, Schackwitz W, Gunter L, Chen JG, Tuskan GA, DiFazio SP. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations. Nat Genet 2014; 46:1089-96. [DOI: 10.1038/ng.3075] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/30/2014] [Indexed: 12/16/2022]
|
182
|
Chao WS, Doğramaci M, Anderson JV, Foley ME, Horvath DP. The resemblance and disparity of gene expression in dormant and non-dormant seeds and crown buds of leafy spurge (Euphorbia esula). BMC PLANT BIOLOGY 2014; 14:216. [PMID: 25112962 PMCID: PMC4256794 DOI: 10.1186/s12870-014-0216-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/04/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Leafy spurge (Euphorbia esula L.) is a herbaceous perennial weed and dormancy in both buds and seeds is an important survival mechanism. Bud dormancy in leafy spurge exhibits three well-defined phases of para-, endo- and ecodormancy; however, seed dormancy for leafy spurge is classified as physiological dormancy that requires after-ripening and alternating temperature for maximal germination. Overlaps in transcriptome profiles between different phases of bud and seed dormancy have not been determined. Thus, we compared various phases of dormancy between seeds and buds to identify common genes and molecular processes, which should provide new insights about common regulators of dormancy. RESULTS Cluster analysis of expression profiles for 201 selected genes indicated bud and seed samples clustered separately. Direct comparisons between buds and seeds are additionally complicated since seeds incubated at a constant temperature of 20°C for 21 days (21d C) could be considered paradormant (Para) because seeds may be inhibited by endosperm-generated signals, or ecodormant (Eco) because seeds germinate after being subjected to alternating temperature of 20:30°C. Since direct comparisons in gene expression between buds and seeds were problematic, we instead examined commonalities in differentially-expressed genes associated with different phases of dormancy. Comparison between buds and seeds ('Para to Endo buds' and '21d C to 1d C seeds'), using endodormant buds (Endo) and dormant seeds (1d C) as common baselines, identified transcripts associated with cell cycle (HisH4), stress response/transcription factors (ICE2, ERFB4/ABR1), ABA and auxin response (ABA1, ARF1, IAA7, TFL1), carbohydrate/protein degradation (GAPDH_1), and transport (ABCB2). Comparison of transcript abundance for the 'Eco to Endo buds' and '21d C to 1d C seeds' identified transcripts associated with ABA response (ATEM6), auxin response (ARF1), and cell cycle (HisH4). These results indicate that the physiological state of 21d C seeds is more analogous to paradormant buds than that of ecodormant buds. CONCLUSION Combined results indicate that common molecular mechanisms associated with dormancy transitions of buds and seeds involve processes associated with ABA and auxin signaling and transport, cell cycle, and AP2/ERF transcription factors or their up-stream regulators.
Collapse
Affiliation(s)
- Wun S Chao
- USDA-Agricultural Research Service, Biosciences Research Lab, Sunflower and Plant Biology Research Unit, 1605 Albrecht Boulevard N, Fargo, ND 58102 USA
| | - Münevver Doğramaci
- USDA-Agricultural Research Service, Biosciences Research Lab, Sunflower and Plant Biology Research Unit, 1605 Albrecht Boulevard N, Fargo, ND 58102 USA
| | - James V Anderson
- USDA-Agricultural Research Service, Biosciences Research Lab, Sunflower and Plant Biology Research Unit, 1605 Albrecht Boulevard N, Fargo, ND 58102 USA
| | - Michael E Foley
- USDA-Agricultural Research Service, Biosciences Research Lab, Sunflower and Plant Biology Research Unit, 1605 Albrecht Boulevard N, Fargo, ND 58102 USA
| | - David P Horvath
- USDA-Agricultural Research Service, Biosciences Research Lab, Sunflower and Plant Biology Research Unit, 1605 Albrecht Boulevard N, Fargo, ND 58102 USA
| |
Collapse
|
183
|
