151
|
Wang K, Huang G, Zhu Y. Transposable elements play an important role during cotton genome evolution and fiber cell development. SCIENCE CHINA-LIFE SCIENCES 2015; 59:112-21. [PMID: 26687725 DOI: 10.1007/s11427-015-4928-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 11/26/2022]
Abstract
Transposable elements (TEs) usually occupy largest fractions of plant genome and are also the most variable part of the structure. Although traditionally it is hallmarked as "junk and selfish DNA", today more and more evidence points out TE's participation in gene regulations including gene mutation, duplication, movement and novel gene creation via genetic and epigenetic mechanisms. The recently sequenced genomes of diploid cottons Gossypium arboreum (AA) and Gossypium raimondii (DD) together with their allotetraploid progeny Gossypium hirsutum (AtAtDtDt) provides a unique opportunity to compare genome variations in the Gossypium genus and to analyze the functions of TEs during its evolution. TEs accounted for 57%, 68.5% and 67.2%, respectively in DD, AA and AtAtDtDt genomes. The 1,694 Mb A-genome was found to harbor more LTR(long terminal repeat)-type retrotransposons that made cardinal contributions to the twofold increase in its genome size after evolution from the 775.2 Mb D-genome. Although the 2,173 Mb AtAtDtDt genome showed similar TE content to the A-genome, the total numbers of LTR-gypsy and LTR-copia type TEs varied significantly between these two genomes. Considering their roles on rewiring gene regulatory networks, we believe that TEs may somehow be involved in cotton fiber cell development. Indeed, the insertion or deletion of different TEs in the upstream region of two important transcription factor genes in At or Dt subgenomes resulted in qualitative differences in target gene expression. We suggest that our findings may open a window for improving cotton agronomic traits by editing TE activities.
Collapse
Affiliation(s)
- Kun Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Gai Huang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yuxian Zhu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
152
|
Liang W, Fang L, Xiang D, Hu Y, Feng H, Chang L, Zhang T. Transcriptome Analysis of Short Fiber Mutant Ligon lintless-1 (Li1) Reveals Critical Genes and Key Pathways in Cotton Fiber Elongation and Leaf Development. PLoS One 2015; 10:e0143503. [PMID: 26600249 PMCID: PMC4658197 DOI: 10.1371/journal.pone.0143503] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/05/2015] [Indexed: 01/12/2023] Open
Abstract
For efficient spinning and superior fabric production, long fiber length is a desired trait for cotton production. To unveil the molecular basis of the cotton fiber length regulation, a short fiber mutant, Ligon lintless-1 (Li1), is selected to compare with its corresponding wild type (WT). Li1 is a monogenic dominant cotton mutant causing extremely short fibers (<6mm) on mature seeds with visible pleiotropic effects on vegetative growth and development. In this research, we compared the transcriptome of fiber bearing ovules at 1 DPA, 3 DPA, 8 DPA and leaf between Li1 mutant and WT. A total of 7,852 differentially expressed genes (DEGs) were detected in ovules and leaves, which mainly participated in sugar, secondary metabolite and lipid metabolism pathways based on KEGG analysis. The common DEGs at 1 DPA and 3 DPA were involved in the responses to endogenous stimulus, signal transduction and long-chain fatty acid biosynthesis. For 3 DPA, 8 DPA and leaf, the common DEGs were involved in the responses to auxin and receptor kinases related pathway. Further analysis showed that 37 genes involved in very-long-chain fatty acid biosynthesis were suppressed in Li1 mutant during fiber fast elongation development. Most of the DEGs involved in cell wall metabolism, such cellulose synthase, expansin family, and glycosyl hydrolase were differentially expressed at 3 DPA and 8 DPA. Our results provide new insights into the mechanisms of fiber elongation, and offer novel genes as potential objects for fiber length improvement.
Collapse
Affiliation(s)
- Wenhua Liang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center, the Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center, the Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dan Xiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center, the Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center, the Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center, the Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lijing Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center, the Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center, the Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
- * E-mail:
| |
Collapse
|
153
|
|
154
|
Yang C, Gao Y, Gao S, Yu G, Xiong C, Chang J, Li H, Ye Z. Transcriptome profile analysis of cell proliferation molecular processes during multicellular trichome formation induced by tomato Wov gene in tobacco. BMC Genomics 2015; 16:868. [PMID: 26503424 PMCID: PMC4623907 DOI: 10.1186/s12864-015-2099-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 10/16/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Trichomes, developing from the epidermis of nearly all terrestrial plants, provide good structural resistance against insect herbivores and an excellent model for studying the molecular mechanisms underlying cell fate determination. Regulation of trichomes in Rosids has been well characterized. However, little is known about the cell proliferation molecular processes during multicellular trichome formation in Asterids. RESULTS In this study, we identified two point mutations in a novel allele (Wov) at Wo locus. Ectopic expression of Wov in tobacco and potato induces much more trichome formation than wild type. To gain new insights into the underlying mechanisms during the processes of these trichomes formation, we compared the gene expression profiles between Wov transgenic and wild-type tobacco by RNA-seq analysis. A total of 544 co-DEGs were detected between transgenic and wild-type tobacco. Functional assignments of the co-DEGs indicated that 33 reliable pathways are altered in transgenic tobacco plants. The most noticeable pathways are fatty acid metabolism, amino acid biosynthesis and metabolism, and plant hormone signal transduction. Results suggest that these enhanced processes are critical for the cell proliferation during multicellular trichome formation in transgenic plants. In addition, the transcriptional levels of homologues of trichome regulators in Rosids were not significantly changed, whereas homologues of genes (Wo and SlCycB2) in Asterids were significantly upregulated in Wov transgenic tobacco plants. CONCLUSIONS This study presents a global picture of the gene expression changes induced by Wov-gene in tobacco. And the results provided us new insight into the molecular processes controlling multicellular formation in tobacco. Furthermore, we inferred that trichomes in solanaceous species might share a common network.
Collapse
Affiliation(s)
- Changxian Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Yanna Gao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Shenghua Gao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Gang Yu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Cheng Xiong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Jiang Chang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| |
Collapse
|
155
|
Yamauchi T, Shiono K, Nagano M, Fukazawa A, Ando M, Takamure I, Mori H, Nishizawa NK, Kawai-Yamada M, Tsutsumi N, Kato K, Nakazono M. Ethylene Biosynthesis Is Promoted by Very-Long-Chain Fatty Acids during Lysigenous Aerenchyma Formation in Rice Roots. PLANT PHYSIOLOGY 2015; 169:180-93. [PMID: 26036614 PMCID: PMC4577372 DOI: 10.1104/pp.15.00106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 06/01/2015] [Indexed: 05/22/2023]
Abstract
In rice (Oryza sativa) roots, lysigenous aerenchyma, which is created by programmed cell death and lysis of cortical cells, is constitutively formed under aerobic conditions, and its formation is further induced under oxygen-deficient conditions. Ethylene is involved in the induction of aerenchyma formation. reduced culm number1 (rcn1) is a rice mutant in which the gene encoding the ATP-binding cassette transporter RCN1/OsABCG5 is defective. Here, we report that the induction of aerenchyma formation was reduced in roots of rcn1 grown in stagnant deoxygenated nutrient solution (i.e. under stagnant conditions, which mimic oxygen-deficient conditions in waterlogged soils). 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is a key enzyme in ethylene biosynthesis. Stagnant conditions hardly induced the expression of ACS1 in rcn1 roots, resulting in low ethylene production in the roots. Accumulation of saturated very-long-chain fatty acids (VLCFAs) of 24, 26, and 28 carbons was reduced in rcn1 roots. Exogenously supplied VLCFA (26 carbons) increased the expression level of ACS1 and induced aerenchyma formation in rcn1 roots. Moreover, in rice lines in which the gene encoding a fatty acid elongase, CUT1-LIKE (CUT1L; a homolog of the gene encoding Arabidopsis CUT1, which is required for cuticular wax production), was silenced, both ACS1 expression and aerenchyma formation were reduced. Interestingly, the expression of ACS1, CUT1L, and RCN1/OsABCG5 was induced predominantly in the outer part of roots under stagnant conditions. These results suggest that, in rice under oxygen-deficient conditions, VLCFAs increase ethylene production by promoting 1-aminocyclopropane-1-carboxylic acid biosynthesis in the outer part of roots, which, in turn, induces aerenchyma formation in the root cortex.
Collapse
Affiliation(s)
- Takaki Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan (T.Y., A.F., H.M., Mik.N.);Department of Bioscience, Fukui Prefectural University, Eiheiji-cho, Yoshida, Fukui 910-1195, Japan (K.S.);Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan (Min.N., M.K.-Y.);Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan (M.A., N.K.N., N.T.);Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan (I.T.);Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa 921-8836, Japan (N.K.N.); andDepartment of Crop Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan (K.K.)
| | - Katsuhiro Shiono
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan (T.Y., A.F., H.M., Mik.N.);Department of Bioscience, Fukui Prefectural University, Eiheiji-cho, Yoshida, Fukui 910-1195, Japan (K.S.);Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan (Min.N., M.K.-Y.);Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan (M.A., N.K.N., N.T.);Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan (I.T.);Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa 921-8836, Japan (N.K.N.); andDepartment of Crop Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan (K.K.)
| | - Minoru Nagano
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan (T.Y., A.F., H.M., Mik.N.);Department of Bioscience, Fukui Prefectural University, Eiheiji-cho, Yoshida, Fukui 910-1195, Japan (K.S.);Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan (Min.N., M.K.-Y.);Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan (M.A., N.K.N., N.T.);Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan (I.T.);Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa 921-8836, Japan (N.K.N.); andDepartment of Crop Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan (K.K.)
| | - Aya Fukazawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan (T.Y., A.F., H.M., Mik.N.);Department of Bioscience, Fukui Prefectural University, Eiheiji-cho, Yoshida, Fukui 910-1195, Japan (K.S.);Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan (Min.N., M.K.-Y.);Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan (M.A., N.K.N., N.T.);Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan (I.T.);Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa 921-8836, Japan (N.K.N.); andDepartment of Crop Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan (K.K.)
| | - Miho Ando
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan (T.Y., A.F., H.M., Mik.N.);Department of Bioscience, Fukui Prefectural University, Eiheiji-cho, Yoshida, Fukui 910-1195, Japan (K.S.);Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan (Min.N., M.K.-Y.);Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan (M.A., N.K.N., N.T.);Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan (I.T.);Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa 921-8836, Japan (N.K.N.); andDepartment of Crop Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan (K.K.)
| | - Itsuro Takamure
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan (T.Y., A.F., H.M., Mik.N.);Department of Bioscience, Fukui Prefectural University, Eiheiji-cho, Yoshida, Fukui 910-1195, Japan (K.S.);Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan (Min.N., M.K.-Y.);Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan (M.A., N.K.N., N.T.);Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan (I.T.);Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa 921-8836, Japan (N.K.N.); andDepartment of Crop Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan (K.K.)
| | - Hitoshi Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan (T.Y., A.F., H.M., Mik.N.);Department of Bioscience, Fukui Prefectural University, Eiheiji-cho, Yoshida, Fukui 910-1195, Japan (K.S.);Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan (Min.N., M.K.-Y.);Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan (M.A., N.K.N., N.T.);Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan (I.T.);Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa 921-8836, Japan (N.K.N.); andDepartment of Crop Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan (K.K.)
| | - Naoko K Nishizawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan (T.Y., A.F., H.M., Mik.N.);Department of Bioscience, Fukui Prefectural University, Eiheiji-cho, Yoshida, Fukui 910-1195, Japan (K.S.);Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan (Min.N., M.K.-Y.);Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan (M.A., N.K.N., N.T.);Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan (I.T.);Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa 921-8836, Japan (N.K.N.); andDepartment of Crop Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan (K.K.)
| | - Maki Kawai-Yamada
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan (T.Y., A.F., H.M., Mik.N.);Department of Bioscience, Fukui Prefectural University, Eiheiji-cho, Yoshida, Fukui 910-1195, Japan (K.S.);Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan (Min.N., M.K.-Y.);Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan (M.A., N.K.N., N.T.);Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan (I.T.);Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa 921-8836, Japan (N.K.N.); andDepartment of Crop Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan (K.K.)
| | - Nobuhiro Tsutsumi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan (T.Y., A.F., H.M., Mik.N.);Department of Bioscience, Fukui Prefectural University, Eiheiji-cho, Yoshida, Fukui 910-1195, Japan (K.S.);Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan (Min.N., M.K.-Y.);Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan (M.A., N.K.N., N.T.);Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan (I.T.);Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa 921-8836, Japan (N.K.N.); andDepartment of Crop Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan (K.K.)
| | - Kiyoaki Kato
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan (T.Y., A.F., H.M., Mik.N.);Department of Bioscience, Fukui Prefectural University, Eiheiji-cho, Yoshida, Fukui 910-1195, Japan (K.S.);Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan (Min.N., M.K.-Y.);Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan (M.A., N.K.N., N.T.);Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan (I.T.);Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa 921-8836, Japan (N.K.N.); andDepartment of Crop Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan (K.K.)
