151
|
Topi S, Bottalico L, Charitos IA, Colella M, Di Domenico M, Palmirotta R, Santacroce L. Biomolecular Mechanisms of Autoimmune Diseases and Their Relationship with the Resident Microbiota: Friend or Foe? PATHOPHYSIOLOGY 2022; 29:507-536. [PMID: 36136068 PMCID: PMC9505211 DOI: 10.3390/pathophysiology29030041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
The use of innovative approaches to elucidate the pathophysiological mechanisms of autoimmune diseases, as well as to further study of the factors which can have either a positive or negative effect on the course of the disease, is essential. In this line, the development of new molecular techniques and the creation of the Human Genome Program have allowed access to many more solutions to the difficulties that exist in the identification and characterization of the microbiome, as well as changes due to various factors. Such innovative technologies can rekindle older hypotheses, such as molecular mimicry, allowing us to move from hypothesis to theory and from correlation to causality, particularly regarding autoimmune diseases and dysbiosis of the microbiota. For example, Prevotella copri appears to have a strong association with rheumatoid arthritis; it is expected that this will be confirmed by several scientists, which, in turn, will make it possible to identify other mechanisms that may contribute to the pathophysiology of the disease. This article seeks to identify new clues regarding similar correlations between autoimmune activity and the human microbiota, particularly in relation to qualitative and quantitative microbial variations therein.
Collapse
Affiliation(s)
- Skender Topi
- Department of Clinical Disciplines, University of Elbasan, 3001 Elbasan, Albania
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, University of Elbasan, 3001 Elbasan, Albania
| | | | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology , School of Medicine, University of Bari, 70124 Bari, Italy
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, Section of Sciences and Technologies of Laboratory Medicine, School of Medicine, University of Bari, 70124 Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology , School of Medicine, University of Bari, 70124 Bari, Italy
| |
Collapse
|
152
|
Seizer L, Schubert C. On the Role of Psychoneuroimmunology in Oral Medicine. Int Dent J 2022; 72:765-772. [PMID: 36184323 DOI: 10.1016/j.identj.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/24/2022] [Accepted: 07/02/2022] [Indexed: 11/05/2022] Open
|
153
|
He L, Chen R, Zhang B, Zhang S, Khan BA, Zhu D, Wu Z, Xiao C, Chen B, Chen F, Hou K. Fecal microbiota transplantation treatment of autoimmune-mediated type 1 diabetes mellitus. Front Immunol 2022; 13:930872. [PMID: 36032108 PMCID: PMC9414079 DOI: 10.3389/fimmu.2022.930872] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Type 1 diabetes mellitus (T1DM) is an autoimmune-mediated disease characterized by a reduced or absolute lack of insulin secretion and often associated with a range of vascular and neurological complications for which there is a lack of effective treatment other than lifestyle interventions and pharmacological treatments such as insulin injections. Studies have shown that the gut microbiota is involved in mediating the onset and development of many fecal and extrafecal diseases, including autoimmune T1DM. In recent years, many cases of gut microbiota transplantation for diseases of the bowel and beyond have been reported worldwide, and this approach has been shown to be safe and effective. Here, we conducted an experimental treatment study in two adolescent patients diagnosed with autoimmune T1DM for one year. Patients received one to three rounds of normal fecal microbiota transplants (FMT) and were followed for up to 30 weeks. Clinical outcomes were measured, including biochemical indices, medication regimen, and dosage adjustment. Fecal microbiota metagenomic sequencing after transplantation provides a reference for more reasonable and effective microbiota transplantation protocols to treat autoimmune T1DM. Our results suggest that FMT is an effective treatment for autoimmune T1DM. CLINICAL TRIAL REGISTRATION http://www.chictr.org.cn, identifier ChiCTR2100045789.
Collapse
Affiliation(s)
- Lina He
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Rongping Chen
- School of Laboratory Medical and Biotechnology, Southern Medical University, Guangzhou, China
| | - Bangzhou Zhang
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- School of Basic Medical Science, Central South University, Changsha, China
| | - Shuo Zhang
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Barkat Ali Khan
- Drug Delivery and Cosmetics Lab, Good Clinical Practice (GCPS), Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
| | - Zezhen Wu
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chuanxing Xiao
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- School of Basic Medical Science, Central South University, Changsha, China
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Baolong Chen
- Center for Research and Development, Xiamen Treatgut Biotechnology Co. Ltd., Xiamen, China
| | - Fengwu Chen
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
154
|
Miracco C, DE Piano E, Marruganti C, Baldino G, Sorrentino E, Batsikosta A, Rubegni P, Angotti R, Messina M, Cinotti E. Folliculosebaceous units are a frequent finding in early lichen sclerosus of the foreskin. Ital J Dermatol Venerol 2022; 157:342-347. [PMID: 35666664 DOI: 10.23736/s2784-8671.22.07301-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
BACKGROUND Folliculosebaceous units (FSU) has been considered an early target of inflammation in vulvar lichen sclerosus (VLS). This diagnostic clue is not reported in lichen sclerosus (LS) of the foreskin (FLS) that is normally hairless. We evaluated the presence and inflammation of FSU and sebaceous glands (SG) in LS of the foreskin. METHODS Histological specimens from therapeutic circumcision were assessed in order to evaluate the frequency and inflammation of FSU and SG in LS. RESULTS Ninety-eight cases, grouped into 46 early (group 1) and 52 overt (group 2) FLS were included in the study. SG-FSU were found in 95.7% of group 1, and 65.4% of group 2 cases. Their density was inversely correlated with patient age (P=0.0014). We observed perifollicular inflammation in all cases with visible SG-FSU and frequent FSU abnormalities. CONCLUSIONS SG and FSU were frequent in early FLS and decreased in advanced disease and adults. We hypothesize that SG and FSU are involved in the inflammatory process leading to FLS. These data, which need further investigation, could help to better understand the pathogenesis of FLS.
Collapse
Affiliation(s)
- Clelia Miracco
- Section of Pathological Anatomy, Department of Medicine, Surgery and Neuroscience, University Hospital of Siena, Siena, Italy
| | - Ernesto DE Piano
- Department of Medicine, Surgery and Neuroscience, Dermatosurgery, University Hospital of Siena, Siena, Italy
| | - Crystal Marruganti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gennaro Baldino
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Ester Sorrentino
- Section of Pathological Anatomy, Department of Medicine, Surgery and Neuroscience, University Hospital of Siena, Siena, Italy
| | - Anastasia Batsikosta
- Section of Pathological Anatomy, Department of Medicine, Surgery and Neuroscience, University Hospital of Siena, Siena, Italy
| | - Pietro Rubegni
- Department of Medicine, Surgery and Neuroscience, Dermatosurgery, University Hospital of Siena, Siena, Italy
| | - Rossella Angotti
- Department of Medicine, Surgery and Neuroscience, Pediatric Surgery, University Hospital of Siena, Siena, Italy
| | - Mario Messina
- Department of Medicine, Surgery and Neuroscience, Pediatric Surgery, University Hospital of Siena, Siena, Italy
| | - Elisa Cinotti
- Department of Medicine, Surgery and Neuroscience, Dermatosurgery, University Hospital of Siena, Siena, Italy -
| |
Collapse
|
155
|
Amyloid-containing biofilms and autoimmunity. Curr Opin Struct Biol 2022; 75:102435. [PMID: 35863164 PMCID: PMC9847210 DOI: 10.1016/j.sbi.2022.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 01/21/2023]
Abstract
Bacteria are microscopic, single-celled organisms known for their ability to adapt to their environment. In response to stressful environmental conditions or in the presence of a contact surface, they commonly form multicellular aggregates called biofilms. Biofilms form on various abiotic or biotic surfaces through a dynamic stepwise process involving adhesion, growth, and extracellular matrix production. Biofilms develop on tissues as well as on implanted devices during infections, providing the bacteria with a mechanism for survival under harsh conditions including targeting by the immune system and antimicrobial therapy. Like pathogenic bacteria, members of the human microbiota can form biofilms. Biofilms formed by enteric bacteria contribute to several human diseases including autoimmune diseases and cancer. However, until recently the interactions of immune cells with biofilms had been mostly uncharacterized. Here, we will discuss how components of the enteric biofilm produced in vivo, specifically amyloid curli and extracellular DNA, could be interacting with the host's immune system causing an unpredicted immune response.
Collapse
|
156
|
Su YJ, Huang JY, Chu CQ, Wei JCC. Sulfonylureas or biguanides is associated with a lower risk of rheumatoid arthritis in patients with diabetes: A nationwide cohort study. Front Med (Lausanne) 2022; 9:934184. [PMID: 35966856 PMCID: PMC9363881 DOI: 10.3389/fmed.2022.934184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveDiabetes mellitus (DM) is associated with immune dysregulation, while sulfonylureas or biguanides have been linked to anti-inflammatory mechanisms. In this study, we aimed to examine the occurrence rate of rheumatoid arthritis (RA) among DM patients and its incidence rate between different treatments.MethodsThis cohort study used the Taiwan National Health Insurance Research Database between 1997 and 2013 to evaluate the primary outcomes of the preventive role of sulfonylureas or biguanides in the development of RA. We used the Chi-square test for categorical variables and Cox proportional hazard regression and log-rank test to explore the time for development of RA in DM patients. Logistic regression was adopted to estimate the odds ratio of RA in different dosages of medication exposure.ResultsOur cohort study included 94,141 DM cases. The risk of RA development of non-sulfonylureas/biguanides users among the DM group in each analysis was set as the reference, and the adjusted hazard ratio of RA in DM patients who were using sulfonylureas or biguanides was 0.73 (95% confidence interval 0.60–0.90). Within 1 year before the index date, compared with no-biguanides users, patients with more than 180 days of prescription of biguanides had a significantly lower RA risk. Similarly, the significantly lower risk of RA was still observed in DM patients who had more than 365 days of prescription of sulfonylurea within 2 or 3 years before the index date of first RA visit (all p < 0.05).ConclusionOur data suggest that sulfonylureas or biguanides are associated with a lower rate of RA development in patients with DM; the effect of biguanides appeared more rapid than that of sulfonylureas, but the sulfonylureas might have a longer effect on lowering RA development incidence.
Collapse
Affiliation(s)
- Yu-Jih Su
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jing-Yang Huang
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health and Science University and VA Portland Health Care System, Portland, OR, United States
- *Correspondence: Cong-Qiu Chu
| | - James Cheng-Chung Wei
- Department of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- James Cheng-Chung Wei
| |
Collapse
|
157
|
Al-Beltagi M, Saeed NK, Bediwy AS. COVID-19 disease and autoimmune disorders: A mutual pathway. World J Methodol 2022; 12:200-223. [PMID: 36159097 PMCID: PMC9350728 DOI: 10.5662/wjm.v12.i4.200] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/17/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a real challenge for humanity with high morbidity and mortality. Despite being primarily a respiratory illness, COVID-19 can affect nearly every human body tissue, causing many diseases. After viral infection, the immune system can recognize the viral antigens presented by the immune cells. This immune response is usually controlled and terminated once the infection is aborted. Nevertheless, in some patients, the immune reaction becomes out of control with the development of autoimmune diseases. Several human tissue antigens showed a strong response with antibodies directed against many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins, such as SARS-CoV-2 S, N, and autoimmune target proteins. The immunogenic effects of SARS-CoV-2 are due to the sizeable viral RNA molecules with interrupted transcription increasing the pool of epitopes with increased chances of molecular mimicry and interaction with the host immune system, the overlap between some viral and human peptides, the viral induced-tissue damage, and the robust and complex binding between sACE-2 and SARS-CoV-2 S protein. Consequently, COVID-19 and its vaccine may trigger the development of many autoimmune diseases in a predisposed patient. This review discusses the mutual relation between COVID-19 and autoimmune diseases, their interactive effects on each other, the role of the COVID-19 vaccine in triggering autoimmune diseases, the factors affecting the severity of COVID-19 in patients suffering from autoimmune diseases, and the different ways to minimize the risk of COVID-19 in patients with autoimmune diseases.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31527, Algharbia, Egypt
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al-Habib Medical Group, Manama 26671, Manama, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Manama, Bahrain
- Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Bahrain, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Chest Disease, Faculty of Medicine, Tanta University, Tanta 31527, Algharbia, Egypt
- Department of Chest Disease, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al-Habib Medical Group, Manama 26671, Manama, Bahrain
| |
Collapse
|
158
|
Sharma A, Giorgakis E. Gut microbiome dysbiosis in the setting of solid organ transplantation: What we have gleaned from human and animal studies. World J Transplant 2022; 12:157-162. [PMID: 36051453 PMCID: PMC9331413 DOI: 10.5500/wjt.v12.i7.157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/27/2021] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
The human gut microbiome refers to all of the microorganisms present throughout the length of the gastrointestinal tract. Gut flora influence host metabolic and immune processes in myriad ways. They also play an important role in maturation and modulation of the immune system. Dysbiosis or a pathologic alteration in gut flora has been implicated in a number of diseases ranging from metabolic, autoimmune and degenerative. Whether dysbiosis has similar implications in organ transplant has been the focus of a number of pre-clinical and clinical studies. Researchers have observed significant microbiome changes after solid organ transplantation in humans that have been associated with clinical outcomes such as post-transplant urinary tract infections and diarrhea. In this article, we will discuss the available data regarding pathologic alterations in gut microbiome (dysbiosis) in solid organ transplant recipients as well as some of challenges in this field. We will also discuss animal studies focusing on mouse models of transplantation that shed light on the underlying mechanisms that explain these findings.
