151
|
Katyayini NU, Rinne PLH, Tarkowská D, Strnad M, van der Schoot C. Dual Role of Gibberellin in Perennial Shoot Branching: Inhibition and Activation. FRONTIERS IN PLANT SCIENCE 2020; 11:736. [PMID: 32582259 PMCID: PMC7289990 DOI: 10.3389/fpls.2020.00736] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/07/2020] [Indexed: 05/05/2023]
Abstract
Shoot branching from axillary buds (AXBs) is regulated by a network of inhibitory and promotive forces, which includes hormones. In perennials, the dwarfed stature of the embryonic shoot inside AXBs is indicative of gibberellin (GA) deficiency, suggesting that AXB activation and outgrowth require GA. Nonetheless, the role of GA in branching has remained obscure. We here carried out comprehensive GA transcript and metabolite analyses in hybrid aspen, a perennial branching model. The results indicate that GA has an inhibitory as well as promotive role in branching. The latter is executed in two phases. While the expression level of GA2ox is high in quiescent AXBs, decapitation rapidly downregulated it, implying increased GA signaling. In the second phase, GA3ox2-mediated de novo GA-biosynthesis is initiated between 12 and 24 h, prior to AXB elongation. Metabolite analyzes showed that GA1/4 levels were typically high in proliferating apices and low in the developmentally inactive, quiescent AXBs, whereas the reverse was true for GA3/6. To investigate if AXBs are differently affected by GA3, GA4, and GR24, an analog of the branch-inhibitor hormone strigolactone, they were fed into AXBs of single-node cuttings. GA3 and GA4 had similar effects on GA and SL pathway genes, but crucially GA3 induced AXB abscission whereas GA4 promoted outgrowth. Both GA3 and GA4 strongly upregulated GA2ox genes, which deactivate GA1/4 but not GA3/6. Thus, the observed production of GA3/6 in quiescent AXBs targets GA1/4 for GA2ox-mediated deactivation. AXB quiescence can therefore be maintained by GA3/6, in combination with strigolactone. Our discovery of the distinct tasks of GA3 and GA4 in AXB activation might explain why the role of GA in branching has been difficult to decipher. Together, the results support a novel paradigm in which GA3/6 maintains high levels of GA2ox expression and low levels of GA4 in quiescent AXBs, whereas activation and outgrowth require increased GA1/4 signaling through the rapid reduction of GA deactivation and subsequent GA biosynthesis.
Collapse
Affiliation(s)
| | - Päivi L. H. Rinne
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Faculty of Sciences, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University Olomouc, Olomouc, Czechia
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Sciences, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University Olomouc, Olomouc, Czechia
| | - Christiaan van der Schoot
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
- *Correspondence: Christiaan van der Schoot,
| |
Collapse
|
152
|
Yang T, Lian Y, Wang C. Comparing and Contrasting the Multiple Roles of Butenolide Plant Growth Regulators: Strigolactones and Karrikins in Plant Development and Adaptation to Abiotic Stresses. Int J Mol Sci 2019; 20:ijms20246270. [PMID: 31842355 PMCID: PMC6941112 DOI: 10.3390/ijms20246270] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Strigolactones (SLs) and karrikins (KARs) are both butenolide molecules that play essential roles in plant growth and development. SLs are phytohormones, with SLs having known functions within the plant they are produced in, while KARs are found in smoke emitted from burning plant matter and affect seeds and seedlings in areas of wildfire. It has been suggested that SL and KAR signaling may share similar mechanisms. The α/β hydrolases DWARF14 (D14) and KARRIKIN INSENSITIVE 2 (KAI2), which act as receptors of SL and KAR, respectively, both interact with the F-box protein MORE AXILLARY GROWTH 2 (MAX2) in order to target SUPPRESSOR OF MAX2 1 (SMAX1)-LIKE/D53 family members for degradation via the 26S proteasome. Recent reports suggest that SLs and/or KARs are also involved in regulating plant responses and adaptation to various abiotic stresses, particularly nutrient deficiency, drought, salinity, and chilling. There is also crosstalk with other hormone signaling pathways, including auxin, gibberellic acid (GA), abscisic acid (ABA), cytokinin (CK), and ethylene (ET), under normal and abiotic stress conditions. This review briefly covers the biosynthetic and signaling pathways of SLs and KARs, compares their functions in plant growth and development, and reviews the effects of any crosstalk between SLs or KARs and other plant hormones at various stages of plant development. We also focus on the distinct responses, adaptations, and regulatory mechanisms related to SLs and/or KARs in response to various abiotic stresses. The review closes with discussion on ways to gain additional insights into the SL and KAR pathways and the crosstalk between these related phytohormones.
Collapse
Affiliation(s)
| | | | - Chongying Wang
- Correspondence: ; Tel.: +86-0931-8914155; Fax: +86-0931-8914155
| |
Collapse
|
153
|
Shen Q, Zhan X, Yang P, Li J, Chen J, Tang B, Wang X, Hong Y. Dual Activities of Plant cGMP-Dependent Protein Kinase and Its Roles in Gibberellin Signaling and Salt Stress. THE PLANT CELL 2019; 31:3073-3091. [PMID: 31575723 PMCID: PMC6925016 DOI: 10.1105/tpc.19.00510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/04/2019] [Accepted: 09/28/2019] [Indexed: 05/03/2023]
Abstract
Cyclic GMP (cGMP) is an important regulator in eukaryotes, and cGMP-dependent protein kinase (PKG) plays a key role in perceiving cellular cGMP in diverse physiological processes in animals. However, the molecular identity, property, and function of PKG in plants remain elusive. In this study, we have identified PKG from plants and characterized its role in mediating the gibberellin (GA) response in rice (Oryza sativa). PKGs from plants are structurally unique with an additional type 2C protein phosphatase domain. Rice PKG possesses both protein kinase and phosphatase activities, and cGMP stimulates its kinase activity but inhibits its phosphatase activity. One of PKG's targets is GAMYB, a transcription factor in GA signaling, and the dual activities of PKG catalyze the reversible phosphorylation of GAMYB at Ser6 and modulate the nucleocytoplasmic distribution of GAMYB in response to GA. Loss of PKG impeded the nuclear localization of GAMYB and abolished GAMYB function in the GA response, leading to defects in GA-induced seed germination, internode elongation, and pollen viability. In addition to GAMYB, PKG has multiple potential targets and thus has broad effects, particularly in the salt stress response.
Collapse
Affiliation(s)
- Qingwen Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinqiao Zhan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Pei Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Bing Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, Missouri 63121
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
154
|
Omoarelojie LO, Kulkarni MG, Finnie JF, Van Staden J. Strigolactones and their crosstalk with other phytohormones. ANNALS OF BOTANY 2019; 124:749-767. [PMID: 31190074 PMCID: PMC6868373 DOI: 10.1093/aob/mcz100] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/10/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Strigolactones (SLs) are a diverse class of butenolide-bearing phytohormones derived from the catabolism of carotenoids. They are associated with an increasing number of emerging regulatory roles in plant growth and development, including seed germination, root and shoot architecture patterning, nutrient acquisition, symbiotic and parasitic interactions, as well as mediation of plant responses to abiotic and biotic cues. SCOPE Here, we provide a concise overview of SL biosynthesis, signal transduction pathways and SL-mediated plant responses with a detailed discourse on the crosstalk(s) that exist between SLs/components of SL signalling and other phytohormones such as auxins, cytokinins, gibberellins, abscisic acid, ethylene, jasmonates and salicylic acid. CONCLUSION SLs elicit their control on physiological and morphological processes via a direct or indirect influence on the activities of other hormones and/or integrants of signalling cascades of other growth regulators. These, among many others, include modulation of hormone content, transport and distribution within plant tissues, interference with or complete dependence on downstream signal components of other phytohormones, as well as acting synergistically or antagonistically with other hormones to elicit plant responses. Although much has been done to evince the effects of SL interactions with other hormones at the cell and whole plant levels, research attention must be channelled towards elucidating the precise molecular events that underlie these processes. More especially in the case of abscisic acid, cytokinins, gibberellin, jasmonates and salicylic acid for which very little has been reported about their hormonal crosstalk with SLs.
Collapse
Affiliation(s)
- L O Omoarelojie
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Scottsville, South Africa
| | - M G Kulkarni
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Scottsville, South Africa
| | - J F Finnie
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Scottsville, South Africa
| | - J Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Scottsville, South Africa
- For correspondence. E-mail:
| |
Collapse
|
155
|
Han R, Gu C, Li R, Xu W, Wang S, Liu C, Qu C, Chen S, Liu G, Yu Q, Jiang J, Li H. Characterization and T-DNA insertion sites identification of a multiple-branches mutant br in Betula platyphylla × Betula pendula. BMC PLANT BIOLOGY 2019; 19:491. [PMID: 31718548 PMCID: PMC6852751 DOI: 10.1186/s12870-019-2098-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 10/23/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Plant architecture, which is mostly determined by shoot branching, plays an important role in plant growth and development. Thus, it is essential to explore the regulatory molecular mechanism of branching patterns based on the economic and ecological importance. In our previous work, a multiple-branches birch mutant br was identified from 19 CINNAMOYL-COENZYME A REDUCTASE 1 (CCR1)-overexpressed transgenic lines, and the expression patterns of differentially expressed genes in br were analyzed. In this study, we further explored some other characteristics of br, including plant architecture, wood properties, photosynthetic characteristics, and IAA and Zeatin contents. Meanwhile, the T-DNA insertion sites caused by the insertion of exogenous BpCCR1 in br were identified to explain the causes of the mutation phenotypes. RESULTS The mutant br exhibited slower growth, more abundant and weaker branches, and lower wood basic density and lignin content than BpCCR1 transgenic line (OE2) and wild type (WT). Compared to WT and OE2, br had high stomatal conductance (Gs), transpiration rate (Tr), but a low non-photochemical quenching coefficient (NPQ) and chlorophyll content. In addition, br displayed an equal IAA and Zeatin content ratio of main branches' apical buds to lateral branches' apical buds and high ratio of Zeatin to IAA content. Two T-DNA insertion sites caused by the insertion of exogenous BpCCR1 in br genome were found. On one site, chromosome 2 (Chr2), no known gene was detected on the flanking sequence. The other site was on Chr5, with an insertion of 388 bp T-DNA sequence, resulting in deletion of 107 bp 5' untranslated region (UTR) and 264 bp coding sequence (CDS) on CORONATINE INSENSITIVE 1 (BpCOII). In comparison with OE2 and WT, BpCOI1 was down-regulated in br, and the sensitivity of br to Methyl Jasmonate (MeJA) was abnormal. CONCLUSIONS Plant architecture, wood properties, photosynthetic characteristics, and IAA and Zeatin contents in main and lateral branches' apical buds changed in br over the study's time period. One T-DNA insertion was identified on the first exon of BpCOI1, which resulted in the reduction of BpCOI1 expression and abnormal perception to MeJA in br. These mutation phenotypes might be associated with a partial loss of BpCOI1 in birch.
Collapse
Affiliation(s)
- Rui Han
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 China
| | - Chenrui Gu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 China
| | - Ranhong Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 China
| | - Wendi Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 China
| | - Shuo Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 China
| | - Chaoyi Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 China
| | - Chang Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 China
| | - Qibin Yu
- Institute of Food and Agricultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 China
| | - Huiyu Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 China
| |
Collapse
|
156
|
Han Y, Teng K, Nawaz G, Feng X, Usman B, Wang X, Luo L, Zhao N, Liu Y, Li R. Generation of semi-dwarf rice ( Oryza sativa L.) lines by CRISPR/Cas9-directed mutagenesis of OsGA20ox2 and proteomic analysis of unveiled changes caused by mutations. 3 Biotech 2019; 9:387. [PMID: 31656725 DOI: 10.1007/s13205-019-1919-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Plant height (PH) is one of the most important agronomic traits of rice, as it directly affects the yield potential and lodging resistance. Here, semi-dwarf mutant lines were developed through CRISPR/Cas9-based editing of OsGA20ox2 in an indica rice cultivar. Total 24 independent lines were obtained in T0 generation with the mean mutation rate of 73.5% including biallelic (29.16%), homozygous (47.91%) and heterozygous (16.66%) mutations, and 16 T-DNA-free lines (50%) were obtained in T1 generation without off-target effect in four most likely sites. Mutations resulted in a changed amino acid sequence of mutant plants and reduced gibberellins (GA) level and PH (22.2%), flag leaf length (FLL) and increased yield per plant (YPP) (6.0%), while there was no effect on other agronomic traits. Mutants restored their PH to normal by exogenous GA3 treatment. The expression of the OsGA20ox2 gene was significantly suppressed in mutant plants, while the expression level was not affected for other GA biosynthesis (OsGA2ox3 and OsGA3ox2) and signaling (D1, GIDI and SLR1) genes. The mutant lines showed decreased cell length and width, abnormal cell elongation, while increased cell numbers in the second internode sections at mature stage. Total 30 protein spots were exercised, and 24 proteins were identified, and results showed that OsGA20ox2 editing altered protein expression. Five proteins including, glyceraldehyde-3-phosphate dehydrogenase, putative ATP synthase, fructose-bisphosphate aldolase 1, S-adenosyl methionine synthetase 1 and gibberellin 20 oxidase 2, were downregulated in dwarf mutant lines which may affect the plant growth. Collectively, our results provide the insights into the role of OsGA20ox2 in PH and confirmed that CRISPR-Cas9 is a powerful tool to understand the gene functions.