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan (T.Y., A.F., H.M., Mik.N.);Department of Bioscience, Fukui Prefectural University, Eiheiji-cho, Yoshida, Fukui 910-1195, Japan (K.S.);Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan (Min.N., M.K.-Y.);Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan (M.A., N.K.N., N.T.);Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan (I.T.);Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa 921-8836, Japan (N.K.N.); andDepartment of Crop Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan (K.K.)
| |
Collapse
|
156
|
Wang Z, Fang B, Chen X, Liao M, Chen J, Zhang X, Huang L, Luo Z, Yao Z, Li Y. Temporal patterns of gene expression associated with tuberous root formation and development in sweetpotato (Ipomoea batatas). BMC PLANT BIOLOGY 2015; 15:180. [PMID: 26174091 PMCID: PMC4502468 DOI: 10.1186/s12870-015-0567-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/07/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND The tuberous root of sweetpotato is undisputedly an important organ from agronomic and biological perspectives. Little is known regarding the regulatory networks programming tuberous root formation and development. RESULTS Here, as a first step toward understanding these networks, we analyzed and characterized the genome-wide transcriptional profiling and dynamics of sweetpotato root in seven distinct developmental stages using a customized microarray containing 39,724 genes. Analysis of these genes identified temporal programs of gene expression, including hundreds of transcription factor (TF) genes. We found that most genes active in roots were shared across all developmental stages, although significant quantitative changes in gene abundance were observed for 5,368 (including 435 TFs) genes. Clustering analysis of these differentially expressed genes pointed out six distinct expression patterns during root development. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that genes involved in different processes were enriched at specific stages of root development. In contrast with the large number of shared expressed genes in root development, each stage or period of root development has only a small number of specific genes. In total, 712 (including 27 TFs) and 1,840 (including 115 TFs) genes were identified as root-stage and root-period specific, respectively at the level of microarray. Several of the specific TF genes are known regulators of root development, including DA1-related protein, SHORT-ROOT and BEL1-like. The remaining TFs with unknown roles would also play critical regulatory roles during sweetpotato tuberous root formation and development. CONCLUSIONS The results generated in this study provided spatiotemporal patterns of root gene expression in support of future efforts for understanding the underlying molecular mechanism that control sweetpotato yield and quality.
Collapse
Affiliation(s)
- Zhangying Wang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Boping Fang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Xinliang Chen
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Minghuan Liao
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Jingyi Chen
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Xiongjian Zhang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Lifei Huang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Zhongxia Luo
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Zhufang Yao
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Yujun Li
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
157
|
Ding W, Lin L, Zhang B, Xiang X, Wu J, Pan Z, Zhu S. OsKASI, a β-ketoacyl-[acyl carrier protein] synthase I, is involved in root development in rice (Oryza sativa L.). PLANTA 2015; 242:203-13. [PMID: 25893869 DOI: 10.1007/s00425-015-2296-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/30/2015] [Indexed: 05/08/2023]
Abstract
The involvement of OsKASI in FA synthesis is found to play a critical role in root development of rice. The root system plays important roles in plant nutrient and water acquisition. However, mechanisms of root development and molecular regulation in rice are still poorly understood. Here, we characterized a rice (Oryza sativa L.) mutant with shortened roots due to a defect in cell elongation. Map-based cloning revealed that the mutation occurred in a putative 3-oxoacyl-synthase, an ortholog of β-ketoacyl-[acyl carrier protein] synthase I (KASI) in Arabidopsis, thus designated as OsKASI. OsKASI was found to be ubiquitously expressed in various tissues throughout the plant and OsKASI protein was localized in the plastid. In addition, OsKASI deficiency resulted in reduced fertility and a remarkable change in fatty acid (FA) composition and contents in roots and seeds. Our results demonstrate that involvement of OsKASI in FA synthesis is required for root development in rice.
Collapse
Affiliation(s)
- Wona Ding
- College of Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
158
|
Liu GJ, Xiao GH, Liu NJ, Liu D, Chen PS, Qin YM, Zhu YX. Targeted Lipidomics Studies Reveal that Linolenic Acid Promotes Cotton Fiber Elongation by Activating Phosphatidylinositol and Phosphatidylinositol Monophosphate Biosynthesis. MOLECULAR PLANT 2015; 8:911-921. [PMID: 25731673 DOI: 10.1016/j.molp.2015.02.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/25/2015] [Accepted: 02/14/2015] [Indexed: 06/04/2023]
Abstract
The membrane lipids from fast-elongating wild-type cotton (Gossypium hirsutum) fibers at 10 days post-anthesis, wild-type ovules with fiber cells removed, and ovules from the fuzzless-lintless mutant harvested at the same age, were extracted, separated, and quantified. Fiber cells contained significantly higher amounts of phosphatidylinositol (PI) than both ovule samples with PI 34:3 being the most predominant species. The genes encoding fatty acid desaturases (Δ(15)GhFAD), PI synthase (PIS) and PI kinase (PIK) were expressed in a fiber-preferential manner. Further analysis of phosphatidylinositol monophosphate (PIP) indicated that elongating fibers contained four- to five-fold higher amounts of PIP 34:3 than the ovules. Exogenously applied linolenic acid (C18:3), soybean L-α-PI, and PIPs containing PIP 34:3 promoted significant fiber growth, whereas a liver PI lacking the C18:3 moiety, linoleic acid, and PIP 36:2 were completely ineffective. The growth inhibitory effects of carbenoxolone, 5-hydroxytryptamine, and wortmannin were reverted by C18:3, PI, or PIP, respectively, suggesting that PIP signaling is essential for fiber cell growth. Furthermore, cotton plants expressing virus-induced gene-silencing constructs that specifically suppressed GhΔ(15)FAD, GhPIS, or GhPIK expression, resulted in significantly short-fibered phenotypes. Our data provide the basis for in-depth studies on the roles of PI and PIP in mediating cotton fiber growth.
Collapse
Affiliation(s)
- Gao-Jun Liu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guang-Hui Xiao
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ning-Jing Liu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Dan Liu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Pei-Shuang Chen
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yong-Mei Qin
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.
| | - Yu-Xian Zhu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
159
|
Li F, Fan G, Lu C, Xiao G, Zou C, Kohel RJ, Ma Z, Shang H, Ma X, Wu J, Liang X, Huang G, Percy RG, Liu K, Yang W, Chen W, Du X, Shi C, Yuan Y, Ye W, Liu X, Zhang X, Liu W, Wei H, Wei S, Huang G, Zhang X, Zhu S, Zhang H, Sun F, Wang X, Liang J, Wang J, He Q, Huang L, Wang J, Cui J, Song G, Wang K, Xu X, Yu JZ, Zhu Y, Yu S. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 2015; 33:524-30. [PMID: 25893780 DOI: 10.1038/nbt.3208] [Citation(s) in RCA: 675] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/15/2015] [Indexed: 12/27/2022]
Abstract
Gossypium hirsutum has proven difficult to sequence owing to its complex allotetraploid (AtDt) genome. Here we produce a draft genome using 181-fold paired-end sequences assisted by fivefold BAC-to-BAC sequences and a high-resolution genetic map. In our assembly 88.5% of the 2,173-Mb scaffolds, which cover 89.6%∼96.7% of the AtDt genome, are anchored and oriented to 26 pseudochromosomes. Comparison of this G. hirsutum AtDt genome with the already sequenced diploid Gossypium arboreum (AA) and Gossypium raimondii (DD) genomes revealed conserved gene order. Repeated sequences account for 67.2% of the AtDt genome, and transposable elements (TEs) originating from Dt seem more active than from At. Reduction in the AtDt genome size occurred after allopolyploidization. The A or At genome may have undergone positive selection for fiber traits. Concerted evolution of different regulatory mechanisms for Cellulose synthase (CesA) and 1-Aminocyclopropane-1-carboxylic acid oxidase1 and 3 (ACO1,3) may be important for enhanced fiber production in G. hirsutum.
Collapse
Affiliation(s)
- Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | | | - Cairui Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Guanghui Xiao
- 1] State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China. [2] Institute for Advanced Studies and College of Life Sciences, Wuhan University, Wuhan, China
| | - Changsong Zou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Russell J Kohel
- Crop Germplasm Research Unit, Southern Plains Agricultural Research Center, US Department of Agriculture-Agricultural Research Service (USDA-ARS), College Station, Texas, USA
| | - Zhiying Ma
- Key Laboratory for Crop Germplasm Resources of Hebei, Agricultural University of Hebei, Baoding, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jianyong Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | | | - Gai Huang
- 1] State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China. [2] Institute for Advanced Studies and College of Life Sciences, Wuhan University, Wuhan, China
| | - Richard G Percy
- Crop Germplasm Research Unit, Southern Plains Agricultural Research Center, US Department of Agriculture-Agricultural Research Service (USDA-ARS), College Station, Texas, USA
| | - Kun Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Weihua Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | | | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | | | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wuwei Ye
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xin Liu
- BGI-Shenzhen, Shenzhen, China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | | | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shoujun Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | | | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shuijin Zhu
- Department of Agronomy, Zhejiang University, Hangzhou, China
| | | | | | - Xingfen Wang
- Key Laboratory for Crop Germplasm Resources of Hebei, Agricultural University of Hebei, Baoding, China
| | | | | | | | | | | | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Guoli Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China
| | - John Z Yu
- Crop Germplasm Research Unit, Southern Plains Agricultural Research Center, US Department of Agriculture-Agricultural Research Service (USDA-ARS), College Station, Texas, USA
| | - Yuxian Zhu
- 1] State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China. [2] Institute for Advanced Studies and College of Life Sciences, Wuhan University, Wuhan, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
160
|
Xie F, Jones DC, Wang Q, Sun R, Zhang B. Small RNA sequencing identifies miRNA roles in ovule and fibre development. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:355-69. [PMID: 25572837 DOI: 10.1111/pbi.12296] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) have been found to be differentially expressed during cotton fibre development. However, which specific miRNAs and how they are involved in fibre development is unclear. Here, using deep sequencing, 65 conserved miRNA families were identified and 32 families were differentially expressed between leaf and ovule. At least 40 miRNAs were either leaf or ovule specific, whereas 62 miRNAs were shared in both leaf and ovule. qRT-PCR confirmed these miRNAs were differentially expressed during fibre early development. A total of 820 genes were potentially targeted by the identified miRNAs, whose functions are involved in a series of biological processes including fibre development, metabolism and signal transduction. Many predicted miRNA-target pairs were subsequently validated by degradome sequencing analysis. GO and KEGG analyses showed that the identified miRNAs and their targets were classified to 1027 GO terms including 568 biological processes, 324 molecular functions and 135 cellular components and were enriched to 78 KEGG pathways. At least seven unique miRNAs participate in trichome regulatory interaction network. Eleven trans-acting siRNA (tasiRNA) candidate genes were also identified in cotton. One has never been found in other plant species and two of them were derived from MYB and ARF, both of which play important roles in cotton fibre development. Sixteen genes were predicted to be tasiRNA targets, including sucrose synthase and MYB2. Together, this study discovered new miRNAs in cotton and offered evidences that miRNAs play important roles in cotton ovule/fibre development. The identification of tasiRNA genes and their targets broadens our understanding of the complicated regulatory mechanism of miRNAs in cotton.