Collapse
Affiliation(s)
- Aparna Sharma
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, AR 72223, United States
| | - Emmanouil Giorgakis
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72223, United States
| |
Collapse
|
159
|
Sadrekarimi H, Gardanova ZR, Bakhshesh M, Ebrahimzadeh F, Yaseri AF, Thangavelu L, Hasanpoor Z, Zadeh FA, Kahrizi MS. Emerging role of human microbiome in cancer development and response to therapy: special focus on intestinal microflora. Lab Invest 2022; 20:301. [PMID: 35794566 PMCID: PMC9258144 DOI: 10.1186/s12967-022-03492-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022]
Abstract
In recent years, there has been a greater emphasis on the impact of microbial populations inhabiting the gastrointestinal tract on human health and disease. According to the involvement of microbiota in modulating physiological processes (such as immune system development, vitamins synthesis, pathogen displacement, and nutrient uptake), any alteration in its composition and diversity (i.e., dysbiosis) has been linked to a variety of pathologies, including cancer. In this bidirectional relationship, colonization with various bacterial species is correlated with a reduced or elevated risk of certain cancers. Notably, the gut microflora could potentially play a direct or indirect role in tumor initiation and progression by inducing chronic inflammation and producing toxins and metabolites. Therefore, identifying the bacterial species involved and their mechanism of action could be beneficial in preventing the onset of tumors or controlling their advancement. Likewise, the microbial community affects anti-cancer approaches’ therapeutic potential and adverse effects (such as immunotherapy and chemotherapy). Hence, their efficiency should be evaluated in the context of the microbiome, underlining the importance of personalized medicine. In this review, we summarized the evidence revealing the microbiota's involvement in cancer and its mechanism. We also delineated how microbiota could predict colon carcinoma development or response to current treatments to improve clinical outcomes.
Collapse
|
160
|
Sun B, He X, Zhang W. Findings on the Relationship Between Intestinal Microbiome and Vasculitis. Front Cell Infect Microbiol 2022; 12:908352. [PMID: 35832383 PMCID: PMC9271958 DOI: 10.3389/fcimb.2022.908352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/23/2022] [Indexed: 01/30/2023] Open
Abstract
The microbiome has been implicated in small-, medium-, large-, and variable-vessel vasculitis. Dysbiosis can frequently be found in vasculitis patients with altered microbial diversity and abundance, compared with those with other diseases and healthy controls. Dominant bacteria discovered in different studies vary greatly, but in general, the intestinal microbiome in vasculitis patients tends to contain more pathogenic and less beneficial bacteria. Improvement or resolution of dysbiosis has been observed after treatment in a few longitudinal studies. In addition, some molecular changes in intestinal permeability and immune response have been found in animal models of vasculitis diseases.
Collapse
Affiliation(s)
- Boyuan Sun
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- M.D. Program, Peking Union Medical College, Beijing, China
| | - Xin He
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- M.D. Program, Peking Union Medical College, Beijing, China
| | - Wen Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- *Correspondence: Wen Zhang,
| |
Collapse
|
161
|
Li K, Liu J, Qin X. Research progress of gut microbiota in hepatocellular carcinoma. J Clin Lab Anal 2022; 36:e24512. [PMID: 35719048 PMCID: PMC9279976 DOI: 10.1002/jcla.24512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the sixth most common cancer and the fourth leading cause of cancer-related death in the world. A number of challenges remain for the early detection and effective treatment of HCC. In recent years, microbiota have been proven to be associated with the development of HCC. Many studies have explored the pathogenesis, diagnostic marker, and therapeutic target potential of microbiota in hepatocellular carcinoma. Therefore, we aimed to introduce the research methods and achievements of gut microbiota in hepatocellular carcinoma and discuss the value of gut microbiota in the pathogenesis, diagnosis, and treatment of hepatocellular carcinoma. METHODS Keywords are used to search relevant articles which were mainly published from 2010 to 2021, and we further selected targeted articles and read the full text. RESULTS Gut microbiota involved in promoting the formation and development of hepatocellular carcinoma, and differential gut microbiota and microbial metabolites have the potential to be the biomarkers of hepatocellular carcinoma. Purposefully regulated gut microbiota can improve the prognosis of patients, which is expected to be used in hepatocellular carcinoma. CONCLUSION The study of gut microbiota in hepatocellular carcinoma is definitely worthy of study. In-depth and elaborate research design is crucial for the study of the mechanism of gut microbiota involved in hepatocellular carcinoma, which can provide new directions and targets for the diagnosis, treatment, and prognosis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Keliu Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| |
Collapse
|
162
|
La Barbera L, Macaluso F, Fasano S, Grasso G, Ciccia F, Guggino G. Microbiome Changes in Connective Tissue Diseases and Vasculitis: Focus on Metabolism and Inflammation. Int J Mol Sci 2022; 23:ijms23126532. [PMID: 35742974 PMCID: PMC9224234 DOI: 10.3390/ijms23126532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
The microbial community acts as an active player in maintaining homeostasis and immune functions through a continuous and changeable cross-talk with the host immune system. Emerging evidence suggests that altered microbial composition, known as dysbiosis, might perturb the delicate balance between the microbiota and the immune system, triggering inflammation and potentially contributing to the pathogenesis and development of chronic inflammatory diseases. This review will summarize the current evidence about the microbiome-immunity cross-talk, especially focusing on the microbiota alterations described in patients with rheumatic diseases and on the recent findings concerning the interaction between microbiota, metabolic function, and the immune system.
Collapse
Affiliation(s)
- Lidia La Barbera
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (L.L.B.); (G.G.)
| | - Federica Macaluso
- Rheumatology Unit, Department of Internal Medicine, University of Modena and Reggio Emilia, AUSL-IRCCS, Via Giovanni Amendola, 2, 42122 Reggio Emilia, Italy;
- Division of Rheumatology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, S. Andrea delle Dame, Via L. De Crecchio 7, 80138 Naples, Italy; (S.F.); (F.C.)
| | - Serena Fasano
- Division of Rheumatology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, S. Andrea delle Dame, Via L. De Crecchio 7, 80138 Naples, Italy; (S.F.); (F.C.)
| | - Giulia Grasso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (L.L.B.); (G.G.)
| | - Francesco Ciccia
- Division of Rheumatology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, S. Andrea delle Dame, Via L. De Crecchio 7, 80138 Naples, Italy; (S.F.); (F.C.)
| | - Giuliana Guggino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (L.L.B.); (G.G.)
- Correspondence: ; Tel.: +39-091-655-2148
| |
Collapse
|
163
|
The Role of Exposomes in the Pathophysiology of Autoimmune Diseases II: Pathogens. PATHOPHYSIOLOGY 2022; 29:243-280. [PMID: 35736648 PMCID: PMC9231084 DOI: 10.3390/pathophysiology29020020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/21/2022] Open
Abstract
In our continuing examination of the role of exposomes in autoimmune disease, we use this review to focus on pathogens. Infections are major contributors to the pathophysiology of autoimmune diseases through various mechanisms, foremost being molecular mimicry, when the structural similarity between the pathogen and a human tissue antigen leads to autoimmune reactivity and even autoimmune disease. The three best examples of this are oral pathogens, SARS-CoV-2, and the herpesviruses. Oral pathogens reach the gut, disturb the microbiota, increase gut permeability, cause local inflammation, and generate autoantigens, leading to systemic inflammation, multiple autoimmune reactivities, and systemic autoimmunity. The COVID-19 pandemic put the spotlight on SARS-CoV-2, which has been called “the autoimmune virus.” We explore in detail the evidence supporting this. We also describe how viruses, in particular herpesviruses, have a role in the induction of many different autoimmune diseases, detailing the various mechanisms involved. Lastly, we discuss the microbiome and the beneficial microbiota that populate it. We look at the role of the gut microbiome in autoimmune disorders, because of its role in regulating the immune system. Dysbiosis of the microbiota in the gut microbiome can lead to multiple autoimmune disorders. We conclude that understanding the precise roles and relationships shared by all these factors that comprise the exposome and identifying early events and root causes of these disorders can help us to develop more targeted therapeutic protocols for the management of this worldwide epidemic of autoimmunity.
Collapse
|
164
|
Gender and Autoimmune Liver Diseases: Relevant Aspects in Clinical Practice. J Pers Med 2022; 12:jpm12060925. [PMID: 35743710 PMCID: PMC9225254 DOI: 10.3390/jpm12060925] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 12/12/2022] Open
Abstract
Autoimmune liver diseases (AILDs) include autoimmune hepatitis, primary biliary cholangitis and primary sclerosing cholangitis. The etiologies of AILD are not well understood but appear to involve a combination of genetic and environmental factors. AILDs commonly affect young individuals and are characterized by a highly variable clinical course. These diseases significantly influence quality of life and can progress toward liver decompensation or the onset of hepatocellular or cholangiocarcinoma; a significant number of patients eventually progress to end-stage liver disease, requiring liver transplantation. In this review, we focus on the sex characteristics and peculiarities of AILD patients and highlight the relevance of a sex-specific analysis in future studies. Understanding the sex differences underlying AILD immune dysregulation may be critical for developing more effective treatments.
Collapse
|
165
|
Chen C, Chen L, Sun D, Li C, Xi S, Ding S, Luo R, Geng Y, Bai Y. Adverse events of intestinal microbiota transplantation in randomized controlled trials: a systematic review and meta-analysis. Gut Pathog 2022; 14:20. [PMID: 35619175 PMCID: PMC9134705 DOI: 10.1186/s13099-022-00491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 04/11/2022] [Indexed: 01/04/2025] Open
Abstract
Background Intestinal microbiota transplantation (IMT) has been recognized as an effective treatment for recurrent Clostridium difficile infection (rCDI) and a novel treatment option for other diseases. However, the safety of IMT in patients has not been established. Aims This systematic review and meta-analysis was conducted to assess the safety of IMT. Methods We systematically reviewed all randomized controlled trials (RCTs) of IMT studies published up to 28 February 2021 using databases including PubMed, EMBASE and the Cochrane Library. Studies were excluded if they did not report adverse events (AEs). Two authors independently extracted the data. The relative risk (RR) of serious adverse events (SAEs) and common adverse events (CAEs) were estimated separately, as were predefined subgroups. Publication bias was evaluated by a funnel plot and Egger’s regression test. Results Among 978 reports, 99 full‐text articles were screened, and 20 articles were included for meta-analysis, involving 1132 patients (603 in the IMT group and 529 in the control group). We found no significant difference in the incidence of SAEs between the IMT group and the control group (RR = 1.36, 95% CI 0.56–3.31, P = 0.50). Of these 20 studies, 7 described the number of patients with CAEs, involving 360 patients (195 in the IMT group and 166 in the control group). An analysis of the eight studies revealed that the incidence of CAEs was also not significantly increased in the IMT group compared with the control group (RR = 1.06, 95% CI 0.91–1.23, P = 0.43). Subgroup analysis showed that the incidence of CAEs was significantly different between subgroups of delivery methods (P(CAE) = 0.04), and the incidence of IMT-related SAEs and CAEs was not significantly different in the other predefined subgroups. Conclusion Currently, IMT is widely used in many diseases, but its associated AEs should not be ignored. To improve the safety of IMT, patients' conditions should be fully evaluated before IMT, appropriate transplantation methods should be selected, each operative step of faecal bacteria transplantation should be strictly controlled, AE management mechanisms should be improved, and a close follow-up system should be established.