Paul A, Jha A, Bhardwaj S, Singh S, Shankar R, Kumar S. RNA-seq-mediated transcriptome analysis of actively growing and winter dormant shoots identifies non-deciduous habit of evergreen tree tea during winters. Sci Rep 2014; 4:5932. [PMID: 25090269 PMCID: PMC4123203 DOI: 10.1038/srep05932] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/14/2014] [Indexed: 01/06/2023] Open
Abstract
Tea [Camellia sinensis (L.) O. Kuntze] is a perennial tree which undergoes winter dormancy and unlike deciduous trees, the species does not shed its leaves during winters. The present work dissected the molecular processes operating in the leaves during the period of active growth and winter dormancy through transcriptome analysis to understand a long-standing question: why should tea be a non-deciduous species? Analyses of 24,700 unigenes obtained from 57,767 primarily assembled transcripts showed (i) operation of mechanisms of winter tolerance, (ii) down-regulation of genes involved in growth, development, protein synthesis and cell division, and (iii) inhibition of leaf abscission due to modulation of senescence related processes during winter dormancy in tea. These senescence related processes exhibited modulation to favour leaf abscission (i) in deciduous Populustremula during winters, and (ii) also in tea but under osmotic stress during which leaves also abscise. These results validated the relevance of the identified senescence related processes for leaf abscission and suggested their operation when in need in tea.
Collapse
Affiliation(s)
- Asosii Paul
- 1] Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur-176061, Himachal Pradesh, India [2] [3]
| | - Ashwani Jha
- 1] Studio of Computational Biology &Bioinformatics, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur-176061, Himachal Pradesh, India [2]
| | - Shruti Bhardwaj
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur-176061, Himachal Pradesh, India
| | - Sewa Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur-176061, Himachal Pradesh, India
| | - Ravi Shankar
- Studio of Computational Biology &Bioinformatics, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur-176061, Himachal Pradesh, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur-176061, Himachal Pradesh, India
| |
Collapse
|
184
|
Yordanov YS, Ma C, Strauss SH, Busov VB. EARLY BUD-BREAK 1 (EBB1) is a regulator of release from seasonal dormancy in poplar trees. Proc Natl Acad Sci U S A 2014; 111:10001-6. [PMID: 24951507 PMCID: PMC4103365 DOI: 10.1073/pnas.1405621111] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trees from temperate latitudes transition between growth and dormancy to survive dehydration and freezing stress during winter months. We used activation tagging to isolate a dominant mutation affecting release from dormancy and identified the corresponding gene EARLY BUD-BREAK 1 (EBB1). We demonstrate through positioning of the tag, expression analysis, and retransformation experiments that EBB1 encodes a putative APETALA2/Ethylene responsive factor transcription factor. Transgenic up-regulation of the gene caused early bud-flush, whereas down-regulation delayed bud-break. Native EBB1 expression was highest in actively growing apices, undetectable during the dormancy period, but rapidly increased before bud-break. The EBB1 transcript was localized in the L1/L2 layers of the shoot meristem and leaf primordia. EBB1-overexpressing transgenic plants displayed enlarged shoot meristems, open and poorly differentiated buds, and a higher rate of cell division in the apex. Transcriptome analyses of the EBB1 transgenics identified 971 differentially expressed genes whose expression correlated with the EBB1 expression changes in the transgenic plants. Promoter analysis among the differentially expressed genes for the presence of a canonical EBB1-binding site identified 65 putative target genes, indicative of a broad regulatory context of EBB1 function. Our results suggest that EBB1 has a major and integrative role in reactivation of meristem activity after winter dormancy.