Collapse
|
157
|
Schneider A, Godin C, Boudon F, Demotes-Mainard S, Sakr S, Bertheloot J. Light Regulation of Axillary Bud Outgrowth Along Plant Axes: An Overview of the Roles of Sugars and Hormones. FRONTIERS IN PLANT SCIENCE 2019; 10:1296. [PMID: 31681386 PMCID: PMC6813921 DOI: 10.3389/fpls.2019.01296] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/18/2019] [Indexed: 05/06/2023]
Abstract
Apical dominance, the process by which the growing apical zone of the shoot inhibits bud outgrowth, involves an intricate network of several signals in the shoot. Auxin originating from plant apical region inhibits bud outgrowth indirectly. This inhibition is in particular mediated by cytokinins and strigolactones, which move from the stem to the bud and that respectively stimulate and repress bud outgrowth. The action of this hormonal network is itself modulated by sugar levels as competition for sugars, caused by the growing apical sugar sink, may deprive buds from sugars and prevents bud outgrowth partly by their signaling role. In this review, we analyze recent findings on the interaction between light, in terms of quantity and quality, and apical dominance regulation. Depending on growth conditions, light may trigger different pathways of the apical dominance regulatory network. Studies pinpoint to the key role of shoot-located cytokinin synthesis for light intensity and abscisic acid synthesis in the bud for R:FR in the regulation of bud outgrowth by light. Our analysis provides three major research lines to get a more comprehensive understanding of light effects on bud outgrowth. This would undoubtedly benefit from the use of computer modeling associated with experimental observations to deal with a regulatory system that involves several interacting signals, feedbacks, and quantitative effects.
Collapse
Affiliation(s)
- Anne Schneider
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Christophe Godin
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, INRIA, Lyon, France
| | | | | | - Soulaiman Sakr
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Jessica Bertheloot
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| |
Collapse
|
158
|
Chen Z, Liu Y, Yin Y, Liu Q, Li N, Liu X, Li X, Guo C, Hao D. Development of dwarfish and yield-effective GM maize through passivation of bioactive gibberellin. Transgenic Res 2019; 28:589-599. [DOI: 10.1007/s11248-019-00172-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
|
159
|
Zhuang L, Ge Y, Wang J, Yu J, Yang Z, Huang B. Gibberellic acid inhibition of tillering in tall fescue involving crosstalks with cytokinins and transcriptional regulation of genes controlling axillary bud outgrowth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110168. [PMID: 31481214 DOI: 10.1016/j.plantsci.2019.110168] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 06/06/2019] [Accepted: 06/09/2019] [Indexed: 05/05/2023]
Abstract
Tiller production in grass species is controlled by both axillary bud initiation and bud outgrowth, which may be regulated by plant hormones. However, how gibberellic acid (GA) affects tillering in perennial grass species is still unclear. This study aims to elucidate the roles and the underlying mechanisms of GA in regulating tiller development. Tall fescue seedlings were treated with different concentrations of GA3 by foliar application, dose-dependent inhibitory effects of GA on tiller production were observed. GA3 (25 μM) slowed down the transition from axillary buds to tillers by specifically inhibiting the outgrowth of axillary buds. GA-inhibition of tillering were not related to endogenous content for auxin or strigolactone, but was mainly due to the antagonistic interaction with cytokinins (CK), as shown by the decreased CK content and up-regulation expression of CK degradation genes in GA3-treated plants. Furthermore, GA could act through regulating the expression of FaTB1 specifically expressed in axillary buds to repress bud outgrowth. These results provide insights for the regulatory mechanisms of GA for tiller bud outgrowth through crosstalks with CK and signaling of FaTB1 expression.
Collapse
Affiliation(s)
- Lili Zhuang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Ying Ge
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Jian Wang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Jingjin Yu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Zhimin Yang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
160
|
Momen M, Campbell MT, Walia H, Morota G. Utilizing trait networks and structural equation models as tools to interpret multi-trait genome-wide association studies. PLANT METHODS 2019; 15:107. [PMID: 31548847 PMCID: PMC6749677 DOI: 10.1186/s13007-019-0493-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/06/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Plant breeders seek to develop cultivars with maximal agronomic value, which is often assessed using numerous, often genetically correlated traits. As intervention on one trait will affect the value of another, breeding decisions should consider the relationships among traits in the context of putative causal structures (i.e., trait networks). While multi-trait genome-wide association studies (MTM-GWAS) can infer putative genetic signals at the multivariate scale, standard MTM-GWAS does not accommodate the network structure of phenotypes, and therefore does not address how the traits are interrelated. We extended the scope of MTM-GWAS by incorporating trait network structures into GWAS using structural equation models (SEM-GWAS). Here, we illustrate the utility of SEM-GWAS using a digital metric for shoot biomass, root biomass, water use, and water use efficiency in rice. RESULTS A salient feature of SEM-GWAS is that it can partition the total single nucleotide polymorphism (SNP) effects acting on a trait into direct and indirect effects. Using this novel approach, we show that for most QTL associated with water use, total SNP effects were driven by genetic effects acting directly on water use rather that genetic effects originating from upstream traits. Conversely, total SNP effects for water use efficiency were largely due to indirect effects originating from the upstream trait, projected shoot area. CONCLUSIONS We describe a robust framework that can be applied to multivariate phenotypes to understand the interrelationships between complex traits. This framework provides novel insights into how QTL act within a phenotypic network that would otherwise not be possible with conventional multi-trait GWAS approaches. Collectively, these results suggest that the use of SEM may enhance our understanding of complex relationships among agronomic traits.
Collapse
Affiliation(s)
- Mehdi Momen
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 175 West Campus Drive, Blacksburg, VA 24061 USA
| | - Malachy T. Campbell
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 175 West Campus Drive, Blacksburg, VA 24061 USA
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583 USA
| | - Gota Morota
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 175 West Campus Drive, Blacksburg, VA 24061 USA
| |
Collapse
|
161
|
Wegary D, Teklewold A, Prasanna BM, Ertiro BT, Alachiotis N, Negera D, Awas G, Abakemal D, Ogugo V, Gowda M, Semagn K. Molecular diversity and selective sweeps in maize inbred lines adapted to African highlands. Sci Rep 2019; 9:13490. [PMID: 31530852 PMCID: PMC6748982 DOI: 10.1038/s41598-019-49861-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/28/2019] [Indexed: 11/08/2022] Open
Abstract
Little is known on maize germplasm adapted to the African highland agro-ecologies. In this study, we analyzed high-density genotyping by sequencing (GBS) data of 298 African highland adapted maize inbred lines to (i) assess the extent of genetic purity, genetic relatedness, and population structure, and (ii) identify genomic regions that have undergone selection (selective sweeps) in response to adaptation to highland environments. Nearly 91% of the pairs of inbred lines differed by 30-36% of the scored alleles, but only 32% of the pairs of the inbred lines had relative kinship coefficient <0.050, which suggests the presence of substantial redundancy in allelic composition that may be due to repeated use of fewer genetic backgrounds (source germplasm) during line development. Results from different genetic relatedness and population structure analyses revealed three different groups, which generally agrees with pedigree information and breeding history, but less so by heterotic groups and endosperm modification. We identified 944 single nucleotide polymorphic (SNP) markers that fell within 22 selective sweeps that harbored 265 protein-coding candidate genes of which some of the candidate genes had known functions. Details of the candidate genes with known functions and differences in nucleotide diversity among groups predicted based on multivariate methods have been discussed.
Collapse
Affiliation(s)
- Dagne Wegary
- International Maize and Wheat Improvement Center (CIMMYT) - Ethiopia Office, ILRI Campus, CMC Road, Gurd Sholla, P.O. Box 5689, Addis Ababa, Ethiopia
| | - Adefris Teklewold
- International Maize and Wheat Improvement Center (CIMMYT) - Ethiopia Office, ILRI Campus, CMC Road, Gurd Sholla, P.O. Box 5689, Addis Ababa, Ethiopia.
| | - Boddupalli M Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF House, United Nations Avenue, Gigiri, P.O. Box 1041-00621, Nairobi, Kenya
| | - Berhanu T Ertiro
- Bako National Maize Research Center, Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa, Ethiopia
| | - Nikolaos Alachiotis
- Institute of Computer Science, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013, Heraklion, Crete, Greece
| | - Demewez Negera
- International Maize and Wheat Improvement Center (CIMMYT) - Ethiopia Office, ILRI Campus, CMC Road, Gurd Sholla, P.O. Box 5689, Addis Ababa, Ethiopia
| | - Geremew Awas
- International Maize and Wheat Improvement Center (CIMMYT) - Ethiopia Office, ILRI Campus, CMC Road, Gurd Sholla, P.O. Box 5689, Addis Ababa, Ethiopia
| | - Demissew Abakemal
- Ambo Agricultural Research Center, P.O. Box 37, West Shoa, Ambo, Ethiopia
| | - Veronica Ogugo
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF House, United Nations Avenue, Gigiri, P.O. Box 1041-00621, Nairobi, Kenya
| | - Manje Gowda
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF House, United Nations Avenue, Gigiri, P.O. Box 1041-00621, Nairobi, Kenya
| | - Kassa Semagn
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF House, United Nations Avenue, Gigiri, P.O. Box 1041-00621, Nairobi, Kenya.
- Africa Rice Center (AfricaRice), M'bé Research Station, 01 B.P. 2551, Bouaké 01, Côte d'Ivoire.
| |
Collapse
|
162
|
Cheng J, Zhang M, Tan B, Jiang Y, Zheng X, Ye X, Guo Z, Xiong T, Wang W, Li J, Feng J. A single nucleotide mutation in GID1c disrupts its interaction with DELLA1 and causes a GA-insensitive dwarf phenotype in peach. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1723-1735. [PMID: 30776191 PMCID: PMC6686139 DOI: 10.1111/pbi.13094] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 05/20/2023]
Abstract
Plant stature is one important factor that affects the productivity of peach orchards. However, little is known about the molecular mechanism(s) underlying the dwarf phenotype of peach tree. Here, we report a dwarfing mechanism in the peach cv. FenHuaShouXingTao (FHSXT). The dwarf phenotype of 'FHSXT' was caused by shorter cell length compared to the standard cv. QiuMiHong (QMH). 'FHSXT' contained higher endogenous GA levels than did 'QMH' and did not response to exogenous GA treatment (internode elongation). These results indicated that 'FHSXT' is a GA-insensitive dwarf mutant. A dwarf phenotype-related single nucleotide mutation in the gibberellic acid receptor GID1 was identified in 'FHSXT' (GID1cS191F ), which was also cosegregated with dwarf phenotype in 30 tested cultivars. GID1cS191F was unable to interact with the growth-repressor DELLA1 even in the presence of GA. 'FHSXT' accumulated a higher level of DELLA1, the degradation of which is normally induced by its interaction with GID1. The DELLA1 protein level was almost undetectable in 'QMH', but not reduced in 'FHSXT' after GA3 treatment. Our results suggested that a nonsynonymous single nucleotide mutation in GID1c disrupts its interaction with DELLA1 resulting in a GA-insensitive dwarf phenotype in peach.