Collapse
Affiliation(s)
- Chong Chen
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518037, China
| | - Liyu Chen
- Department of Gastroenterology, 923Th Hospital of PLA Joint Logistics Support Force, Nanning, 530021, China
| | - Dayong Sun
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518037, China
| | - Cailan Li
- Department of Gastroenterology, 923Th Hospital of PLA Joint Logistics Support Force, Nanning, 530021, China
| | - Shiheng Xi
- Department of Gastroenterology, 923Th Hospital of PLA Joint Logistics Support Force, Nanning, 530021, China
| | - Shihua Ding
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518037, China
| | - Rongrong Luo
- Department of Gastroenterology, 923Th Hospital of PLA Joint Logistics Support Force, Nanning, 530021, China
| | - Yan Geng
- Department of Gastroenterology, 923Th Hospital of PLA Joint Logistics Support Force, Nanning, 530021, China.
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
166
|
Interaction Between Altered Gut Microbiota and Sepsis: A Hypothesis or an Authentic Fact? J Intensive Care Med 2022; 38:121-131. [DOI: 10.1177/08850666221102796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sepsis, as an important public health concern, is one of the leading causes of death in hospitals around the world, accounting for 25% of all deaths. Nowadays, several factors contribute to the development of sepsis. The role of the gut microbiota and the response state of the aberrant immune system is dominant. The effect of the human microbiome on health is undeniable, and gut microbiota is even considered a body organ. It is now clear that the alteration in the normal balance of the microbiota (dysbiosis) is associated with a change in the status of immune system responses. Owing to the strong association between the gut microbiota and its metabolites particularly short-chain fatty acids with many illnesses, the gut microbiota has a unique position in the research of microbiologists and even clinicians. This review aimed to analyze studies’ results on the association between microbiota and sepsis, with a substantial understanding of their relationship. As a result, an extensive and comprehensive search was conducted on this issue in existing databases.
Collapse
|
167
|
Chen YL, Bai L, Dilimulati D, Shao S, Qiu C, Liu T, Xu S, Bai XB, Du LJ, Zhou LJ, Lin WZ, Meng XQ, Jin YC, Liu Y, Zhang XH, Duan SZ, Jia F. Periodontitis Salivary Microbiota Aggravates Ischemic Stroke Through IL-17A. Front Neurosci 2022; 16:876582. [PMID: 35663549 PMCID: PMC9160974 DOI: 10.3389/fnins.2022.876582] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Although epidemiological studies suggest that periodontitis is tightly associated with ischemic stroke, its impact on ischemic stroke and the underlysing mechanisms are poorly understood. Recent studies have shown that alteration in gut microbiota composition influences the outcomes of ischemic stroke. In the state of periodontitis, many oral pathogenic bacteria in the saliva are swallowed and transmitted to the gut. However, the role of periodontitis microbiota in the pathogenesis and progression of ischemic stroke is unclear. Therefore, we hypothesized that the periodontitis salivary microbiota influences the gut immune system and aggravates ischemic stroke. Mice receiving gavage of periodontitis salivary microbiota showed significantly worse stroke outcomes. And these mice also manifested more severe neuroinflammation, with higher infiltration of inflammatory cells and expression of inflammatory cytokines in the ischemic brain. More accumulation of Th17 cells and IL-17+ γδ T cells were observed in the ileum. And in Kaede transgenic mice after photoconversion. Migration of CD4+ T cells and γδ T cells from the ileum to the brain was observed after ischemic stroke in photoconverted Kaede transgenic mice. Furthermore, the worse stroke outcome was abolished in the IL-17A knockout mice. These findings suggest that periodontitis salivary microbiota increased IL-17A-producing immune cells in the gut, likely promoted the migration of these cells from the gut to the brain, and subsequently provoked neuroinflammation after ischemic stroke. These findings have revealed the role of periodontitis in ischemic stroke through the gut and provided new insights into the worse outcome of ischemic stroke coexisting with periodontitis in clinical trials.
Collapse
Affiliation(s)
- Yan-Lin Chen
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Bai
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Dilirebati Dilimulati
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Shao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Che Qiu
- Department of Periodontology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Shuo Xu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Xue-Bing Bai
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Lu-Jun Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Wen-Zhen Lin
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Xiao-Qian Meng
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Yi-Chao Jin
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Xiao-Hua Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiao-Hua Zhang,
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Sheng-Zhong Duan,
| | - Feng Jia
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Nantong First People’s Hospital, The Second Affiliated Hospital of Nantong University, Nantong, China
- Feng Jia,
| |
Collapse
|
168
|
Long-distance relationships - regulation of systemic host defense against infections by the gut microbiota. Mucosal Immunol 2022; 15:809-818. [PMID: 35732817 DOI: 10.1038/s41385-022-00539-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/29/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023]
Abstract
Despite compartmentalization within the lumen of the gastrointestinal tract, the gut microbiota has a far-reaching influence on immune cell development and function throughout the body. This long-distance relationship is crucial for immune homeostasis, including effective host defense against invading pathogens that cause systemic infections. Herein, we review new insights into how commensal microbes that are spatially restricted to the gut lumen can engage in long-distance relationships with innate and adaptive immune cells at systemic sites to fortify host defenses against infections. In addition, we explore the consequences of intestinal dysbiosis on impaired host defense and immune-mediated pathology during infections, including emerging evidence linking dysbiosis with aberrant systemic inflammation and immune-mediated organ damage in sepsis. As such, therapeutic modification of the gut microbiota is an emerging target for interventions to prevent and/or treat systemic infections and sepsis by harnessing the long-distance relationships between gut microbes and systemic immunity.
Collapse
|
169
|
Zorgetto-Pinheiro VA, Machate DJ, Figueiredo PS, Marcelino G, Hiane PA, Pott A, Guimarães RDCA, Bogo D. Omega-3 Fatty Acids and Balanced Gut Microbiota on Chronic Inflammatory Diseases: A Close Look at Ulcerative Colitis and Rheumatoid Arthritis Pathogenesis. J Med Food 2022; 25:341-354. [PMID: 35438557 DOI: 10.1089/jmf.2021.0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this article was to review experimental and clinical studies regarding the use of omega-3 fatty acids on the prevention and control of chronic inflammatory diseases with autoimmune background through the gut microbiota modulation. For this, natural omega-3 sources are presented emphasizing the importance of a healthy diet for the body's homeostasis and the enzymatic processes that these fatty acids go through once inside the body. The pathogenesis of ulcerative colitis and rheumatoid arthritis are revisited under the light of the gut microbiota dysbiosis approach and how those fatty acids are able to prevent and control these two pathological conditions that are responsible for the global chronic burden and functional disability and life-threatening comorbidities if not treated properly. As a matter of reflection, as we are living a pandemic crisis owing to COVID-19 infection, we present the potential of omega-3 in preventing a poor prognosis once they contribute to balancing the immune system modulation the inflammatory process.
Collapse
Affiliation(s)
- Verônica Assalin Zorgetto-Pinheiro
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - David Johane Machate
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Graduate Program in Science of Materials, Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil
| | - Priscila Silva Figueiredo
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Gabriela Marcelino
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Arnildo Pott
- Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Danielle Bogo
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| |
Collapse
|
170
|
Shen W, Tang D, Wan P, Peng Z, Sun M, Guo X, Liu R. Identification of tissue-specific microbial profile of esophageal squamous cell carcinoma by full-length 16S rDNA sequencing. Appl Microbiol Biotechnol 2022; 106:3215-3229. [PMID: 35435458 DOI: 10.1007/s00253-022-11921-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/25/2022]
Abstract
It was previously believed that the microbial community in the esophagus was relatively stable, but it has been reported that different esophageal diseases have different microbial community characteristics. In this study, we recruited patients with esophageal squamous cell carcinoma (ESCC) and collected 51 pairs of tumor and adjacent non-tumor tissues for full-length 16S rDNAsequencing and qPCR to compare the differences in microbial community structure. The results of sequencing in 19 pairs of tissues showed that Proteobacteria, Firmicutes, Bacteroidetes, Deinococcus-Thermus, and Actinobacteria were the main bacteria in tumor and adjacent non-tumor tissues. At the genus level, the bacteria with the highest relative proportion in tumor and adjacent non-tumor tissues were Streptococcus and Labrys, respectively. At the same time, it was observed that the complexity of microbial interactions in tumor tissues was weaker than that of adjacent non-tumor tissues. The results also found that the relative abundance of 24 taxa was statistically different between tumor and adjacent non-tumor tissues. The findings of qPCR in 32 pairs of tissues further evidence that the relative proportions of Blautia, Treponema, Lactobacillus murinus, Peptoanaerobacter stomatis, and Fusobacteria periodonticum were statistically different in tumor and adjacent non-tumor tissues. The findings of PIRCUSt2 indicated the lipopolysaccharide biosynthesis and biotin metabolism in the microbiome of cancer tissues are more significant. This study supplements the existing information on the structure, function, and interaction of microorganisms in the esophagus in situ and provides a direction for the further exploration of the relationship between esophageal in situ microorganisms and esophageal squamous cell carcinoma. KEY POINTS: • The structure of the microbial community in esophageal cancer tissue and adjacent non-tumor tissues at the phylum level is similar • Streptococcus and Labrys are the most important bacteria in esophageal tumor tissues and adjacent non-tumor tissues, respectively • Microbial interactions in tumor tissues are stronger than in adjacent non-tumor tissues.
Collapse
Affiliation(s)
- Weitao Shen
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Derong Tang
- Department of Thoracic Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu, China
| | - Ping Wan
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Zhenyan Peng
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Mingjun Sun
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xinxin Guo
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ran Liu
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
171
|
Patrick S. A tale of two habitats: Bacteroides fragilis, a lethal pathogen and resident in the human gastrointestinal microbiome. Microbiology (Reading) 2022; 168. [DOI: 10.1099/mic.0.001156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacteroides fragilis
is an obligately anaerobic Gram-negative bacterium and a major colonizer of the human large colon where
Bacteroides
is a predominant genus. During the growth of an individual clonal population, an astonishing number of reversible DNA inversion events occur, driving within-strain diversity. Additionally, the
B. fragilis
pan-genome contains a large pool of diverse polysaccharide biosynthesis loci, DNA restriction/modification systems and polysaccharide utilization loci, which generates remarkable between-strain diversity. Diversity clearly contributes to the success of
B. fragilis
within its normal habitat of the gastrointestinal (GI) tract and during infection in the extra-intestinal host environment. Within the GI tract,
B. fragilis
is usually symbiotic, for example providing localized nutrients for the gut epithelium, but
B. fragilis
within the GI tract may not always be benign. Metalloprotease toxin production is strongly associated with colorectal cancer.
B. fragilis
is unique amongst bacteria; some strains export a protein >99 % structurally similar to human ubiquitin and antigenically cross-reactive, which suggests a link to autoimmune diseases.
B. fragilis
is not a primary invasive enteric pathogen; however, if colonic contents contaminate the extra-intestinal host environment, it successfully adapts to this new habitat and causes infection; classically peritoneal infection arising from rupture of an inflamed appendix or GI surgery, which if untreated, can progress to bacteraemia and death. In this review selected aspects of
B. fragilis
adaptation to the different habitats of the GI tract and the extra-intestinal host environment are considered, along with the considerable challenges faced when studying this highly variable bacterium.
