151
|
Men X, Shi J, Liang W, Zhang Q, Lian G, Quan S, Zhu L, Luo Z, Chen M, Zhang D. Glycerol-3-Phosphate Acyltransferase 3 (OsGPAT3) is required for anther development and male fertility in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:513-526. [PMID: 28082511 PMCID: PMC6055571 DOI: 10.1093/jxb/erw445] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/09/2016] [Indexed: 05/20/2023]
Abstract
Lipid molecules are key structural components of plant male reproductive organs, such as the anther and pollen. Although advances have been made in the understanding of acyl lipids in plant reproduction, the metabolic pathways of other lipid compounds, particularly glycerolipids, are not fully understood. Here we report that an endoplasmic reticulum-localized enzyme, Glycerol-3-Phosphate Acyltransferase 3 (OsGPAT3), plays an indispensable role in anther development and pollen formation in rice. OsGPAT3 is preferentially expressed in the tapetum and microspores of the anther. Compared with wild-type plants, the osgpat3 mutant displays smaller, pale yellow anthers with defective anther cuticle, degenerated pollen with defective exine, and abnormal tapetum development and degeneration. Anthers of the osgpat3 mutant have dramatic reductions of all aliphatic lipid contents. The defective cuticle and pollen phenotype coincide well with the down-regulation of sets of genes involved in lipid metabolism and regulation of anther development. Taking these findings together, this work reveals the indispensable role of a monocot-specific glycerol-3-phosphate acyltransferase in male reproduction in rice.
Collapse
Affiliation(s)
- Xiao Men
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxin Shi
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqi Liang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qianfei Zhang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gaibin Lian
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Quan
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Zhu
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijing Luo
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingjiao Chen
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
- Correspondence:
| |
Collapse
|
152
|
Nan GL, Zhai J, Arikit S, Morrow D, Fernandes J, Mai L, Nguyen N, Meyers BC, Walbot V. MS23, a master basic helix-loop-helix factor, regulates the specification and development of the tapetum in maize. Development 2016; 144:163-172. [PMID: 27913638 DOI: 10.1242/dev.140673] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/21/2016] [Indexed: 11/20/2022]
Abstract
Successful male gametogenesis involves orchestration of sequential gene regulation for somatic differentiation in pre-meiotic anthers. We report here the cloning of Male Sterile23 (Ms23), encoding an anther-specific predicted basic helix-loop-helix (bHLH) transcription factor required for tapetal differentiation; transcripts localize initially to the precursor secondary parietal cells then predominantly to daughter tapetal cells. In knockout ms23-ref mutant anthers, five instead of the normal four wall layers are observed. Microarray transcript profiling demonstrates a more severe developmental disruption in ms23-ref than in ms32 anthers, which possess a different bHLH defect. RNA-seq and proteomics data together with yeast two-hybrid assays suggest that MS23 along with MS32, bHLH122 and bHLH51 act sequentially as either homo- or heterodimers to choreograph tapetal development. Among them, MS23 is the earliest-acting factor, upstream of bHLH51 and bHLH122, controlling tapetal specification and maturation. By contrast, MS32 is constitutive and independently regulated and is required later than MS23 in tapetal differentiation.
Collapse
Affiliation(s)
- Guo-Ling Nan
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jixian Zhai
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA.,Department of Biology, South University of Science and Technology, Shenzhen 518055, China
| | - Siwaret Arikit
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | - Darren Morrow
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - John Fernandes
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Lan Mai
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Nhi Nguyen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Blake C Meyers
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
153
|
Xiong SX, Lu JY, Lou Y, Teng XD, Gu JN, Zhang C, Shi QS, Yang ZN, Zhu J. The transcription factors MS188 and AMS form a complex to activate the expression of CYP703A2 for sporopollenin biosynthesis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:936-946. [PMID: 27460657 DOI: 10.1111/tpj.13284] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/16/2016] [Accepted: 07/20/2016] [Indexed: 05/22/2023]
Abstract
The sexine layer of pollen grain is mainly composed of sporopollenins. The sporophytic secretory tapetum is required for the biosynthesis of sporopollenin. Although several enzymes involved in sporopollenin biosynthesis have been reported, the regulatory mechanism of these enzymes in tapetal layer remains elusive. ABORTED MICROSPORES (AMS) and MALE STERILE 188/MYB103/MYB80 (MS188/MYB103/MYB80) are two tapetal cell-specific transcription factors required for pollen wall formation. AMS functions upstream of MS188. Here we report that AMS and MS188 target the CYP703A2 gene, which is involved in sporopollenin biosynthesis. We found that AMS and MS188 were localized in tapetum while CYP703A2 was localized in both tapetum and locule. Chromatin immunoprecipitation (ChIP) showed that MS188 directly bound to the promoter of CYP703A2 and luciferase-inducible assay showed that MS188 activated the expression of CYP703A2. Yeast two-hybrid and electrophoretic mobility shift assays (EMSAs) further demonstrated that MS188 complexed with AMS. The expression of CYP703A2 could be partially restored by the elevated levels of MS188 in the ams mutant. Therefore, our data reveal that MS188 coordinates with AMS to activate CYP703A2 in sporopollenin biosynthesis of plant tapetum.