Collapse
Affiliation(s)
- Yordan S Yordanov
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931; and
| | - Cathleen Ma
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331-5752
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331-5752
| | - Victor B Busov
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931; and
| |
Collapse
|
185
|
Fu XL, Xiao W, Wang DL, Chen M, Tan QP, Li L, De Chen X, Gao DS. Roles of endoplasmic reticulum stress and unfolded protein response associated genes in seed stratification and bud endodormancy during chilling accumulation in Prunus persica. PLoS One 2014; 9:e101808. [PMID: 24999812 PMCID: PMC4084944 DOI: 10.1371/journal.pone.0101808] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 06/11/2014] [Indexed: 12/16/2022] Open
Abstract
Dormancy mechanisms in seeds and buds arrest growth until environmental conditions are optimal for development. A genotype-specific period of chilling is usually required to release dormancy, but the underlying molecular mechanisms are still not fully understood. To discover transcriptional pathways associated with dormancy release common to seed stratification and bud endodormancy, we explored the chilling-dependent expression of 11 genes involved in endoplasmic reticulum stress and the unfolded protein response signal pathways. We propose that endoplasmic reticulum stress and the unfolded protein response impact on seed as well as bud germination and development by chilling-dependent mechanisms. The emerging discovery of similarities between seed stratification and bud endodormancy status indicate that these two processes are probably regulated by common endoplasmic reticulum stress and unfolded protein response signalling pathways. Clarification of regulatory pathways common to both seed and bud dormancy may enhance understanding of the mechanisms underlying dormancy and breeding programs may benefit from earlier prediction of chilling requirements for uniform blooming of novel genotypes of deciduous fruit tree species.
Collapse
Affiliation(s)
- Xi Ling Fu
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai'an, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Wei Xiao
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai'an, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Dong Ling Wang
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai'an, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Min Chen
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai'an, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Qiu Ping Tan
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai'an, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ling Li
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai'an, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiu De Chen
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai'an, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Dong Sheng Gao
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai'an, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
- * E-mail:
| |
Collapse
|
186
|
Valluru R, Reynolds MP, Salse J. Genetic and molecular bases of yield-associated traits: a translational biology approach between rice and wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1463-89. [PMID: 24913362 DOI: 10.1007/s00122-014-2332-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 05/15/2014] [Indexed: 05/21/2023]
Abstract
Transferring the knowledge bases between related species may assist in enlarging the yield potential of crop plants. Being cereals, rice and wheat share a high level of gene conservation; however, they differ at metabolic levels as a part of the environmental adaptation resulting in different yield capacities. This review focuses on the current understanding of genetic and molecular regulation of yield-associated traits in both crop species, highlights the similarities and differences and presents the putative knowledge gaps. We focus on the traits associated with phenology, photosynthesis, and assimilate partitioning and lodging resistance; the most important drivers of yield potential. Currently, there are large knowledge gaps in the genetic and molecular control of such major biological processes that can be filled in a translational biology approach in transferring genomics and genetics informations between rice and wheat.
Collapse
Affiliation(s)
- Ravi Valluru
- Wheat Physiology, Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 56130, Mexico DF, Mexico,
| | | | | |
Collapse
|
187
|
Yeaman S, Hodgins KA, Suren H, Nurkowski KA, Rieseberg LH, Holliday JA, Aitken SN. Conservation and divergence of gene expression plasticity following c. 140 million years of evolution in lodgepole pine (Pinus contorta) and interior spruce (Picea glauca×Picea engelmannii). THE NEW PHYTOLOGIST 2014; 203:578-591. [PMID: 24750196 DOI: 10.1111/nph.12819] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
Species respond to environmental stress through a combination of genetic adaptation and phenotypic plasticity, both of which may be important for survival in the face of climatic change. By characterizing the molecular basis of plastic responses and comparing patterns among species, it is possible to identify how such traits evolve. Here, we used de novo transcriptome assembly and RNAseq to explore how patterns of gene expression differ in response to temperature, moisture, and light regime treatments in lodgepole pine (Pinus contorta) and interior spruce (a natural hybrid population of Picea glauca and Picea engelmannii). We found wide evidence for an effect of treatment on expression within each species, with 6413 and 11,658 differentially expressed genes identified in spruce and pine, respectively. Comparing patterns of expression among these species, we found that 74% of all orthologs with differential expression had a pattern that was conserved in both species, despite 140 million yr of evolution. We also found that the specific treatments driving expression patterns differed between genes with conserved versus diverged patterns of expression. We conclude that natural selection has probably played a role in shaping plastic responses to environment in these species.