Collapse
Affiliation(s)
- Jun Cheng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Mengmeng Zhang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Bin Tan
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Yajun Jiang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Xianbo Zheng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Xia Ye
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Zijing Guo
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Tingting Xiong
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Wei Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Jidong Li
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Jiancan Feng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
163
|
The grain yield modulator miR156 regulates seed dormancy through the gibberellin pathway in rice. Nat Commun 2019; 10:3822. [PMID: 31444356 PMCID: PMC6707268 DOI: 10.1038/s41467-019-11830-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/29/2019] [Indexed: 11/17/2022] Open
Abstract
The widespread agricultural problem of pre-harvest sprouting (PHS) could potentially be overcome by improving seed dormancy. Here, we report that miR156, an important grain yield regulator, also controls seed dormancy in rice. We found that mutations in one MIR156 subfamily enhance seed dormancy and suppress PHS with negligible effects on shoot architecture and grain size, whereas mutations in another MIR156 subfamily modify shoot architecture and increase grain size but have minimal effects on seed dormancy. Mechanistically, mir156 mutations enhance seed dormancy by suppressing the gibberellin (GA) pathway through de-represssion of the miR156 target gene Ideal Plant Architecture 1 (IPA1), which directly regulates multiple genes in the GA pathway. These results provide an effective method to suppress PHS without compromising productivity, and will facilitate breeding elite crop varieties with ideal plant architectures. Pre-harvest sprouting reduces the yield of agriculturally important crops such as rice. Here, the authors show that mutating specific members of the MIR156 gene family can suppress pre-harvest sprouting in rice without negative effects on plant architecture, suggesting a practical route to elite crop varieties.
Collapse
|
164
|
Ji H, Han CD, Lee GS, Jung KH, Kang DY, Oh J, Oh H, Cheon KS, Kim SL, Choi I, Baek J, Kim KH. Mutations in the microRNA172 binding site of SUPERNUMERARY BRACT (SNB) suppress internode elongation in rice. RICE (NEW YORK, N.Y.) 2019; 12:62. [PMID: 31399805 PMCID: PMC6689044 DOI: 10.1186/s12284-019-0324-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 08/05/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Internode elongation is an important agronomic trait in rice that determines culm length, which is related to lodging, panicle exsertion, and biomass. sui4 (shortened uppermost internode 4) mutants show reduced internode length and a dwarf phenotype due to shortened internodes; the uppermost internode is particularly severely affected. The present study was performed to identify the molecular nature and function of the SUI4 gene during internode elongation. RESULTS Our previous study showed that the SUI4 gene was mapped to a 1.1-Mb interval on chromosome 7 (Ji et al. 2014). In order to isolate the gene responsible for the sui4 phenotype, genomic DNA resequencing of sui4 mutants and wild-type plants and reciprocal transformation of wild-type and mutant alleles of the putative SUI4 gene was performed. The data revealed that the causative mutation of sui4 was a T to A nucleotide substitution at the microRNA172 binding site of Os07g0235800, and that SUI4 is a new allele of the previously reported gene SUPERNUMERARY BRACT (SNB), which affects flower structure. In order to understand the effect of this mutation on expression of the SUI4/SNB gene, SUI4/SNB native promoter-fuzed GUS transgenics were examined, along with qRT-PCR analysis at various developmental stages. In sui4 mutants, the SUI4/SNB gene was upregulated in the leaves, culms, and panicles, especially when internodes were elongated. In culms, SUI4/SNB was expressed in the nodes and the lower parts of elongating internodes. In order to further explore the molecular nature of SUI4/SNB during internode elongation, RNA-seq and qRT-PCR analysis were performed with RNAs from the culms of sui4 mutants and wild-type plants in the booting stage. The data showed that in sui4 mutants, genes deactivating bioactive gibberellins and cytokinin were upregulated while genes related to cell expansion and cell wall synthesis were downregulated. CONCLUSION In summary, this paper shows that interaction between SUI4/SNB and microRNA172 could determine internode elongation during the reproductive stage in rice plants. Due to a mutation at the microRNA172 binding site in sui4 mutants, the expression of SUI4/SNB was enhanced, which lowered the activities of cell expansion and cell wall synthesis and consequently resulted in shortened internodes.
Collapse
Affiliation(s)
- Hyeonso Ji
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Jeonju, 54874, South Korea.
| | - Chang-Deok Han
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, 52828, South Korea
| | - Gang-Seob Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Jeonju, 54874, South Korea
| | - Ki-Hong Jung
- The Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, South Korea
| | - Do-Yu Kang
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Jeonju, 54874, South Korea
| | - Jun Oh
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Jeonju, 54874, South Korea
| | - Hyoja Oh
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Jeonju, 54874, South Korea
| | - Kyeong-Seong Cheon
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Jeonju, 54874, South Korea
| | - Song Lim Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Jeonju, 54874, South Korea
| | - Inchan Choi
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Jeonju, 54874, South Korea
| | - Jeongho Baek
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Jeonju, 54874, South Korea
| | - Kyung-Hwan Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Jeonju, 54874, South Korea
| |
Collapse
|
165
|
Li C, Zheng L, Wang X, Hu Z, Zheng Y, Chen Q, Hao X, Xiao X, Wang X, Wang G, Zhang Y. Comprehensive expression analysis of Arabidopsis GA2-oxidase genes and their functional insights. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:1-13. [PMID: 31203874 DOI: 10.1016/j.plantsci.2019.04.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/07/2019] [Accepted: 04/27/2019] [Indexed: 05/09/2023]
Abstract
Bioactive gibberellins (GAs) play multiple roles in plant development and stress responses. GA2-oxidases (GA2oxs) are a class of 2-oxoglutarate-dependent dioxygenases that regulate the deactivation of bioactive GAs. In this study, we investigated the phylogeny and domain structures of the seven GA2ox genes present in the Arabidopsis thaliana genome. Comprehensive expression analysis using translational reporter lines showed that the seven GA2ox genes are differentially expressed during Arabidopsis growth and development: GA2ox1 is specifically expressed in the hypocotyl and lateral root primordium; GA2ox2 is highly expressed in aboveground tissues; GA2ox3 is expressed in the chalazal endosperm of the early embryo sac and inflorescences; GA2ox4 is expressed in the shoot apical meristem and during lateral root initiation; GA2ox6 is expressed in the maturation zone, but not in the meristem or elongating zone of the root; GA2ox7 is constitutively expressed during almost all developmental stages; and GA2ox8 is exclusively expressed in stomatal cells. Overexpression of each of these GA2ox genes inhibited high temperature-induced hypocotyl elongation in both wild-type and elongated hypocotyl 5 plants, which have an elongated hypocotyl phenotype, suggesting that these genes negatively regulate hypocotyl elongation by reducing bioactive GA levels. This study provides a valuable resource for further elucidating the roles of GA2ox genes during different stages of development.
Collapse
Affiliation(s)
- Chen Li
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Lanlan Zheng
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xuening Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Zhubing Hu
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yan Zheng
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Qinhua Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Hubei Shiyan, 442008, China
| | - Xincai Hao
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xiao Xiao
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Guodong Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Yonghong Zhang
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
166
|
Chen X, Tian X, Xue L, Zhang X, Yang S, Traw MB, Huang J. CRISPR-Based Assessment of Gene Specialization in the Gibberellin Metabolic Pathway in Rice. PLANT PHYSIOLOGY 2019; 180:2091-2105. [PMID: 31160507 PMCID: PMC6670093 DOI: 10.1104/pp.19.00328] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/22/2019] [Indexed: 05/21/2023]
Abstract
Gibberellin (GA) functions as an essential natural regulator of growth and development in plants. For each step of the GA metabolic pathway, different copy numbers can be found in different species, as is the case with the 13 genes across four enzymatic steps in rice (Oryza sativa). A common view is that such gene duplication creates homologs that buffer organisms against loss-of-function (LOF) mutations. Therefore, knockouts of any single homolog might be expected to have little effect. To test this question, we generated clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) knockouts for these homologs and measured effects on growth and reproduction. Surprisingly, we report here that there is consistently one or more essential gene at each enzymatic step, for which LOF mutation induces death or sterility-suggesting that the GA pathway does not have a redundancy route and that each gene family is essential for GA metabolism. In most of these genes from the same gene family, we observed defects in plant height and infertility, suggesting that the duplicated members retain functions related to GA synthesis or degradation. We identified both subfunctionalization of the three recently diversified homologs OsKO1, OsKO2, and OsKO5 and neofunctionalization in OsKO3 and OsKO4 Thus, although the function of each step is conserved, the evolution of duplicates in that step is diversified. Interestingly, the CRISPR/Cas9 lines at the SD1 locus were typically sterile, whereas the natural sd1 mutants, related to the "Green Revolution" in rice, show normal setting rates. Collectively, our results identify candidates for control of GA production and provide insight into the evolution of four critical gene families in plants.
Collapse
Affiliation(s)
- Xiao Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xuejian Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Lan Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiaohui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - M Brian Traw
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ju Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
167
|
Gonin M, Bergougnoux V, Nguyen TD, Gantet P, Champion A. What Makes Adventitious Roots? PLANTS (BASEL, SWITZERLAND) 2019; 8:E240. [PMID: 31336687 PMCID: PMC6681363 DOI: 10.3390/plants8070240] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/08/2019] [Accepted: 07/17/2019] [Indexed: 12/28/2022]
Abstract
The spermatophyte root system is composed of a primary root that develops from an embryonically formed root meristem, and of different post-embryonic root types: lateral and adventitious roots. Adventitious roots, arising from the stem of the plants, are the main component of the mature root system of many plants. Their development can also be induced in response to adverse environmental conditions or stresses. Here, in this review, we report on the morphological and functional diversity of adventitious roots and their origin. The hormonal and molecular regulation of the constitutive and inducible adventitious root initiation and development is discussed. Recent data confirmed the crucial role of the auxin/cytokinin balance in adventitious rooting. Nevertheless, other hormones must be considered. At the genetic level, adventitious root formation integrates the transduction of external signals, as well as a core auxin-regulated developmental pathway that is shared with lateral root formation. The knowledge acquired from adventitious root development opens new perspectives to improve micropropagation by cutting in recalcitrant species, root system architecture of crops such as cereals, and to understand how plants adapted during evolution to the terrestrial environment by producing different post-embryonic root types.
Collapse
Affiliation(s)
- Mathieu Gonin
- Université de Montpellier, IRD, UMR DIADE, 34,394 Montpellier, France
| | - Véronique Bergougnoux
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Thu D Nguyen
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Pascal Gantet
- Université de Montpellier, IRD, UMR DIADE, 34,394 Montpellier, France
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Antony Champion
- Université de Montpellier, IRD, UMR DIADE, 34,394 Montpellier, France
| |
Collapse
|
168
|
Kosakivska I, Romanenko K, Voytenko L, Vasyuk V, Shcherbatiuk M, Shcherbatiuk M. Hormonal complex of gametophytes of Dryopteris filix-mas (Dryopteridaceae) in in vitro culture. UKRAINIAN BOTANICAL JOURNAL 2019. [DOI: 10.15407/ukrbotj76.03.260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
169
|
Harper J, De Vega J, Swain S, Heavens D, Gasior D, Thomas A, Evans C, Lovatt A, Lister S, Thorogood D, Skøt L, Hegarty M, Blackmore T, Kudrna D, Byrne S, Asp T, Powell W, Fernandez-Fuentes N, Armstead I. Integrating a newly developed BAC-based physical mapping resource for Lolium perenne with a genome-wide association study across a L. perenne European ecotype collection identifies genomic contexts associated with agriculturally important traits. ANNALS OF BOTANY 2019; 123:977-992. [PMID: 30715119 PMCID: PMC6589518 DOI: 10.1093/aob/mcy230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/28/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND AIMS Lolium perenne (perennial ryegrass) is the most widely cultivated forage and amenity grass species in temperate areas worldwide and there is a need to understand the genetic architectures of key agricultural traits and crop characteristics that deliver wider environmental services. Our aim was to identify genomic regions associated with agriculturally important traits by integrating a bacterial artificial chromosome (BAC)-based physical map with a genome-wide association study (GWAS). METHODS BAC-based physical maps for L. perenne were constructed from ~212 000 high-information-content fingerprints using Fingerprint Contig and Linear Topology Contig software. BAC clones were associated with both BAC-end sequences and a partial minimum tiling path sequence. A panel of 716 L. perenne diploid genotypes from 90 European accessions was assessed in the field over 2 years, and genotyped using a Lolium Infinium SNP array. The GWAS was carried out using a linear mixed model implemented in TASSEL, and extended genomic regions associated with significant markers were identified through integration with the physical map. KEY RESULTS Between ~3600 and 7500 physical map contigs were derived, depending on the software and probability thresholds used, and integrated with ~35 k sequenced BAC clones to develop a resource predicted to span the majority of the L. perenne genome. From the GWAS, eight different loci were significantly associated with heading date, plant width, plant biomass and water-soluble carbohydrate accumulation, seven of which could be associated with physical map contigs. This allowed the identification of a number of candidate genes. CONCLUSIONS Combining the physical mapping resource with the GWAS has allowed us to extend the search for candidate genes across larger regions of the L. perenne genome and identified a number of interesting gene model annotations. These physical maps will aid in validating future sequence-based assemblies of the L. perenne genome.