Collapse
Affiliation(s)
- Sheila Patrick
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences Queen’s University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| |
Collapse
|
172
|
Li W, Lai K, Chopra N, Zheng Z, Das A, Diwan AD. Gut-disc axis: A cause of intervertebral disc degeneration and low back pain? EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:917-925. [PMID: 35286474 DOI: 10.1007/s00586-022-07152-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/29/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Low back pain (LBP), a widely prevalent and costly disease around the world, is mainly caused by intervertebral disc (IVD) degeneration (IDD). Although numerous factors may trigger this degenerative process, microbiome dysbiosis has recently been implicated as one of the likely causes. However, the exact relationship between the microbiome and IDD is not well understood. This review summarizes the potential mechanisms and discusses microbiome dysbiosis's possible influence on IDD and LBP. METHODS Prospective literature review. RESULTS Alterations in microbiome composition and host responses to the microbiota causing pathological bone development and involution, led to the concept of gut-bone marrow axis and gut-bone axis. Moreover, the concept of the gut-disc axis was also proposed to explain the microbiome's role in IDD and LBP. According to the existing evidence, the microbiome could be an important factor for inducing and aggravating IDD through changing or regulating the outside and inside microenvironment of the IVD. Three potential mechanisms by which the gut microbiota can induce IVD and cause LBP are: (1) translocation of the bacteria across the gut epithelial barrier and into the IVD, (2) regulation of the mucosal and systemic immune system, and (3) regulation of nutrient absorption and metabolites formation at the gut epithelium and its diffusion into the IVD. Furthermore, to investigate whether IVD is initiated by pathogenic bacteria and establish the correlation between the presence of certain microbial groups with the disease in question, microbiome diversity analysis based on16S rRNA data can be used to characterise stool/blood microbiota from IVD patients. CONCLUSION Future studies on microbiome, fungi and viruses in IDD is necessary to revolutionize our thinking about their possible role in the development of IVD diseases. Furthermore, we believe that inflammation inhibition and interruption of amplification of cascade reaction in IVD by targeting the gut and IVD microbiome is worthwhile for the treatment of IDD and LBP. LEVEL OF EVIDENCE I Diagnostic: individual cross-sectional studies with the consistently applied reference standard and blinding.
Collapse
Affiliation(s)
- Wentian Li
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW, 2217, Australia
| | - Kaitao Lai
- Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Neha Chopra
- Spine Service, St. George Private Hospital, Kogarah, NSW, 2217, Australia
| | - Zhaomin Zheng
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW, 2217, Australia
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Abhirup Das
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW, 2217, Australia.
- Spine Service, St. George Private Hospital, Kogarah, NSW, 2217, Australia.
| | - Ashish D Diwan
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW, 2217, Australia
- Spine Service, St. George Private Hospital, Kogarah, NSW, 2217, Australia
| |
Collapse
|
173
|
Song H, Xiao K, Chen Z, Long Q. Analysis of Conjunctival Sac Microbiome in Dry Eye Patients With and Without Sjögren's Syndrome. Front Med (Lausanne) 2022; 9:841112. [PMID: 35350577 PMCID: PMC8957797 DOI: 10.3389/fmed.2022.841112] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
Purpose To analyze the conjunctival sac microbial communities in patients with Sjögren's syndrome-associated dry eyes (SSDE) and non-Sjögren's syndrome-associated dry eyes (NSSDE), compared with normal controls (NC). Methods Conjunctival sac swab samples from 23 eyes of SSDE, 36 eyes of NSSDE, and 39 eyes of NC were collected. The V3–V4 region of the 16S ribosomal RNA (rRNA) gene high-throughput sequencing was performed on an Illumina MiSeq platform and analyzed using Quantitative Insights Into Microbial Ecology (QIIME). Alpha diversity was employed to analyze microbiome diversity through Chao1 and Shannon indexes. Beta diversity was demonstrated by the principal coordinates analysis (PCoA) and Partial Least Squares Discrimination Analysis (PLS-DA). The relative abundance was bioinformatically analyzed at the phylum and genus levels. Results The alpha diversity was lower in patients with dry eye disease (Shannon index: NC vs. SSDE: P = 0.020, NC vs. NSSDE: P = 0.029). The beta diversity showed divergent microbiome composition in different groups (NC vs. SSDE: P = 0.001, NC vs. NSSDE: P = 0.001, NSSDE vs. SSDE: P = 0.005). The top 5 abundant phyla were Firmicutes, Proteobacteria, Actinobacteriota, Bacteroidota, and Cyanobacteria in all three groups. The top five abundant genera included Acinetobacter, Staphylococcus, Bacillus, Corynebacterium, and Clostridium_sensu_stricto_1. The relative microbiome abundance was different between groups. The Firmicutes/Bacteroidetes (F/B) ratio was 6.42, 7.31, and 9.71 in the NC, NSSDE, and SSDE groups, respectively (NC vs. SSDE: P = 0.038, NC vs. NSSDE: P = 0.991, SSDE vs. NSSDE: P = 0.048). Conclusion The diversity of conjunctival sac microbiome in patients with NSSDE and SSDE was diminished compared with NC. The main microbiome at the phylum and genus level were similar between groups, but the relative abundance had variations. The Firmicutes/Bacteroidetes ratio was higher in the SSDE group.
Collapse
Affiliation(s)
- Hang Song
- Department of Ophthalmology, Peking Union Medical College Hospital, Beijing, China.,Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kang Xiao
- Department of Ophthalmology, Peking Union Medical College Hospital, Beijing, China.,Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhengyu Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Beijing, China.,Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qin Long
- Department of Ophthalmology, Peking Union Medical College Hospital, Beijing, China.,Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
174
|
Nguyen NT, Sun WH, Chen TH, Tsai PC, Chen CC, Huang SL. Gut Mucosal Microbiome Is Perturbed in Rheumatoid Arthritis Mice and Partly Restored after TDAG8 Deficiency or Suppression by Salicylanilide Derivative. Int J Mol Sci 2022; 23:ijms23073527. [PMID: 35408888 PMCID: PMC8998664 DOI: 10.3390/ijms23073527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Rheumatoid arthritis (RA), an autoimmune disease, is characterized by chronic joint inflammation and pain. We previously found that the deletion of T-cell death-associated gene 8 (TDAG8) significantly reduces disease severity and pain in RA mice. Whether it is by modulating gut microbiota remains unclear. In this study, 64 intestinal samples of feces, cecal content, and cecal mucus from the complete Freund’s adjuvant-induced arthritis mouse models were compared. The α- and β-diversity indices of the microbiome were significantly lower in RA mice. Cecal mucus showed a higher ratio of Firmicutes to Bacteroidetes in RA than healthy mice, suggesting the ratio could serve as an RA indicator. Four core genera, Eubacterium_Ventriosum, Alloprevotella, Rikenella, and Treponema, were reduced in content in both feces and mucus RA samples, and could serve microbial markers representing RA progression. TDAG8 deficiency decreased the abundance of proinflammation-related Eubacterium_Xylanophilum, Clostridia, Ruminococcus, Paraprevotella, and Rikenellaceae, which reduced local mucosal inflammation to relieve RA disease severity and pain. The pharmacological block of the TDAG8 function by a salicylanilide derivative partly restored the RA microbiome to a healthy composition. These findings provide a further understanding of specific bacteria interactions with host gut mucus in the RA model. The modulation by TDAG8 on particular bacteria can facilitate microbiota-based therapy.
Collapse
Affiliation(s)
- Ngoc Tuan Nguyen
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Wei-Hsin Sun
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-H.S.); (T.-H.C.)
| | - Tzu-Hsuan Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-H.S.); (T.-H.C.)
| | - Po-Chun Tsai
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (P.-C.T.); (C.-C.C.)
| | - Chih-Chen Chen
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (P.-C.T.); (C.-C.C.)
| | - Shir-Ly Huang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (P.-C.T.); (C.-C.C.)
- Correspondence: ; Tel.: +886-2-2826-7108
| |
Collapse
|
175
|
Zhou JY, Zhou D, Telfer K, Reynero K, Jones MB, Hambor J, Cobb BA. Antigen presenting cell response to polysaccharide A is characterized by the generation of anti-inflammatory macrophages. Glycobiology 2022; 32:136-147. [PMID: 34939104 PMCID: PMC8934142 DOI: 10.1093/glycob/cwab111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/01/2021] [Accepted: 10/16/2021] [Indexed: 03/09/2024] Open
Abstract
Polysaccharide A (PSA) is the immunodominant capsular carbohydrate from the gram negative commensal microbe Bacteroides fragilis that has shown remarkable potency in ameliorating many rodent models of inflammatory disease by eliciting downstream suppressive CD4+ T cells. PSA is composed of a zwitterionic repeating unit that allows it to be processed by antigen presenting cells (APCs) and presented by MHCII in a glycosylation-dependent manner. While previous work has uncovered much about the interactions between MHCII and PSA, as well as the downstream T cell response, little is known about how PSA affects the phenotype of MHCII+ APCs, including macrophages. Here, we utilized an unbiased systems approach consisting of RNAseq transcriptomics, high-throughput flow cytometry, Luminex analysis and targeted validation experiments to characterize the impact of PSA-mediated stimulation of splenic MHCII+ cells. The data revealed that PSA potently elicited the upregulation of an alternatively activated M2 macrophage transcriptomic and cell surface signature. Cell-type-specific validation experiments further demonstrated that PSA-exposed bone marrow-derived macrophages (BMDMs) induced cell surface and intracellular markers associated with M2 macrophages compared with conventional peptide ovalbumin (ova)-exposed BMDMs. In contrast to macrophages, we also found that CD11c+ dendritic cells (DCs) upregulated the pro-T cell activation costimulatory molecule CD86 following PSA stimulation. Consistent with the divergent BMDM and DC changes, PSA-exposed DCs elicited an antigen-experienced T cell phenotype in co-cultures, whereas macrophages did not. These findings collectively demonstrate that the PSA-induced immune response is characterized by both T cell stimulation via presentation by DCs, and a previously unrecognized anti-inflammatory polarization of macrophages.
Collapse
Affiliation(s)
- Julie Y Zhou
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-7288, USA
| | - David Zhou
- Department of Computer Science, Arizona State University, 1151 S. Forest Avenue, Tempe, AZ 85281, USA
| | - Kevin Telfer
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-7288, USA
| | - Kalob Reynero
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-7288, USA
| | - Mark B Jones
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-7288, USA
| | - John Hambor
- Research Beyond Borders, Boehringer Ingelheim Pharmaceuticals, 900 Ridgebury Road, Ridgefield, CT 06877, USA
| | - Brian A Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-7288, USA
| |
Collapse
|
176
|
Chen Y, Lin Y, Shan C, Li Z, Xiao B, He R, Huang X, Wang Z, Zhang J, Qiao W. Effect of Fufang Huangqi Decoction on the Gut Microbiota in Patients With Class I or II Myasthenia Gravis. Front Neurol 2022; 13:785040. [PMID: 35370890 PMCID: PMC8971287 DOI: 10.3389/fneur.2022.785040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Objective To investigate the effect of Fufang Huangqi Decoction on the gut microbiota in patients with class I or II myasthenia gravis (MG) and to explore the correlation between gut microbiota and MG (registration number, ChiCTR2100048367; registration website, http://www.chictr.org.cn/listbycreater.aspx; NCBI: SRP338707). Methods In this study, microbial community composition and diversity analyses were carried out on fecal specimens from MG patients who did not take Fufang Huangqi Decoction (control group, n = 8) and those who took Fufang Huangqi Decoction and achieved remarkable alleviation of symptoms (medication group, n = 8). The abundance, diversity within and between habitats, taxonomic differences and corresponding discrimination markers of gut microbiota in the control group and medicated group were assessed. Results Compared with the control group, the medicated group showed a significantly decreased abundance of Bacteroidetes (P < 0.05) and significantly increased abundance of Actinobacteria at the phylum level, a significantly decreased abundance of Bacteroidaceae (P < 0.05) and significantly increased abundance of Bifidobacteriaceae at the family level and a significantly decreased abundance of Blautia and Bacteroides (P < 0.05) and significantly increased abundance of Bifidobacterium, Lactobacillus and Roseburia at the genus level. Compared to the control group, the medicated group had decreased abundance, diversity, and genetic diversity of the communities and increased coverage, but the differences were not significant (P > 0.05); the markers that differed significantly between communities at the genus level and influenced the differences between groups were Blautia, Bacteroides, Bifidobacterium and Lactobacillus. Conclusions MG patients have obvious gut microbiota-associated metabolic disorders. Fufang Huangqi Decoction regulates the gut microbiota in patients with class I or II MG by reducing the abundance of Blautia and Bacteroides and increasing the abundance of Bifidobacterium and Lactobacillus. The correlation between gut microbiota and MG may be related to cell-mediated immunity.