Collapse
Affiliation(s)
- Sam Yeaman
- Department of Botany, 6270 University Blvd, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Kathryn A Hodgins
- Department of Botany, 6270 University Blvd, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- School of Biological Sciences, Monash University, Building 18, Melbourne, Vic., 3800, Australia
| | - Haktan Suren
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, 304 Cheatham Hall, Blacksburg, VA, 24061, USA
- Genetics, Bioinformatics and Computational Biology Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Kristin A Nurkowski
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Loren H Rieseberg
- Department of Botany, 6270 University Blvd, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jason A Holliday
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, 304 Cheatham Hall, Blacksburg, VA, 24061, USA
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
188
|
McKown AD, Klápště J, Guy RD, Geraldes A, Porth I, Hannemann J, Friedmann M, Muchero W, Tuskan GA, Ehlting J, Cronk QCB, El-Kassaby YA, Mansfield SD, Douglas CJ. Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa. THE NEW PHYTOLOGIST 2014; 203:535-553. [PMID: 24750093 DOI: 10.1111/nph.12815] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/14/2014] [Indexed: 05/02/2023]
Abstract
In order to uncover the genetic basis of phenotypic trait variation, we used 448 unrelated wild accessions of black cottonwood (Populus trichocarpa) from much of its range in western North America. Extensive data from large-scale trait phenotyping (with spatial and temporal replications within a common garden) and genotyping (with a 34 K Populus single nucleotide polymorphism (SNP) array) of all accessions were used for gene discovery in a genome-wide association study (GWAS). We performed GWAS with 40 biomass, ecophysiology and phenology traits and 29,355 filtered SNPs representing 3518 genes. The association analyses were carried out using a Unified Mixed Model accounting for population structure effects among accessions. We uncovered 410 significant SNPs using a Bonferroni-corrected threshold (P<1.7×10(-6)). Markers were found across 19 chromosomes, explained 1-13% of trait variation, and implicated 275 unique genes in trait associations. Phenology had the largest number of associated genes (240 genes), followed by biomass (53 genes) and ecophysiology traits (25 genes). The GWAS results propose numerous loci for further investigation. Many traits had significant associations with multiple genes, underscoring their genetic complexity. Genes were also identified with multiple trait associations within and/or across trait categories. In some cases, traits were genetically correlated while in others they were not.
Collapse
Affiliation(s)
- Athena D McKown
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Jaroslav Klápště
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Dendrology and Forest Tree Breeding, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, 165 21, Czech Republic
| | - Robert D Guy
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Armando Geraldes
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Ilga Porth
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Jan Hannemann
- Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, BC, V8W 3N5, Canada
| | - Michael Friedmann
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Wellington Muchero
- BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Gerald A Tuskan
- BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jürgen Ehlting
- Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, BC, V8W 3N5, Canada
| | - Quentin C B Cronk
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
189
|
Johansson M, Ibáñez C, Takata N, Eriksson ME. The perennial clock is an essential timer for seasonal growth events and cold hardiness. Methods Mol Biol 2014; 1158:297-311. [PMID: 24792060 DOI: 10.1007/978-1-4939-0700-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Over the last several decades, changes in global temperatures have led to changes in local environments affecting the growth conditions for many species. This is a trend that makes it even more important to understand how plants respond to local variations and seasonal changes in climate. To detect daily and seasonal changes as well as acute stress factors such as cold and drought, plants rely on a circadian clock. This chapter introduces the current knowledge and literature about the setup and function of the circadian clock in various tree and perennial species, with a focus on the Populus genus.