Collapse
Affiliation(s)
- Shuang-Xi Xiong
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Jie-Yang Lu
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Yue Lou
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Xiao-Dong Teng
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Jing-Nan Gu
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Cheng Zhang
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Qiang-Sheng Shi
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Zhong-Nan Yang
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Jun Zhu
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| |
Collapse
|
154
|
Regulation of sporopollenin synthesis for pollen wall formation in plant. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1335-1337. [PMID: 27864710 DOI: 10.1007/s11427-016-0338-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 10/29/2016] [Indexed: 10/20/2022]
|
155
|
Liu Z, Tavares R, Forsythe ES, André F, Lugan R, Jonasson G, Boutet-Mercey S, Tohge T, Beilstein MA, Werck-Reichhart D, Renault H. Evolutionary interplay between sister cytochrome P450 genes shapes plasticity in plant metabolism. Nat Commun 2016; 7:13026. [PMID: 27713409 PMCID: PMC5059761 DOI: 10.1038/ncomms13026] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/26/2016] [Indexed: 12/19/2022] Open
Abstract
Expansion of the cytochrome P450 gene family is often proposed to have a critical role in the evolution of metabolic complexity, in particular in microorganisms, insects and plants. However, the molecular mechanisms underlying the evolution of this complexity are poorly understood. Here we describe the evolutionary history of a plant P450 retrogene, which emerged and underwent fixation in the common ancestor of Brassicales, before undergoing tandem duplication in the ancestor of Brassicaceae. Duplication leads first to gain of dual functions in one of the copies. Both sister genes are retained through subsequent speciation but eventually return to a single copy in two of three diverging lineages. In the lineage in which both copies are maintained, the ancestral functions are split between paralogs and a novel function arises in the copy under relaxed selection. Our work illustrates how retrotransposition and gene duplication can favour the emergence of novel metabolic functions.
Collapse
Affiliation(s)
- Zhenhua Liu
- Institute of Plant Molecular Biology, CNRS, University of Strasbourg, 12 rue du Général Zimmer, Strasbourg 67084 France
| | - Raquel Tavares
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, 16 rue Raphael Dubois, 69622 Villeurbanne Cedex, France
| | - Evan S Forsythe
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - François André
- iBiTec-S/SB2SM, UMR 9198 CNRS, University Paris Sud, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Raphaël Lugan
- Institute of Plant Molecular Biology, CNRS, University of Strasbourg, 12 rue du Général Zimmer, Strasbourg 67084 France
| | - Gabriella Jonasson
- iBiTec-S/SB2SM, UMR 9198 CNRS, University Paris Sud, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Stéphanie Boutet-Mercey
- Institut Jean-Pierre Bourgin, UMR 1318 INRA-AgroParisTech, Saclay Plant Sciences RD10, 78026 Versailles, France
| | - Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Department of Molecular Physiology, 14476 Potsdam-Golm, Germany
| | - Mark A Beilstein
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Danièle Werck-Reichhart
- Institute of Plant Molecular Biology, CNRS, University of Strasbourg, 12 rue du Général Zimmer, Strasbourg 67084 France.,University of Strasbourg Institute for Advanced Study, 67000 Strasbourg, France.,Freiburg Institute for Advanced Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Hugues Renault
- Institute of Plant Molecular Biology, CNRS, University of Strasbourg, 12 rue du Général Zimmer, Strasbourg 67084 France.,University of Strasbourg Institute for Advanced Study, 67000 Strasbourg, France.,Freiburg Institute for Advanced Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
156
|
Deng Y, Srivastava R, Quilichini TD, Dong H, Bao Y, Horner HT, Howell SH. IRE1, a component of the unfolded protein response signaling pathway, protects pollen development in Arabidopsis from heat stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:193-204. [PMID: 27304577 DOI: 10.1111/tpj.13239] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 05/18/2023]
Abstract
The unfolded protein response (UPR) is activated by various stresses during vegetative development in Arabidopsis, but is constitutively active in anthers of unstressed plants. To understand the role of the UPR during reproductive development, we analyzed a double mutant, ire1a ire1b. The double mutant knocks out the RNA-splicing arm of the UPR signaling pathway. It is fertile at room temperature but male sterile at modestly elevated temperature (ET). The conditional male sterility in the mutant is a sporophytic trait, and when the double mutant was grown at ET, defects appeared in the structure of the tapetum. As a result, the tapetum in the double mutant failed to properly deposit the pollen coat at ET, which made pollen grains clump and prevented their normal dispersal. IRE1 is a dual protein kinase/ribonuclease involved in the splicing of bZIP60 mRNA, and through complementation analysis of various mutant forms of IRE1b it was demonstrated that the ribonuclease activity of IRE1 was required for protecting male fertility from ET. It was also found that overexpression of SEC31A rescued the conditional male sterility in the double mutant. SEC31A is involved in trafficking from the endoplasmic reticulum to Golgi and a major target of the IRE1-mediated UPR signaling in stressed seedlings. Thus, IRE1, a major component of the UPR, plays an important role in protecting pollen development from ET.
Collapse
Affiliation(s)
- Yan Deng
- Department of Computer Science, Iowa State University, Ames, IA, 50011, USA
| | - Renu Srivastava
- Plant Sciences Institute, Iowa State University, Ames, IA, 50011, USA
| | - Teagen D Quilichini
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Haili Dong
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Yan Bao
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Harry T Horner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
- Microscopy and NanoImaging Facility, Iowa State University, Ames, IA, 50011, USA
| | - Stephen H Howell
- Plant Sciences Institute, Iowa State University, Ames, IA, 50011, USA
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
157
|
Miao L, Zhang L, Raboanatahiry N, Lu G, Zhang X, Xiang J, Gan J, Fu C, Li M. Transcriptome Analysis of Stem and Globally Comparison with Other Tissues in Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:1403. [PMID: 27708656 PMCID: PMC5030298 DOI: 10.3389/fpls.2016.01403] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/02/2016] [Indexed: 05/25/2023]
Abstract
Brassica napus is one of the most important oilseed crops in the world. However, there is currently no enough stem transcriptome information and comparative transcriptome analysis of different tissues, which impedes further functional genomics research on B. napus. In this study, the stem transcriptome of B. napus was characterized by RNA-seq technology. Approximately 13.4 Gb high-quality clean reads with an average length of 100 bp were generated and used for comparative transcriptome analysis with the existing transcriptome sequencing data of roots, leaves, flower buds, and immature embryos of B. napus. All the transcripts were annotated against GO and KEGG databases. The common genes in five tissues, differentially expressed genes (DEGs) of the common genes between stems and other tissues, and tissue-specific genes were detected, and the main biochemical activities and pathways implying the common genes, DEGs and tissue-specific genes were investigated. Accordingly, the common transcription factors (TFs) in the five tissues and tissue-specific TFs were identified, and a TFs-based regulation network between TFs and the target genes involved in 'Phenylpropanoid biosynthesis' pathway were constructed to show several important TFs and key nodes in the regulation process. Collectively, this study not only provided an available stem transcriptome resource in B. napus, but also revealed valuable comparative transcriptome information of five tissues of B. napus for future investigation on specific processes, functions and pathways.