Collapse
Affiliation(s)
- Fuliang Xie
- Department of Biology, East Carolina University, Greenville, NC, USA
| | | | | | | | | |
Collapse
|
161
|
Zheng M, Meng Y, Yang C, Zhou Z, Wang Y, Chen B. Protein expression changes during cotton fiber elongation in response to drought stress and recovery. Proteomics 2015; 14:1776-95. [PMID: 24889071 DOI: 10.1002/pmic.201300123] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/17/2014] [Accepted: 05/20/2014] [Indexed: 11/06/2022]
Abstract
An investigation to better understand the molecular mechanism of cotton (Gossypium hirsutum L.) fiber elongation in response to drought stress and recovery was conducted using a comparative proteomics analysis. Cotton plants (cv. NuCOTN 33B) were subjected to water deprivation for 10 days followed by a recovery period (with watering) of 5 days. The temporal changes in total proteins in cotton fibers were examined using 2DE. The results revealed that 163 proteins are significantly drought responsive. MS analysis led to the identification of 132 differentially expressed proteins that include some known as well as some novel drought-responsive proteins. These drought responsive fiber proteins in NuCOTN 33B are associated with a variety of cellular functions, i.e. signal transduction, protein processing, redox homeostasis, cell wall modification, metabolisms of carbon, energy, lipid, lignin, and flavonoid. The results suggest that the enhancement of the perception of drought stress, a new balance of the metabolism of the biosynthesis of cell wall components and cytoskeleton homeostasis plays an important role in the response of cotton fibers to drought stress. Overall, the current study provides an overview of the molecular mechanism of drought response in cotton fiber cells.
Collapse
Affiliation(s)
- Mi Zheng
- College of Agriculture, Nanjing Agricultural University, Nanjing, P. R. China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, P. R. China
| | | | | | | | | | | |
Collapse
|
162
|
Yang Q, Wang L, Zhou Q, Huang X. Toxic effects of heavy metal terbium ion on the composition and functions of cell membrane in horseradish roots. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 111:48-58. [PMID: 25450914 DOI: 10.1016/j.ecoenv.2014.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 05/22/2023]
Abstract
The environmental safety of rare earth elements (REEs), especially the toxic effect of REEs on plants, has attracted increasing attention. However, the cellular mechanism of this toxic effect remains largely unknown. Here, the toxic effects of heavy REE terbium ion [Tb(III)] on the cell membrane of horseradish roots were investigated by using electron microscope autoradiography (EMARG) and histochemical methods. The results indicated that Tb(III) was distributed in the extracellular and intracellular spaces of the roots after horseradish was treated with Tb(III). Moreover, the percentage contents of the unsaturated fatty acids in the membrane lipids, the current of the outward K(+) channel and the average diameter of membrane proteins in the roots of horseradish treated with Tb(III) were decreased; on the contrary, the percentage contents of the saturated fatty acids and malondialdehyde in the roots of horseradish treated with Tb(III) were increased. Furthermore, the contents of intracellular N, P, Mg and Fe in the roots of horseradish treated with Tb(III) were decreased, while the contents of intracellular K and Ca in the roots of horseradish treated with Tb(III) were increased. Finally, the effects of Tb(III) on horseradish roots were increased with increasing concentration or duration of Tb(III) treatment. In conclusion, after horseradish was treated with Tb(III), Tb(III) could enter the cells of horseradish roots and lead to the toxic effects on horseradish, which caused the oxidation of the unsaturated fatty acids in the membrane lipids, the changes in the membrane proteins (including the outward K(+) channel), the decrease in the membrane fluidity, and then the inhibition of the intracellular/extracellular-ion exchange in horseradish roots.
Collapse
Affiliation(s)
- Qing Yang
- State Key Laboratory of Food Science and Technology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lihong Wang
- State Key Laboratory of Food Science and Technology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Xiaohua Huang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
163
|
Yurchenko OP, Park S, Ilut DC, Inmon JJ, Millhollon JC, Liechty Z, Page JT, Jenks MA, Chapman KD, Udall JA, Gore MA, Dyer JM. Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium. BMC PLANT BIOLOGY 2014; 14:312. [PMID: 25403726 PMCID: PMC4245742 DOI: 10.1186/s12870-014-0312-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/28/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid tropical and subtropical regions, and thus perform well in these geographical areas, cotton seedlings are sensitive to cold temperature, which can significantly reduce crop yields. One of the common biochemical responses of plants to cold temperatures is an increase in omega-3 fatty acids, which protects cellular function by maintaining membrane integrity. The purpose of our study was to identify and characterize the omega-3 fatty acid desaturase (FAD) gene family in G. hirsutum, with an emphasis on identifying omega-3 FADs involved in cold temperature adaptation. RESULTS Eleven omega-3 FAD genes were identified in G. hirsutum, and characterization of the gene family in extant A and D diploid species (G. herbaceum and G. raimondii, respectively) allowed for unambiguous genome assignment of all homoeologs in tetraploid G. hirsutum. The omega-3 FAD family of cotton includes five distinct genes, two of which encode endoplasmic reticulum-type enzymes (FAD3-1 and FAD3-2) and three that encode chloroplast-type enzymes (FAD7/8-1, FAD7/8-2, and FAD7/8-3). The FAD3-2 gene was duplicated in the A genome progenitor species after the evolutionary split from the D progenitor, but before the interspecific hybridization event that gave rise to modern tetraploid cotton. RNA-seq analysis revealed conserved, gene-specific expression patterns in various organs and cell types and semi-quantitative RT-PCR further revealed that FAD7/8-1 was specifically induced during cold temperature treatment of G. hirsutum seedlings. CONCLUSIONS The omega-3 FAD gene family in cotton was characterized at the genome-wide level in three species, showing relatively ancient establishment of the gene family prior to the split of A and D diploid progenitor species. The FAD genes are differentially expressed in various organs and cell types, including fiber, and expression of the FAD7/8-1 gene was induced by cold temperature. Collectively, these data define the genetic and functional genomic properties of this important gene family in cotton and provide a foundation for future efforts to improve cotton abiotic stress tolerance through molecular breeding approaches.
Collapse
Affiliation(s)
- Olga P Yurchenko
- />USDA-ARS, US Arid-Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85138 USA
| | - Sunjung Park
- />USDA-ARS, US Arid-Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85138 USA
- />Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX 76203 USA
| | - Daniel C Ilut
- />Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - Jay J Inmon
- />USDA-ARS, US Arid-Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85138 USA
| | - Jon C Millhollon
- />USDA-ARS, US Arid-Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85138 USA
| | - Zach Liechty
- />Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602 USA
| | - Justin T Page
- />Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602 USA
| | - Matthew A Jenks
- />Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 2650 USA
| | - Kent D Chapman
- />Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX 76203 USA
| | - Joshua A Udall
- />Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602 USA
| | - Michael A Gore
- />Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - John M Dyer
- />USDA-ARS, US Arid-Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85138 USA
| |
Collapse
|
164
|
Yurchenko OP, Park S, Ilut DC, Inmon JJ, Millhollon JC, Liechty Z, Page JT, Jenks MA, Chapman KD, Udall JA, Gore MA, Dyer JM. Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium. BMC PLANT BIOLOGY 2014; 14:312. [PMID: 25403726 DOI: 10.1186/s12870-014-0312-315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/28/2014] [Indexed: 05/24/2023]
Abstract
BACKGROUND The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid tropical and subtropical regions, and thus perform well in these geographical areas, cotton seedlings are sensitive to cold temperature, which can significantly reduce crop yields. One of the common biochemical responses of plants to cold temperatures is an increase in omega-3 fatty acids, which protects cellular function by maintaining membrane integrity. The purpose of our study was to identify and characterize the omega-3 fatty acid desaturase (FAD) gene family in G. hirsutum, with an emphasis on identifying omega-3 FADs involved in cold temperature adaptation. RESULTS Eleven omega-3 FAD genes were identified in G. hirsutum, and characterization of the gene family in extant A and D diploid species (G. herbaceum and G. raimondii, respectively) allowed for unambiguous genome assignment of all homoeologs in tetraploid G. hirsutum. The omega-3 FAD family of cotton includes five distinct genes, two of which encode endoplasmic reticulum-type enzymes (FAD3-1 and FAD3-2) and three that encode chloroplast-type enzymes (FAD7/8-1, FAD7/8-2, and FAD7/8-3). The FAD3-2 gene was duplicated in the A genome progenitor species after the evolutionary split from the D progenitor, but before the interspecific hybridization event that gave rise to modern tetraploid cotton. RNA-seq analysis revealed conserved, gene-specific expression patterns in various organs and cell types and semi-quantitative RT-PCR further revealed that FAD7/8-1 was specifically induced during cold temperature treatment of G. hirsutum seedlings. CONCLUSIONS The omega-3 FAD gene family in cotton was characterized at the genome-wide level in three species, showing relatively ancient establishment of the gene family prior to the split of A and D diploid progenitor species. The FAD genes are differentially expressed in various organs and cell types, including fiber, and expression of the FAD7/8-1 gene was induced by cold temperature. Collectively, these data define the genetic and functional genomic properties of this important gene family in cotton and provide a foundation for future efforts to improve cotton abiotic stress tolerance through molecular breeding approaches.
Collapse
|
165
|
Wang XC, Li Q, Jin X, Xiao GH, Liu GJ, Liu NJ, Qin YM. Quantitative proteomics and transcriptomics reveal key metabolic processes associated with cotton fiber initiation. J Proteomics 2014; 114:16-27. [PMID: 25449837 DOI: 10.1016/j.jprot.2014.10.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/23/2014] [Accepted: 10/30/2014] [Indexed: 01/30/2023]
Abstract
UNLABELLED An iTRAQ-based proteomics of ovules from the upland cotton species Gossypium hirsutum and its fuzzless-lintless mutant was performed, and finally 2729 proteins that preferentially accumulated at anthesis in wild-type ovules were identified. We confirmed that the gene expression levels of 2005 among these proteins also increased by performing an RNA sequencing transcriptomics. Expression of proteins involved in carboxylic acid metabolism, small-molecule metabolic processes, hormone regulation, and lipid metabolism was significantly enhanced in wild-type ovules. Quantitative real-time PCR verified the increased expression of 26 genes involved in these processes. Cotton 3-hydroxyacyl-CoA dehydratase (GhPAS2) catalyzing the third reaction of very long-chain fatty acid (VLCFA) biosynthesis, accumulated at anthesis in wild-type ovules. Heterogeneous expression of GhPAS2 restored viability to the Saccharomyces cerevisiae haploid psh1-deletion strain deficient in PAS2 activity. Application of VLCFA biosynthesis inhibitor acetochlor (2-chloro-N-[ethoxymethyl]-N-[2-ethyl-6-methyl-phenyl]-acetamide; ACE) and gibberellic acid to the unfertilized cotton ovules significantly suppressed fiber cell protrusion. In this study, the profiling of gene expression at both transcriptome and proteome levels provides new insights into cotton fiber cell initiation. BIOLOGICAL SIGNIFICANCE Cotton fiber initiation determines the ultimate number of fibers per ovule, thereby determining fiber yield. In total, 2729 proteins were preferentially accumulated in wild-type ovules at anthesis. The most up-regulated proteins were assigned to carboxylic acid metabolism, small-molecule metabolic processes, hormone regulation, and lipid metabolism. In consistence with these findings, we characterized GhPAS2 gene coding for the enzyme that catalyzes VLCFA production. VLCFA biosynthesis inhibitor, acetochlor, was shown to significantly suppress fiber initiation. This study provides a genome-scale transcriptomic and proteomic characterization of fiber initial cells, laying a solid basis for further investigation of the molecular processes governing fiber cell development.