Collapse
Affiliation(s)
- Mikael Johansson
- Molecular Cell Physiology, Bielefeld University, 100131, 33615, Bielefeld, Germany,
| | | | | | | |
Collapse
|
190
|
van der Schoot C, Paul LK, Rinne PLH. The embryonic shoot: a lifeline through winter. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1699-712. [PMID: 24368502 DOI: 10.1093/jxb/ert413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The tiny vascular axis of the embryo emerges post-embryonically as an elaborate and critical infrastructure, pervading the entire plant system. Its expansive nature is especially impressive in trees, where growth and development continue for extended periods. While the shoot apical meristem (SAM) orchestrates primary morphogenesis, the vascular system is mapped out in its wake in the provascular cylinder, situated just below the emerging leaf primordia and surrounding the rib meristem. Formation of leaf primordia and provascular tissues is incompatible with the harsh conditions of winter. Deciduous trees of boreal and temperate climates therefore enter a survival mode at the end of the season. However, to be competitive, they need to maximize their growth period while avoiding cellular frost damage. Trees achieve this by monitoring photoperiod, and by timely implementation of a survival strategy that schedules downstream events, including growth cessation, terminal bud formation, dormancy assumption, acquisition of freezing tolerance, and shedding of leaves. Of central importance are buds, which contain an embryonic shoot that allows shoot development and elongation in spring. The genetic and molecular processes that drive the cycle in synchrony with the seasons are largely elusive. Here, we review what is known about the signals and signal conduits that are involved, the processes that are initiated, and the developmental transitions that ensue in a terminal bud. We propose that addressing dormancy as a property of the SAM and the bud as a unique shoot type will facilitate our understanding of winter dormancy.
Collapse
Affiliation(s)
- Christiaan van der Schoot
- Department of Plant & Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | | | | |
Collapse
|
191
|
Castède S, Campoy JA, García JQ, Le Dantec L, Lafargue M, Barreneche T, Wenden B, Dirlewanger E. Genetic determinism of phenological traits highly affected by climate change in Prunus avium: flowering date dissected into chilling and heat requirements. THE NEW PHYTOLOGIST 2014; 202:703-715. [PMID: 24417538 DOI: 10.1111/nph.12658] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/25/2013] [Indexed: 05/12/2023]
Abstract
The present study investigated the genetic determinism of flowering date (FD), dissected into chilling (CR) and heat (HR) requirements. Elucidation of the genetic determinism of flowering traits is crucial to anticipate the increasing of ecological misalignment of adaptative traits with novel climate conditions in most temperate-fruit species. CR and HR were evaluated over 3 yr and FD over 5 yr in an intraspecific sweet cherry (Prunus avium) F1 progeny, and FD over 6 yr in a different F1 progeny. One quantitative trait locus (QTL) with major effect and high stability between years of evaluation was detected for CR and FD in the same region of linkage group (LG) 4. For HR, no stable QTL was detected. Candidate genes underlying the major QTL on LG4 were investigated and key genes were identified for CR and FD. Phenotypic dissection of FD and year repetitions allowed us to identify CR as the high heritable component of FD and a high genotype × environment interaction for HR. QTLs for CR reported in this study are the first described in this species. Our results provide a foundation for the identification of genes involved in CR and FD in sweet cherry which could be used to develop ideotypes adapted to future climatic conditions.