Collapse
Affiliation(s)
- Liyun Miao
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Libin Zhang
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Nadia Raboanatahiry
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Guangyuan Lu
- Oil Crops Research Institute, Chinese Academy of Agricultural SciencesWuhan, China
| | - Xuekun Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural SciencesWuhan, China
| | - Jun Xiang
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Jianping Gan
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Chunhua Fu
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Maoteng Li
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| |
Collapse
|
158
|
Du K, Liu Q, Wu X, Jiang J, Wu J, Fang Y, Li A, Wang Y. Morphological Structure and Transcriptome Comparison of the Cytoplasmic Male Sterility Line in Brassica napus (SaNa-1A) Derived from Somatic Hybridization and Its Maintainer Line SaNa-1B. FRONTIERS IN PLANT SCIENCE 2016; 7:1313. [PMID: 27656189 PMCID: PMC5011408 DOI: 10.3389/fpls.2016.01313] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/16/2016] [Indexed: 05/21/2023]
Abstract
SaNa-1A is a novel cytoplasmic male sterility (CMS) line in Brassica napus derived from progenies of somatic hybrids between B.napus and Sinapis alba, and SaNa-1B is the corresponding maintainer line. In this study, phenotypic differences of floral organs between CMS and the maintainer lines were observed. By microscope observation in different anther developmental stages of two lines, we found the anther development in SaNa-1A was abnormal since the tetrad stage, and microspore development was ceased during the uninucleate stage. Transcriptomic sequencing for floral buds of sterile and fertile plants were conducted to elucidate gene expression and regulation caused by the alien chromosome and cytoplasm from S. alba. Clean tags obtained were assembled into 195,568 unigenes, and 7811 unigenes distributed in the metabolic and protein synthesis pathways were identified with significant expression differences between two libraries. We also observed that genes participating in carbon metabolism, tricarboxylic acid cycle, oxidative phosphorylation, oxidation-reduction system, pentatricopeptide repeat, and anther development were downregulated in the sterile line. Some of them are candidates for researches on the sterility mechanism in the CMS material, fertility restoration, and improvement of economic traits in the maintainer line. Further research on the tags with expressional specificity in the fertile line would be helpful to explore desirable agronomic traits from wild species of rapeseed.
Collapse
Affiliation(s)
- Kun Du
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou UniversityYangzhou, China
| | - Qier Liu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou UniversityYangzhou, China
| | - Xinyue Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou UniversityYangzhou, China
| | - Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou UniversityYangzhou, China
| | - Jian Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou UniversityYangzhou, China
| | - Yujie Fang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou UniversityYangzhou, China
| | - Aimin Li
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Jiangsu Academy of Agricultural SciencesYangzhou, China
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou UniversityYangzhou, China
| |
Collapse
|
159
|
Song L, Zhou Z, Tang S, Zhang Z, Xia S, Qin M, Li B, Wen J, Yi B, Shen J, Ma C, Fu T, Tu J. Ectopic Expression of BnaC.CP20.1 Results in Premature Tapetal Programmed Cell Death in Arabidopsis. PLANT & CELL PHYSIOLOGY 2016; 57:1972-84. [PMID: 27388342 DOI: 10.1093/pcp/pcw119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/23/2016] [Indexed: 05/23/2023]
Abstract
Tapetal programmed cell death (PCD) is essential in pollen grain development, and cysteine proteases are ubiquitous enzymes participating in plant PCD. Although the major papain-like cysteine proteases (PLCPs) have been investigated, the exact functions of many PLCPs are still poorly understood in PCD. Here, we identified a PLCP gene, BnaC.CP20.1, which was closely related to XP_013596648.1 from Brassica oleracea. Quantitative real-time PCR analysis revealed that BnaC.CP20.1 expression was down-regulated in male-sterile lines in oilseed rape, suggesting a connection between this gene and male sterility. BnaC.CP20.1 is especially active in the tapetum and microspores in Brassica napus from the uninucleate stage until formation of mature pollen grains during anther development. On expression of BnaC.CP20.1 prior to the tetrad stage, BnA9::BnaC.CP20.1 transgenic lines in Arabidopsis thaliana showed a male-sterile phenotype with shortened siliques containing fewer or no seeds by self-crossing. Scanning electron microscopy indicated that the reticulate exine was defective in aborted microspores. Callose degradation was delayed and microspores were not released from the tetrad in a timely fashion. Additionally, the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay indicated that BnaC.CP20.1 ectopic expression led to premature tapetal PCD. Transmission electron microscopy analyses further demonstrated that the pollen abortion was due to the absence of tectum connections to the bacula in the transgenic anthers. These findings suggest that timely expression of BnaC.CP20.1 is necessary for tapetal degeneration and pollen wall formation.