Collapse
Affiliation(s)
- Yanghong Chen
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Liaoning Provincial Key Laboratory for Diagnosis and Treatment of Myasthenia Gravis, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yi Lin
- Department of General Surgery, The First People's Hospital of Shenyang, Shenyang, China
| | - Caifeng Shan
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Liaoning Provincial Key Laboratory for Diagnosis and Treatment of Myasthenia Gravis, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhaoqing Li
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Liaoning Provincial Key Laboratory for Diagnosis and Treatment of Myasthenia Gravis, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Bo Xiao
- Zhejiang Jiuru Pharmaceutical Technology Co., Ltd., Hangzhou, China
| | - Rencai He
- Zhejiang Jiuru Pharmaceutical Technology Co., Ltd., Hangzhou, China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhanyou Wang
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China
| | - Jingsheng Zhang
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Liaoning Provincial Key Laboratory for Diagnosis and Treatment of Myasthenia Gravis, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- *Correspondence: Jingsheng Zhang
| | - Wenjun Qiao
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Liaoning Provincial Key Laboratory for Diagnosis and Treatment of Myasthenia Gravis, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Wenjun Qiao
| |
Collapse
|
177
|
Zhufeng Y, Xu J, Miao M, Wang Y, Li Y, Huang B, Guo Y, Tian J, Sun X, Li J, Lu D, Li Z, Li Y, He J. Modification of Intestinal Microbiota Dysbiosis by Low-Dose Interleukin-2 in Dermatomyositis: A Post Hoc Analysis From a Clinical Trial Study. Front Cell Infect Microbiol 2022; 12:757099. [PMID: 35360108 PMCID: PMC8964112 DOI: 10.3389/fcimb.2022.757099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
The microbiota has been observed altered in autoimmune diseases, including idiopathic inflammatory myopathies (IIMs), and associated with different treatments. Low-dose IL-2 treatment emerges as a new option for active IIMs. This study aims to explore the role of low-dose IL-2 in regulating intestinal dysbiosis involved in the IIMs. In this study, 13 patients with active IIMs were enrolled and received 1 ×106 IU of IL-2 subcutaneously every other day for 12 weeks plus standard care. The clinical response and immune response were assessed. Stool samples were obtained to explore the structural and functional alterations of the fecal microbiota targeting the V3–V4 region of the 16S rRNA gene and analyze their associations with clinical and immunological characteristics. Our study demonstrated that diversity of microbiota decreased remarkably in patients with IIMs, compared to healthy controls. The inflammatory-related bacteria, such as Prevotellaceae increased, while some butyrate-producing bacteria, such as Pseudobutyrivibrio, Lachnospiraceae, Roseburia, and Blautia, decreased significantly. The alteration associated with disease activities in patients with IIMs. After low-dose IL-2 treatment, 92.31% (12/13) of patients achieved IMACS DOI at week 12. Proportion of Treg cells significantly increased at week 12 compared with that in baseline (15.9% [7.73, 19.4%] vs. 9.89% [6.02, 11.8%], P = 0.015). Interestingly, certain butyrate-producing bacteria increase significantly after IL-2 treatment, like Lachnospiraceae, Pseudobutyrivibrio, etc., and are associated with a rise in L-Asparagine and L-Leucine. The effects of low-dose IL-2 on gut microbiota were more apparent in NOD mice. Together, the data presented demonstrated that low-dose IL-2 was effective in active IIMs and highlighted the potential for modifying the intestinal microbiomes of dysbiosis to treat IIMs.
Collapse
Affiliation(s)
- Yunzhi Zhufeng
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
| | - Jun Xu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing, China
| | - Miao Miao
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
| | - Yifan Wang
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
| | - Yimin Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
| | - Bo Huang
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
| | - Yixue Guo
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
| | - Jiayi Tian
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
| | - Jing Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
| | - Dan Lu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yuhui Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- *Correspondence: Yuhui Li, ; Jing He,
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- *Correspondence: Yuhui Li, ; Jing He,
| |
Collapse
|
178
|
Sisti D, Pazienza V, Piccini F, Citterio B, Baffone W, Donati Zeppa S, Biavasco F, Prospero E, De Luca A, Artico M, Taurone S, Minelli A, Perri F, Binda E, Pracella R, Santolini R, Amatori S, Sestili P, Rocchi MBL, Gobbi P. A proposal for the reference intervals of the Italian microbiota "scaffold" in healthy adults. Sci Rep 2022; 12:3952. [PMID: 35273317 PMCID: PMC8913673 DOI: 10.1038/s41598-022-08000-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Numerous factors, ranging from genetics, age, lifestyle, and dietary habits to local environments, contribute to the heterogeneity of the microbiota in humans. Understanding the variability of a “healthy microbiota” is a major challenge in scientific research. The gut microbiota profiles of 148 healthy Italian volunteers were examined by 16S rRNA gene sequencing to determine the range and diversity of taxonomic compositions in the gut microbiota of healthy populations. Possible driving factors were evaluated through a detailed anamnestic questionnaire. Microbiota reference intervals were also calculated. A “scaffold” of a healthy Italian gut microbiota composition was identified. Differences in relative quantitative ratios of microbiota composition were detected in two clusters: a bigger cluster (C2), which included 124 subjects, was characterized by more people from the northern Italian regions, who habitually practised more physical activity and with fewer dietary restrictions. Species richness and diversity were significantly higher in this cluster (C2) than in the other one (C1) (C1: 146.67 ± 43.67; C2: 198.17 ± 48.47; F = 23.40; P < 0.001 and C1: 16.88 ± 8.66; C2: 35.01 ± 13.40; F = 40.50; P < 0.001, respectively). The main contribution of the present study was the identification of the existence of a primary healthy microbiological framework that is only marginally affected by variations. Taken together, our data help to contextualize studies on population-specific variations, including marginal aspects, in human microbiota composition. Such variations must be related to the primary framework of a healthy microbiota and providing this perspective could help scientists to better design experimental plans and develop strategies for precision tailored microbiota modulation.
Collapse
Affiliation(s)
- Davide Sisti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Valerio Pazienza
- Division of Gastroenterology, IRCCS "Casa Sollievo della Sofferenza" Hospital, 71013, San Giovanni Rotondo, Italy
| | | | - Barbara Citterio
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Wally Baffone
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Francesca Biavasco
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60121, Ancona, Italy
| | - Emilia Prospero
- Department of Biomedical Sciences, Università Politecnica delle Marche, 60121, Ancona, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Marco Artico
- Department of Sense Organs, La Sapienza University, 00185, Rome, Italy
| | - Samanta Taurone
- Department of Sense Organs, La Sapienza University, 00185, Rome, Italy
| | - Andrea Minelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Francesco Perri
- Division of Gastroenterology, IRCCS "Casa Sollievo della Sofferenza" Hospital, 71013, San Giovanni Rotondo, Italy
| | - Elena Binda
- Cancer Stem Cells Unit ISBReMIT, IRCCS "Casa Sollievo della Sofferenza" Hospital, 71013, San Giovanni Rotondo, Italy
| | - Riccardo Pracella
- Cancer Stem Cells Unit ISBReMIT, IRCCS "Casa Sollievo della Sofferenza" Hospital, 71013, San Giovanni Rotondo, Italy
| | - Riccardo Santolini
- Department of Humanities, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Stefano Amatori
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 7, 61029, Urbino, Italy.
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Marco B L Rocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Pietro Gobbi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 7, 61029, Urbino, Italy
| |
Collapse
|
179
|
Schaefer L, Trujillo-Vargas CM, Midani FS, Pflugfelder SC, Britton RA, de Paiva CS. Gut Microbiota From Sjögren syndrome Patients Causes Decreased T Regulatory Cells in the Lymphoid Organs and Desiccation-Induced Corneal Barrier Disruption in Mice. Front Med (Lausanne) 2022; 9:852918. [PMID: 35355610 PMCID: PMC8959809 DOI: 10.3389/fmed.2022.852918] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Sjögren syndrome (SS) is an autoimmune inflammatory disorder characterized by secretory dysfunction in the eye and mouth; in the eye, this results in tear film instability, reduced tear production, and corneal barrier disruption. A growing number of studies show that homeostasis of the ocular surface is impacted by the intestinal microbiome, and several 16S sequencing studies have demonstrated dysbiosis of the intestinal microbiota in SS patients. In this study, we utilized metagenomic sequencing to perform a deeper analysis of the intestinal microbiome using stools collected from sex- and age-matched healthy (n = 20), dry eye (n = 4) and SS (n = 7) subjects. The observed Operational Taxonomic Units (OTUs) and Shannon alpha diversity were significantly decreased in SS compared to healthy controls, and there was a significant inverse correlation between observed OTUs and ocular severity score. We also identified specific bacterial strains that are differentially modulated in SS vs. healthy subjects. To investigate if the differential composition of intestinal microbiome would have an impact on the immune and eye phenotype, we performed functional studies using germ-free mice colonized with human intestinal microbiota from SS patients and healthy controls. Flow cytometry analysis demonstrated reduced frequency of CD4+ FOXP3+ cells in ocular draining cervical lymph nodes (CLN) in mice colonized with SS patient intestinal microbiota 4 weeks post-colonization. We also found that offspring of SS-humanized mice also have fewer CD4+FOXP3+ cells in the CLN as well as spleen, demonstrating vertical transmission. SS-humanized mice subjected to desiccating stress exhibited greater corneal barrier disruption as compared to healthy control humanized mice under the same conditions. Taken together, these data support the hypothesis that the intestinal microbiota can modulate ocular surface health, possibly by influencing development of CD4+ FOXP3+ regulatory T cells (Tregs) in the ocular draining lymph nodes.
Collapse
Affiliation(s)
- Laura Schaefer
- Center of Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Claudia M. Trujillo-Vargas
- Center of Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Cullen Eye Institute, Houston, TX, United States
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Firas S. Midani
- Center of Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Stephen C. Pflugfelder
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Cullen Eye Institute, Houston, TX, United States
| | - Robert A. Britton
- Center of Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Cintia S. de Paiva
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Cullen Eye Institute, Houston, TX, United States
| |
Collapse
|
180
|
Qin Y, Gao C, Luo J. Metabolism Characteristics of Th17 and Regulatory T Cells in Autoimmune Diseases. Front Immunol 2022; 13:828191. [PMID: 35281063 PMCID: PMC8913504 DOI: 10.3389/fimmu.2022.828191] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
The abnormal number and functional deficiency of immune cells are the pathological basis of various diseases. Recent years, the imbalance of Th17/regulatory T (Treg) cell underlies the occurrence and development of inflammation in autoimmune diseases (AID). Currently, studies have shown that material and energy metabolism is essential for maintaining cell survival and normal functions and the altered metabolic state of immune cells exists in a variety of AID. This review summarizes the biology and functions of Th17 and Treg cells in AID, with emphasis on the advances of the roles and regulatory mechanisms of energy metabolism in activation, differentiation and physiological function of Th17 and Treg cells, which will facilitate to provide targets for the treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Yan Qin
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jing Luo
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Jing Luo,
| |
Collapse
|
181
|
Evidence and possible mechanisms of probiotics in the management of type 1 diabetes mellitus. J Diabetes Metab Disord 2022; 21:1081-1094. [PMID: 35673472 PMCID: PMC9167374 DOI: 10.1007/s40200-022-01006-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/12/2022] [Indexed: 10/19/2022]
Abstract
Abstract Type 1 diabetes mellitus (T1DM) is one of the most common chronic immune-mediated diseases. The prevalence is worldwide especially among children and young adults. The destruction of the pancreatic β-cells due to some abnormalities in the immune system characterizes T1DM. Considering the high burden of the disease and its impact on human health, researchers have made great efforts during the last decades; investigating the disease pathogenesis and discovering new strategies for its management. Fortunately, probiotics have been found as potential remedies for T1DM. This review aims to explore the potentialities of probiotics in managing T1DM and its complications. Based on the outcomes of human and animal studies carried out from 2016 to 2021, the review hopes to assess the effectiveness of probiotics in the prevention and treatment of T1DM and its complications. We first tried to explain the disease's pathogenesis, and highlighted the possible mechanisms involved in these potentialities of probiotics. We concluded that, probiotics can be used as possible therapeutic tools for the management of T1DM. Possible mechanisms of action of probiotics include; the modulation of the gut microbiota, the regulation of inflammation-related cytokines, the production of short chain fatty acids (SCFAs), and the regulation of GLP-1. However, we recommend further studies especially human trials should be carried out to investigate these potentialities of probiotics. Highlights • T1DM is highly prevalent worldwide, causing high morbidity and mortality especially among children and young adults• Gut microbiota plays a significant role in the pathogenesis of T1DM via an interconnection with the immune system• Probiotics can be used as possible therapeutic tools for the management of T1DM• Possible mechanisms of action of probiotics include the modulation of the gut microbiota, the regulation of inflammation-related cytokines, the production of SCFAs, and the regulation of GLP-1.