Collapse
Affiliation(s)
- J Harper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - J De Vega
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - S Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - D Heavens
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - D Gasior
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - A Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - C Evans
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - A Lovatt
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - S Lister
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - D Thorogood
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - L Skøt
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - M Hegarty
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - T Blackmore
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - D Kudrna
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - S Byrne
- Teagasc, Department of Crop Science, Carlow, Ireland
| | - T Asp
- Department of Molecular Biology and Genetics, Crop Genetics and Biotechnology, Aarhus University, Slagelse, Denmark
| | - W Powell
- Scotland’s Rural College, Edinburgh, UK
| | - N Fernandez-Fuentes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - I Armstead
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| |
Collapse
|
170
|
SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nat Commun 2019; 10:2738. [PMID: 31227696 PMCID: PMC6588547 DOI: 10.1038/s41467-019-10667-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 05/14/2019] [Indexed: 11/15/2022] Open
Abstract
The breeding of cereals with altered gibberellin (GA) signaling propelled the ‘Green Revolution’ by generating semidwarf plants with increased tiller number. The mechanism by which GAs promote shoot height has been studied extensively, but it is not known what causes the inverse relationship between plant height and tiller number. Here we show that rice tiller number regulator MONOCULM 1 (MOC1) is protected from degradation by binding to the DELLA protein SLENDER RICE 1 (SLR1). GAs trigger the degradation of SLR1, leading to stem elongation and also to the degradation of MOC1, and hence a decrease in tiller number. This discovery provides a molecular explanation for the coordinated control of plant height and tiller number in rice by GAs, SLR1 and MOC1. Due to reduced gibberellin sensitivity, modern rice cultivars are shorter than traditional varieties but produce more tillers and have higher yields. Here Liao et al. show that gibberellin contributes to decreased tiller number by degrading the MOC1 protein that suppresses bud outgrowth.
Collapse
|
171
|
Genomic Bayesian Confirmatory Factor Analysis and Bayesian Network To Characterize a Wide Spectrum of Rice Phenotypes. G3-GENES GENOMES GENETICS 2019; 9:1975-1986. [PMID: 30992319 PMCID: PMC6553530 DOI: 10.1534/g3.119.400154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
With the advent of high-throughput phenotyping platforms, plant breeders have a means to assess many traits for large breeding populations. However, understanding the genetic interdependencies among high-dimensional traits in a statistically robust manner remains a major challenge. Since multiple phenotypes likely share mutual relationships, elucidating the interdependencies among economically important traits can better inform breeding decisions and accelerate the genetic improvement of plants. The objective of this study was to leverage confirmatory factor analysis and graphical modeling to elucidate the genetic interdependencies among a diverse agronomic traits in rice. We used a Bayesian network to depict conditional dependencies among phenotypes, which can not be obtained by standard multi-trait analysis. We utilized Bayesian confirmatory factor analysis which hypothesized that 48 observed phenotypes resulted from six latent variables including grain morphology, morphology, flowering time, physiology, yield, and morphological salt response. This was followed by studying the genetics of each latent variable, which is also known as factor, using single nucleotide polymorphisms. Bayesian network structures involving the genomic component of six latent variables were established by fitting four algorithms (i.e., Hill Climbing, Tabu, Max-Min Hill Climbing, and General 2-Phase Restricted Maximization algorithms). Physiological components influenced the flowering time and grain morphology, and morphology and grain morphology influenced yield. In summary, we show the Bayesian network coupled with factor analysis can provide an effective approach to understand the interdependence patterns among phenotypes and to predict the potential influence of external interventions or selection related to target traits in the interrelated complex traits systems.
Collapse
|
172
|
Chai L, Chen Z, Bian R, Zhai H, Cheng X, Peng H, Yao Y, Hu Z, Xin M, Guo W, Sun Q, Zhao A, Ni Z. Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length linked in coupling phase on the short arm of chromosome 2D of common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1815-1831. [PMID: 30915484 PMCID: PMC6531420 DOI: 10.1007/s00122-019-03318-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/14/2018] [Indexed: 05/10/2023]
Abstract
KEY MESSAGE Two QTL with pleiotropic effects on plant height and spike length linked in coupling phase on chromosome 2DS were dissected, and diagnostic marker for each QTL was developed. Plant height (PHT) is a crucial trait related to plant architecture and yield potential, and dissection of its underlying genetic basis would help to improve the efficiency of designed breeding in wheat. Here, two quantitative trait loci (QTL) linked in coupling phase on the short arm of chromosome 2D with pleiotropic effects on PHT and spike length, QPht/Sl.cau-2D.1 and QPht/Sl.cau-2D.2, were separated and characterized. QPht/Sl.cau-2D.1 is a novel QTL located between SNP makers BS00022234_51 and BobWhite_rep_c63957_1472. QPht/Sl.cau-2D.2 is mapped between two SSR markers, SSR-2062 and Xgwm484, which are located on the same genomic interval as Rht8. Moreover, the diagnostic marker tightly linked with each QTL was developed for the haplotype analysis using diverse panels of wheat accessions. The frequency of the height-reduced allele of QPht/Sl.cau-2D.1 is much lower than that of QPht/Sl.cau-2D.2, suggesting that this novel QTL may be an attractive target for genetic improvement. Consistent with a previous study of Rht8, a significant difference in cell length was observed between the NILs of QPht/Sl.cau-2D.2. By contrast, there was no difference in cell length between NILs of QPht/Sl.cau-2D.1, indicating that the underlying molecular mechanism for these two QTL may be different. Collectively, these data provide a new example of QTL dissection, and the developed diagnostic markers will be useful in marker-assisted pyramiding of QPht/Sl.cau-2D.1 and/or QPht/Sl.cau-2D.2 with the other genes in wheat breeding.
Collapse
Affiliation(s)
- Lingling Chai
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhaoyan Chen
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Ruolin Bian
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Huijie Zhai
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuejiao Cheng
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Aiju Zhao
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture/Forestry Sciences, Hebei Crop Genetic Breeding Laboratory, Shijiazhuang, 050035, China.
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China.
- National Plant Gene Research Centre, Beijing, 100193, China.
| |
Collapse
|
173
|
Zou X, Wang Q, Chen P, Yin C, Lin Y. Strigolactones regulate shoot elongation by mediating gibberellin metabolism and signaling in rice (Oryza sativa L.). JOURNAL OF PLANT PHYSIOLOGY 2019; 237:72-79. [PMID: 31026778 DOI: 10.1016/j.jplph.2019.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 05/18/2023]
Abstract
Strigolactones (SLs) are plant hormones that regulate diverse physiological processes including shoot elongation. However, little is known about the regulatory mechanism of SLs in rice shoot elongation. Our results demonstrate that defects in SL biosynthesis or signaling led to dwarfism, and the dwarf statures of SL-deficient mutant (d17) and SL-insensitive mutant (d14) were restored to wild-type (WT) by gibberellin (GA) treatment, indicating that their dwarfism was associated with decreased GA content or weakened GA sensitivity. Our results indicate that the bioactive GA1 contents in d17 and d14 were lower than those in WT, due to the downregulated transcription of GA biosynthesis genes and upregulated transcription of GA inactivation genes. Moreover, d17 and d14 exhibited weakened GA-responsive sensitivity compared with WT. Although the transcription levels of cell division- and cell elongation-related genes were upregulated by GA3 treatment, the increase in transcription of d17 and d14 was lower than that in WT. These results suggest that SL is required for rice shoot elongation by mediating GA metabolism and signaling. Therefore, a deficiency in SL biosynthesis or signaling leads to decreased GA content and weakened GA response, which in turn reduces shoot length by downregulating transcription levels of cell division- and cell elongation-related genes.
Collapse
Affiliation(s)
- Xiao Zou
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qi Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Peisai Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Changxi Yin
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
174
|
Chu Y, Xu N, Wu Q, Yu B, Li X, Chen R, Huang J. Rice transcription factor OsMADS57 regulates plant height by modulating gibberellin catabolism. RICE (NEW YORK, N.Y.) 2019; 12:38. [PMID: 31139953 PMCID: PMC6538746 DOI: 10.1186/s12284-019-0298-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/16/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND The MADS-box transcription factors mainly function in floral organ organogenesis and identity specification. Few research on their roles in vegetative growth has been reported. RESULTS Here we investigated the functions of OsMADS57 in plant vegetative growth in rice (Oryza sativa). Knockdown of OsMADS57 reduced the plant height, internode elongation and panicle exsertion in rice plants. Further study showed that the cell length was remarkably reduced in the uppermost internode in OsMADS57 knockdown plants at maturity. Moreover, OsMADS57 knockdown plants were more sensitive to gibberellic acid (GA3), and contained less bioactive GA3 than wild-type plants, which implied that OsMADS57 is involved in gibberellin (GA) pathway. Expectedly, the transcript levels of OsGA2ox3, encoding GAs deactivated enzyme, were significantly enhanced in OsMADS57 knockdown plants. The level of EUI1 transcripts involved in GA deactivation was also increased in OsMADS57 knockdown plants. More importantly, dual-luciferase reporter assay and electrophoretic mobility shift assay showed that OsMADS57 directly regulates the transcription of OsGA2ox3 as well as EUI1 through binding to the CArG-box motifs in their promoter regions. In addition, OsMADS57 also modulated the expression of multiple genes involved in GA metabolism or GA signaling pathway, indicating the key and complex regulatory role of OsMADS57 in GA pathway in rice. CONCLUSIONS These results indicated that OsMADS57 acts as an important transcriptional regulator that regulates stem elongation and panicle exsertion in rice via GA-mediated regulatory pathway.
Collapse
Affiliation(s)
- Yanli Chu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Ning Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Qi Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Bo Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Xingxing Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Rongrong Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
175
|
Tan M, Li G, Chen X, Xing L, Ma J, Zhang D, Ge H, Han M, Sha G, An N. Role of Cytokinin, Strigolactone, and Auxin Export on Outgrowth of Axillary Buds in Apple. FRONTIERS IN PLANT SCIENCE 2019; 10:616. [PMID: 31156679 PMCID: PMC6530649 DOI: 10.3389/fpls.2019.00616] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/25/2019] [Indexed: 05/04/2023]
Abstract
Shoot branching is regulated by phytohormones, including cytokinin (CK), strigolactone (SL), and auxin in axillary buds. The correlative importance of these phytohormones in the outgrowth of apple axillary buds remains unclear. In this study, the outgrowth dynamics of axillary buds of a more-branching mutant (MB) and its wild-type (WT) of Malus spectabilis were assessed using exogenous chemical treatments, transcriptome analysis, paraffin section, and reverse transcription-quantitative PCR analysis (RT-qPCR). High contents of CK and abscisic acid coincided in MB axillary buds. Exogenous CK promoted axillary bud outgrowth in the WT but not in MB, whereas exogenous gibberellic had no significant effect on bud outgrowth in the WT. Functional analysis of transcriptome data and RT-qPCR analysis of gene transcripts revealed that MB branching were associated with CK signaling, auxin transport, and SL signaling. Transcription of the SL-related genes MsMAX1, MsD14, and MsMAX2 in the axillary buds of MB was generally upregulated during bud outgrowth, whereas MsBRC1/2 were generally downregulated both in WT and MB. Exogenous SL inhibited outgrowth of axillary buds in the WT and the apple varieties T337, M26, and Nagafu 2, whereas axillary buds of the MB were insensitive to SL treatment. Treatment with N-1-naphthylphalamic acid (NPA; an auxin transport inhibitor) inhibited bud outgrowth in plants of the WT and MB. The transcript abundance of MsPIN1 was generally decreased in response to NPA and SL treatments, and increased in CK and decapitation treatments, whereas no consistent pattern was observed for MsD14 and MsMAX2. Collectively, the present results suggest that in apple auxin transport from the axillary bud to the stem may be essential for the outgrowth of axillary buds, and at least, is involved in the process of bud outgrowth.