Collapse
Affiliation(s)
- Liping Song
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengfu Zhou
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Shan Tang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiqiang Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengqian Xia
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Maomao Qin
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Bao Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
160
|
Yim S, Khare D, Kang J, Hwang JU, Liang W, Martinoia E, Zhang D, Kang B, Lee Y. Postmeiotic development of pollen surface layers requires two Arabidopsis ABCG-type transporters. PLANT CELL REPORTS 2016; 35:1863-73. [PMID: 27271688 DOI: 10.1007/s00299-016-2001-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/23/2016] [Indexed: 05/02/2023]
Abstract
Two Arabidopsis ABC transporters, ABCG1 and ABCG16, are expressed in the tapetal layer, specifically after postmeiotic microspore release, and play important roles in pollen surface development. The male gametophytic cells of terrestrial plants, the pollen grains, travel far before fertilization, and thus require strong protective layers, which take the form of a pollen coat and a pollen wall. The protective surface structures are generated by the tapetum, the tissue surrounding the developing gametophytes. Many ABC transporters, including Arabidopsis thaliana ABCG1 and ABCG16, have been shown to play essential roles in the development of such protective layers. However, the details of the mechanism of their function remain to be clarified. In this study, we show that ABCG1 and ABCG16 are localized at the plasma membrane of tapetal cells, specifically after postmeiotic microspore release, and play critical roles in the postmeiotic stages of male gametophyte development. Consistent with this stage-specific expression, the abcg1 abcg16 double knockout mutant exhibited defects in pollen development after postmeiotic microspore release; their microspores lacked intact nexine and intine layers, exhibited defects in pollen mitosis I, displayed ectopic deposits of arabinogalactan proteins, failed to complete cytokinesis, and lacked sperm cells. Interestingly, the double mutant exhibited abnormalities in the internal structures of tapetal cells, too; the storage organelles of tapetal cells, tapetosomes and elaioplasts, were morphologically altered. Thus, this work reveals that the lack of ABCG1 and ABCG16 at the tapetal cell membrane causes a broad range of defects in pollen, as well as in tapetal cells themselves. Furthermore, these results suggest that normal pollen surface development is necessary for normal development of the pollen cytoplasm.
Collapse
Affiliation(s)
- Sojeong Yim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Deepa Khare
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Joohyun Kang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Jae-Ung Hwang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Center for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Enrico Martinoia
- Department of Plant and Microbial Biology, University Zurich, 8008, Zurich, Switzerland
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Center for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Byungho Kang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Youngsook Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.
- Division of Integrative Biosciences and Biotechnology, POSTECH, Pohang, 37673, Korea.
| |
Collapse
|
161
|
Luo Z, Hu J, Zhao Z, Zhang D. Transcriptomic analysis of heteromorphic stamens in Cassia biscapsularis L. Sci Rep 2016; 6:31600. [PMID: 27527392 PMCID: PMC4985808 DOI: 10.1038/srep31600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 07/25/2016] [Indexed: 11/17/2022] Open
Abstract
Hermaphroditic flowers have evolved primarily under the selection on male function. Evolutionary modification often leads to stamen differentiation within flowers, or “heteranthery”, a phenomenon intrigued scientists since the 18th century until recently. However, the genetic basis and molecular regulation mechanism has barely been touched. Here we conducted comparative transcriptome profiling in Cassia biscapsularis L., a heterantherous species with representative patterns of stamen differentiation. Numerous differentially expressed genes (DEGs) were detected between the staminodes (the degenerated stamens) and fertile stamens, while much fewer genes differentially expressed among the three sets of fertile stamens. GO term enrichment and KEGG pathway analysis characterized functional properties of DEGs in different stamen types. Transcripts showing close correlation between expression pattern and stamen types were identified. Transcription factors from the bHLH family were suggested to have taken crucial part in the formation of staminodes. This first global transcriptomic analysis focusing on stamen differentiation opens the door toward a more comprehensive understanding on the molecular regulation of floral organ evolution. Especially, the generated unigene resource would be valuable for developing male sterile lines in agronomy.
Collapse
Affiliation(s)
- Zhonglai Luo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jin Hu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China.,Shenzhen Park Service, Shenzhen 51800, China
| | - Zhongtao Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
162
|
Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:95-105. [PMID: 27487457 DOI: 10.1016/j.bbagrm.2016.07.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 11/23/2022]
Abstract
Reproductive development in plants is controlled by complex and intricate gene-regulatory networks of transcription factors. These networks integrate the information from endogenous, hormonal and environmental regulatory pathways. Many of the key players have been identified in Arabidopsis and other flowering plant species, and their interactions and molecular modes of action are being elucidated. An emerging theme is that there is extensive crosstalk between different pathways, which can be accomplished at the molecular level by modulation of transcription factor activity or of their downstream targets. In this review, we aim to summarize current knowledge on transcription factors and epigenetic regulators that control basic developmental programs during inflorescence and flower morphogenesis in the model plant Arabidopsis thaliana. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
|
163
|
Cui J, You C, Zhu E, Huang Q, Ma H, Chang F. Feedback Regulation of DYT1 by Interactions with Downstream bHLH Factors Promotes DYT1 Nuclear Localization and Anther Development. THE PLANT CELL 2016; 28:1078-93. [PMID: 27113773 PMCID: PMC4904671 DOI: 10.1105/tpc.15.00986] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/23/2016] [Indexed: 05/03/2023]
Abstract
Transcriptional regulation is one of the most important mechanisms controlling development and cellular functions in plants and animals. The Arabidopsis thaliana bHLH transcription factor (TF) DYSFUNCTIONL TAPETUM1 (DYT1) is required for normal male fertility and anther development and activates the expression of the bHLH010/bHLH089/bHLH091 genes. Here, we showed that DYT1 is localized to both the cytoplasm and nucleus at anther stage 5 but specifically to the nucleus at anther stage 6 and onward. The bHLH010/bHLH089/bHLH091 proteins have strong nuclear localization signals, interact with DYT1, and facilitate the nuclear localization of DYT1. We further found that the conserved C-terminal BIF domain of DYT1 is required for its dimerization, nuclear localization, transcriptional activation activity, and function in anther development. Interestingly, when the BIF domain of DYT1 was replaced with that of bHLH010, the DYT1(N)-bHLH010(BIF) chimeric protein shows nuclear-preferential localization at anther stage 5 but could not fully rescue the dyt1-3 phenotype, suggesting that the normal spatio-temporal subcellular localization of DYT1 is important for DYT1 function and/or that the BIF domains from different bHLH members might be functionally distinct. Our results support an important positive feedback regulatory mechanism whereby downstream TFs increase the function of an upstream TF by enhancing its nucleus localization through the BIF domain.