Collapse
|
182
|
Dong H, Tan R, Chen Z, Wang L, Song Y, Jin M, Yin J, Li H, Li J, Yang D. The Effects of Immunosuppression on the Lung Microbiome and Metabolites in Rats. Front Microbiol 2022; 13:817159. [PMID: 35237248 PMCID: PMC8882871 DOI: 10.3389/fmicb.2022.817159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Immunosuppressed patients are more likely to suffer from pneumonia, especially Streptococcus and Enterobacter pneumonia. Studies have demonstrated the existence of a complex and dynamic microbiota on the surface of human respiratory epithelial cells, both in healthy and diseased states. However, it is not clear whether the pneumonia in immunosuppressed patients is caused by inhaled oropharyngeal pathogens or abnormal proliferation of pulmonary proteobacteria. In this study, immunosuppressed model was made by intraperitoneal injection of cyclophosphamide and oropharyngeal saliva aspiration was simulated by oral and pharyngeal tracheal instillation of sterilized phosphate buffered saline (PBS). Furthermore, the effects of immunosuppression on the lung microbial community and its metabolism were investigated using 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis. The 16S rRNA gene sequencing results showed that immunosuppression alone did not change the composition of pulmonary bacteria. Moreover, although the bacteria brought by sterilized PBS from oropharynx to lower respiratory tract changed the composition of the microflora in healthy and immunosuppressed rats, the change in the latter was more obvious. Metabolomic analysis revealed that the levels of pulmonary metabolites were disturbed in the immunosuppressed rats. The altered lung microbiota, including Streptococcaceae and Enterobacteriaceae, showed significant positive correlations with pulmonary metabolites. Our study suggested that the source of the pathogens of pneumonia in immunosuppressed rats was via inhalation and explored the relationship between lung microbiome and metabolites in immunosuppressed rats. Our results provide the basis for the development of prevention and treatment strategies for pneumonia.
Collapse
|
183
|
Lu Y, Cai X, Zheng Y, Lyv Q, Wu J. Dominant bacteria and influencing factors of early intestinal colonization in very low birth weight infants: A prospective cohort study. J Clin Lab Anal 2022; 36:e24290. [PMID: 35148012 PMCID: PMC8906041 DOI: 10.1002/jcla.24290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/01/2022] Open
Abstract
Background The intestine of newborns is colonized by bacteria immediately after birth. This study explored dominant bacteria and influencing factors of early intestinal colonization in the early life of very low birth weight infants (VLBWI). Methods We enrolled 81 VLBWI and collected anal swabs at 24 h, 7th, 14th and 21st day after birth. We conducted bacterial culture for anal swabs, then selected the colony with obvious growth advantages in the plate for further culture and identification. Afterward, we analyzed the distribution and influencing factors of intestinal dominant microbiota combined with clinical data. Results A total of 300 specimens were collected, of which 62.67% (188/300) had obvious dominant bacteria, including 29.26% (55/188) Gram‐positive bacteria and 70.74% (133/188) Gram‐negative bacteria. The top five bacteria with the highest detection rates were Klebsiella pneumoniae, Escherichia coli, Enterococcus faecium, Enterococcus faecalis and Serratia marcescens. Meconium‐stained amniotic fluid and chorioamnionitis were correlated with intestinal bacterial colonization within 24 h of birth. Mechanical ventilation and antibiotics were independent risk factors affecting colonization. Nosocomial infection of K. pneumoniae and S. marcescens were associated with intestinal colonization. The colonization rates of K. pneumoniae, E. coli, E. faecium, and E. faecalis increased with the birth time. Conclusions The colonization rate in the early life of VLBWI increased over time and the predominant bacteria were Gram‐negative bacteria. Meconium‐stained amniotic fluid and chorioamnionitis affect intestinal colonization in early life. Mechanical ventilation and antibiotics were independent risk factors for intestinal bacterial colonization. The nosocomial infection of some bacteria was significantly related to intestinal colonization.
Collapse
Affiliation(s)
- Yanbo Lu
- School of Medicine, Ningbo University, Ningbo, China
| | - Xiaohong Cai
- School of Medicine, Ningbo University, Ningbo, China
| | - Yao Zheng
- Ningbo Women and Children's Hospital, Ningbo, China
| | - Qin Lyv
- Ningbo Women and Children's Hospital, Ningbo, China
| | - Junhua Wu
- Ningbo Women and Children's Hospital, Ningbo, China
| |
Collapse
|
184
|
Dietary Natural Compounds and Vitamins as Potential Cofactors in Uterine Fibroids Growth and Development. Nutrients 2022; 14:nu14040734. [PMID: 35215384 PMCID: PMC8880543 DOI: 10.3390/nu14040734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
An analysis of the literature generated within the past 20 year-span concerning risks of uterine fibroids (UFs) occurrence and dietary factors was carried out. A link between Vitamin D deficiency and UFs formation is strongly indicated, making it a potent compound in leiomyoma therapy. Analogs of the 25-hydroxyvitamin D3, not susceptible to degradation by tissue 24-hydroxylase, appear to be especially promising and tend to show better therapeutic results. Although research on the role of Vitamin A in the formation of fibroids is contradictory, Vitamin A-enriched diet, as well as synthetic retinoid analogues, may be preventative or limit the growth of fibroids. Unambiguous conclusions cannot be drawn regarding Vitamin E and C supplementation, except for alpha-tocopherol. Alpha-tocopherol as a phytoestrogen taking part in the modulation of estrogen receptors (ERs) involved in UF etiology, should be particularly avoided in therapy. A diet enriched in fruits and vegetables, as sources of carotenoids, polyphenols, quercetin, and indole-3-carbinol, constitutes an easily modifiable lifestyle element with beneficial results in patients with UFs. Other natural substances, such as curcumin, can reduce the oxidative stress and protect against inflammation in leiomyoma. Although the exact effect of probiotics on uterine fibroids has not yet been thoroughly evaluated at this point, the protective role of dairy products, i.e., yogurt consumption, has been indicated. Trace elements such as selenium can also contribute to antioxidative and anti-inflammatory properties of a recommended diet. In contrast, heavy metals, endocrine disrupting chemicals, cigarette smoking, and a diet low in antioxidants and fiber were, alongside genetic predispositions, associated with UFs formation.
Collapse
|
185
|
Abstract
The microbiome affects establishment and growth of tumors as well as response to immune-based therapies. In this issue of Immunity, Hezaveh et al. (2022) reveal that metabolites of dietary tryptophan generated by the gut microbiota activate the aryl hydrocarbon receptor in myeloid cells, promoting an immune suppressive tumor microenvironment and facilitating pancreatic ductal adenocarcinoma growth.
Collapse
Affiliation(s)
- Timothy L Frankel
- Department of Surgery, University of Michigan, Ann Arbor, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
186
|
The impact of postmenopausal hormone therapy on the duodenal microbiome. Menopause 2022; 29:253-254. [PMID: 35131962 DOI: 10.1097/gme.0000000000001955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
187
|
Yeh LJ, Shen TC, Sun KT, Lin CL, Hsia NY. Periodontitis and Subsequent Risk of Cataract: Results From Real-World Practice. Front Med (Lausanne) 2022; 9:721119. [PMID: 35186985 PMCID: PMC8854348 DOI: 10.3389/fmed.2022.721119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 01/12/2022] [Indexed: 11/28/2022] Open
Abstract
Background Periodontitis can lead to systemic inflammation and oxidative stress, contributing to the development of various diseases. Periodontitis could also be associated with several ocular diseases. Methods We conducted a retrospective population-based cohort study using the National Health Insurance Research Database of Taiwan to evaluate the risk of cataract in people with and without periodontitis. We established a periodontitis cohort and a non-periodontitis cohort, which included 359,254 individuals between 2000 and 2012. Age, gender, and enrolled year were matched. All participants were monitored until the end of 2013. Cox proportional hazard models were applied to estimate hazard ratios (HRs) and confidence intervals (CIs). Results Patients with periodontitis had a significantly higher risk to develop cataract than those without periodontitis [10.7 vs. 7.91 per 1,000 person-years, crude HR = 1.35 (95% CI = 1.32–1.39), and adjusted HR = 1.33 (95% CI = 1.30–1.36)]. The significant levels remained the same after stratifying by age, gender, presence of comorbidity, and use of corticosteroid. In addition, we found that diabetes mellitus and hyperlipidemia had a synergistic effect in the interaction of periodontitis and cataract development. Conclusion Patients with periodontitis have a higher risk of cataract development than those without periodontitis. Such patients may request frequent ocular health check-up. Further studies should be performed to confirm the association and to understand the mechanisms.
