151
|
Niklander SE, Murdoch C, Hunter KD. IL-1/IL-1R Signaling in Head and Neck Cancer. FRONTIERS IN ORAL HEALTH 2021; 2:722676. [PMID: 35048046 PMCID: PMC8757896 DOI: 10.3389/froh.2021.722676] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/04/2021] [Indexed: 01/22/2023] Open
Abstract
Decades ago, the study of cancer biology was mainly focused on the tumor itself, paying little attention to the tumor microenvironment (TME). Currently, it is well recognized that the TME plays a vital role in cancer development and progression, with emerging treatment strategies focusing on different components of the TME, including tumoral cells, blood vessels, fibroblasts, senescent cells, inflammatory cells, inflammatory factors, among others. There is a well-accepted relationship between chronic inflammation and cancer development. Interleukin-1 (IL-1), a potent pro-inflammatory cytokine commonly found at tumor sites, is considered one of the most important inflammatory factors in cancer, and has been related with carcinogenesis, tumor growth and metastasis. Increasing evidence has linked development of head and neck squamous cell carcinoma (HNSCC) with chronic inflammation, and particularly, with IL-1 signaling. This review focuses on the most important members of the IL-1 family, with emphasis on how their aberrant expression can promote HNSCC development and metastasis, highlighting possible clinical applications.
Collapse
Affiliation(s)
- Sven E. Niklander
- Unidad de Patología y Medicina Oral, Facultad de Odontologia, Universidad Andres Bello, Viña del Mar, Chile
| | - Craig Murdoch
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Keith D. Hunter
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- Oral Biology and Pathology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
152
|
Roy D, Ehtesham NZ, Hasnain SE. Is Mycobacterium tuberculosis carcinogenic to humans? FASEB J 2021; 35:e21853. [PMID: 34416038 DOI: 10.1096/fj.202001581rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 05/20/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
We highlight the ability of the tuberculosis (TB) causing bacterial pathogen, Mycobacterium tuberculosis (Mtb), to induce key characteristics that are associated with established IARC classified Group 1 and Group 2A carcinogenic agents. There is sufficient evidence from epidemiological case-control, cohort and meta-analysis studies of increased lung cancer (LC) risk in pre-existing/active/old TB cases. Similar to carcinogens and other pathogenic infectious agents, exposure to aerosol-containing Mtb sprays in mice produce malignant transformation of cells that result in squamous cell carcinoma. Convincing, mechanistic data show several characteristics shared between TB and LC which include chronic inflammation, genomic instability and replicative immortality, just to name a few cancer hallmarks. These hallmarks of cancer may serve as precursors to malignant transformation. Together, these findings form the basis of our postulate that Mtb is a complete human pulmonary carcinogen. We also discuss how Mtb may act as both an initiating agent and promoter of tumor growth. Forthcoming experimental studies will not only serve as proof-of-concept but will also pivot our understanding of how to manage/treat TB cases as well as offer solutions to clinical conundrums of TB lesions masquerading as tumors. Clinical validation of our concept may also help pave the way for next generation personalized medicine for the management of pulmonary TB/cancer particularly for cases that are not responding well to conventional chemotherapy or TB drugs.