Collapse
Affiliation(s)
- Jie Cui
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chenjiang You
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Engao Zhu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China Center for Evolutionary Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Fang Chang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
164
|
Walbot V, Egger RL. Pre-Meiotic Anther Development: Cell Fate Specification and Differentiation. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:365-95. [PMID: 26735065 DOI: 10.1146/annurev-arplant-043015-111804] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Research into anther ontogeny has been an active and developing field, transitioning from a strictly lineage-based view of cellular differentiation events to a more complex understanding of cell fate specification. Here we describe the modern interpretation of pre-meiotic anther development, from the earliest cell specifications within the anther lobes through SPL/NZZ-, MSP1-, and MEL1-dependent pathways as well as the initial setup of the abaxial and adaxial axes and outgrowth of the anther lobes. We then continue with a look at the known information regarding further differentiation of the somatic layers of the anther (the epidermis, endothecium, middle layer, and tapetum), with an emphasis on male-sterile mutants identified as defective in somatic cell specification. We also describe the differences in developmental stages among species and use this information to discuss molecular studies that have analyzed transcriptome, proteome, and small-RNA information in the anther.
Collapse
Affiliation(s)
- Virginia Walbot
- Department of Biology, Stanford University, Stanford, California 94305-5020; ,
| | - Rachel L Egger
- Department of Biology, Stanford University, Stanford, California 94305-5020; ,
| |
Collapse
|
165
|
Higo A, Niwa M, Yamato KT, Yamada L, Sawada H, Sakamoto T, Kurata T, Shirakawa M, Endo M, Shigenobu S, Yamaguchi K, Ishizaki K, Nishihama R, Kohchi T, Araki T. Transcriptional Framework of Male Gametogenesis in the Liverwort Marchantia polymorpha L. PLANT & CELL PHYSIOLOGY 2016; 57:325-38. [PMID: 26858289 DOI: 10.1093/pcp/pcw005] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/31/2015] [Indexed: 05/19/2023]
Abstract
In land plants, there are two types of male gametes: one is a non-motile sperm cell which is delivered to the egg cell by a pollen tube, and the other is a motile sperm cell with flagella. The molecular mechanism underlying the sexual reproduction with the egg and pollen-delivered sperm cell is well understood from studies using model plants such as Arabidopsis and rice. On the other hand, the sexual reproduction with motile sperm has remained poorly characterized, due to the lack of suitable models. Marchantia polymorpha L. is a model basal land plant with sexual reproduction involving an egg cell and bi-flagellated motile sperm. To understand the differentiation process of plant motile sperm, we analyzed the gene expression profile of developing antheridia of M. polymorpha. We performed RNA-sequencing experiments and compared transcript profiles of the male sexual organ (antheridiophore and antheridium contained therein), female sexual organ (archegoniophore) and a vegetative organ (thallus). Transcriptome analysis showed that the antheridium expresses nearly half of the protein-coding genes predicted in the genome, but it also has unique features. The antheridium transcriptome shares some common features with male gamete transcriptomes of angiosperms and animals, and homologs of genes involved in male gamete formation and function in angiosperms and animals were identified. In addition, we showed that some of them had distinct expression patterns in the spermatogenous tissue of developing antheridia. This study provides a transcriptional framework on which to study the molecular mechanism of plant motile sperm development in M. polymorpha as a model.
Collapse
Affiliation(s)
- Asuka Higo
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501 Japan
| | - Masaki Niwa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501 Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kinki University, Kinokawa, 649-6493 Japan
| | - Lixy Yamada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, 517-0004 Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, 517-0004 Japan
| | - Tomoaki Sakamoto
- Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan Present address: Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555 Japan
| | - Tetsuya Kurata
- Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan Present address: Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Makoto Shirakawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501 Japan Present address: Department of Botany, Faculty of Science, University of British Columbia, Vancouver, Canada V6T 1Z4
| | - Motomu Endo
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501 Japan
| | - Shuji Shigenobu
- National Institute for Basic Biology, Okazaki, 444-8585 Japan
| | | | | | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501 Japan
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501 Japan
| |
Collapse
|
166
|
Abstract
Pollen plays important roles in the life cycle of angiosperms plants. It acts as not only a biological protector of male sperms but also a communicator between the male and the female reproductive organs, facilitating pollination and fertilization. Pollen is produced within the anther, and covered by the specialized outer envelope, pollen wall. Although the morphology of pollen varies among different plant species, the pollen wall is mainly comprised of three layers: the pollen coat, the outer exine layer, and the inner intine layer. Except the intine layer, the other two layers are basically of lipidic nature. Particularly, the outer pollen wall layer, the exine, is a highly resistant biopolymer of phenylpropanoid and lipidic monomers covalently coupled by ether and ester linkages. The precise molecular mechanisms underlying pollen coat formation and exine patterning remain largely elusive. Herein, we summarize the current genetic, phenotypic and biochemical studies regarding to the pollen exine development and underlying molecular regulatory mechanisms mainly obtained from monocot rice (Oryza sativa) and dicot Arabidopsis thaliana, aiming to extend our understandings of plant male reproductive biology. Genes, enzymes/proteins and regulatory factors that appear to play conserved and diversified roles in lipid biosynthesis, transportation and modification during pollen exine formation, were highlighted.
Collapse
Affiliation(s)
- Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China.
| | - Jianxin Shi
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Xijia Yang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| |
Collapse
|
167
|
Zhao G, Shi J, Liang W, Zhang D. ATP binding cassette G transporters and plant male reproduction. PLANT SIGNALING & BEHAVIOR 2016; 11:e1136764. [PMID: 26906115 PMCID: PMC4883977 DOI: 10.1080/15592324.2015.1136764] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/22/2015] [Indexed: 05/18/2023]
Abstract
The function of ATP Binding Cassette G (ABCG) transporters in the regulation of plant vegetative organs development has been well characterized in various plant species. In contrast, their function in reproductive development particularly male reproductive development received considerably less attention till some ABCG transporters was reported to be associated with anther and pollen wall development in Arabidopsis thaliana and rice (Oryza sativa) during the past decade. This mini-review summarizes current knowledge of ABCG transporters regarding to their roles in male reproduction and underlying genetic and biochemical mechanisms, which makes it evident that ABCG transporters represent one of those conserved and divergent components closely related to male reproduction in plants. This mini-review also discusses the current challenges and future perspectives in this particular field.