Collapse
Affiliation(s)
- Xu-Chu Wang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China; Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Qin Li
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiang Jin
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Guang-Hui Xiao
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Gao-Jun Liu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Nin-Jing Liu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yong-Mei Qin
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
166
|
Fang L, Tian R, Li X, Chen J, Wang S, Wang P, Zhang T. Cotton fiber elongation network revealed by expression profiling of longer fiber lines introgressed with different Gossypium barbadense chromosome segments. BMC Genomics 2014; 15:838. [PMID: 25273845 PMCID: PMC4190578 DOI: 10.1186/1471-2164-15-838] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 09/24/2014] [Indexed: 12/24/2022] Open
Abstract
Background Cotton fiber, a highly elongated, thickened single cell of the seed epidermis, is a powerful cell wall research model. Fiber length, largely determined during the elongation stage, is a key property of fiber quality. Several studies using expressed sequence tags and microarray analysis have identified transcripts that accumulate preferentially during fiber elongation. To further show the mechanism of fiber elongation, we used Digital Gene Expression Tag Profiling to compare transcriptome data from longer fiber chromosome introgressed lines (CSILs) containing segments of various Gossypium barbadense chromosomes with data from its recurrent parent TM-1 during fiber elongation (from 5 DPA to 20 DPA). Results A large number of differentially expressed genes (DEGs) involved in carbohydrate, fatty acid and secondary metabolism, particularly cell wall biosynthesis, were highly upregulated during the fiber elongation stage, as determined by functional enrichment and pathway analysis. Furthermore, DEGs related to hormone responses and transcription factors showed upregulated expression levels in the CSILs. Moreover, metabolic and regulatory network analysis indicated that the same pathways were differentially altered, and distinct pathways exhibited altered gene expression, in the CSILs. Interestingly, mining of upregulated DEGs in the introgressed segments of these CSILs based on D-genome sequence data showed that these lines were enriched in glucuronosyltransferase, inositol-1, 4, 5-trisphosphate 3-kinase and desulfoglucosinolate sulfotransferase activity. These results were similar to the results of transcriptome analysis. Conclusions This report provides an integrative network about the molecular mechanisms controlling fiber length, which are mainly tied to carbohydrate metabolism, cell wall biosynthesis, fatty acid metabolism, secondary metabolism, hormone responses and Transcription factors. The results of this study provide new insights into the critical factors associated with cell elongation and will facilitate further research aimed at understanding the mechanisms underlying cotton fiber elongation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-838) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tianzhen Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
167
|
Han J, Tan J, Tu L, Zhang X. A peptide hormone gene, GhPSK promotes fibre elongation and contributes to longer and finer cotton fibre. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:861-871. [PMID: 24666593 DOI: 10.1111/pbi.12187] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/14/2014] [Accepted: 02/21/2014] [Indexed: 06/03/2023]
Abstract
Cotton fibres, the single-celled trichomes derived from the ovule epidermis, provide the most important natural material for the global textile industry. A number of studies have demonstrated that regulating endogenous hormone levels through transgenic approaches can improve cotton fibre qualities. Phytosulfokine-α (PSK-α) is a novel peptide hormone in plants that is involved in regulating cell proliferation and elongation. However, its potential applications in crop genetic improvement have not been evaluated. In this study, we describe how exogenous PSK-α application promotes cotton fibre cell elongation in vitro. Chlorate, an effective inhibitor of peptide sulfation, suppressed fibre elongation in ovule culture. Exogenously applied PSK-α partly restored the chlorate-induced suppression. A putative PSK gene (GhPSK) was cloned from Gossypium hirsutum. Expression pattern analysis revealed that GhPSK is preferentially expressed in rapidly elongating fibre cells (5-20 days postanthesis). Overexpression of GhPSK in cotton increased the endogenous PSK-α level and promoted cotton fibre cell elongation, resulting in longer and finer fibres. Further results from electrophysiological and physiological analyses suggest that GhPSK affects fibre development through regulation of K(+) efflux. Digital gene expression (DGE) profile analysis of GhPSK overexpression lines indicates that PSK signalling may regulate the respiratory electron-transport chain and reactive oxygen species to affect cotton fibre development. These results imply that peptide hormones are involved in cotton fibre growth and suggest a new strategy for the biotechnological improvement of cotton fibre quality.
Collapse
Affiliation(s)
- Jie Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | | | | |
Collapse
|
168
|
Guan X, Song Q, Chen ZJ. Polyploidy and small RNA regulation of cotton fiber development. TRENDS IN PLANT SCIENCE 2014; 19:516-28. [PMID: 24866591 DOI: 10.1016/j.tplants.2014.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 03/21/2014] [Accepted: 04/16/2014] [Indexed: 05/18/2023]
Abstract
Cotton is not only the most important source of renewal textile fibers, but also an excellent model for studying cell fate determination and polyploidy effects on gene expression and evolution of domestication traits. The combination of A and D-progenitor genomes into allotetraploid cotton induces intergenomic interactions and epigenetic effects, leading to the unequal expression of homoeologous genes. Small RNAs regulate the expression of transcription and signaling factors related to cellular growth, development and adaptation. An example is miRNA-mediated preferential degradation of homoeologous mRNAs encoding MYB-domain transcription factors that are required for the initiation of leaf trichomes in Arabidopsis and of seed fibers in cotton. This example of coevolution between small RNAs and their homoeologous targets could shape morphological traits such as fibers during the selection and domestication of polyploid crops.
Collapse
Affiliation(s)
- Xueying Guan
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Qingxin Song
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
169
|
Tan D, Sun X, Zhang J. Age-dependent and jasmonic acid-induced laticifer-cell differentiation in anther callus cultures of rubber tree. PLANTA 2014; 240:337-344. [PMID: 24841475 DOI: 10.1007/s00425-014-2086-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 04/23/2014] [Indexed: 06/03/2023]
Abstract
Callus cultures of rubber tree may serve as an efficient model to screen and study environmental factors and phytohormones that stimulate laticifer cell differentiation and improve latex yield. The number of laticifer cells in bark is one of the most important factors determining the biosynthesis and economic value of rubber trees (Hevea brasiliensis). The differentiation of laticifer cells in planta has been characterized, whereas laticifer-cell differentiation in callus cultures in vitro is largely unknown. In this study, we present molecular and physiological evidences for laticifer-cell differentiation in calli derived from rubber tree anthers. RT-PCR analysis showed that three key genes rubber elongation factor (REF), small rubber particle protein (SRPP), and cis-prenyl transferase (CPT) that are essential in latex biosynthesis in rubber tree bark also were transcribed in anther calli. Laticifer cell development in callus cultures was age-dependent; the cells began to appear at 58 days after initiation of culture, and the percentage of laticifer cells increased steadily with increasing callus age. Addition of 0-2 mg/L jasmonic acid (JA) to the media significantly promoted the differentiation of laticifer cells in callus cultures. However, JA concentrations higher than 3 mg/L were not optimum for laticifer cells differentiation; this result was not observed in previous in planta studies. Laticifer cells differentiated on media with pH 5.8-7.0, with an optimum of pH 6.2, whereas a higher pH inhibited differentiation. These results indicate that the anther-derived rubber tree callus may serve as a new and more efficient model to study environmental factors that influence laticifer cell differentiation, and may be useful for research on new technologies to improve latex yield, and to screen for commercially useful phytohormones.
Collapse
Affiliation(s)
- Deguan Tan
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | | | | |
Collapse
|
170
|
Yang Z, Zhang C, Yang X, Liu K, Wu Z, Zhang X, Zheng W, Xun Q, Liu C, Lu L, Yang Z, Qian Y, Xu Z, Li C, Li J, Li F. PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. THE NEW PHYTOLOGIST 2014; 203:437-448. [PMID: 24786710 DOI: 10.1111/nph.12824] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/22/2014] [Indexed: 05/19/2023]
Abstract
Cotton (Gossypium hirsutum) is the major source of natural textile fibers. Brassinosteroids (BRs) play crucial roles in regulating fiber development. The molecular mechanisms of BRs in regulating fiber elongation, however, are poorly understood. pagoda1 (pag1) was identified via an activation tagging genetic screen and characterized by genome walking and brassinolide (BL) supplementation. RNA-Seq analysis was employed to elucidate the mechanisms of PAG1 in regulating fiber development. pag1 exhibited dwarfism and reduced fiber length due to significant inhibition of cell elongation and expansion. BL treatment rescued its growth and fiber elongation. PAG1 encodes a homolog of Arabidopsis CYP734A1 that inactivates BRs via C-26 hydroxylation. RNA-Seq analyses showed that the constitutive expression of PAG1 downregulated the expression of genes involved in very-long-chain fatty acids (VLCFA) biosynthesis, ethylene-mediated signaling, response to cadmium, cell wall development, cytoskeleton organization and cell growth. Our results demonstrate that PAG1 plays crucial roles in regulating fiber development via controlling the level of endogenous bioactive BRs, which may affect ethylene signaling cascade by mediating VLCFA. Therefore, BR may be a critical regulator of fiber elongation, a role which may in turn be linked to effects on VLCFA biosynthesis, ethylene and cadmium signaling, cell wall- and cytoskeleton-related gene expression.
Collapse
Affiliation(s)
- Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Chaojun Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaojie Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kun Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhixia Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wu Zheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qingqing Xun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chuanliang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lili Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhaoen Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuyuan Qian
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhenzhen Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Changfeng Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| |
Collapse
|
171
|
Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C, Chen W, Liang X, Shang H, Liu W, Shi C, Xiao G, Gou C, Ye W, Xu X, Zhang X, Wei H, Li Z, Zhang G, Wang J, Liu K, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu S. Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 2014; 46:567-72. [DOI: 10.1038/ng.2987] [Citation(s) in RCA: 634] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 04/24/2014] [Indexed: 01/05/2023]
|
172
|
Li Q, Xiao G, Zhu YX. Single-nucleotide resolution mapping of the Gossypium raimondii transcriptome reveals a new mechanism for alternative splicing of introns. MOLECULAR PLANT 2014; 7:829-40. [PMID: 24398628 DOI: 10.1093/mp/sst175] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Alternative splicing (AS) is a vital genetic mechanism that enhances the diversity of eukaryotic transcriptomes. Here, we generated 8.3 Gb high-quality RNA-sequencing data from cotton (Gossypium raimondii) and performed a systematic, comparative analysis of AS events. We mapped 85% of the RNA-sequencing data onto the reference genome and identified 154368 splice junctions with 16437 as events in 10197 genes. Intron retention constituted the majority (40%) of all AS events in G. raimondii. Comparison across 11 eukaryote species showed that intron retention is the most common AS type in higher plants. Although transposable elements (TEs) were found in only 2.9% of all G. raimondii introns, they are present in 43% of the retained introns, suggesting that TE-insertion may be an important mechanism for intron retention during AS. The majority of the TE insertions are concentrated 0-40 nt upstream of the 3'-splice site, substantially altering the distribution of branch points from preferred positions and reducing the efficiency of intron splicing by decreasing RNA secondary structure flexibility. Our data suggest that TE-insertion-induced changes in branch point-site distribution are important for intron retention-type AS. Our findings may help explain the vast differences in intron-retention frequencies between vertebrates and higher plants.