Collapse
Affiliation(s)
- Ming Tan
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Guofang Li
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Xilong Chen
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Juanjuan Ma
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - HongJuan Ge
- Institute of Agricultural Science, Qingdao, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Guangli Sha
- Institute of Agricultural Science, Qingdao, China
| | - Na An
- College of Life Science, Northwest A&F University, Yangling, China
| |
Collapse
|
176
|
Wang P, Zhang S, Qiao J, Sun Q, Shi Q, Cai C, Mo J, Chu Z, Yuan Y, Du X, Miao Y, Zhang X, Cai Y. Functional analysis of the GbDWARF14 gene associated with branching development in cotton. PeerJ 2019; 7:e6901. [PMID: 31143538 PMCID: PMC6524629 DOI: 10.7717/peerj.6901] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/30/2019] [Indexed: 12/20/2022] Open
Abstract
Plant architecture, including branching pattern, is an important agronomic trait of cotton crops. In recent years, strigolactones (SLs) have been considered important plant hormones that regulate branch development. In some species such as Arabidopsis, DWARF14 is an unconventional receptor that plays an important role in the SL signaling pathway. However, studies on SL receptors in cotton are still lacking. Here, we cloned and analysed the structure of the GbD14 gene in Gossypium barbadense and found that it contains the domains necessary for a SL receptor. The GbD14 gene was expressed primarily in the roots, leaves and vascular bundles, and the GbD14 protein was determined via GFP to localize to the cytoplasm and nucleus. Gene expression analysis revealed that the GbD14 gene not only responded to SL signals but also was differentially expressed between cotton plants whose types of branching differed. In particular, GbD14 was expressed mainly in the axillary buds of normal-branching cotton, while it was expressed the most in the leaves of nulliplex-branch cotton. In cotton, the GbD14 gene can be induced by SL and other plant hormones, such as indoleacetic acid, abscisic acid, and jasmonic acid. Compared with wild-type Arabidopsis, GbD14-overexpressing Arabidopsis responded more rapidly to SL signals. Moreover, we also found that GbD14 can rescue the multi-branched phenotype of Arabidopsis Atd14 mutants. Our results indicate that the function of GbD14 is similar to that of AtD14, and GbD14 may be a receptor for SL in cotton and involved in regulating branch development. This research provides a theoretical basis for a profound understanding of the molecular mechanism of branch development and ideal plant architecture for cotton breeding improvements.
Collapse
Affiliation(s)
- Ping Wang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Bioinformatics Center, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China
| | - Sai Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Bioinformatics Center, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China
| | - Jing Qiao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Bioinformatics Center, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China
| | - Quan Sun
- College of Bioinformation, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Qian Shi
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Bioinformatics Center, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China
| | - Chaowei Cai
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Bioinformatics Center, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China
| | - Jianchuan Mo
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Bioinformatics Center, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China
| | - Zongyan Chu
- Kaifeng Academy of Agriculture and Forestry, Kaifeng, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Bioinformatics Center, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China
| | - Xiao Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Bioinformatics Center, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China
| | - Yingfan Cai
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Bioinformatics Center, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China
| |
Collapse
|
177
|
Identification and Characterization of EI ( Elongated Internode) Gene in Tomato ( Solanum lycopersicum). Int J Mol Sci 2019; 20:ijms20092204. [PMID: 31060285 PMCID: PMC6540210 DOI: 10.3390/ijms20092204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 02/04/2023] Open
Abstract
Internode length is an important agronomic trait affecting plant architecture and crop yield. However, few genes for internode elongation have been identified in tomato. In this study, we characterized an elongated internode inbred line P502, which is a natural mutant of the tomato cultivar 05T606. The mutant P502 exhibits longer internode and higher bioactive GA concentration compared with wild-type 05T606. Genetic analysis suggested that the elongated internode trait is controlled by quantitative trait loci (QTL). Then, we identified a major QTL on chromosome 2 based on molecular markers and bulked segregant analysis (BSA). The locus was designated as EI (Elongated Internode), which explained 73.6% genetic variance. The EI was further mapped to a 75.8-kb region containing 10 genes in the reference Heinz 1706 genome. One single nucleotide polymorphism (SNP) in the coding region of solyc02g080120.1 was identified, which encodes gibberellin 2-beta-dioxygenase 7 (SlGA2ox7). SlGA2ox7, orthologous to AtGA2ox7 and AtGA2ox8, is involved in the regulation of GA degradation. Overexpression of the wild EI gene in mutant P502 caused a dwarf phenotype with a shortened internode. The difference of EI expression levels was not significant in the P502 and wild-type, but the expression levels of GA biosynthetic genes including CPS, KO, KAO, GA20ox1, GA20ox2, GA20ox4, GA3ox1, GA2ox1, GA2ox2, GA2ox4, and GA2ox5, were upregulated in mutant P502. Our results may provide a better understanding of the genetics underlying the internode elongation and valuable information to improve plant architecture of the tomato.
Collapse
|
178
|
MtGA2ox10 encoding C20-GA2-oxidase regulates rhizobial infection and nodule development in Medicago truncatula. Sci Rep 2019; 9:5952. [PMID: 30976084 PMCID: PMC6459840 DOI: 10.1038/s41598-019-42407-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/01/2019] [Indexed: 01/03/2023] Open
Abstract
Gibberellin (GA) plays a controversial role in the legume-rhizobium symbiosis. Recent studies have shown that the GA level in legumes must be precisely controlled for successful rhizobial infection and nodule organogenesis. However, regulation of the GA level via catabolism in legume roots has not been reported to date. Here, we investigate a novel GA inactivating C20-GA2-oxidase gene MtGA2ox10 in Medicago truncatula. RNA sequencing analysis and quantitative polymerase chain reaction revealed that MtGA2ox10 was induced as early as 6 h post-inoculation (hpi) of rhizobia and reached peak transcript abundance at 12 hpi. Promoter::β-glucuronidase fusion showed that the promoter activity was localized in the root infection/differentiation zone during the early stage of rhizobial infection and in the vascular bundle of the mature nodule. The CRISPR/Cas9-mediated deletion mutation of MtGA2ox10 suppressed infection thread formation, which resulted in reduced development and retarded growth of nodules on the Agrobacterium rhizogenes-transformed roots. Over-expression of MtGA2ox10 in the stable transgenic plants caused dwarfism, which was rescued by GA3 application, and increased infection thread formation but inhibition of nodule development. We conclude that MtGA2ox10 plays an important role in the rhizobial infection and the development of root nodules through fine catabolic tuning of GA in M. truncatula.
Collapse
|
179
|
Transcriptomic analysis of contrasting inbred lines and F 2 segregant of Chinese cabbage provides valuable information on leaf morphology. Genes Genomics 2019; 41:811-829. [PMID: 30900192 DOI: 10.1007/s13258-019-00809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Leaf morphology influences plant growth and productivity and is controlled by genetic and environmental cues. The various morphotypes of Brassica rapa provide an excellent resource for genetic and molecular studies of morphological traits. OBJECTIVE This study aimed to identify genes regulating leaf morphology using segregating B. rapa p F2 population. METHODS Phenotyping and transcriptomic analyses were performed on an F2 population derived from a cross between Rapid cycling B. rapa (RCBr) and B. rapa ssp. penkinensis, inbred line Kenshin. Analyses focused on four target traits: lamina (leaf) length (LL), lamina width (LW), petiole length (PL), and leaf margin (LM). RESULTS All four traits were controlled by multiple QTLs, and expression of 466 and 602 genes showed positive and negative correlation with leaf phenotypes, respectively. From this microarray analysis, large numbers of genes were putatively identified as leaf morphology-related genes. The Gene Ontology (GO) category containing the highest number of differentially expressed genes (DEGs) was "phytohormones". The sets of genes enriched in the four leaf phenotypes did not overlap, indicating that each phenotype was regulated by a different set of genes. The expression of BrAS2, BrAN3, BrCYCB1;2, BrCYCB2;1,4, BrCYCB3;1, CrCYCBD3;2, BrULT1, and BrANT seemed to be related to leaf size traits (LL and LW), whereas BrCUC1, BrCUC2, and BrCUC3 expression for LM trait. CONCLUSION An analysis integrating the results of the current study with previously published data revealed that Kenshin alleles largely determined LL and LW but LM resulted from RCBr alleles. Genes identified in this study could be used to develop molecular markers for use in Brassica breeding projects and for the dissection of gene function.
Collapse
|
180
|
Eizenga GC, Jia MH, Jackson AK, Boykin DL, Ali ML, Shakiba E, Tran NT, McCouch SR, Edwards JD. Validation of Yield Component Traits Identified by Genome-Wide Association Mapping in a tropical japonica × tropical japonica Rice Biparental Mapping Population. THE PLANT GENOME 2019; 12:180021. [PMID: 30951093 DOI: 10.3835/plantgenome2018.04.0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Rice Diversity Panel 1 (RDP1) was developed for genome-wide association (GWA) studies to explore five rice ( L.) subpopulations (, , , , and ). The RDP1 was evaluated for over 30 traits, including agronomic, panicle architecture, seed, and disease traits and genotyped with 700,000 single nucleotide polymorphisms (SNPs). Most rice grown in the southern United States is and thus the diversity in this subpopulation is interesting to U.S. breeders. Among the RDP1 accessions, 'Estrela' and 'NSFTV199' are both phenotypically and genotypically diverse, thus making them excellent parents for a biparental mapping population. The objectives were to (i) ascertain the GWA QTLs from the RDP1 GWA studies that overlapped with the QTLs uncovered in an Estrela × NSFTV199 recombinant inbred line (RIL) population evaluated for 15 yield traits, and (ii) identify known or novel genes potentially controlling specific yield component traits. The 256 RILs were genotyped with 132 simple sequence repeat markers and 70 QTLs were found. Perl scripts were developed for automatic identification of the underlying candidate genes in the GWA QTL regions. Approximately 100 GWA QTLs overlapped with 41 Estrela × NSFTV199 QTL (RIL QTL) regions and 47 known genes were identified. Two seed trait RIL QTLs with overlapping GWA QTLs were not associated with a known gene. Segregating SNPs in the overlapping GWA QTLs for RIL QTLs with high values will be evaluated as potential DNA markers useful to breeding programs for the associated yield trait.
Collapse
|
181
|
Sun L, Yang W, Li Y, Shan Q, Ye X, Wang D, Yu K, Lu W, Xin P, Pei Z, Guo X, Liu D, Sun J, Zhan K, Chu J, Zhang A. A wheat dominant dwarfing line with Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:887-900. [PMID: 30466195 DOI: 10.1111/tpj.14168] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 05/02/2023]
Abstract
Dwarfing and semi-dwarfing are important agronomic traits that have great potential for the improvement of wheat yields. Rht12, a dominant gibberellic acid (GA)-responsive dwarfing gene from the gamma-ray-induced wheat mutant Karcagi 522M7K, is located in the long arm of chromosome 5A, which is closely linked with the locus Xwmc410. Rht12 is likely an ideal gene for GA biosynthesis and deactivation research in common wheat. However, information on the Rht12 locus and sequence is lacking. In this study, Rht12 significantly shortened stem cell length and decreased GA biosynthetic components. Using bulked segregant RNA-Seq, wheat 660k single nucleotide polymorphism chip detection, and newly developed simple sequence repeat markers, Rht12 was mapped to a 11.21-Mb region at the terminal end of chromosome 5AL, and was found to be closely linked with the Xw5ac207SSR marker with a 10.73-Mb fragment deletion in all of the homologous dwarfing plants. Transcriptome analyses of the remaining 483-kb region showed significantly higher expression of the TraesCS5A01G543100 gene encoding the GA metabolic enzyme GA 2-β-dioxygenase in dwarfing plants than in high stalk plants, suggesting that Rht12 reduces plant height by activating TaGA2ox-A14. Taken together, our findings will promote cloning and functional studies of Rht12 in common wheat.