Collapse
Affiliation(s)
- Guochao Zhao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Center for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Center for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Center for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Center for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, South Australia, Australia
- Correspondence to: Guochao Zhao,
| |
Collapse
|
168
|
Qu C, Fu F, Liu M, Zhao H, Liu C, Li J, Tang Z, Xu X, Qiu X, Wang R, Lu K. Comparative Transcriptome Analysis of Recessive Male Sterility (RGMS) in Sterile and Fertile Brassica napus Lines. PLoS One 2015; 10:e0144118. [PMID: 26656530 PMCID: PMC4675519 DOI: 10.1371/journal.pone.0144118] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/15/2015] [Indexed: 11/24/2022] Open
Abstract
The recessive genetic male sterility (RGMS) system plays a key role in the production of hybrid varieties in self-pollinating B. napus plants, and prevents negative cytoplasmic effects. However, the complete molecular mechanism of the male sterility during male-gametogenesis in RGMS remains to be determined. To identify transcriptomic changes that occur during the transition to male sterility in RGMS, we examined the male sterile line WSLA and male fertile line WSLB, which are near-isogenic lines (NILs) differing only in the fertility trait. We evaluated the phenotypic features and sterility stage using anatomical analysis. Comparative RNA sequencing analysis revealed that 3,199 genes were differentially expressed between WSLA and WSLB. Many of these genes are mainly involved in biological processes related to flowering, including pollen tube development and growth, pollen wall assembly and modification, and pollen exine formation and pollination. The transcript profiles of 93 genes associated with pollen wall and anther development were determined by quantitative RT-PCR in different flower parts, and classified into the following three major clades: 1) up-regulated in WSLA plants; 2) down-regulated in WSLA plants; and 3) down-regulated in buds, but have a higher expression in stigmas of WSLA than in WSLB. A subset of genes associated with sporopollenin accumulation were all up-regulated in WSLA. An excess of sporopollenin results in defective pollen wall formation, which leads to male sterility in WSLA. Some of the genes identified in this study are candidates for future research, as they could provide important insight into the molecular mechanisms underlying RGMS in WSLA.
Collapse
Affiliation(s)
- Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2, Beibei, Chongqing 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, China.,Food and Bioproduct science, University of Saskatchewan, 51 Campus Drive, S7N 5A8, Saskatoon, SK, Canada
| | - Fuyou Fu
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, S7N 02X, Saskatoon SK, Canada
| | - Miao Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2, Beibei, Chongqing 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, China
| | - Huiyan Zhao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2, Beibei, Chongqing 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, China
| | - Chuan Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2, Beibei, Chongqing 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2, Beibei, Chongqing 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, China
| | - Zhanglin Tang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2, Beibei, Chongqing 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2, Beibei, Chongqing 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, China
| | - Xiao Qiu
- Food and Bioproduct science, University of Saskatchewan, 51 Campus Drive, S7N 5A8, Saskatoon, SK, Canada
| | - Rui Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2, Beibei, Chongqing 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2, Beibei, Chongqing 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, China
| |
Collapse
|
169
|
Gómez JF, Talle B, Wilson ZA. Anther and pollen development: A conserved developmental pathway. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:876-91. [PMID: 26310290 PMCID: PMC4794635 DOI: 10.1111/jipb.12425] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/23/2015] [Indexed: 05/19/2023]
Abstract
Pollen development is a critical step in plant development that is needed for successful breeding and seed formation. Manipulation of male fertility has proved a useful trait for hybrid breeding and increased crop yield. However, although there is a good understanding developing of the molecular mechanisms of anther and pollen anther development in model species, such as Arabidopsis and rice, little is known about the equivalent processes in important crops. Nevertheless the onset of increased genomic information and genetic tools is facilitating translation of information from the models to crops, such as barley and wheat; this will enable increased understanding and manipulation of these pathways for agricultural improvement.
Collapse
Affiliation(s)
- José Fernández Gómez
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Behzad Talle
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| |
Collapse
|
170
|
Shi J, Cui M, Yang L, Kim YJ, Zhang D. Genetic and Biochemical Mechanisms of Pollen Wall Development. TRENDS IN PLANT SCIENCE 2015; 20:741-753. [PMID: 26442683 DOI: 10.1016/j.tplants.2015.07.010] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/26/2015] [Accepted: 07/31/2015] [Indexed: 05/18/2023]
Abstract
The pollen wall is a specialized extracellular cell wall matrix that surrounds male gametophytes and plays an essential role in plant reproduction. Uncovering the mechanisms that control the synthesis and polymerization of the precursors of pollen wall components has been a major research focus in plant biology. We review current knowledge on the genetic and biochemical mechanisms underlying pollen wall development in eudicot model Arabidopsis thaliana and monocot model rice (Oryza sativa), focusing on the genes involved in the biosynthesis, transport, and assembly of various precursors of pollen wall components. The conserved and divergent aspects of the genes involved as well as their regulation are addressed. Current challenges and future perspectives are also highlighted.