Collapse
Affiliation(s)
- Qin Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
173
|
Fang L, Tian R, Chen J, Wang S, Li X, Wang P, Zhang T. Transcriptomic analysis of fiber strength in upland cotton chromosome introgression lines carrying different Gossypium barbadense chromosomal segments. PLoS One 2014; 9:e94642. [PMID: 24762562 PMCID: PMC3998979 DOI: 10.1371/journal.pone.0094642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/17/2014] [Indexed: 01/09/2023] Open
Abstract
Fiber strength is the key trait that determines fiber quality in cotton, and it is closely related to secondary cell wall synthesis. To understand the mechanism underlying fiber strength, we compared fiber transcriptomes from different G. barbadense chromosome introgression lines (CSILs) that had higher fiber strengths than their recipient, G. hirsutum acc. TM-1. A total of 18,288 differentially expressed genes (DEGs) were detected between CSIL-35431 and CSIL-31010, two CSILs with stronger fiber and TM-1 during secondary cell wall synthesis. Functional classification and enrichment analysis revealed that these DEGs were enriched for secondary cell wall biogenesis, glucuronoxylan biosynthesis, cellulose biosynthesis, sugar-mediated signaling pathways, and fatty acid biosynthesis. Pathway analysis showed that these DEGs participated in starch and sucrose metabolism (328 genes), glycolysis/gluconeogenesis (122 genes), phenylpropanoid biosynthesis (101 genes), and oxidative phosphorylation (87 genes), etc. Moreover, the expression of MYB- and NAC-type transcription factor genes were also dramatically different between the CSILs and TM-1. Being different to those of CSIL-31134, CSIL-35431 and CSIL-31010, there were many genes for fatty acid degradation and biosynthesis, and also for carbohydrate metabolism that were down-regulated in CSIL-35368. Metabolic pathway analysis in the CSILs showed that different pathways were changed, and some changes at the same developmental stage in some pathways. Our results extended our understanding that carbonhydrate metabolic pathway and secondary cell wall biosynthesis can affect the fiber strength and suggested more genes and/or pathways be related to complex fiber strength formation process.
Collapse
Affiliation(s)
- Lei Fang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Ruiping Tian
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Jiedan Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Sen Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Xinghe Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Peng Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Tianzhen Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
174
|
Nigam D, Kavita P, Tripathi RK, Ranjan A, Goel R, Asif M, Shukla A, Singh G, Rana D, Sawant SV. Transcriptome dynamics during fibre development in contrasting genotypes of Gossypium hirsutum L. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:204-218. [PMID: 24119257 DOI: 10.1111/pbi.12129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
Understanding the contribution of genetic background in fibre quality traits is important for the development of future cotton varieties with superior fibre quality. We used Affymetrix microarray (Santa Clara, CA) and Roche 454 GSFLX (Branford, CT) for comparative transcriptome analysis between two superior and three inferior genotypes at six fibre developmental stages. Microarray-based analysis of variance (ANOVA) for 89 microarrays encompassing five contrasting genotypes and six developmental stages suggests that the stages of the fibre development have a more pronounced effect on the differentially expressed genes (DEGs) than the genetic background of genotypes. Superior genotypes showed enriched activity of cell wall enzymes, such as pectin methyl esterase, at early elongation stage, enriched metabolic activities such as lipid, amino acid and ribosomal protein subunits at peak elongation, and prolonged combinatorial regulation of brassinosteroid and auxin at later stages. Our efforts on transcriptome sequencing were focused on changes in gene expression at 25 DPA. Transcriptome sequencing resulted in the generation of 475 658 and 429 408 high-quality reads from superior and inferior genotypes, respectively. A total of 24 609 novel transcripts were identified manually for Gossypium hirsutum with no hits in NCBI 'nr' database. Gene ontology analyses showed that the genes for ribosome biogenesis, protein transport and fatty acid biosynthesis were over-represented in superior genotype, whereas salt stress, abscisic acid stimuli and water deprivation leading to the increased proteolytic activity were more pronounced in inferior genotype.
Collapse
Affiliation(s)
- Deepti Nigam
- Plant Molecular Biology Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Wang C, Lv Y, Xu W, Zhang T, Guo W. Aberrant phenotype and transcriptome expression during fiber cell wall thickening caused by the mutation of the Im gene in immature fiber (im) mutant in Gossypium hirsutum L. BMC Genomics 2014; 15:94. [PMID: 24483163 PMCID: PMC3925256 DOI: 10.1186/1471-2164-15-94] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 01/31/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The immature fiber (im) mutant of Gossypium hirsutum L. is a special cotton fiber mutant with non-fluffy fibers. It has low dry weight and fineness of fibers due to developmental defects in fiber secondary cell wall (SCW). RESULTS We compared the cellulose content in fibers, thickness of fiber cell wall and fiber transcriptional profiling during SCW development in im mutant and its near-isogenic wild-type line (NIL) TM-1. The im mutant had lower cellulose content and thinner cell walls than TM-1 at same fiber developmental stage. During 25 ~ 35 day post-anthesis (DPA), sucrose content, an important carbon source for cellulose synthesis, was also significantly lower in im mutant than in TM-1. Comparative analysis of fiber transcriptional profiling from 13 ~ 25 DPA indicated that the largest transcriptional variations between the two lines occurred at the onset of SCW development. TM-1 began SCW biosynthesis approximately at 16 DPA, whereas the same fiber developmental program in im mutant was delayed until 19 DPA, suggesting an asynchronous fiber developmental program between TM-1 and im mutant. Functional classification and enrichment analysis of differentially expressed genes (DEGs) between the two NILs indicated that genes associated with biological processes related to cellulose synthesis, secondary cell wall biogenesis, cell wall thickening and sucrose metabolism, respectively, were significantly up-regulated in TM-1. Twelve genes related to carbohydrate metabolism were validated by quantitative reverse transcription PCR (qRT-PCR) and confirmed a temporal difference at the earlier transition and SCW biosynthesis stages of fiber development between TM-1 and im mutant. CONCLUSIONS We propose that Im is an important regulatory gene influencing temporal differences in expression of genes related to fiber SCW biosynthesis. This study lays a foundation for cloning the Im gene, elucidating molecular mechanism of fiber SCW development and further genetic manipulation for the improvement of fiber fineness and maturity.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanda Lv
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Wentin Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
176
|
Yoo MJ, Wendel JF. Comparative evolutionary and developmental dynamics of the cotton (Gossypium hirsutum) fiber transcriptome. PLoS Genet 2014; 10:e1004073. [PMID: 24391525 PMCID: PMC3879233 DOI: 10.1371/journal.pgen.1004073] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/15/2013] [Indexed: 01/05/2023] Open
Abstract
The single-celled cotton (Gossypium hirsutum) fiber provides an excellent model to investigate how human selection affects phenotypic evolution. To gain insight into the evolutionary genomics of cotton domestication, we conducted comparative transcriptome profiling of developing cotton fibers using RNA-Seq. Analysis of single-celled fiber transcriptomes from four wild and five domesticated accessions from two developmental time points revealed that at least one-third and likely one-half of the genes in the genome are expressed at any one stage during cotton fiber development. Among these, ∼5,000 genes are differentially expressed during primary and secondary cell wall synthesis between wild and domesticated cottons, with a biased distribution among chromosomes. Transcriptome data implicate a number of biological processes affected by human selection, and suggest that the domestication process has prolonged the duration of fiber elongation in modern cultivated forms. Functional analysis suggested that wild cottons allocate greater resources to stress response pathways, while domestication led to reprogrammed resource allocation toward increased fiber growth, possibly through modulating stress-response networks. This first global transcriptomic analysis using multiple accessions of wild and domesticated cottons is an important step toward a more comprehensive systems perspective on cotton fiber evolution. The understanding that human selection over the past 5,000+ years has dramatically re-wired the cotton fiber transcriptome sets the stage for a deeper understanding of the genetic architecture underlying cotton fiber synthesis and phenotypic evolution. Ever since Darwin biologists have recognized that comparative study of crop plants and their wild relatives offers a powerful framework for generating insights into the mechanisms that underlie evolutionary change. Here, we study the domestication process in cotton, Gossypium hirsutum, an allopolyploid species (containing two different genomes) which initially was domesticated approximately 5000 years ago, and which primarily is grown for its single-celled seed fibers. Strong directional selection over the millennia was accompanied by transformation of the short, coarse, and brown fibers of wild plants into the long, strong, and fine white fibers of the modern cotton crop plant. To explore the evolutionary genetics of cotton domestication, we conducted transcriptome profiling of developing cotton fibers from multiple accessions of wild and domesticated cottons. Comparative analysis revealed that the domestication process dramatically rewired the transcriptome, affecting more than 5,000 genes, and with a more evenly balanced usage of the duplicated copies arising from genome doubling. We identify many different biological processes that were involved in this transformation, including those leading to a prolongation of fiber elongation and a reallocation of resources toward increased fiber growth in modern forms. The data provide a rich resource for future functional analyses targeting crop improvement and evolutionary objectives.
Collapse
Affiliation(s)
- Mi-Jeong Yoo
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
177
|
Zhu YX, Li FG. The Gossypium raimondii genome, a huge leap forward in cotton genomics. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:570-1. [PMID: 23718577 DOI: 10.1111/jipb.12076] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
178
|
Jin X, Li Q, Xiao G, Zhu YX. Using genome-referenced expressed sequence tag assembly to analyze the origin and expression patterns of Gossypium hirsutum transcripts. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:576-85. [PMID: 23675784 DOI: 10.1111/jipb.12066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/12/2013] [Indexed: 05/09/2023]
Abstract
We assembled a total of 297,239 Gossypium hirsutum (Gh, a tetraploid cotton, AADD) expressed sequence tag (EST) sequences that were available in the National Center for Biotechnology Information database, with reference to the recently published G. raimondii (Gr, a diploid cotton, DD) genome, and obtained 49,125 UniGenes. The average lengths of the UniGenes were increased from 804 and 791 bp in two previous EST assemblies to 1,019 bp in the current analysis. The number of putative cotton UniGenes with lengths of 3 kb or more increased from 25 or 34 to 1,223. As a result, thousands of originally independent G. hirsutum ESTs were aligned to produce large contigs encoding transcripts with very long open reading frames, indicating that the G. raimondii genome sequence provided remarkable advantages to assemble the tetraploid cotton transcriptome. Significant different distribution patterns within several GO terms, including transcription factor activity, were observed between D- and A-derived assemblies. Transcriptome analysis showed that, in a tetraploid cotton cell, 29,547 UniGenes were possibly derived from the D subgenome while another 19,578 may come from the A subgenome. Finally, some of the in silico data were confirmed by reverse transcription polymerase chain reaction experiments to show the changes in transcript levels for several gene families known to play key role in cotton fiber development. We believe that our work provides a useful platform for functional and evolutionary genomic studies in cotton.
Collapse
Affiliation(s)
- Xiang Jin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
179
|
Gilbert MK, Turley RB, Kim HJ, Li P, Thyssen G, Tang Y, Delhom CD, Naoumkina M, Fang DD. Transcript profiling by microarray and marker analysis of the short cotton (Gossypium hirsutum L.) fiber mutant Ligon lintless-1 (Li1). BMC Genomics 2013; 14:403. [PMID: 23767687 PMCID: PMC3701525 DOI: 10.1186/1471-2164-14-403] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/12/2013] [Indexed: 01/23/2023] Open
Abstract
Background Cotton fiber length is very important to the quality of textiles. Understanding the genetics and physiology of cotton fiber elongation can provide valuable tools to the cotton industry by targeting genes or other molecules responsible for fiber elongation. Ligon Lintless-1 (Li1) is a monogenic mutant in Upland cotton (Gossypium hirsutum) which exhibits an early cessation of fiber elongation resulting in very short fibers (< 6 mm) at maturity. This presents an excellent model system for studying the underlying molecular and cellular processes involved with cotton fiber elongation. Previous reports have characterized Li1 at early cell wall elongation and during later secondary cell wall synthesis, however there has been very limited analysis of the transition period between these developmental time points. Results Physical and morphological measurements of the Li1 mutant fibers were conducted, including measurement of the cellulose content during development. Affymetrix microarrays were used to analyze transcript profiles at the critical developmental time points of 3 days post anthesis (DPA), the late elongation stage of 12 DPA and the early secondary cell wall synthesis stage of 16 DPA. The results indicated severe disruption to key hormonal and other pathways related to fiber development, especially pertaining to the transition stage from elongation to secondary cell wall synthesis. Gene Ontology enrichment analysis identified several key pathways at the transition stage that exhibited altered regulation. Genes involved in ethylene biosynthesis and primary cell wall rearrangement were affected, and a primary cell wall-related cellulose synthase was transcriptionally repressed. Linkage mapping using a population of 2,553 F2 individuals identified SSR markers associated with the Li1 genetic locus on chromosome 22. Linkage mapping in combination with utilizing the diploid G. raimondii genome sequences permitted additional analysis of the region containing the Li1 gene. Conclusions The early termination of fiber elongation in the Li1 mutant is likely controlled by an early upstream regulatory factor resulting in the altered regulation of hundreds of downstream genes. Several elongation-related genes that exhibited altered expression profiles in the Li1 mutant were identified. Molecular markers closely associated with the Li1 locus were developed. Results presented here will lay the foundation for further investigation of the genetic and molecular mechanisms of fiber elongation.