Collapse
Affiliation(s)
- Sophie Castède
- Univ. Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France
| | - José Antonio Campoy
- Univ. Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France
| | - José Quero García
- Univ. Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France
| | - Loïck Le Dantec
- Univ. Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France
| | - Maria Lafargue
- INRA, UMR 1287 Ecophysiologie et Génomique Fonctionnelle de la Vigne, F-33140, Villenave d'Ornon, France
| | - Teresa Barreneche
- Univ. Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France
| | - Bénédicte Wenden
- Univ. Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France
| | - Elisabeth Dirlewanger
- Univ. Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France
| |
Collapse
|
192
|
Changes in metabolite profiles in Norway spruce shoot tips during short-day induced winter bud development and long-day induced bud flush. Metabolomics 2014. [PMID: 0 DOI: 10.1007/s11306-014-0646-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
193
|
McKown AD, Guy RD, Klápště J, Geraldes A, Friedmann M, Cronk QCB, El-Kassaby YA, Mansfield SD, Douglas CJ. Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa. THE NEW PHYTOLOGIST 2014; 201:1263-1276. [PMID: 24491114 DOI: 10.1111/nph.12601] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/09/2013] [Indexed: 05/18/2023]
Abstract
• Populus trichocarpa is widespread across western North America spanning extensive variation in photoperiod, growing season and climate. We investigated trait variation in P. trichocarpa using over 2000 trees from a common garden at Vancouver, Canada, representing replicate plantings of 461 genotypes originating from 136 provenance localities. • We measured 40 traits encompassing phenological events, biomass accumulation, growth rates, and leaf, isotope and gas exchange-based ecophysiology traits. With replicated plantings and 29,354 single nucleotide polymorphisms (SNPs) from 3518 genes, we estimated both broad-sense trait heritability (H(2)) and overall population genetic structure from principal component analysis. • Populus trichocarpa had high phenotypic variation and moderate/high H(2) for many traits. H(2) ranged from 0.3 to 0.9 in phenology, 0.3 to 0.8 in biomass and 0.1 to 0.8 in ecophysiology traits. Most traits correlated strongly with latitude, maximum daylength and temperature of tree origin, but not necessarily with elevation, precipitation or heat : moisture indices. Trait H(2) values reflected trait correlation strength with geoclimate variables. The population genetic structure had one significant principal component (PC1) which correlated with daylength and showed enrichment for genes relating to circadian rhythm and photoperiod. • Robust relationships between traits, population structure and geoclimate in P. trichocarpa reflect patterns which suggest that range-wide geographical and environment gradients have shaped its genotypic and phenotypic variability.
Collapse
Affiliation(s)
- Athena D McKown
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Robert D Guy
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Jaroslav Klápště
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Dendrology and Forest Tree Breeding, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, 165 21, Czech Republic
| | - Armando Geraldes
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Michael Friedmann
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Quentin C B Cronk
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
194
|
Romeu JF, Monforte AJ, Sánchez G, Granell A, García-Brunton J, Badenes ML, Ríos G. Quantitative trait loci affecting reproductive phenology in peach. BMC PLANT BIOLOGY 2014; 14:52. [PMID: 24559033 PMCID: PMC3941940 DOI: 10.1186/1471-2229-14-52] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/18/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND The reproductive phenology of perennial plants in temperate climates is largely conditioned by the duration of bud dormancy, and fruit developmental processes. Bud dormancy release and bud break depends on the perception of cumulative chilling and heat during the bud development. The objective of this work was to identify new quantitative trait loci (QTLs) associated to temperature requirements for bud dormancy release and flowering and to fruit harvest date, in a segregating population of peach. RESULTS We have identified QTLs for nine traits related to bud dormancy, flowering and fruit harvest in an intraspecific hybrid population of peach in two locations differing in chilling time accumulation. QTLs were located in a genetic linkage map of peach based on single nucleotide polymorphism (SNP) markers for eight linkage groups (LGs) of the peach genome sequence. QTLs for chilling requirements for dormancy release and blooming clustered in seven different genomic regions that partially coincided with loci identified in previous works. The most significant QTL for chilling requirements mapped to LG1, close to the evergrowing locus. QTLs for heat requirement related traits were distributed in nine genomic regions, four of them co-localizing with QTLs for chilling requirement trait. Two major loci in LG4 and LG6 determined fruit harvest time. CONCLUSIONS We identified QTLs associated to nine traits related to the reproductive phenology in peach. A search of candidate genes for these QTLs rendered different genes related to flowering regulation, chromatin modification and hormone signalling. A better understanding of the genetic factors affecting crop phenology might help scientists and breeders to predict changes in genotype performance in a context of global climate change.