Collapse
Affiliation(s)
- Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Meihua Cui
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Li Yang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yu-Jin Kim
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia.
| |
Collapse
|
171
|
Zhao G, Shi J, Liang W, Xue F, Luo Q, Zhu L, Qu G, Chen M, Schreiber L, Zhang D. Two ATP Binding Cassette G Transporters, Rice ATP Binding Cassette G26 and ATP Binding Cassette G15, Collaboratively Regulate Rice Male Reproduction. PLANT PHYSIOLOGY 2015; 169:2064-79. [PMID: 26392263 PMCID: PMC4634043 DOI: 10.1104/pp.15.00262] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 09/17/2015] [Indexed: 05/17/2023]
Abstract
Male reproduction in higher plants requires the support of various metabolites, including lipid molecules produced in the innermost anther wall layer (the tapetum), but how the molecules are allocated among different anther tissues remains largely unknown. Previously, rice (Oryza sativa) ATP binding cassette G15 (ABCG15) and its Arabidopsis (Arabidopsis thaliana) ortholog were shown to be required for pollen exine formation. Here, we report the significant role of OsABCG26 in regulating the development of anther cuticle and pollen exine together with OsABCG15 in rice. Cytological and chemical analyses indicate that osabcg26 shows reduced transport of lipidic molecules from tapetal cells for anther cuticle development. Supportively, the localization of OsABCG26 is on the plasma membrane of the anther wall layers. By contrast, OsABCG15 is polarly localized in tapetal plasma membrane facing anther locules. osabcg26 osabcg15 double mutant displays an almost complete absence of anther cuticle and pollen exine, similar to that of osabcg15 single mutant. Taken together, we propose that OsABCG26 and OsABCG15 collaboratively regulate rice male reproduction: OsABCG26 is mainly responsible for the transport of lipidic molecules from tapetal cells to anther wall layers, whereas OsABCG15 mainly is responsible for the export of lipidic molecules from the tapetal cells to anther locules for pollen exine development.
Collapse
Affiliation(s)
- Guochao Zhao
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Jianxin Shi
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Wanqi Liang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Feiyang Xue
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Qian Luo
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Lu Zhu
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Guorun Qu
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Mingjiao Chen
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Lukas Schreiber
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| |
Collapse
|
172
|
Wang S, Zhang G, Zhang Y, Song Q, Chen Z, Wang J, Guo J, Niu N, Wang J, Ma S. Comparative studies of mitochondrial proteomics reveal an intimate protein network of male sterility in wheat (Triticum aestivum L.). JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6191-203. [PMID: 26136264 PMCID: PMC4588876 DOI: 10.1093/jxb/erv322] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Plant male sterility has often been associated with mitochondrial dysfunction; however, the mechanism in wheat (Triticum aestivum L.) has not been elucidated. This study set out to probe the mechanism of physiological male sterility (PHYMS) induced by the chemical hybridizing agent (CHA)-SQ-1, and cytoplasmic male sterility (CMS) of wheat at the proteomic level. A total of 71 differentially expressed mitochondrial proteins were found to be involved in pollen abortion and further identified by MALDI-TOF/TOF MS (matrix-assisted laser desorption/ionization-time of fight/time of flight mass spectrometry). These proteins were implicated in different cellular responses and metabolic processes, with obvious functional tendencies toward the tricarboxylic acid cycle, the mitochondrial electron transport chain, protein synthesis and degradation, oxidation stress, the cell division cycle, and epigenetics. Interactions between identified proteins were demonstrated by bioinformatics analysis, enabling a more complete insight into biological pathways involved in anther abortion and pollen defects. Accordingly, a mitochondria-mediated male sterility protein network in wheat is proposed; this network was further confirmed by physiological data, RT-PCR (real-time PCR), and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling) assay. The results provide intriguing insights into the metabolic pathway of anther abortion induced by CHA-SQ-1 and also give useful clues to identify the crucial proteins of PHYMS and CMS in wheat.
Collapse
Affiliation(s)
- Shuping Wang
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, Shaanxi 712100, P. R. China
| | - Gaisheng Zhang
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, Shaanxi 712100, P. R. China
| | - Yingxin Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Qilu Song
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, Shaanxi 712100, P. R. China
| | - Zheng Chen
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, Shaanxi 712100, P. R. China
| | - Junsheng Wang
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, Shaanxi 712100, P. R. China
| | - Jialin Guo
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, Shaanxi 712100, P. R. China
| | - Na Niu
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, Shaanxi 712100, P. R. China
| | - Junwei Wang
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, Shaanxi 712100, P. R. China
| | - Shoucai Ma
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|
173
|
Dong X, Yi H, Han CT, Nou IS, Hur Y. GDSL esterase/lipase genes in Brassica rapa L.: genome-wide identification and expression analysis. Mol Genet Genomics 2015; 291:531-42. [DOI: 10.1007/s00438-015-1123-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/18/2015] [Indexed: 11/29/2022]
|
174
|
Zhu E, You C, Wang S, Cui J, Niu B, Wang Y, Qi J, Ma H, Chang F. The DYT1-interacting proteins bHLH010, bHLH089 and bHLH091 are redundantly required for Arabidopsis anther development and transcriptome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:976-990. [PMID: 26216374 DOI: 10.1111/tpj.12942] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/09/2015] [Accepted: 05/12/2015] [Indexed: 05/23/2023]
Abstract
The anther is the male reproductive organ of flowering plants, and the Arabidopsis bHLH transcription factors encoded by DYSFUNCTIONAL TAPETUM1 (DYT1) and ABORTED MICROSPORE (AMS) are required for control of the complex transcriptional networks regulating anther development. Knowledge of the mechanisms by which the bHLH proteins affect this diverse gene expression is quite limited. We examine here three recently duplicated Arabidopsis bHLH genes, bHLH010, bHLH089 and bHLH091, using evolutionary, genetic, morphological and transcriptomic approaches, and uncover their redundant functions in anther development. These three genes are relatively highly expressed in the tapetum of the Arabidopsis anther; single mutants at each of the bHLH010, bHLH089 and bHLH091 loci are developmentally normal, but the various double and triple combinations progressively exhibit increasingly defective anther phenotypes (abnormal tapetum morphology, delayed callose degeneration, and aborted pollen development), indicating their redundant functions in male fertility. Further transcriptomic and molecular analyses suggest that these three proteins act slightly later than DYT1, and also form protein complexes with DYT1, subsequently affecting the correct expression of many DYT1 target genes in the anther development transcriptional network. This study demonstrated that bHLH010, bHLH089 and bHLH091 together are important for the normal transcriptome of the developing Arabidopsis anther, possibly by forming a feed-forward loop with DYT1.