Collapse
Affiliation(s)
- Matthew K Gilbert
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Huang Y, Wang J, Zhang L, Zuo K. A cotton annexin protein AnxGb6 regulates fiber elongation through its interaction with actin 1. PLoS One 2013; 8:e66160. [PMID: 23750279 PMCID: PMC3672135 DOI: 10.1371/journal.pone.0066160] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 05/02/2013] [Indexed: 01/18/2023] Open
Abstract
Annexins are assumed to be involved in regulating cotton fiber elongation, but direct evidence remains to be presented. Here we cloned six Annexin genes (AnxGb) abundantly expressed in fiber from sea-island cotton (G. barbadense). qRT-PCR results indicated that all six G. barbadense annexin genes were expressed in elongating cotton fibers, while only the expression of AnxGb6 was cotton fiber-specific. Yeast two hybridization and BiFC analysis revealed that AnxGb6 homodimer interacted with a cotton fiber specific actin GbAct1. Ectopic-expressed AnxGb6 in Arabidopsis enhanced its root elongation without increasing the root cell number. Ectopic AnxGb6 expression resulted in more F-actin accumulation in the basal part of the root cell elongation zone. Analysis of AnxGb6 expression in three cotton genotypes with different fiber length confirmed that AnxGb6 expression was correlated to cotton fiber length, especially fiber elongation rate. Our results demonstrated that AnxGb6 was important for fiber elongation by potentially providing a domain for F-actin organization.
Collapse
Affiliation(s)
- Yiqun Huang
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lida Zhang
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kaijing Zuo
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| |
Collapse
|
181
|
Jin X, Pang Y, Jia F, Xiao G, Li Q, Zhu Y. A potential role for CHH DNA methylation in cotton fiber growth patterns. PLoS One 2013; 8:e60547. [PMID: 23593241 PMCID: PMC3625195 DOI: 10.1371/journal.pone.0060547] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/27/2013] [Indexed: 11/18/2022] Open
Abstract
DNA methylation controls many aspects of plant growth and development. Here, we report a novel annual growth potential change that may correlate with changes in levels of the major DNA demethylases and methyltransferases in cotton ovules harvested at different times of the year. The abundances of DNA demethylases, at both the mRNA and protein levels, increased significantly from February to August and decreased during the remainder of the 12-month period, with the opposite pattern observed for DNA methyltransferases. Over the course of one year, substantial changes in methylcytosine content was observed at certain CHH sites (H = A, C, or T) in the promoter regions of the ETHYLENE RESPONSIVE FACTOR 6 (ERF6), SUPPRESSION OF RVS 161 DELTA 4 (SUR4) and 3-KETOACYL-COA SYNTHASE 13 (KCS13), which regulate cotton fiber growth. Three independent techniques were used to confirm the annual fluctuations in DNA methylation. Furthermore, in homozygous RNAi lines specifically targeting REPRESSOR OF SILENCING 1 (ROS1, a conserved DNA demethylase domain), promotion of DNA methylation significantly reduced fiber growth during August.
Collapse
Affiliation(s)
- Xiang Jin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Yu Pang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Fangxing Jia
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Guanghui Xiao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Qin Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Yuxian Zhu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
- National Center for Plant Gene Research (Beijing), Beijing, China
- * E-mail:
| |
Collapse
|
182
|
Lacape JM, Claverie M, Vidal RO, Carazzolle MF, Guimarães Pereira GA, Ruiz M, Pré M, Llewellyn D, Al-Ghazi Y, Jacobs J, Dereeper A, Huguet S, Giband M, Lanaud C. Deep sequencing reveals differences in the transcriptional landscapes of fibers from two cultivated species of cotton. PLoS One 2012; 7:e48855. [PMID: 23166598 PMCID: PMC3499527 DOI: 10.1371/journal.pone.0048855] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 10/01/2012] [Indexed: 01/17/2023] Open
Abstract
Cotton (Gossypium) fiber is the most prevalent natural product used in the textile industry. The two major cultivated species, G. hirsutum (Gh) and G. barbadense (Gb), are allotetraploids with contrasting fiber quality properties. To better understand the molecular basis for their fiber differences, EST pyrosequencing was used to document the fiber transcriptomes at two key development stages, 10 days post anthesis (dpa), representing the peak of fiber elongation, and 22 dpa, representing the transition to secondary cell wall synthesis. The 617,000 high quality reads (89% of the total 692,000 reads) from 4 libraries were assembled into 46,072 unigenes, comprising 38,297 contigs and 7,775 singletons. Functional annotation of the unigenes together with comparative digital gene expression (DGE) revealed a diverse set of functions and processes that were partly linked to specific fiber stages. Globally, 2,770 contigs (7%) showed differential expression (>2-fold) between 10 and 22 dpa (irrespective of genotype), with 70% more highly expressed at 10 dpa, while 2,248 (6%) were differentially expressed between the genotypes (irrespective of stage). The most significant genes with differential DGE at 10 dpa included expansins and lipid transfer proteins (higher in Gb), while at 22 dpa tubulins, cellulose, and sucrose synthases showed higher expression in Gb. DGE was compared with expression data of 10 dpa-old fibers from Affymetrix microarrays. Among 543 contigs showing differential expression on both platforms, 74% were consistent in being either over-expressed in Gh (242 genes) or in Gb (161 genes). Furthermore, the unigene set served to identify 339 new SSRs and close to 21,000 inter-genotypic SNPs. Subsets of 88 SSRs and 48 SNPs were validated through mapping and added 65 new loci to a RIL genetic map. The new set of fiber ESTs and the gene-based markers complement existing available resources useful in basic and applied research for crop improvement in cotton.
Collapse
|
183
|
The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 2012; 44:1098-103. [PMID: 22922876 DOI: 10.1038/ng.2371] [Citation(s) in RCA: 621] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 07/05/2012] [Indexed: 11/08/2022]
Abstract
We have sequenced and assembled a draft genome of G. raimondii, whose progenitor is the putative contributor of the D subgenome to the economically important fiber-producing cotton species Gossypium hirsutum and Gossypium barbadense. Over 73% of the assembled sequences were anchored on 13 G. raimondii chromosomes. The genome contains 40,976 protein-coding genes, with 92.2% of these further confirmed by transcriptome data. Evidence of the hexaploidization event shared by the eudicots as well as of a cotton-specific whole-genome duplication approximately 13-20 million years ago was observed. We identified 2,355 syntenic blocks in the G. raimondii genome, and we found that approximately 40% of the paralogous genes were present in more than 1 block, which suggests that this genome has undergone substantial chromosome rearrangement during its evolution. Cotton, and probably Theobroma cacao, are the only sequenced plant species that possess an authentic CDN1 gene family for gossypol biosynthesis, as revealed by phylogenetic analysis.
Collapse
|
184
|
Haigler CH, Betancur L, Stiff MR, Tuttle JR. Cotton fiber: a powerful single-cell model for cell wall and cellulose research. FRONTIERS IN PLANT SCIENCE 2012; 3:104. [PMID: 22661979 PMCID: PMC3356883 DOI: 10.3389/fpls.2012.00104] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/03/2012] [Indexed: 05/17/2023]
Abstract
Cotton fibers are single-celled extensions of the seed epidermis. They can be isolated in pure form as they undergo staged differentiation including primary cell wall synthesis during elongation and nearly pure cellulose synthesis during secondary wall thickening. This combination of features supports clear interpretation of data about cell walls and cellulose synthesis in the context of high throughput modern experimental technologies. Prior contributions of cotton fiber to building fundamental knowledge about cell walls will be summarized and the dynamic changes in cell wall polymers throughout cotton fiber differentiation will be described. Recent successes in using stable cotton transformation to alter cotton fiber cell wall properties as well as cotton fiber quality will be discussed. Futurec prospects to perform experiments more rapidly through altering cotton fiberwall properties via virus-induced gene silencing will be evaluated.
Collapse
Affiliation(s)
- Candace H. Haigler
- Department of Crop Science, North Carolina State University,Raleigh, NC, USA
- Department of Plant Biology, North Carolina State University,Raleigh, NC, USA
| | - Lissete Betancur
- Department of Plant Biology, North Carolina State University,Raleigh, NC, USA
| | - Michael R. Stiff
- Department of Crop Science, North Carolina State University,Raleigh, NC, USA
| | - John R. Tuttle
- Department of Crop Science, North Carolina State University,Raleigh, NC, USA
| |
Collapse
|
185
|
Li Q, Jin X, Zhu YX. Identification and analyses of miRNA genes in allotetraploid Gossypium hirsutum fiber cells based on the sequenced diploid G. raimondii genome. J Genet Genomics 2012; 39:351-60. [PMID: 22835981 DOI: 10.1016/j.jgg.2012.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/25/2012] [Accepted: 04/25/2012] [Indexed: 01/19/2023]
Abstract
The plant genome possesses a large number of microRNAs (miRNAs) mainly 21-24 nucleotides in length. They play a vital role in regulation of target gene expression at various stages throughout the whole plant life cycle. Here we sequenced and analyzed ≈ 10 million non-coding RNAs (ncRNAs) derived from fiber tissue of the allotetraploid cotton (Gossypium hirsutum) 7 days post-anthesis using ncRNA-seq technology. In terms of distinct reads, 24 nt ncRNA is by far the dominant species, followed by 21 nt and 23 nt ncRNAs. Using ab initio prediction, we identified and characterized a total of 562 candidate miRNA gene loci on the recently assembled D(5) genome of the diploid cotton G. raimondii. Of all the 562 predicted miRNAs, 22 were previously discovered in cotton species and 187 had sequence conservation and homology to homologous miRNAs of other plant species. Nucleotide bias analysis showed that the 9th and 1st positions were significantly conserved among different types of miRNA genes. Among the 463 putative miRNA target genes, most significant up/down-regulation occurred in 10-20 days post-anthesis, indicating that miRNAs played an important role during the elongation and secondary cell wall synthesis stages of cotton fiber development. The discovery of new miRNA genes will help understand the mechanisms of miRNA generation and regulation in cotton.
Collapse
Affiliation(s)
- Qin Li
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
186
|
Liu K, Sun J, Yao L, Yuan Y. Transcriptome analysis reveals critical genes and key pathways for early cotton fiber elongation in Ligon lintless-1 mutant. Genomics 2012; 100:42-50. [PMID: 22576057 DOI: 10.1016/j.ygeno.2012.04.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 04/24/2012] [Accepted: 04/26/2012] [Indexed: 12/13/2022]
Abstract
Fiber length is a key determinant of cotton yield and quality. Using a monogenic dominant cotton mutant Ligon lintless-1 with extremely short fibers, we employed microarray technology and quantitative real time PCR to compare transcriptomes of Li(1) and the normal wild-type TM-1, the results showed that only a few genes differentially expressed in 0 days postanthesis (DPA) ovules and 3 DPA fibers, whereas 577 transcripts differentially expressed in 6 DPA fibers. 6 DPA is probably a key phase determining fiber elongation. Gene ontology analyses showed such processes as response to stimulus, signal transduction, and lipid metabolism were readjusted by the mutant gene. Pathway studio analysis indicated that auxin signaling and sugar signaling pathways play major roles in modulation of early fiber elongation. This work provides new insight into the mechanisms of fiber development, and offers novel genes as potential objects for genetic manipulation to achieve improvement of fiber properties.