Collapse
Affiliation(s)
- Li-Jen Yeh
- Department of Craniofacial Orthodontics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Craniofacial and Dental Science, Chang Gung University, Taoyuan, Taiwan
| | - Te-Chun Shen
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Kuo-Ting Sun
- Department of Pediatric Dentistry, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Ning-Yi Hsia
- Department of Ophthalmology, China Medical University Hospital, Taichung, Taiwan
- *Correspondence: Ning-Yi Hsia
| |
Collapse
|
188
|
Cantoni C, Lin Q, Dorsett Y, Ghezzi L, Liu Z, Pan Y, Chen K, Han Y, Li Z, Xiao H, Gormley M, Liu Y, Bokoliya S, Panier H, Suther C, Evans E, Deng L, Locca A, Mikesell R, Obert K, Newland P, Wu Y, Salter A, Cross AH, Tarr PI, Lovett-Racke A, Piccio L, Zhou Y. Alterations of host-gut microbiome interactions in multiple sclerosis. EBioMedicine 2022; 76:103798. [PMID: 35094961 PMCID: PMC8814376 DOI: 10.1016/j.ebiom.2021.103798] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/24/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022] Open
Abstract
Background Multiple sclerosis (MS) has a complex genetic, immune and metabolic pathophysiology. Recent studies implicated the gut microbiome in MS pathogenesis. However, interactions between the microbiome and host immune system, metabolism and diet have not been studied over time in this disorder. Methods We performed a six-month longitudinal multi-omics study of 49 participants (24 untreated relapse remitting MS patients and 25 age, sex, race matched healthy control individuals. Gut microbiome composition and function were characterized using 16S and metagenomic shotgun sequencing. Flow cytometry was used to characterize blood immune cell populations and cytokine profiles. Circulating metabolites were profiled by untargeted UPLC-MS. A four-day food diary was recorded to capture the habitual dietary pattern of study participants. Findings Together with changes in blood immune cells, metagenomic analysis identified a number of gut microbiota decreased in MS patients compared to healthy controls, and microbiota positively or negatively correlated with degree of disability in MS patients. MS patients demonstrated perturbations of their blood metabolome, such as linoleate metabolic pathway, fatty acid biosynthesis, chalcone, dihydrochalcone, 4-nitrocatechol and methionine. Global correlations between multi-omics demonstrated a disrupted immune-microbiome relationship and a positive blood metabolome-microbiome correlation in MS. Specific feature association analysis identified a potential correlation network linking meat servings with decreased gut microbe B. thetaiotaomicron, increased Th17 cell and greater abundance of meat-associated blood metabolites. The microbiome and metabolome profiles remained stable over six months in MS and control individuals. Interpretation Our study identified multi-system alterations in gut microbiota, immune and blood metabolome of MS patients at global and individual feature level. Multi-OMICS data integration deciphered a potential important biological network that links meat intakes with increased meat-associated blood metabolite, decreased polysaccharides digesting bacteria, and increased circulating proinflammatory marker. Funding This work was supported by the Washington University in St. Louis Institute of Clinical and Translational Sciences, funded, in part, by Grant Number # UL1 TR000448 from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award (Zhou Y, Piccio, L, Lovett-Racke A and Tarr PI); R01 NS10263304 (Zhou Y, Piccio L); the Leon and Harriet Felman Fund for Human MS Research (Piccio L and Cross AH). Cantoni C. was supported by the National MS Society Career Transition Fellowship (TA-180531003) and by donations from Whitelaw Terry, Jr. / Valerie Terry Fund. Ghezzi L. was supported by the Italian Multiple Sclerosis Society research fellowship (FISM 2018/B/1) and the National Multiple Sclerosis Society Post-Doctoral Fellowship (FG-190734474). Anne Cross was supported by The Manny & Rosalyn Rosenthal-Dr. John L. Trotter MS Center Chair in Neuroimmunology of the Barnes-Jewish Hospital Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qingqi Lin
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Yair Dorsett
- Department of Medicine, UConn Health, Farmington, CT, USA
| | - Laura Ghezzi
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Dino Ferrari Center, University of Milan, Milan, Italy
| | - Zhongmao Liu
- Department of Statistics, University of Connecticut, Storrs, CT USA
| | - Yeming Pan
- Department of Statistics, University of Connecticut, Storrs, CT USA
| | - Kun Chen
- Department of Statistics, University of Connecticut, Storrs, CT USA
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts USA
| | - Zhengze Li
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts USA
| | - Matthew Gormley
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Yue Liu
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | | | - Hunter Panier
- Department of Medicine, UConn Health, Farmington, CT, USA
| | - Cassandra Suther
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts USA
| | - Emily Evans
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Li Deng
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Alberto Locca
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert Mikesell
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathleen Obert
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Pamela Newland
- Barnes Jewish College, Goldfarb School of Nursing, St. Louis, MO, USA
| | - Yufeng Wu
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Amber Salter
- Division of Biostatistics, School of Medicine, Washington University, St. Louis, MO, USA
| | - Anne H Cross
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Phillip I Tarr
- Departments of Pediatrics and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy Lovett-Racke
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia.
| | - Yanjiao Zhou
- Department of Medicine, UConn Health, Farmington, CT, USA.
| |
Collapse
|
189
|
Bier J, Deenick EK. The role of dysregulated PI3Kdelta signaling in human autoimmunity*. Immunol Rev 2022; 307:134-144. [DOI: 10.1111/imr.13067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Julia Bier
- Garvan Institute of Medical Research Darlinghurst New South Wales Australia
- St Vincent’s Clinical School Faculty of Medicine and Health UNSW Sydney Sydney New South Wales Australia
| | - Elissa K. Deenick
- Garvan Institute of Medical Research Darlinghurst New South Wales Australia
- Faculty of Medicine and Health UNSW Sydney Sydney New South Wales Australia
| |
Collapse
|
190
|
Xu Q, Ni JJ, Han BX, Yan SS, Wei XT, Feng GJ, Zhang H, Zhang L, Li B, Pei YF. Causal Relationship Between Gut Microbiota and Autoimmune Diseases: A Two-Sample Mendelian Randomization Study. Front Immunol 2022; 12:746998. [PMID: 35140703 PMCID: PMC8819003 DOI: 10.3389/fimmu.2021.746998] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background Growing evidence has shown that alterations in gut microbiota composition are associated with multiple autoimmune diseases (ADs). However, it is unclear whether these associations reflect a causal relationship. Objective To reveal the causal association between gut microbiota and AD, we conducted a two-sample Mendelian randomization (MR) analysis. Materials and Methods We assessed genome-wide association study (GWAS) summary statistics for gut microbiota and six common ADs, namely, systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, type 1 diabetes (T1D), and celiac disease (CeD), from published GWASs. Two-sample MR analyses were first performed to identify causal bacterial taxa for ADs in discovery samples. Significant bacterial taxa were further replicated in independent replication outcome samples. A series of sensitivity analyses was performed to validate the robustness of the results. Finally, a reverse MR analysis was performed to evaluate the possibility of reverse causation. Results Combining the results from the discovery and replication stages, we identified one causal bacterial genus, Bifidobacterium. A higher relative abundance of the Bifidobacterium genus was associated with a higher risk of T1D [odds ratio (OR): 1.605; 95% CI, 1.339-1.922; PFDR = 4.19 × 10-7] and CeD (OR: 1.401; 95% CI, 1.139-1.722; PFDR = 2.03 × 10-3), respectively. Further sensitivity analyses validated the robustness of the above associations. The results of reverse MR analysis showed no evidence of reverse causality from T1D and CeD to the Bifidobacterium genus. Conclusion This study implied a causal relationship between the Bifidobacterium genus and T1D and CeD, thus providing novel insights into the gut microbiota-mediated development mechanism of ADs.
Collapse
Affiliation(s)
- Qian Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Jing-Jing Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Bai-Xue Han
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Shan-Shan Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Xin-Tong Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Gui-Juan Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Hong Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Bin Li
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Affiliated Wujiang Hospital of Nantong University, Suzhou, China
| | - Yu-Fang Pei
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
191
|
Xu Y, Nash K, Acharjee A, Gkoutos GV. CACONET: a novel classification framework for microbial correlation networks. Bioinformatics 2022; 38:1639-1647. [PMID: 34983063 PMCID: PMC8896646 DOI: 10.1093/bioinformatics/btab879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/15/2021] [Accepted: 12/30/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Existing microbiome-based disease prediction relies on the ability of machine learning methods to differentiate disease from healthy subjects based on the observed taxa abundance across samples. Despite numerous microbes have been implicated as potential biomarkers, challenges remain due to not only the statistical nature of microbiome data but also the lack of understanding of microbial interactions which can be indicative of the disease. RESULTS We propose CACONET (classification of Compositional-Aware COrrelation NETworks), a computational framework that learns to classify microbial correlation networks and extracts potential signature interactions, taking as input taxa relative abundance across samples and their health status. By using Bayesian compositional-aware correlation inference, a collection of posterior correlation networks can be drawn and used for graph-level classification, thus incorporating uncertainty in the estimates. CACONET then employs a deep learning approach for graph classification, achieving excellent performance metrics by exploiting the correlation structure. We test the framework on both simulated data and a large real-world dataset pertaining to microbiome samples of colorectal cancer (CRC) and healthy subjects, and identify potential network substructure characteristic of CRC microbiota. CACONET is customizable and can be adapted to further improve its utility. AVAILABILITY AND IMPLEMENTATION CACONET is available at https://github.com/yuanwxu/corr-net-classify. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yuanwei Xu
- To whom correspondence should be addressed.
| | - Katrina Nash
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK,NIHR Surgical Reconstruction and Microbiology Research Centre, Birmingham B15 2TT, UK,Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK,MRC Health Data Research UK (HDR), Midlands Site B15 2TT, UK
| | - Georgios V Gkoutos
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK,NIHR Surgical Reconstruction and Microbiology Research Centre, Birmingham B15 2TT, UK,Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK,MRC Health Data Research UK (HDR), Midlands Site B15 2TT, UK
| |
Collapse
|
192
|
Tsigalou C, Konstantinidis T, Aloizou AM, Bezirtzoglou E, Tsakris A. Future Therapeutic Prospects in Dealing with Autoimmune Diseases: Treatment Based on the Microbiome Model. ROLE OF MICROORGANISMS IN PATHOGENESIS AND MANAGEMENT OF AUTOIMMUNE DISEASES 2022:489-520. [DOI: 10.1007/978-981-19-4800-8_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
193
|
Hofer S, Hofstätter N, Punz B, Hasenkopf I, Johnson L, Himly M. Immunotoxicity of nanomaterials in health and disease: Current challenges and emerging approaches for identifying immune modifiers in susceptible populations. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1804. [PMID: 36416020 PMCID: PMC9787548 DOI: 10.1002/wnan.1804] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022]
Abstract
Nanosafety assessment has experienced an intense era of research during the past decades driven by a vivid interest of regulators, industry, and society. Toxicological assays based on in vitro cellular models have undergone an evolution from experimentation using nanoparticulate systems on singular epithelial cell models to employing advanced complex models more realistically mimicking the respective body barriers for analyzing their capacity to alter the immune state of exposed individuals. During this phase, a number of lessons were learned. We have thus arrived at a state where the next chapters have to be opened, pursuing the following objectives: (1) to elucidate underlying mechanisms, (2) to address effects on vulnerable groups, (3) to test material mixtures, and (4) to use realistic doses on (5) sophisticated models. Moreover, data reproducibility has become a significant demand. In this context, we studied the emerging concept of adverse outcome pathways (AOPs) from the perspective of immune activation and modulation resulting in pro-inflammatory versus tolerogenic responses. When considering the interaction of nanomaterials with biological systems, protein corona formation represents the relevant molecular initiating event (e.g., by potential alterations of nanomaterial-adsorbed proteins). Using this as an example, we illustrate how integrated experimental-computational workflows combining in vitro assays with in silico models aid in data enrichment and upon comprehensive ontology-annotated (meta)data upload to online repositories assure FAIRness (Findability, Accessibility, Interoperability, Reusability). Such digital twinning may, in future, assist in early-stage decision-making during therapeutic development, and hence, promote safe-by-design innovation in nanomedicine. Moreover, it may, in combination with in silico-based exposure-relevant dose-finding, serve for risk monitoring in particularly loaded areas, for example, workplaces, taking into account pre-existing health conditions. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Sabine Hofer
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Norbert Hofstätter
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Benjamin Punz
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Ingrid Hasenkopf
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Litty Johnson
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Martin Himly
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| |
Collapse
|
194
|
Dotan A, Mahroum N, Bogdanos DP, Shoenfeld Y. COVID-19 as an infectome paradigm of autoimmunity. J Allergy Clin Immunol 2022; 149:63-64. [PMID: 34826507 PMCID: PMC8610602 DOI: 10.1016/j.jaci.2021.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Arad Dotan
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Naim Mahroum
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Medicine "B", Sheba Medical Center, Ramat Gan, Israel
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Ariel University, Ari'el, Israel; Laboratory of the Mosaic of Autoimmunity, Saint Petersburg State University, Saint Petersburg, Russia.
| |
Collapse
|
195
|
Mazzucco R, Schlötterer C. Long-term gut microbiome dynamics in Drosophila melanogaster reveal environment-specific associations between bacterial taxa at the family level. Proc Biol Sci 2021; 288:20212193. [PMID: 34905708 PMCID: PMC8670958 DOI: 10.1098/rspb.2021.2193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The influence of the microbiome on its host is well-documented, but the interplay of its members is not yet well-understood. Even for simple microbiomes, the interaction among members of the microbiome is difficult to study. Longitudinal studies provide a promising approach to studying such interactions through the temporal covariation of different taxonomic units. By contrast to most longitudinal studies, which span only a single host generation, we here present a post hoc analysis of a whole-genome dataset of 81 samples that follows microbiome composition for up to 180 host generations, which cover nearly 10 years. The microbiome diversity remained rather stable in replicated Drosophila melanogaster populations exposed to two different temperature regimes. The composition changed, however, systematically across replicates of the two temperature regimes. Significant associations between families, mostly specific to one temperature regime, indicate functional interdependence of different microbiome components. These associations also involve moderately abundant families, which emphasizes their functional importance, and highlights the importance of looking beyond the common constituents of the Drosophila microbiome.