Collapse
Affiliation(s)
- Linhe Sun
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenlong Yang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yafei Li
- The Collaborative Innovation Center for Grain Crops in Henan, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qiangqiang Shan
- The Collaborative Innovation Center for Grain Crops in Henan, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaobin Ye
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongzhi Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kang Yu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Genomics Institute-Shenzhen, Shenzhen, 518083, China
| | - Weiwen Lu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peiyong Xin
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhong Pei
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoli Guo
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dongcheng Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiazhu Sun
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kehui Zhan
- The Collaborative Innovation Center for Grain Crops in Henan, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Aimin Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
182
|
Moriconi JI, Kotula L, Santa-María GE, Colmer TD. Root phenotypes of dwarf and "overgrowth" SLN1 barley mutants, and implications for hypoxic stress tolerance. JOURNAL OF PLANT PHYSIOLOGY 2019; 234-235:60-70. [PMID: 30665049 DOI: 10.1016/j.jplph.2019.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
Gibberellins are central to the regulation of plant development and growth. Action of gibberellins involves the degradation of DELLA proteins, which are negative regulators of growth. In barley (Hordeum vulgare), certain mutations affecting genes involved in gibberellin synthesis or coding for the barley DELLA protein (Sln1) confer dwarfism. Recent studies have identified new alleles of Sln1 with the capacity to revert the dwarf phenotype back to the taller phenotypes. While the effect of these overgrowth alleles on shoot phenotypes has been explored, no information is available for roots. Here, we examined aspects of the root phenotypes displayed by plants with various Sln1 gene alleles, and tested responses to growth in an O2-deficient root-zone as occurs during soil waterlogging. One overgrowth line, bearing the Sln1d.8 allele carrying two amino acid substitutions (one in the amino terminus and one in the GRAS domain of the encoded DELLA protein), displays profound and opposite effects on shoot height and root length. While it stimulates shoot height, it severely compromises root length by a reduction of cell size in zones distal to the root apex. In addition, Sln1d.8 plants counteract the negative effect of the original mutation on the formation of adventitious roots. Interestingly, plants bearing this allele display enhanced resistance to flooding stress in a way non-related with increased root porosity. Thus, various Sln1 gene alleles contribute to root phenotypes and can also influence plant responses to root-zone O2-deficiency stress.
Collapse
Affiliation(s)
- Jorge I Moriconi
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín (CONICET-UNSAM), Avenida Intendente Marino, km 8.2, Chascomús, 7130 Buenos Aires, Argentina; UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Lukasz Kotula
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Guillermo E Santa-María
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín (CONICET-UNSAM), Avenida Intendente Marino, km 8.2, Chascomús, 7130 Buenos Aires, Argentina
| | - Timothy D Colmer
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
183
|
Wang M, Le Moigne MA, Bertheloot J, Crespel L, Perez-Garcia MD, Ogé L, Demotes-Mainard S, Hamama L, Davière JM, Sakr S. BRANCHED1: A Key Hub of Shoot Branching. FRONTIERS IN PLANT SCIENCE 2019; 10:76. [PMID: 30809235 PMCID: PMC6379311 DOI: 10.3389/fpls.2019.00076] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/17/2019] [Indexed: 05/20/2023]
Abstract
Shoot branching is a key process for plant growth and fitness. Newly produced axes result from axillary bud outgrowth, which is at least partly mediated through the regulation of BRANCHED1 gene expression (BRC1/TB1/FC1). BRC1 encodes a pivotal bud-outgrowth-inhibiting transcription factor belonging to the TCP family. As the regulation of BRC1 expression is a hub for many shoot-branching-related mechanisms, it is influenced by endogenous (phytohormones and nutrients) and exogenous (light) inputs, which involve so-far only partly identified molecular networks. This review highlights the central role of BRC1 in shoot branching and its responsiveness to different stimuli, and emphasizes the different knowledge gaps that should be addressed in the near future.
Collapse
Affiliation(s)
- Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Marie-Anne Le Moigne
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Jessica Bertheloot
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Laurent Crespel
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Sabine Demotes-Mainard
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Jean-Michel Davière
- Institut de Biologie Moléculaire des Plantes, UPR2357, Université de Strasbourg, Strasbourg, France
| | - Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| |
Collapse
|
184
|
Yuan J, Kessler SA. A genome-wide association study reveals a novel regulator of ovule number and fertility in Arabidopsis thaliana. PLoS Genet 2019; 15:e1007934. [PMID: 30742622 PMCID: PMC6386413 DOI: 10.1371/journal.pgen.1007934] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/22/2019] [Accepted: 01/04/2019] [Indexed: 01/08/2023] Open
Abstract
Ovules contain the female gametophytes which are fertilized during pollination to initiate seed development. Thus, the number of ovules that are produced during flower development is an important determinant of seed crop yield and plant fitness. Mutants with pleiotropic effects on development often alter the number of ovules, but specific regulators of ovule number have been difficult to identify in traditional mutant screens. We used natural variation in Arabidopsis accessions to identify new genes involved in the regulation of ovule number. The ovule numbers per flower of 189 Arabidopsis accessions were determined and found to have broad phenotypic variation that ranged from 39 ovules to 84 ovules per pistil. Genome-Wide Association tests revealed several genomic regions that are associated with ovule number. T-DNA insertion lines in candidate genes from the most significantly associated loci were screened for ovule number phenotypes. The NEW ENHANCER of ROOT DWARFISM (NERD1) gene was found to have pleiotropic effects on plant fertility that include regulation of ovule number and both male and female gametophyte development. Overexpression of NERD1 increased ovule number per fruit in a background-dependent manner and more than doubled the total number of flowers produced in all backgrounds tested, indicating that manipulation of NERD1 levels can be used to increase plant productivity.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana United States of America
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana United States of America
| | - Sharon A. Kessler
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana United States of America
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana United States of America
| |
Collapse
|
185
|
Chai L, Chen Z, Bian R, Zhai H, Cheng X, Peng H, Yao Y, Hu Z, Xin M, Guo W, Sun Q, Zhao A, Ni Z. Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length linked in coupling phase on the short arm of chromosome 2D of common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2621-2637. [PMID: 30267114 DOI: 10.1007/s00122-018-3177-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Two QTL with pleiotropic effects on plant height and spike length linked in coupling phase on chromosome 2DS were dissected, and diagnostic marker for each QTL was developed. Plant height (PHT) is a crucial trait related to plant architecture and yield potential, and dissection of its underlying genetic basis would help to improve the efficiency of designed breeding in wheat. Here, two quantitative trait loci (QTL) linked in coupling phase on the short arm of chromosome 2D with pleiotropic effects on PHT and spike length, QPht/Sl.cau-2D.1 and QPht/Sl.cau-2D.2, were separated and characterized. QPht/Sl.cau-2D.1 is a novel QTL located between SNP makers BS00022234_51 and BobWhite_rep_c63957_1472. QPht/Sl.cau-2D.2 is mapped between two SSR markers, SSR-2062 and Xgwm484, which are located on the same genomic interval as Rht8. Moreover, the diagnostic marker tightly linked with each QTL was developed for the haplotype analysis using diverse panels of wheat accessions. The frequency of the height-reduced allele of QPht/Sl.cau-2D.1 is much lower than that of QPht/Sl.cau-2D.2, suggesting that this novel QTL may be an attractive target for genetic improvement. Consistent with a previous study of Rht8, a significant difference in cell length was observed between the NILs of QPht/Sl.cau-2D.2. By contrast, there was no difference in cell length between NILs of QPht/Sl.cau-2D.1, indicating that the underlying molecular mechanism for these two QTL may be different. Collectively, these data provide a new example of QTL dissection, and the developed diagnostic markers will be useful in marker-assisted pyramiding of QPht/Sl.cau-2D.1 and/or QPht/Sl.cau-2D.2 with the other genes in wheat breeding.
Collapse
Affiliation(s)
- Lingling Chai
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhaoyan Chen
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Ruolin Bian
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Huijie Zhai
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuejiao Cheng
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Aiju Zhao
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture/Forestry Sciences, Hebei Crop Genetic Breeding Laboratory, Shijiazhuang, 050035, China.
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China.
- National Plant Gene Research Centre, Beijing, 100193, China.
| |
Collapse
|
186
|
Liu L, Li W, Liu C, Chen B, Tian X, Chen C, Li J, Chen S. In vivo haploid induction leads to increased frequency of twin-embryo and abnormal fertilization in maize. BMC PLANT BIOLOGY 2018; 18:313. [PMID: 30497385 PMCID: PMC6267813 DOI: 10.1186/s12870-018-1422-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/10/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND In vivo haploid induction (HI) based on Stock6-derived inducer lines has been the most prevalent means of producing haploids. Nevertheless, the biological mechanism of HI is not fully understood, the twin-embryo kernels had been found during haploid induction, which may provide potential evidence for the abnormal double fertilization during HI. RESULTS We investigated twin-embryo frequency in progenies of different haploid inducers. Results reveal that increasing the HI potential significantly improved the frequency of twin-embryo kernels. Compared with the average twin-embryo kernel frequency (average frequency = 0.07%) among progenies pollinated by the haploid inducer line CAUHOI, the frequency of twin-embryo was improved to 0.16% in progenies pollinated by the haploid inducer line CAU5. This result was further confirmed by pollinating single hybrid ND5598 with four haploid inducers possessing differentiated HIRs, where twin-embryo frequency was highly correlated with HIR. Among 237 twin-embryo kernels, we identified 30 haploid twin-embryo kernels (12.66%), a frequency which was much greater than the average HI rate for three other inducer lines (frequency range 2-10%). In addition, aneuploids, occurred at high frequency (8 in 41 twin plants). This level of aneuploidy provides new insight into the abnormal double fertilization during HI. Moreover, we observed differences in growth rate between twin plants in the field, as 4.22% of the twin plants grew at a significantly different rate. Both simple sequence repeats markers (SSR) and 3072 SNP-chip genotyping results revealed that > 90% of the twin plants shared the same origin, and the growth difference could be attributed to aneuploidy, competition for nutrients, and possible hormone regulation. CONCLUSION These results demonstrate that an enhanced HI ability can increase twin-embryo kernel frequency, and high frequency of both haploid twin-embryo kernels and aneuploidy observed in this research give us new insights to understand the mechanism of both HI and abnormal embryogenesis.
Collapse
Affiliation(s)
- Liwei Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Wei Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Chenxu Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Baojian Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaolong Tian
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Chen Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jinlong Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shaojiang Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
187
|
Busov VB. Manipulation of Growth and Architectural Characteristics in Trees for Increased Woody Biomass Production. FRONTIERS IN PLANT SCIENCE 2018; 9:1505. [PMID: 30459780 PMCID: PMC6232754 DOI: 10.3389/fpls.2018.01505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/26/2018] [Indexed: 06/09/2023]
Abstract
Growth and architectural traits in trees are economically and environmentally important and thus of considerable importance to the improvement of forest and fruit trees. These traits are complex and result from the operation of a number of molecular mechanisms. This review will focus on the regulation of crown architecture, secondary woody growth and adventitious rooting. These traits and processes have significant impact on deployment, management, and productivity of tree crops. The majority of the described work comes from experiments in model plants, poplar, apple, peach, and plum because these species allow functional analysis of the involved genes and have significant genomics resources. However, these studies convincingly show conserved mechanisms for elaboration of specific growth and architectural traits. The conservation of these mechanisms suggest that they can be used as a blueprint for the improvement of these traits and processes in phylogenetically diverse tree crops. We will specifically consider the involvement of flowering time, transcription factors and hormone-associated genes. The review will also discuss the impact of recent technological advances as well as the challenges to the dissection of these traits in trees.