Collapse
Affiliation(s)
- Kang Liu
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | | | | | | |
Collapse
|
187
|
Janz D, Lautner S, Wildhagen H, Behnke K, Schnitzler JP, Rennenberg H, Fromm J, Polle A. Salt stress induces the formation of a novel type of 'pressure wood' in two Populus species. THE NEW PHYTOLOGIST 2012; 194:129-141. [PMID: 22126133 DOI: 10.1111/j.1469-8137.2011.03975.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
• Salinity causes osmotic stress and limits biomass production of plants. The goal of this study was to investigate mechanisms underlying hydraulic adaptation to salinity. • Anatomical, ecophysiological and transcriptional responses to salinity were investigated in the xylem of a salt-sensitive (Populus × canescens) and a salt-tolerant species (Populus euphratica). • Moderate salt stress, which suppressed but did not abolish photosynthesis and radial growth in P. × canescens, resulted in hydraulic adaptation by increased vessel frequencies and decreased vessel lumina. Transcript abundances of a suite of genes (FLA, COB-like, BAM, XET, etc.) previously shown to be activated during tension wood formation, were collectively suppressed in developing xylem, whereas those for stress and defense-related genes increased. A subset of cell wall-related genes was also suppressed in salt-exposed P. euphratica, although this species largely excluded sodium and showed no anatomical alterations. Salt exposure influenced cell wall composition involving increases in the lignin : carbohydrate ratio in both species. • In conclusion, hydraulic stress adaptation involves cell wall modifications reciprocal to tension wood formation that result in the formation of a novel type of reaction wood in upright stems named 'pressure wood'. Our data suggest that transcriptional co-regulation of a core set of genes determines reaction wood composition.
Collapse
Affiliation(s)
- Dennis Janz
- Forstbotanik und Baumphysiologie, Büsgen-Institut, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Silke Lautner
- Zentrum für Holzwirtschaft, Universität Hamburg, Hamburg, Germany
| | - Henning Wildhagen
- Institut für Forstbotanik und Baumphysiologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Katja Behnke
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Zentrum München, Munchen, Germany
| | - Jörg-Peter Schnitzler
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Zentrum München, Munchen, Germany
| | - Heinz Rennenberg
- Institut für Forstbotanik und Baumphysiologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- King Saud University, Riyadh, Saudi Arabia
| | - Jörg Fromm
- Zentrum für Holzwirtschaft, Universität Hamburg, Hamburg, Germany
| | - Andrea Polle
- Forstbotanik und Baumphysiologie, Büsgen-Institut, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
188
|
An L, Zhou Z, Su S, Yan A, Gan Y. GLABROUS INFLORESCENCE STEMS (GIS) is required for trichome branching through gibberellic acid signaling in Arabidopsis. PLANT & CELL PHYSIOLOGY 2012; 53:457-69. [PMID: 22210898 DOI: 10.1093/pcp/pcr192] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cell differentiation generally corresponds to the cell cycle, typically forming a non-dividing cell with a unique differentiated morphology, and Arabidopsis trichome is an excellent model system to study all aspects of cell differentiation. Although gibberellic acid is reported to be involved in trichome branching in Arabidopsis, the mechanism for such signaling is unclear. Here, we demonstrated that GLABROUS INFLORESCENCE STEMS (GIS) is required for the control of trichome branching through gibberellic acid signaling. The phenotypes of a loss-of-function gis mutant and an overexpressor showed that GIS acted as a repressor to control trichome branching. Our results also show that GIS is not required for cell endoreduplication, and our molecular and genetic study results have shown that GIS functions downstream of the key regulator of trichome branching, STICHEL (STI), to control trichome branching through the endoreduplication-independent pathway. Furthermore, our results also suggest that GIS controls trichome branching in Arabidopsis through two different pathways and acts either upstream or downstream of the negative regulator of gibbellic acid signaling SPINDLY (SPY).
Collapse
Affiliation(s)
- Lijun An
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, PR China
| | | | | | | | | |
Collapse
|
189
|
Lü S, Zhao H, Parsons EP, Xu C, Kosma DK, Xu X, Chao D, Lohrey G, Bangarusamy DK, Wang G, Bressan RA, Jenks MA. The glossyhead1 allele of ACC1 reveals a principal role for multidomain acetyl-coenzyme A carboxylase in the biosynthesis of cuticular waxes by Arabidopsis. PLANT PHYSIOLOGY 2011; 157:1079-92. [PMID: 21949210 PMCID: PMC3252135 DOI: 10.1104/pp.111.185132] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A novel mutant of Arabidopsis (Arabidopsis thaliana), having highly glossy inflorescence stems, postgenital fusion in floral organs, and reduced fertility, was isolated from an ethyl methanesulfonate-mutagenized population and designated glossyhead1 (gsd1). The gsd1 locus was mapped to chromosome 1, and the causal gene was identified as a new allele of Acetyl-Coenzyme A Carboxylase1 (ACC1), a gene encoding the main enzyme in cytosolic malonyl-coenzyme A synthesis. This, to our knowledge, is the first mutant allele of ACC1 that does not cause lethality at the seed or early germination stage, allowing for the first time a detailed analysis of ACC1 function in mature tissues. Broad lipid profiling of mature gsd1 organs revealed a primary role for ACC1 in the biosynthesis of the very-long-chain fatty acids (C(20:0) or longer) associated with cuticular waxes and triacylglycerols. Unexpectedly, transcriptome analysis revealed that gsd1 has limited impact on any lipid metabolic networks but instead has a large effect on environmental stress-responsive pathways, especially senescence and ethylene synthesis determinants, indicating a possible role for the cytosolic malonyl-coenzyme A-derived lipids in stress response signaling.
Collapse
|
190
|
Dorling SJ, Leung S, Anderson CWN, Albert NW, McManus MT. Changes in 1-aminocyclopropane-1-carboxlate (ACC) oxidase expression and enzyme activity in response to excess manganese in white clover (Trifolium repens L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:1013-9. [PMID: 21530288 DOI: 10.1016/j.plaphy.2011.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 04/07/2011] [Indexed: 05/09/2023]
Abstract
To examine the effect on Mn treatment on the ACO gene family of white clover [Trifolium repens (L.) cv. Grasslands Challenge], rooted stolon cuttings were maintained in modified Hoaglands medium, at pH 5.4, containing either 5.2 μM Mn or 100 μM Mn over a 9-day time course. A significant uptake of Mn was observed in leaf tissue of plants grown in the 100 μM Mn treatment after 24 h and the content increased in these plants to reach 334 mg/kg DW at the conclusion of the time course. The growth of plants, measured as the petiole extension rate (PER), was significantly less in the 100 μM Mn treatment by day 9, while significantly less accumulation of leaf biomass was observed by day 7. The activity of a cell wall-associated H(2)O(2)-generating NADH peroxidase was shown to be higher in the 100 μM Mn treatment after day 5 of the time course while no significant difference in a H(2)O(2)-consuming guaiacol peroxidase activity was observed between the two Mn treatments. The expression of two leaf-associated ACC oxidase (ACO) genes, TR-ACO2 and TR-ACO3 was examined over the 9-day course but no difference between the two treatments was observed. In contrast, TR-ACO2 enzyme activity was measured and shown to decrease in the 100 μM Mn treatment after day 5 of the time course, with a concomitant decrease in TR-ACO2 accumulation, as determined by western analysis. Using 2DE and western analysis, evidence for post-translational modification of TR-ACO2 was observed.
Collapse
Affiliation(s)
- Sarah J Dorling
- Institute of Molecular Biosciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | | | |
Collapse
|
191
|
Wang H, Mei W, Qin Y, Zhu Y. 1-Aminocyclopropane-1-carboxylic acid synthase 2 is phosphorylated by calcium-dependent protein kinase 1 during cotton fiber elongation. Acta Biochim Biophys Sin (Shanghai) 2011; 43:654-61. [PMID: 21742672 DOI: 10.1093/abbs/gmr056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The reaction catalyzed by 1-aminocyclopropane-1-carboxylic acid synthase (ACS) is proposed to be the rate-limiting step in ethylene biosynthesis, which has been found as one of the most up-regulated metabolic pathways during cotton fiber development. However, the transcripts of the identified ACS genes did not increase in a similar manner as those of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) genes, implicating a possible post-transcriptional modification or regulatory mechanism. In this work, cotton ACS2 was shown to interact with Ca(2+)-dependent protein kinase 1 (CPK1). Bacterially expressed and purified recombinant ACS2 was phosphorylated by CPK1 in vitro and site-directed mutagenesis studies suggest that ACS2 S460 is a possible phosphorylation site for CPK1. Phosphorylated ACS2 significantly increased ACS activity, leading to elevated ethylene production. We thus speculated that CPK1 is involved in cotton fiber growth regulation by phosphorylating ACS2, which results in enhanced ethylene production in vitro.
Collapse
Affiliation(s)
- Hui Wang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
192
|
Generation, annotation and analysis of first large-scale expressed sequence tags from developing fiber of Gossypium barbadense L. PLoS One 2011; 6:e22758. [PMID: 21829504 PMCID: PMC3145671 DOI: 10.1371/journal.pone.0022758] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/29/2011] [Indexed: 11/22/2022] Open
Abstract
Background Cotton fiber is the world's leading natural fiber used in the manufacture of textiles. Gossypium is also the model plant in the study of polyploidization, evolution, cell elongation, cell wall development, and cellulose biosynthesis. G. barbadense L. is an ideal candidate for providing new genetic variations useful to improve fiber quality for its superior properties. However, little is known about fiber development mechanisms of G. barbadense and only a few molecular resources are available in GenBank. Methodology and Principal Findings In total, 10,979 high-quality expressed sequence tags (ESTs) were generated from a normalized fiber cDNA library of G. barbadense. The ESTs were clustered and assembled into 5852 unigenes, consisting of 1492 contigs and 4360 singletons. The blastx result showed 2165 unigenes with significant similarity to known genes and 2687 unigenes with significant similarity to genes of predicted proteins. Functional classification revealed that unigenes were abundant in the functions of binding, catalytic activity, and metabolic pathways of carbohydrate, amino acid, energy, and lipids. The function motif/domain-related cytoskeleton and redox homeostasis were enriched. Among the 5852 unigenes, 282 and 736 unigenes were identified as potential cell wall biosynthesis and transcription factors, respectively. Furthermore, the relationships among cotton species or between cotton and other model plant systems were analyzed. Some putative species-specific unigenes of G. barbadense were highlighted. Conclusions/Significance The ESTs generated in this study are from the first large-scale EST project for G. barbadense and significantly enhance the number of G. barbadense ESTs in public databases. This knowledge will contribute to cotton improvements by studying fiber development mechanisms of G. barbadense, establishing a breeding program using marker-assisted selection, and discovering candidate genes related to important agronomic traits of cotton through oligonucleotide array. Our work will also provide important resources for comparative genomics, polyploidization, and genome evolution among Gossypium species.