Collapse
Affiliation(s)
- José F Romeu
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), La Alberca, Murcia, Spain
| | - Antonio J Monforte
- Instituto de Biología Molecular y Celular de Plantas (IBMCP, CSIC-UPV), Valencia, Spain
| | - Gerardo Sánchez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP, CSIC-UPV), Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP, CSIC-UPV), Valencia, Spain
| | - Jesús García-Brunton
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), La Alberca, Murcia, Spain
| | - María L Badenes
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Gabino Ríos
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| |
Collapse
|
195
|
González-Grandío E, Cubas P. Identification of gene functions associated to active and dormant buds in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2014; 9:e27994. [PMID: 24518068 PMCID: PMC4092316 DOI: 10.4161/psb.27994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 05/28/2023]
Abstract
In Arabidopsis, axillary buds may become dormant in response to a far-red rich light or to increased apical dominance. BRANCHED1 (BRC1) is required for this response. Transcriptional profiling studies of wild-type and brc1 mutant buds allowed the identification of sets of BRC1-dependent genes including a group of ABA-related genes upregulated in dormant buds. By using BRC1 inducible lines we demonstrate that 2 of these ABA response factors, ABF3 and ABI5, are positively regulated in axillary buds by BRC1 after induction. To get further insight into the genetic control of the growth-to-dormancy transition in buds we have also compared this transcriptomic data with 2 additional "active vs dormant bud" transcriptomic data sets and found "core" co-regulated gene networks tightly associated to each condition.
Collapse
|
196
|
Nörnberg B, Borchardt E, Luinstra GA, Fromm J. Wood plastic composites from poly(propylene carbonate) and poplar wood flour – Mechanical, thermal and morphological properties. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2013.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
197
|
Trupiano D, Rocco M, Renzone G, Scaloni A, Rossi M, Viscosi V, Chiatante D, Scippa GS. Temporal analysis of poplar woody root response to bending stress. PHYSIOLOGIA PLANTARUM 2014; 150:174-193. [PMID: 23683290 DOI: 10.1111/ppl.12072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/27/2013] [Accepted: 05/03/2013] [Indexed: 06/02/2023]
Abstract
Temperate perennial woody plants use different environmental signals to coordinate their growth and development in relation to seasonal changes. Preliminary evidences suggest that, even during dormancy, plants maintain effective metabolic activities and molecular mechanisms ensuring them an eventual recording of mechanical loads during winter times. Despite their great importance for productivity and survival, plant biology investigations have poorly characterized the root growth cycle and its response to environmental stresses. In this study, we describe the proteomic changes occurring over the time in poplar root either in the absence or in response to a bending stress; corresponding expression of cell cycle regulator and auxin transporter genes was also evaluated by reverse transcription polymerase chain reaction analysis. Our results confirm previous evidences on the effect of the bending stress on the anticipation of root growth resumption, providing additional insights on a temporal modulation of various plant metabolic processes involved in dormancy break, growth resumption and stress response in the bent root; these events seem related to the differential compression and tension force distribution occurring over the plant taproot.
Collapse
Affiliation(s)
- Dalila Trupiano
- Dipartimento di Bioscienze e Territorio, University of Molise, 86090 , Pesche, IS, Italy
| | | | | | | | | | | | | | | |
Collapse
|
198
|
Paul LK, Rinne PLH, van der Schoot C. Shoot meristems of deciduous woody perennials: self-organization and morphogenetic transitions. CURRENT OPINION IN PLANT BIOLOGY 2014; 17:86-95. [PMID: 24507499 DOI: 10.1016/j.pbi.2013.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 05/04/2023]
Abstract
Shoot apical meristems of deciduous woody perennials share gross structural features with other angiosperms, but are unique in the seasonal regulation of vegetative and floral meristems. Supporting longevity, flowering is postponed to the adult phase, and restricted to some axillary meristems. In cold climates, photoperiodic timing mechanisms and chilling are recruited to schedule end-of-season growth arrest, dormancy cycling and flowering. We review recently uncovered generic meristem properties, perennial meristem fate, and the role of CENL1, FT1 and FT2 in bud formation and flowering. We also highlight novel findings, suggesting that dormancy release is mediated by mobile lipid bodies that deliver enzymes to plasmodesmata to recover symplasmic communication and meristem function.