Collapse
Affiliation(s)
- Rupert Mazzucco
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Wien 1210, Austria
| | - Christian Schlötterer
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Wien 1210, Austria
| |
Collapse
|
196
|
Short-Chain Fatty Acids Reduced Renal Calcium Oxalate Stones by Regulating the Expression of Intestinal Oxalate Transporter SLC26A6. mSystems 2021; 6:e0104521. [PMID: 34783577 PMCID: PMC8594443 DOI: 10.1128/msystems.01045-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Renal calcium oxalate (CaOx) stone is a common urologic disease with a high prevalence and recurrence rate. However, short-chain fatty acids (SCFAs) are less often reported in the prevention of urolithiasis. This study aimed to explore the effect of SCFAs on the renal CaOx stone formation and the underlying mechanisms. Ethylene glycol was used to induce renal CaOx crystals in rats. SCFAs (acetate, propionate, or butyrate) were added as supplements to the drinking water with or without antibiotics. Because intestinal oxalate transporters SLC26A6 and SLC26A3 regulate the excretion and absorption of oxalate in the intestine, we injected adeno-associated virus 9 (AAV9)-SLC26A6-shRNA (short hairpin RNA) and AAV9-SLC26A3 into the tail vein of rats to suppress SLC26A6 and overexpress SLC26A3 expression in the intestine, respectively, to explore the role of SLC26A3 and SLC26A6 (SLC26A3/6) in the reduction of renal CaOx crystals induced by SCFAs. Results showed that SCFAs reduced renal CaOx crystals and urinary oxalate levels but, however, increased the abundance of SCFA-producing bacteria and cecum SCFA levels. SCFA supplements still reduced renal crystals and urinary oxalate after gut microbiota depletion. Propionate and butyrate downregulated intestinal oxalate transporter SLC26A3 expression, while acetate and propionate upregulated SLC26A6 expression, both in vivo and in vitro. AAV9-SLC26A3 exerted a protective effect against renal crystals, while AAV9-SLC26A6-shRNA contributed to the renal crystal formation even though the SCFAs were supplemented. In conclusion, SCFAs could reduce urinary oxalate and renal CaOx stones through the oxalate transporter SLC26A6 in the intestine. SCFAs may be new supplements for preventing the formation of renal CaOx stones. IMPORTANCE Some studies found that the relative abundances of short-chain-fatty-acid (SCFA)-producing bacteria were lower in the gut microbiota of renal stone patients than healthy controls. Our previous study demonstrated that SCFAs could reduce the formation of renal calcium oxalate (CaOx) stones, but the mechanism is still unknown. In this study, we found that SCFAs (acetate, propionate, and butyrate) reduced the formation of renal calcium oxalate (CaOx) crystals and the level of urinary oxalate. Depleting gut microbiota increased the amount of renal crystals in model rats, and SCFA supplements reduced renal crystals and urinary oxalate after gut microbiota depletion. Intestinal oxalate transporter SLC26A6 was a direct target of SCFAs. Our findings suggested that SCFAs could reduce urinary oxalate and renal CaOx stones through the oxalate transporter SLC26A6 in the intestine. SCFAs may be new supplements for preventing the formation of renal CaOx stones.
Collapse
|
197
|
Guo X, Yang X, Li Q, Shen X, Zhong H, Yang Y. The Microbiota in Systemic Lupus Erythematosus: An Update on the Potential Function of Probiotics. Front Pharmacol 2021; 12:759095. [PMID: 34887760 PMCID: PMC8650621 DOI: 10.3389/fphar.2021.759095] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a kind of chronic diffuse connective tissue illness characterized by multisystem and multiorgan involvement, repeated recurrence and remission, and the presence of a large pool of autoantibodies in the body. Although the exact cause of SLE is not thoroughly revealed, accumulating evidence has manifested that intake of probiotics alters the composition of the gut microbiome, regulating the immunomodulatory and inflammatory response, which may be linked to the disease pathogenesis. Particularly, documented experiments demonstrated that SLE patients have remarkable changes in gut microbiota compared to healthy controls, indicating that the alteration of microbiota may be implicated in different phases of SLE. In this review, the alteration of microbiota in the development of SLE is summarized, and the mechanism of intestinal microbiota on the progression of immune and inflammatory responses in SLE is also discussed. Due to limited reports on the effects of probiotics supplementation in SLE patients, we emphasize advancements made in the last few years on the function and mechanisms of probiotics in the development of SLE animal models. Besides, we follow through literature to survey whether probiotics supplements can be an adjuvant therapy for comprehensive treatment of SLE. Research has indicated that intake of probiotics alters the composition of the gut microbiome, contributing to prevent the progression of SLE. Adjustment of the gut microbiome through probiotics supplementation seems to alleviate SLE symptoms and their cardiovascular and renal complications in animal models, marking this treatment as a potentially novel approach.
Collapse
Affiliation(s)
- Xirui Guo
- Department of Pharmacy, Chengdu Second People's Hospital, Chengdu, China
| | - Xuerong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyan Shen
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huiyun Zhong
- Department of Pharmacy, Sichuan Vocational College of Health and Rehabilitation, Zigong, China.,Department of Pharmacy, The First People's Hospital of Zigong, Zigong, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
198
|
Kim DS, Park Y, Choi JW, Park SH, Cho ML, Kwok SK. Lactobacillus acidophilus Supplementation Exerts a Synergistic Effect on Tacrolimus Efficacy by Modulating Th17/Treg Balance in Lupus-Prone Mice via the SIGNR3 Pathway. Front Immunol 2021; 12:696074. [PMID: 34956169 PMCID: PMC8704231 DOI: 10.3389/fimmu.2021.696074] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTacrolimus (Tac) is an immunosuppressant used in the treatment of systemic lupus erythematosus (SLE); however, it induces T cell subset imbalances by reducing regulatory T (Treg) cells. Lactobacillus acidophilus (LA) is reported to have therapeutic efficacy in immune-mediated diseases via T cell regulation.MethodsThis study investigated whether a combination therapy of LA and Tac improves the therapeutic efficacy of Tac by modulating T cell subset populations in an animal model of SLE. Eight-week-old MRL/lpr mice were orally administered with 5 mg/kg of Tac and/or 50 mg/kg of LA daily for 8 weeks. Cecal microbiota compositions, serum autoantibodies levels, the degree of proteinuria, histological changes in the kidney, and populations of various T cell subsets in the spleen were analyzed.ResultsMice presented with significant gut dysbiosis, which were subsequently recovered by the combination treatment of Tac and LA. Double negative T cells in the peripheral blood and spleens of MRL/lpr mice were significantly decreased by the combination therapy. The combination treatment reduced serum levels of anti-dsDNA antibodies and Immunoglobulin G2a, and renal pathology scores were also markedly alleviated. The combination therapy induced Treg cells and decreased T helper 17 (Th17) cells both in vitro and in vivo. In vitro treatment with LA induced the production of indoleamine-2,3-dioxygenase, programmed death-ligand 1, and interleukin-10 via the specific intracellular adhesion molecule-3 grabbing non-integrin homolog-related 3 receptor signals.ConclusionThe present findings indicate that LA augments the therapeutic effect of Tac and modulates Th17/Treg balance in a murine model of SLE.
Collapse
Affiliation(s)
- Da Som Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Youngjae Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeong-Won Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- *Correspondence: Mi-La Cho, ; Seung-Ki Kwok,
| | - Seung-Ki Kwok
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- *Correspondence: Mi-La Cho, ; Seung-Ki Kwok,
| |
Collapse
|
199
|
Danilenko V, Devyatkin A, Marsova M, Shibilova M, Ilyasov R, Shmyrev V. Common Inflammatory Mechanisms in COVID-19 and Parkinson's Diseases: The Role of Microbiome, Pharmabiotics and Postbiotics in Their Prevention. J Inflamm Res 2021; 14:6349-6381. [PMID: 34876830 PMCID: PMC8643201 DOI: 10.2147/jir.s333887] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decade, metagenomic studies have shown the key role of the gut microbiome in maintaining immune and neuroendocrine systems. Malfunction of the gut microbiome can induce inflammatory processes, oxidative stress, and cytokine storm. Dysfunction of the gut microbiome can be caused by short-term (virus infection and other infectious diseases) or long-term (environment, nutrition, and stress) factors. Here, we reviewed the inflammation and oxidative stress in neurodegenerative diseases and coronavirus infection (COVID-19). Here, we reviewed the renin-angiotensin-aldosterone system (RAAS) involved in the processes of formation of oxidative stress and inflammation in viral and neurodegenerative diseases. Moreover, the coronavirus uses ACE2 receptors of the RAAS to penetrate human cells. The coronavirus infection can be the trigger for neurodegenerative diseases by dysfunction of the RAAS. Pharmabiotics, postbiotics, and next-generation probiotics, are considered as a means to prevent oxidative stress, inflammatory processes, neurodegenerative and viral diseases through gut microbiome regulation.
Collapse
Affiliation(s)
- Valery Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Devyatkin
- Central Clinical Hospital with a Polyclinic CMP RF, Moscow, Russia
| | - Mariya Marsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Rustem Ilyasov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
200
|
Ma Y, Guo R, Sun Y, Li X, He L, Li Z, Silverman GJ, Chen G, Gao F, Yuan J, Wei Q, Li M, Lu L, Niu H. Lupus gut microbiota transplants cause autoimmunity and inflammation. Clin Immunol 2021; 233:108892. [PMID: 34813937 DOI: 10.1016/j.clim.2021.108892] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The etiology of systemic lupus erythematosus (SLE) is multifactorial. Recently, growing evidence suggests that the microbiota plays a role in SLE, yet whether gut microbiota participates in the development of SLE remains largely unknown. To investigate this issue, we carried out 16 s rDNA sequencing analyses in a cohort of 18 female un-treated active SLE patients and 7 female healthy controls, and performed fecal microbiota transplantation from patients and healthy controls to germ-free (GF) mice. RESULTS Compared to the healthy controls, we found no significant different microbial diversity but some significantly different species in SLE patients including Turicibacter genus and other 5 species. Fecal transfer from SLE patients to GF mice caused GF mice to develop a series of lupus-like phenotypic features, including increased serum autoimmune antibodies, imbalanced cytokines, altered distribution of immune cells in mucosal and peripheral immune response, and upregulated expression of genes related to SLE in recipient mice that received SLE fecal microbiota transplantation (FMT). Moreover, the metabolism of histidine was significantly altered in GF mice treated with SLE patient feces, as compared to those which received healthy fecal transplants. CONCLUSIONS Overall, our results describe a causal role of aberrant gut microbiota in contributing to the pathogenesis of SLE. The interplay of gut microbial and histidine metabolism may be one of the mechanisms intertwined with autoimmune activation in SLE.
Collapse
Affiliation(s)
- Yiyangzi Ma
- School of Medicine and Institute of Laboratory Animal Sciences, Jinan University; Guangzhou Key Laboratory of Germ-free Animals and Microbiota Application, Guangzhou 510632, China; Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200001, China
| | - Ruru Guo
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200001, China
| | - Yiduo Sun
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China; Department of Rheumatology,The First Affiliated Hospital, Zhejiang University School of Medicine (FAHZU), Hangzhou 310003, China
| | - Xin Li
- School of Medicine and Institute of Laboratory Animal Sciences, Jinan University; Guangzhou Key Laboratory of Germ-free Animals and Microbiota Application, Guangzhou 510632, China
| | - Lun He
- School of Medicine and Institute of Laboratory Animal Sciences, Jinan University; Guangzhou Key Laboratory of Germ-free Animals and Microbiota Application, Guangzhou 510632, China
| | - Zhao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China; Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Gregg J Silverman
- Division of Rheumatology, New York University School of Medicine, New York, NY 10016, USA
| | - Guobing Chen
- School of Medicine and Institute of Laboratory Animal Sciences, Jinan University; Guangzhou Key Laboratory of Germ-free Animals and Microbiota Application, Guangzhou 510632, China
| | - Feng Gao
- School of Medicine and Institute of Laboratory Animal Sciences, Jinan University; Guangzhou Key Laboratory of Germ-free Animals and Microbiota Application, Guangzhou 510632, China
| | - Jiali Yuan
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, China
| | - Qiang Wei
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China.
| | - Liangjing Lu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200001, China.
| | - Haitao Niu
- School of Medicine and Institute of Laboratory Animal Sciences, Jinan University; Guangzhou Key Laboratory of Germ-free Animals and Microbiota Application, Guangzhou 510632, China; Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200001, China.
| |
Collapse
|