Collapse
|
193
|
Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of cotton (Gossypium hirsutum L.). Genomics 2011; 98:47-55. [PMID: 21569837 DOI: 10.1016/j.ygeno.2011.04.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/09/2011] [Accepted: 04/15/2011] [Indexed: 11/20/2022]
Abstract
High salinity is one of the main factors limiting cotton growth and productivity. The genes that regulate salt stress in TM-1 upland cotton were monitored using microarray and real-time PCR (RT-PCR) with samples taken from roots. Microarray analysis showed that 1503 probe sets were up-regulated and 1490 probe sets were down-regulated in plants exposed for 3h to 100mM NaCl, and RT-PCR analysis validated 42 relevant/related genes. The distribution of enriched gene ontology terms showed such important processes as the response to water stress and pathways of hormone metabolism and signal transduction were induced by the NaCl treatment. Some key regulatory gene families involved in abiotic and biotic sources of stress such as WRKY, ERF, and JAZ were differentially expressed. Our transcriptome analysis might provide some useful insights into salt-mediated signal transduction pathways in cotton and offer a number of candidate genes as potential markers of tolerance to salt stress.
Collapse
|
194
|
Qin YM, Zhu YX. How cotton fibers elongate: a tale of linear cell-growth mode. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:106-11. [PMID: 20943428 DOI: 10.1016/j.pbi.2010.09.010] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/02/2010] [Accepted: 09/10/2010] [Indexed: 05/18/2023]
Abstract
Cotton fibers (cotton lint) are single-celled trichomes that differentiate from the ovule epidermis. Unidirectional and fast-growing cells generally expand at the dome-shaped apical zone (tip-growth mode); however, previous studies suggest that elongating fiber cells expand via a diffuse-growth mode. Tip-localized Ca(2+) gradient and active secretary vesicle trafficking are two important phenomena of tip-growth. Recently, a high Ca(2+) gradient is found in the cytoplasm of fast-elongating cotton fiber cells near the growing tip. Several protein coding genes participating in vesicle coating and transport are highly expressed in elongating fiber cells. Taken together with the observation that ethylene acts as a positive regulator for cotton fiber and several Arabidopsis tissues that are known to elongate via tip growth prompted us to propose a linear-growth mode for similar cell types.
Collapse
Affiliation(s)
- Yong-Mei Qin
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, 100871, China
| | | |
Collapse
|
195
|
Pang Y, Wang H, Song WQ, Zhu YX. The cotton ATP synthase δ1 subunit is required to maintain a higher ATP/ADP ratio that facilitates rapid fibre cell elongation. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:903-9. [PMID: 21040305 DOI: 10.1111/j.1438-8677.2009.00313.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The δ subunit of mitochondrial ATP synthase serves as a linker between the F(0) and F(1) sectors. Here, through microarray and quantitative RT-PCR, we found that the δ1 subunit was significantly up-regulated during cotton fibre cell elongation. Both the relative level and duration of GhATPδ1 transcripts correlated positively with the final length of different cotton germplasms. Elongating fibre cells had a significantly elevated ATP/ADP ratio, suggesting that a higher energy input is probably required for primary fibre cell wall formation and elongation. We obtained a putative full-length GhATPδ1 cDNA that shows 37% sequence identity to the Saccharomyces cerevisiae ATP16 at the deduced amino acid level. An almost wild-type growth rate was restored in atp16Δ cells that expressed GhATPδ1, with a resultant ATP/ADP ratio similar to that found in wild-type cells, indicating that the cotton gene was functional in yeast. Mitochondria prepared from 10 dpa wild-type fibre cells showed significantly higher ATP synthase activity in comparison to ovule samples from wild type and leaf samples. Exogenous application of piceatannol (PA) or oligomycin (OM), inhibitors of ATP synthase F(1) or F(0) subunits, respectively, in ovule culture media resulted in much shorter fibre cells and a significantly lower ATP/ADP ratio. Our data suggest that GhATPδ1 is important for activity of mitochondrial ATP synthase and is probably related to cotton fibre elongation.
Collapse
Affiliation(s)
- Y Pang
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| | | | | | | |
Collapse
|
196
|
Pang Y, Song WQ, Chen FY, Qin YM. A new cotton SDR family gene encodes a polypeptide possessing aldehyde reductase and 3-ketoacyl-CoA reductase activities. BIOCHEMISTRY (MOSCOW) 2010; 75:320-6. [PMID: 20370610 DOI: 10.1134/s0006297910030089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To understand regulatory mechanisms of cotton fiber development, microarray analysis has been performed for upland cotton (Gossypium hirsutum). Based on this, a cDNA (GhKCR3) encoding a polypeptide belonging to short-chain alcohol dehydrogenase/reductase family was isolated and cloned. It contains an open reading frame of 987 bp encoding a polypeptide of 328 amino acid residues. Following its overexpression in bacterial cells, the purified recombinant protein specifically uses NADPH to reduce a variety of short-chain aldehydes. A fragment between Gly180 and Gly191 was found to be essential for its catalytic activity. Though the GhKCR3 gene shares low sequence similarities to the ortholog of Saccharomyces cerevisiae YBR159w that encodes 3-ketoacyl-CoA reductase (KCR) catalyzing the second step of fatty acid elongation, it was surprisingly able to complement the yeast ybr159wDelta mutant. Gas chromatography-mass spectrometry analysis showed that very long-chain fatty acids, especially C26:0, were produced in the ybr159wDelta mutant cells expressing GhKCR3. Applying palmitoyl-CoA and malonyl-CoA as substrates, GhKCR3 showed KCR activity in vitro. Quantitative real time-PCR analysis indicated GhKCR3 transcripts accumulated in rapidly elongating fibers, roots, and stems. Our results suggest that GhKCR3 is probably a novel KCR contributing to very long-chain fatty acid biosynthesis in plants.
Collapse
Affiliation(s)
- Yu Pang
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| | | | | | | |
Collapse
|
197
|
|
198
|
Xiao YH, Li DM, Yin MH, Li XB, Zhang M, Wang YJ, Dong J, Zhao J, Luo M, Luo XY, Hou L, Hu L, Pei Y. Gibberellin 20-oxidase promotes initiation and elongation of cotton fibers by regulating gibberellin synthesis. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:829-37. [PMID: 20149476 DOI: 10.1016/j.jplph.2010.01.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 01/11/2010] [Accepted: 01/11/2010] [Indexed: 05/20/2023]
Abstract
Cotton is the leading natural fiber, and gibberellin (GA) is a phytohormone involved in the development of cotton fibers. However, it is largely unknown how the GA content in ovules and fibers is regulated and how the endogenous GA concentration affects fiber development. To address these questions, three GA 20-oxidase homologous genes (GhGA20ox1-3) were cloned and the endogenous bioactive GA content in developing ovules and fibers determined by liquid chromatography-electrospray ionization-mass spectrometry. Real-time reverse transcription PCR (RT-PCR) revealed that GhGA20ox1 expressed preferentially in elongating fibers and that the expression level varied with the endogenous GA content consistently, while GhGA20ox2 and GhGA20ox3 transcripts accumulated mainly in ovules. The GA accumulation kinetics as well as the GhGA20ox expression differed in ovules and the attached fibers, suggesting relatively independent GA regulation system in these two sites. Transgenic cotton, over-expressing GhGA20ox1, showed GA over-production phenotypes with increased endogenous GA levels (especially GA(4)) in fibers and ovules. It also produced significantly more fiber initials per ovule, and fiber lengths was increased compared with the control, which demonstrates that up-regulation of the GhGA20ox1 gene promoted fiber initiation and elongation. Our results suggest that GA 20-oxidase is involved in fiber development by regulating GA levels, and corresponding genes might be employed as target genes for the manipulation of fiber initiation and elongation in cotton.
Collapse
Affiliation(s)
- Yue-Hua Xiao
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture of China, Biotechnology Research Center (Southern Campus), Southwest University, Tiansheng Road 216, Beibei, Chongqing 400716, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Pang CY, Wang H, Pang Y, Xu C, Jiao Y, Qin YM, Western TL, Yu SX, Zhu YX. Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation. Mol Cell Proteomics 2010; 9:2019-33. [PMID: 20525998 DOI: 10.1074/mcp.m110.000349] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The quality of cotton fiber is determined by its final length and strength, which is a function of primary and secondary cell wall deposition. Using a comparative proteomics approach, we identified 104 proteins from cotton ovules 10 days postanthesis with 93 preferentially accumulated in the wild type and 11 accumulated in the fuzzless-lintless mutant. Bioinformatics analysis indicated that nucleotide sugar metabolism was the most significantly up-regulated biochemical process during fiber elongation. Seven protein spots potentially involved in pectic cell wall polysaccharide biosynthesis were specifically accumulated in wild-type samples at both the protein and transcript levels. Protein and mRNA expression of these genes increased when either ethylene or lignoceric acid (C24:0) was added to the culture medium, suggesting that these compounds may promote fiber elongation by modulating the production of cell wall polymers. Quantitative analysis revealed that fiber primary cell walls contained significantly higher amounts of pectin, whereas more hemicellulose was found in ovule samples. Significant fiber growth was observed when UDP-L-rhamnose, UDP-D-galacturonic acid, or UDP-D-glucuronic acid, all of which were readily incorporated into the pectin fraction of cell wall preparations, was added to the ovule culture medium. The short root hairs of Arabidopsis uer1-1 and gae6-1 mutants were complemented either by genetic transformation of the respective cotton cDNA or by adding a specific pectin precursor to the growth medium. When two pectin precursors, produced by either UDP-4-keto-6-deoxy-D-glucose 3,5-epimerase 4-reductase or by UDP-D-glucose dehydrogenase and UDP-D-glucuronic acid 4-epimerase successively, were used in the chemical complementation assay, wild-type root hair lengths were observed in both cut1 and ein2-5 Arabidopsis seedlings, which showed defects in C24:0 biosynthesis or ethylene signaling, respectively. Our results suggest that ethylene and C24:0 may promote cotton fiber and Arabidopsis root hair growth by activating the pectin biosynthesis network, especially UDP-L-rhamnose and UDP-D-galacturonic acid synthesis.
Collapse
Affiliation(s)
- Chao-You Pang
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Harada T, Torii Y, Morita S, Masumura T, Satoh S. Differential expression of genes identified by suppression subtractive hybridization in petals of opening carnation flowers. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2345-54. [PMID: 20308205 PMCID: PMC2877890 DOI: 10.1093/jxb/erq064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/25/2010] [Accepted: 03/01/2010] [Indexed: 05/18/2023]
Abstract
Flower opening is an event accompanied by morphological changes in petals which include elongation, expansion, and outward-curving. Petal cell growth is a fundamental process that underlies such phenomena, but its molecular mechanism remains largely unknown. Suppression subtractive hybridization was performed between petals during the early elongation period (stage 1) and during the opening period (stage 5) in carnation flowers and a pair of subtraction libraries abundant in differentially expressed genes was constructed at each stage. 393 cDNA clones picked up by differential screening out of 1728 clones were sequenced and 235 different cDNA fragments were identified, among which 211 did not match any known nucleotide sequence of carnation genes in the databases. BLASTX search of nucleotide sequences revealed that putative functions of the translational products can be classified into several categories including transcription, signalling, cell wall modification, lipid metabolism, and transport. Open reading frames of 15 selected genes were successfully determined by rapid amplification of cDNA ends (RACE). Time-course analysis of these genes by real-time RT-PCR showed that transcript levels of several genes correlatively fluctuate in petals of opening carnation flowers, suggesting an association with the morphological changes by elongation or curving. Based on the results, it is suggested that the growth of carnation petals is controlled by co-ordinated gene expression during the progress of flower opening. In addition, the possible roles of some key genes in the initiation of cell growth, the construction of the cell wall and cuticle, and transport across membranes were discussed.
Collapse
Affiliation(s)
- Taro Harada
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Yuka Torii
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Shigeto Morita
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
- Kyoto Prefectural Institute of Agricultural Biotechnology, Seika-cho 619-0224, Kyoto Prefecture, Japan
| | - Takehiro Masumura
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
- Kyoto Prefectural Institute of Agricultural Biotechnology, Seika-cho 619-0224, Kyoto Prefecture, Japan
| | - Shigeru Satoh
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
- Kyoto Prefectural Institute of Agricultural Biotechnology, Seika-cho 619-0224, Kyoto Prefecture, Japan
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|