Collapse
Affiliation(s)
- Laju K Paul
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Päivi L H Rinne
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Christiaan van der Schoot
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway.
| |
Collapse
|
199
|
Wang W, Wu Y, Messing J. RNA-Seq transcriptome analysis of Spirodela dormancy without reproduction. BMC Genomics 2014; 15:60. [PMID: 24456086 PMCID: PMC3933069 DOI: 10.1186/1471-2164-15-60] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/15/2014] [Indexed: 11/17/2022] Open
Abstract
Background Higher plants exhibit a remarkable phenotypic plasticity to adapt to adverse environmental changes. The Greater Duckweed Spirodela, as an aquatic plant, presents exceptional tolerance to cold winters through its dormant structure of turions in place of seeds. Abundant starch in turions permits them to sink and escape the freezing surface of waters. Due to their clonal propagation, they are the fastest growing biomass on earth, providing yet an untapped source for industrial applications. Results We used next generation sequencing technology to examine the transcriptome of turion development triggered by exogenous ABA. A total of 208 genes showed more than a 4-fold increase compared with 154 down-regulated genes in developing turions. The analysis of up-regulated differential expressed genes in response to dormancy exposed an enriched interplay among various pathways: signal transduction, seed dehydration, carbohydrate and secondary metabolism, and senescence. On the other side, the genes responsible for rapid growth and biomass accumulation through DNA assembly, protein synthesis and carbon fixation are repressed. Noticeably, three members of late embryogenesis abundant protein family are exclusively expressed during turion formation. High expression level of key genes in starch synthesis are APS1, APL3 and GBSSI, which could artificially be reduced for re-directing carbon flow from photosynthesis to create a higher energy biomass. Conclusions The identification and functional annotation of differentially expressed genes open a major step towards understanding the molecular network underlying vegetative frond dormancy. Moreover, genes have been identified that could be engineered in duckweeds for practical applications easing agricultural production of food crops.
Collapse
Affiliation(s)
| | | | - Joachim Messing
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ, USA.
| |
Collapse
|
200
|
Zawaski C, Busov VB. Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in Populus trees. PLoS One 2014; 9:e86217. [PMID: 24465967 PMCID: PMC3896445 DOI: 10.1371/journal.pone.0086217] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/07/2013] [Indexed: 11/23/2022] Open
Abstract
Survival and productivity of perennial plants in temperate zones are dependent on robust responses to prolonged and seasonal cycles of unfavorable conditions. Here we report whole-genome microarray, expression, physiological, and transgenic evidence in hybrid poplar (Populus tremula × Populus alba) showing that gibberellin (GA) catabolism and repressive signaling mediates shoot growth inhibition and physiological adaptation in response to drought and short-day (SD) induced bud dormancy. Both water deprivation and SDs elicited activation of a suite of poplar GA2ox and DELLA encoding genes. Poplar transgenics with up-regulated GA 2-oxidase (GA2ox) and DELLA domain proteins showed hypersensitive growth inhibition in response to both drought and SDs. In addition, the transgenic plants displayed greater drought resistance as evidenced by increased pigment concentrations (chlorophyll and carotenoid) and reductions in electrolyte leakage (EL). Comparative transcriptome analysis using whole-genome microarray showed that the GA-deficiency and GA-insensitivity, SD-induced dormancy, and drought response in poplar share a common regulon of 684 differentially-expressed genes, which suggest GA metabolism and signaling plays a role in plant physiological adaptations in response to alterations in environmental factors. Our results demonstrate that GA catabolism and repressive signaling represents a major route for control of growth and physiological adaptation in response to immediate or imminent adverse conditions.
Collapse
Affiliation(s)
- Christine Zawaski
- School of Forest Research and Environmental Science, Michigan Technological University, Houghton, Michigan, United States of America
| | - Victor B. Busov
- School of Forest Research and Environmental Science, Michigan Technological University, Houghton, Michigan, United States of America
- * E-mail:
| |
Collapse
|