Collapse
|
188
|
Comprehensive Analysis of Cucumber Gibberellin Oxidase Family Genes and Functional Characterization of CsGA20ox1 in Root Development in Arabidopsis. Int J Mol Sci 2018; 19:ijms19103135. [PMID: 30322023 PMCID: PMC6213227 DOI: 10.3390/ijms19103135] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 01/30/2023] Open
Abstract
Cucumber (Cucumis sativus L.) is an important vegetable crop worldwide and gibberellins (GAs) play important roles in the regulation of cucumber developmental and growth processes. GA oxidases (GAoxs), which are encoded by different gene subfamilies, are particularly important in regulating bioactive GA levels by catalyzing the later steps in the biosynthetic pathway. Although GAoxs are critical enzymes in GA synthesis pathway, little is known about GAox genes in cucumber, in particular about their evolutionary relationships, expression profiles and biological function. In this study, we identified 17 GAox genes in cucumber genome and classified them into five subfamilies based on a phylogenetic tree, gene structures, and conserved motifs. Synteny analysis indicated that the tandem duplication or segmental duplication events played a minor role in the expansion of cucumber GA2ox, GA3ox and GA7ox gene families. Comparative syntenic analysis combined with phylogenetic analysis provided deep insight into the phylogenetic relationships of CsGAox genes and suggested that protein homology CsGAox are closer to AtGAox than OsGAox. In addition, candidate transcription factors BBR/BPC (BARLEY B RECOMBINANT/BASIC PENTACYSTEINE) and GRAS (GIBBERELLIC ACID-INSENSITIVE, REPRESSOR of GAI, and SCARECROW) which may directly bind promoters of CsGAox genes were predicted. Expression profiles derived from transcriptome data indicated that some CsGAox genes, especially CsGA20ox1, are highly expressed in seedling roots and were down-regulated under GA3 treatment. Ectopic over-expression of CsGA20ox1 in Arabidopsis significantly increased primary root length and lateral root number. Taken together, comprehensive analysis of CsGAoxs would provide a basis for understanding the evolution and function of the CsGAox family.
Collapse
|
189
|
Ito S, Yamagami D, Asami T. Effects of gibberellin and strigolactone on rice tiller bud growth. JOURNAL OF PESTICIDE SCIENCE 2018; 43:220-223. [PMID: 30363138 PMCID: PMC6140679 DOI: 10.1584/jpestics.d18-013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Strigolactones (SLs) regulate diverse developmental phenomena. Rice SL biosynthesis and signaling mutants have an increased number of tillers and a reduced plant height relative to wild-type (WT) rice plants. In this study, we tested the effectiveness of gibberellin (GA) on restoring more tillering phenotype and dwarfism observed in both SL biosynthesis and signaling mutants. The application of GA to these mutants rescued the tiller bud outgrowth; however, the sensitivity to GA was different between the WT and the SL biosynthesis mutant.
Collapse
Affiliation(s)
- Shinsaku Ito
- Department of Bioscience, Tokyo University of Agriculture, 1–1–1 Sakuragaoka, Setagaya, Tokyo, 156–8502, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1–1–1 Yayoi, Bunkyo, Tokyo 113–8657, Japan
| | - Daichi Yamagami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1–1–1 Yayoi, Bunkyo, Tokyo 113–8657, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1–1–1 Yayoi, Bunkyo, Tokyo 113–8657, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), Kawaguchi-shi, Saitama 332–0012 Japan
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
190
|
Tan M, Li G, Liu X, Cheng F, Ma J, Zhao C, Zhang D, Han M. Exogenous application of GA 3 inactively regulates axillary bud outgrowth by influencing of branching-inhibitors and bud-regulating hormones in apple (Malus domestica Borkh.). Mol Genet Genomics 2018; 293:1547-1563. [PMID: 30116947 DOI: 10.1007/s00438-018-1481-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 08/12/2018] [Indexed: 11/24/2022]
Abstract
Although gibberellin (GA) has been reported to control branching, little is known about how GA mediates signals regulating the outgrowth of axillary buds (ABs). In the current study, the effect of the exogenous application of 5.0 mM GA3 on ABs outgrowth on 1-year-old 'Nagafu No. 2'/T337/M. robusta Rehd. apple trees was investigated and compared to the bud-activating treatments, 5 mM BA or decapitation. Additionally, the expression of genes related to bud-regulating signals and sucrose levels in ABs was examined. Results indicated that GA3 did not promote ABs' outgrowth, nor down-regulate the expression of branching repressors [MdTCP40, MdTCP33, and MdTCP16 (homologs of BRANCHED1 and BRC2)], which were significantly inhibited by the BA and decapitation treatments. MdSBP12 and MdSBP18, the putative transcriptional activators of these genes, which are expressed at lower levels in BA-treated and decapitated buds, were up-regulated in the GA3 treatment in comparison to the BA treatment. Additionally, GA3 did not up-regulate the expression of CK response- and auxin transport-related genes, which were immediately induced by the BA treatment. In addition, GA3 also up-regulated the expression of several Tre6P biosynthesis genes and reduced sucrose levels in ABs. Sucrose levels, however, were still higher than what was observed in BA-treated buds, indicating that sucrose may not be limiting in GA3-controlled AB outgrowth. Although GA3 promoted cell division, it was not sufficient to induce AB outgrowth. Conclusively, some branching-inhibiting genes and bud-regulating hormones are associated with the inability of GA3 to activate AB outgrowth.
Collapse
Affiliation(s)
- Ming Tan
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Guofang Li
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Xiaojie Liu
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Fang Cheng
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Juanjuan Ma
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Caiping Zhao
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Dong Zhang
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Mingyu Han
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
191
|
Transcriptome Analysis Reveals Multiple Hormones, Wounding and Sugar Signaling Pathways Mediate Adventitious Root Formation in Apple Rootstock. Int J Mol Sci 2018; 19:ijms19082201. [PMID: 30060517 PMCID: PMC6121287 DOI: 10.3390/ijms19082201] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 11/16/2022] Open
Abstract
Adventitious roots (AR) play an important role in the vegetative propagation of apple rootstocks. The potential role of hormone, wounding, and sugar signalling pathways in mediating AR formation has not been adequately explored and the whole co-expression network in AR formation has not been well established in apple. In order to identify the molecular mechanisms underlying AR formation in 'T337' apple rootstocks, transcriptomic changes that occur during four stages of AR formation (0, 3, 9 and 16 days) were analyzed using high-throughput sequencing. A total of 4294 differentially expressed genes were identified. Approximately 446 genes related to hormones, wounding, sugar signaling, root development, and cell cycle induction pathways were subsequently selected based on their potential to be involved in AR formation. RT-qPCR validation of 47 genes with known functions exhibited a strong positive correlation with the RNA-seq data. Interestingly, most of the candidate genes involved in AR formation that were identified by transcriptomic sequencing showed auxin-responsive expression patterns in an exogenous Indole-3-butyric acid (IBA)-treatment assay: Indicating that endogenous and exogenous auxin plays key roles in regulating AR formation via similar signalling pathways to some extent. In general, AR formation in apple rootstocks is a complex biological process which is mainly influenced by the auxin signaling pathway. In addition, multiple hormones-, wounding- and sugar-signaling pathways interact with the auxin signaling pathway and mediate AR formation in apple rootstocks.
Collapse
|
192
|
Ford BA, Foo E, Sharwood R, Karafiatova M, Vrána J, MacMillan C, Nichols DS, Steuernagel B, Uauy C, Doležel J, Chandler PM, Spielmeyer W. Rht18 Semidwarfism in Wheat Is Due to Increased GA 2-oxidaseA9 Expression and Reduced GA Content. PLANT PHYSIOLOGY 2018; 177:168-180. [PMID: 29545269 PMCID: PMC5933146 DOI: 10.1104/pp.18.00023] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/04/2018] [Indexed: 05/04/2023]
Abstract
Semidwarfing genes have improved crop yield by reducing height, improving lodging resistance, and allowing plants to allocate more assimilates to grain growth. In wheat (Triticum aestivum), the Rht18 semidwarfing gene was identified and deployed in durum wheat before it was transferred into bread wheat, where it was shown to have agronomic potential. Rht18, a dominant and gibberellin (GA) responsive mutant, is genetically and functionally distinct from the widely used GA-insensitive semidwarfing genes Rht-B1b and Rht-D1b In this study, the Rht18 gene was identified by mutagenizing the semidwarf durum cultivar Icaro (Rht18) and generating mutants with a range of tall phenotypes. Isolating and sequencing chromosome 6A of these "overgrowth" mutants showed that they contained independent mutations in the coding region of GA2oxA9GA2oxA9 is predicted to encode a GA 2-oxidase that metabolizes GA biosynthetic intermediates into inactive products, effectively reducing the amount of bioactive GA (GA1). Functional analysis of the GA2oxA9 protein demonstrated that GA2oxA9 converts the intermediate GA12 to the inactive metabolite GA110 Furthermore, Rht18 showed higher expression of GA2oxA9 and lower GA content compared with its tall parent. These data indicate that the increased expression of GA2oxA9 in Rht18 results in a reduction of both bioactive GA content and plant height. This study describes a height-reducing mechanism that can generate new genetic diversity for semidwarfism in wheat by combining increased expression with mutations of specific amino acid residues in GA2oxA9.
Collapse
Affiliation(s)
- Brett A Ford
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Eloise Foo
- The School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Robert Sharwood
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Miroslava Karafiatova
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ-78371 Olomouc, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ-78371 Olomouc, Czech Republic
| | | | - David S Nichols
- Central Science Laboratories, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | | | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ-78371 Olomouc, Czech Republic
| | | | | |
Collapse
|
193
|
He R, Ni Y, Li J, Jiao Z, Zhu X, Jiang Y, Li Q, Niu J. Quantitative Changes in the Transcription of Phytohormone-Related Genes: Some Transcription Factors Are Major Causes of the Wheat Mutant dmc Not Tillering. Int J Mol Sci 2018; 19:ijms19051324. [PMID: 29710831 PMCID: PMC5983577 DOI: 10.3390/ijms19051324] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 01/17/2023] Open
Abstract
Tiller number is an important agronomic trait for grain yield of wheat (Triticum aestivum L.). A dwarf-monoculm wheat mutant (dmc) was obtained from cultivar Guomai 301 (wild type, WT). Here, we explored the molecular basis for the restrained tiller development of the mutant dmc. Two bulked samples of the mutant dmc (T1, T2 and T3) and WT (T4, T5 and T6) with three biological replicates were comparatively analyzed at the transcriptional level by bulked RNA sequencing (RNA-Seq). In total, 68.8 Gb data and 463 million reads were generated, 80% of which were mapped to the wheat reference genome of Chinese Spring. A total of 4904 differentially expressed genes (DEGs) were identified between the mutant dmc and WT. DEGs and their related major biological functions were characterized based on GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) categories. These results were confirmed by quantitatively analyzing the expression profiles of twelve selected DEGs via real-time qRT-PCR. The down-regulated gene expressions related to phytohormone syntheses of auxin, zeatin, cytokinin and some transcription factor (TF) families of TALE, and WOX might be the major causes of the mutant dmc, not tillering. Our work provides a foundation for subsequent tiller development research in the future.
Collapse
Affiliation(s)
- Ruishi He
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Yongjing Ni
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu 476000, Henan, China.
| | - Junchang Li
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Zhixin Jiao
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Xinxin Zhu
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Yumei Jiang
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Qiaoyun Li
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Jishan Niu
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| |
Collapse
|
194
|
Gianinetti A, Finocchiaro F, Bagnaresi P, Zechini A, Faccioli P, Cattivelli L, Valè G, Biselli C. Seed Dormancy Involves a Transcriptional Program That Supports Early Plastid Functionality during Imbibition. PLANTS 2018; 7:plants7020035. [PMID: 29671830 PMCID: PMC6026906 DOI: 10.3390/plants7020035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 01/18/2023]
Abstract
Red rice fully dormant seeds do not germinate even under favorable germination conditions. In several species, including rice, seed dormancy can be removed by dry-afterripening (warm storage); thus, dormant and non-dormant seeds can be compared for the same genotype. A weedy (red) rice genotype with strong dormancy was used for mRNA expression profiling, by RNA-Seq, of dormant and non-dormant dehulled caryopses (here addressed as seeds) at two temperatures (30 °C and 10 °C) and two durations of incubation in water (8 h and 8 days). Aim of the study was to highlight the differences in the transcriptome of dormant and non-dormant imbibed seeds. Transcript data suggested important differences between these seeds (at least, as inferred by expression-based metabolism reconstruction): dry-afterripening seems to impose a respiratory impairment onto non-dormant seeds, thus glycolysis is deduced to be preferentially directed to alcoholic fermentation in non-dormant seeds but to alanine production in dormant ones; phosphoenolpyruvate carboxykinase, pyruvate phosphate dikinase and alanine aminotransferase pathways appear to have an important gluconeogenetic role associated with the restoration of plastid functions in the dormant seed following imbibition; correspondingly, co-expression analysis pointed out a commitment to guarantee plastid functionality in dormant seeds. At 8 h of imbibition, as inferred by gene expression, dormant seeds appear to preferentially use carbon and nitrogen resources for biosynthetic processes in the plastid, including starch and proanthocyanidins accumulation. Chromatin modification appears to be a possible mechanism involved in the transition from dormancy to germination. Non-dormant seeds show higher expression of genes related to cell wall modification, suggesting they prepare for acrospire/radicle elongation.