Collapse
Affiliation(s)
- Engao Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Chenjiang You
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
- Key Laboratory of Biodiversity Sciences and Ecological Engineering, Ministry of Education, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Shuangshuang Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jie Cui
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Baixiao Niu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
- Key Laboratory of Biodiversity Sciences and Ecological Engineering, Ministry of Education, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Fang Chang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| |
Collapse
|
175
|
Liu J, Pang C, Wei H, Song M, Meng Y, Ma J, Fan S, Yu S. iTRAQ-facilitated proteomic profiling of anthers from a photosensitive male sterile mutant and wild-type cotton (Gossypium hirsutum L.). J Proteomics 2015; 126:68-81. [PMID: 26047712 DOI: 10.1016/j.jprot.2015.05.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 11/28/2022]
Abstract
Male sterility is a common phenomenon in flowering plants, and it has been successfully developed in several crops by taking advantage of heterosis. Cotton (Gossypium hirsutum L.) is an important economic crop, used mainly for the production of textile fiber. Using a space mutation breeding technique, a novel photosensitive genetic male sterile mutant CCRI9106 was isolated from the wild-type upland cotton cultivar CCRI040029. To use CCRI9106 in cotton hybrid breeding, it is of great importance to study the molecular mechanisms of its male sterility. Here, histological and iTRAQ-facilitated proteomic analyses of anthers were performed to explore male sterility mechanisms of the mutant. Scanning and transmission electron microscopy of the anthers showed that the development of pollen wall in CCRI9106 was severely defective with a lack of exine formation. At the protein level, 6121 high-confidence proteins were identified and 325 of them showed differential expression patterns between mutant and wild-type anthers. The proteins up- or down-regulated in MT anthers were mainly involved in exine formation, protein degradation, calcium ion binding,etc. These findings provide valuable information on the proteins involved in anther and pollen development, and contribute to elucidate the mechanism of male sterility in upland cotton.
Collapse
Affiliation(s)
- Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China
| | - Yanyan Meng
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South Central University for Nationalities, Wuhan 430064, Hubei Province, China
| | - Jianhui Ma
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan Province, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China.
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China.
| |
Collapse
|
176
|
Ma Y, Kang J, Wu J, Zhu Y, Wang X. Identification of tapetum-specific genes by comparing global gene expression of four different male sterile lines in Brassica oleracea. PLANT MOLECULAR BIOLOGY 2015; 87:541-54. [PMID: 25711971 PMCID: PMC4377141 DOI: 10.1007/s11103-015-0287-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 01/19/2015] [Indexed: 05/18/2023]
Abstract
The tapetum plays an important role in anther development by providing necessary enzymes and nutrients for pollen development. However, it is difficult to identify tapetum-specific genes on a large-scale because of the difficulty of separating tapetum cells from other anther tissues. Here, we reported the identification of tapetum-specific genes by comparing the gene expression patterns of four male sterile (MS) lines of Brassica oleracea. The abortive phenotypes of the four MS lines revealed different defects in tapetum and pollen development but normal anther wall development when observed by transmission electron microscopy. These tapetum displayed continuous defective characteristics throughout the anther developmental stages. The transcriptome from flower buds, covering all anther developmental stages, was analyzed and bioinformatics analyses exploring tapetum development-related genes were performed. We identified 1,005 genes differentially expressed in at least one of the MS lines and 104 were non-pollen expressed genes (NPGs). Most of the identified NPGs were tapetum-specific genes considering that anther walls were normally developed in all four MS lines. Among the 104 NPGs, 22 genes were previously reported as being involved in tapetum development. We further separated the expressed NPGs into different developmental stages based on the MS defects. The data obtained in this study are not only informative for research on tapetum development in B. oleracea, but are also useful for genetic pathway research in other related species.
Collapse
Affiliation(s)
- Yuan Ma
- Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, 430072 China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, Beijing, 100087 China
| | - Jungen Kang
- Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Landianchang South Street 5, Beijing, 100081 China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, Beijing, 100087 China
| | - Yingguo Zhu
- Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, Beijing, 100087 China
| |
Collapse
|
177
|
Wang S, Zhang G, Song Q, Zhang Y, Li Z, Guo J, Niu N, Ma S, Wang J. Abnormal development of tapetum and microspores induced by chemical hybridization agent SQ-1 in wheat. PLoS One 2015; 10:e0119557. [PMID: 25803723 PMCID: PMC4372346 DOI: 10.1371/journal.pone.0119557] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/14/2015] [Indexed: 11/19/2022] Open
Abstract
Chemical hybridization agent (CHA)-induced male sterility is an important tool in crop heterosis. To demonstrate that CHA-SQ-1-induced male sterility is associated with abnormal tapetal and microspore development, the cytology of CHA-SQ-1-treated plant anthers at various developmental stages was studied by light microscopy, scanning and transmission electron microscopy, in situ terminal deoxynucleotidyl transferasemediated dUTP nick end-labelling (TUNEL) assay and DAPI staining. The results indicated that the SQ-1-treated plants underwent premature tapetal programmed cell death (PCD), which was initiated at the early-uninucleate stage of microspore development and continued until the tapetal cells were completely degraded; the process of microspore development was then blocked. Microspores with low-viability (fluorescein diacetate staining) were aborted. The study suggests that premature tapetal PCD is the main cause of pollen abortion. Furthermore, it determines the starting period and a key factor in CHA-SQ-1-induced male sterility at the cell level, and provides cytological evidence to further study the mechanism between PCD and male sterility.
Collapse
Affiliation(s)
- Shuping Wang
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, China
| | - Gaisheng Zhang
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, China
| | - Qilu Song
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, China
| | - Yingxin Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zheng Li
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, China
| | - Jialin Guo
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, China
| | - Na Niu
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, China
| | - Shoucai Ma
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, China
| | - Junwei Wang
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, China
| |
Collapse
|