Collapse
Affiliation(s)
- Alberto Gianinetti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Franca Finocchiaro
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Paolo Bagnaresi
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Antonella Zechini
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Primetta Faccioli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Giampiero Valè
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, Italy.
| | - Chiara Biselli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| |
Collapse
|
195
|
Alqudah AM, Youssef HM, Graner A, Schnurbusch T. Natural variation and genetic make-up of leaf blade area in spring barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:873-886. [PMID: 29350248 PMCID: PMC5852197 DOI: 10.1007/s00122-018-3053-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 01/04/2018] [Indexed: 05/02/2023]
Abstract
KEY MESSAGE GWAS analysis for leaf blade area (LA) revealed intriguing genomic regions associated with putatively novel QTL and known plant stature-related phytohormone and sugar-related genes. Despite long-standing studies in the morpho-physiological characters of leaf blade area (LA) in cereal crops, advanced genetic studies to explore its natural variation are lacking. The importance of modifying LA in improving cereal grain yield and the genes controlling leaf traits have been well studied in rice but not in temperate cereals. To better understand the natural genetic variation of LA at four developmental stages, main culm LA was measured from 215 worldwide spring barleys including 92 photoperiod-sensitive accessions [PHOTOPERIOD RESPONSE LOCUS 1 (Ppd-H1)] and 123 accessions with reduced photoperiod sensitivity (ppd-H1) locus under controlled greenhouse conditions (long-day; 16/8 h; ~ 20/~ 16 °C day/night). The LA of Ppd-H1-carrying accessions was always smaller than in ppd-H1-carrying accessions. We found that nine SNPs from the Ppd-H1 gene were present in the collection of which marker 9 (M9; G/T in the CCT-domain) showed the most significant and consistent effect on LA at all studied developmental stages. Genome-wide association scans (GWAS) showed that the accessions carrying the ppd-H1 allele T/M9 (late heading) possessed more genetic variation in LA than the Ppd-H1 group carrying G/M9 (early heading). Several QTL with major effects on LA variation were found close to plant stature-related heading time, phytohormone- and sugar-related genes. The results provide evidence that natural variation of LA is an important source for improving grain yield, adaptation and canopy architecture of temperate cereals.
Collapse
Affiliation(s)
- Ahmad M Alqudah
- HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, OT Gatersleben, 06466, Seeland, Germany.
| | - Helmy M Youssef
- HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, OT Gatersleben, 06466, Seeland, Germany
- Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Andreas Graner
- Research Group Genome Diversity, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, OT Gatersleben, 06466, Seeland, Germany
| | - Thorsten Schnurbusch
- HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, OT Gatersleben, 06466, Seeland, Germany.
| |
Collapse
|
196
|
Zheng C, Kwame Acheampong A, Shi Z, Halaly T, Kamiya Y, Ophir R, Galbraith DW, Or E. Distinct gibberellin functions during and after grapevine bud dormancy release. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1635-1648. [PMID: 29385616 PMCID: PMC5888973 DOI: 10.1093/jxb/ery022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/16/2018] [Indexed: 05/20/2023]
Abstract
The molecular mechanism regulating dormancy release in grapevine buds is as yet unclear. It has been hypothesized that (i) abscisic acid (ABA) represses bud-meristem activity; (ii) perturbation of respiration induces an interplay between ethylene and ABA metabolism, which leads to removal of repression; and (iii) gibberellin (GA)-mediated growth is resumed. The first two hypothesis have been formally supported. The current study examines the third hypothesis regarding the potential involvement of GA in dormancy release. We found that during natural dormancy induction, levels of VvGA3ox, VvGA20ox, and VvGASA2 transcripts and of GA1 were decreased. However, during dormancy release, expression of these genes was enhanced, accompanied by decreased expression of the bud-expressed GA-deactivating VvGA2ox. Despite indications for its positive role during natural dormancy release, GA application had inhibitory effects on bud break. Hydrogen cyanamide up-regulated VvGA2ox and down-regulated VvGA3ox and VvGA20ox expression, reduced GA1 levels, and partially rescued the negative effect of GA. GA had an inhibitory effect only when applied simultaneously with bud-forcing initiation. Given these results, we hypothesize that during initial activation of the dormant bud meristem, the level of GA must be restricted, but after meristem activation an increase in its level serves to enhance primordia regrowth.
Collapse
Affiliation(s)
- Chuanlin Zheng
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Atiako Kwame Acheampong
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Zhaowan Shi
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Tamar Halaly
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Yuji Kamiya
- RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
| | - Ron Ophir
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - David W Galbraith
- School of Plant Sciences and Bio5 Institute, University of Arizona, Tucson, AZ, USA
| | - Etti Or
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
197
|
Abstract
The development and growth of plant organs is regulated by phytohormones, which constitute an important area of plant science. The last decade has seen a rapid increase in the unravelling of the pathways by which phytohormones exert their influence. Phytohormones function as signalling molecules that interact through a complex network to control development traits. They integrate metabolic and developmental events and regulate plant responses to biotic and abiotic stress factors. As such, they influence the yield and quality of crops. Recent studies on barley have emphasised the importance of phytohormones in promoting agronomically important traits such as tillering, plant height, leaf blade area and spike/spikelet development. Understanding the mechanisms of how phytohormones interact may help to modify barley architecture and thereby improve its adaptation and yield. To achieve this goal, extensive functional validation analyses are necessary to better understand the complex dynamics of phytohormone interactions and phytohormone networks that underlie the biological processes. The present review summarises the current knowledge on the crosstalk between phytohormones and their roles in barley development. Furthermore, an overview of how phytohormone modulation may help to improve barley plant architecture is also provided.
Collapse
|
198
|
Li Y, Xiao J, Chen L, Huang X, Cheng Z, Han B, Zhang Q, Wu C. Rice Functional Genomics Research: Past Decade and Future. MOLECULAR PLANT 2018; 11:359-380. [PMID: 29409893 DOI: 10.1016/j.molp.2018.01.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 05/22/2023]
Abstract
Rice (Oryza sativa) is a major staple food crop for more than 3.5 billion people worldwide. Understanding the regulatory mechanisms of complex agronomic traits in rice is critical for global food security. Rice is also a model plant for genomics research of monocotyledons. Thanks to the rapid development of functional genomic technologies, over 2000 genes controlling important agronomic traits have been cloned, and their molecular biological mechanisms have also been partially characterized. Here, we briefly review the advances in rice functional genomics research during the past 10 years, including a summary of functional genomics platforms, genes and molecular regulatory networks that regulate important agronomic traits, and newly developed tools for gene identification. These achievements made in functional genomics research will greatly facilitate the development of green super rice. We also discuss future challenges and prospects of rice functional genomics research.
Collapse
Affiliation(s)
- Yan Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lingling Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xuehui Huang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhukuan Cheng
- National Center for Plant Gene Research, State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Han
- National Center for Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
199
|
Lei C, Fan S, Li K, Meng Y, Mao J, Han M, Zhao C, Bao L, Zhang D. iTRAQ-Based Proteomic Analysis Reveals Potential Regulation Networks of IBA-Induced Adventitious Root Formation in Apple. Int J Mol Sci 2018; 19:ijms19030667. [PMID: 29495482 PMCID: PMC5877528 DOI: 10.3390/ijms19030667] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 01/19/2023] Open
Abstract
Adventitious root (AR) formation, which is controlled by endogenous and environmental factors, is indispensable for vegetative asexual propagation. However, comprehensive proteomic data on AR formation are still lacking. The aim of this work was to study indole-3-butyric acid (IBA)-induced AR formation in the dwarf apple rootstock 'T337'. In this study, the effect of IBA on AR formation was analysed. Subsequent to treatment with IBA, both the rooting rate and root length of 'T337' increased significantly. An assessment of hormone levels in basal stem cuttings suggested that auxin, abscisic acid, and brassinolide were higher in basal stem cuttings that received the exogenous IBA application; while zeatin riboside, gibberellins, and jasmonic acid were lower than non-treated basal stem cuttings. To explore the underlying molecular mechanism, an isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic technique was employed to identify the expression profiles of proteins at a key period of adventitious root induction (three days after IBA treatment). In total, 3355 differentially expressed proteins (DEPs) were identified. Many DEPs were closely related to carbohydrate metabolism and energy production, protein homeostasis, reactive oxygen and nitric oxide signaling, and cell wall remodeling biological processes; as well as the phytohormone signaling, which was the most critical process in response to IBA treatment. Further, RT-qPCR analysis was used to evaluate the expression level of nine genes that are involved in phytohormone signaling and their transcriptional levels were mostly in accordance with the protein patterns. Finally, a putative work model was proposed. Our study establishes a foundation for further research and sheds light on IBA-mediated AR formation in apple as well as other fruit rootstock cuttings.
Collapse
Affiliation(s)
- Chao Lei
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Sheng Fan
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Ke Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Yuan Meng
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Jiangping Mao
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Caiping Zhao
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Lu Bao
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
200
|
Liu C, Zheng S, Gui J, Fu C, Yu H, Song D, Shen J, Qin P, Liu X, Han B, Yang Y, Li L. Shortened Basal Internodes Encodes a Gibberellin 2-Oxidase and Contributes to Lodging Resistance in Rice. MOLECULAR PLANT 2018; 11:288-299. [PMID: 29253619 DOI: 10.1016/j.molp.2017.12.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 05/05/2023]
Abstract
Breeding semi-dwarf varieties to improve lodging resistance has been proven to be enormously successful in increasing grain yield since the advent of the "green revolution." However, the breeding of the majority of semi-dwarf rice varieties in Asia has been dependent mainly on genetic introduction of the mutant alleles of SD1, which encodes a gibberellin (GA) 20-oxidase, OsGA20ox2, for catalyzing GA biosynthesis. Here, we report a new rice lodging-resistance gene, Shortened Basal Internodes (SBI), which encodes a gibberellin 2-oxidase and specifically controls the elongation of culm basal internodes through deactivating GA activity. SBI is predominantly expressed in culm basal internodes. Genetic analyses indicate that SBI is a semi-dominant gene affecting rice height and lodging resistance. SBI allelic variants display different activities and are associated with the height of rice varieties. Breeding with higher activity of the SBI allele generates new rice varieties with improved lodging resistance and increased yield. The discovery of the SBI provides a desirable gene resource for producing semi-dwarf rice phenotypes and offers an effective strategy for breeding rice varieties with enhanced lodging resistance and high yield.
Collapse
Affiliation(s)
- Chang Liu
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Zheng
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jinshan Gui
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chenjian Fu
- Yuan Longping Agriculture High-Tech Co., Ltd., Hunan 410001, China
| | - Hasi Yu
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dongliang Song
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junhui Shen
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peng Qin
- Yuan Longping Agriculture High-Tech Co., Ltd., Hunan 410001, China
| | | | - Bin Han
- National Center of Plant Gene Research and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China
| | - Yuanzhu Yang
- Yuan Longping Agriculture High-Tech Co., Ltd., Hunan 410001, China; Hunan Ava Seed Research Institute, Hunan 410119, China; Hunan Engineering Laboratory for Disease and Insect-Resistant Rice Breeding, Hunan 410119, China.
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|