Collapse
Affiliation(s)
- Deodutta Roy
- Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| | - Nasreen Z Ehtesham
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Seyed Ehtesham Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India.,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| |
Collapse
|
153
|
Nordin FJ, Pearanpan L, Chan KM, Kumolosasi E, Yong YK, Shaari K, Rajab NF. Immunomodulatory potential of Clinacanthus nutans extracts in the co-culture of triple-negative breast cancer cells, MDA-MB-231, and THP-1 macrophages. PLoS One 2021; 16:e0256012. [PMID: 34379689 PMCID: PMC8357171 DOI: 10.1371/journal.pone.0256012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer is the main type of breast carcinoma that causes mortality among women because of the limited treatment options and high recurrence. Chronic inflammation has been linked with the tumor microenvironment (TME) in breast cancer progression. Clinacanthus nutans (CN) has gained much attention because of its anticancer properties, but its mechanism remains unclear. We aimed to study the qualitative phytochemical content and elucidate the cytotoxicity effects of CN on human triple-negative breast cancer (TNBC), MDA-MB-231 and human macrophage-like cells such as THP-1 by using sulforhodamine B (SRB) assay. As highly metastatic cells, MDA-MB-231 cells can migrate to the distal position, the effect of CN on migration were also elucidated using the scratch assay. The CN effects on ameliorating chronic inflammation in TME were studied following the co-culture of MDA-MB-231/THP-1 macrophages. The cytokine expression levels of IL-6, IL-1β and tumor necrosis factor-alpha (TNF-α) were determined using ELISA assays. The results showed that both ethanolic and aqueous CN extracts contained alkaloid, phenol and tannin, flavonoid, terpenoid, glycoside and steroid. However, saponin was only found in the aqueous extract of CN. CN was not cytotoxic to both MDA-MB-231 and THP-1 cells. The ability of MDA-MB-231 to migrate was also not halted by CN treatment. However, CN ethanol extract decreased IL-6 at 25 μg/mL (p = 0.02) and 100 μg/mL (p = 0.03) but CN aqueous extract increased IL-6 expression at 50 μg/mL (p = 0.08) and 100 μg/mL (p = 0.02). IL-1β showed decreased expression after treated with CN ethanol and CN aqueous both at 25 μg/mL (p = 0.03). TNF-α were significantly decreased after CN ethanol treatment at concentration 25- (p = 0.001), 50- (p = 0.000) and 100 μg/mL (p = 0.000). CN aqueous extract slightly inhibited TNF-α at all 25–50- and 100 μg/mL (p = 0.001, p = 0.000, p = 0.000, respectively). Overall, CN acts by ameliorating the pro-inflammatory condition in the TME and may be a potential strategy for its anticancer mechanism on highly metastatic breast cancer condition. The major pathways that link both cancer and inflammation were NF-κB and STATs thus further study on the upstream and downstream pathways is needed to fully understand the mechanism of CN extracts in cooling the inflamed TME in breast cancer.
Collapse
Affiliation(s)
- Fariza Juliana Nordin
- Biomedical Science Program, Center for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Lishantini Pearanpan
- Biomedical Science Program, Center for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok Meng Chan
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Endang Kumolosasi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Seri Kembangan, Selangor, Malaysia
| | - Khozirah Shaari
- Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Seri Kembangan, Malaysia
| | - Nor Fadilah Rajab
- Biomedical Science Program, Center for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
154
|
Chemotherapy: a double-edged sword in cancer treatment. Cancer Immunol Immunother 2021; 71:507-526. [PMID: 34355266 DOI: 10.1007/s00262-021-03013-3] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
Chemotherapy is a well-known and effective treatment for different cancers; unfortunately, it has not been as efficient in the eradication of all cancer cells as been expected. The mechanism of this failure was not fully clarified, yet. Meanwhile, alterations in the physiologic conditions of the tumor microenvironment (TME) were suggested as one of the underlying possibilities. Chemotherapy drugs can activate multiple signaling pathways and augment the secretion of inflammatory mediators. Inflammation may show two opposite roles in the TME. On the one hand, inflammation, as an innate immune response, tries to suppress tumor growth but on the other hand, it might be not powerful enough to eradicate the cancer cells and even it can provide appropriate conditions for cancer promotion and relapse as well. Therefore, the administration of mild anti-inflammatory drugs during chemotherapy might result in more successful clinical results. Here, we will review and discuss this hypothesis. Most chemotherapy agents are triggers of inflammation in the tumor microenvironment through inducing the production of senescence-associated secretory phenotype (SASP) molecules. Some chemotherapy agents can induce systematic inflammation by provoking TLR4 signaling or triggering IL-1B secretion through the inflammasome pathway. NF-kB and MAPK are key signaling pathways of inflammation and could be activated by several chemotherapy drugs. Furthermore, inflammation can play a key role in cancer development, metastasis and exacerbation.
Collapse
|
155
|
Hormaechea-Agulla D, Matatall KA, Le DT, Kain B, Long X, Kus P, Jaksik R, Challen GA, Kimmel M, King KY. Chronic infection drives Dnmt3a-loss-of-function clonal hematopoiesis via IFNγ signaling. Cell Stem Cell 2021; 28:1428-1442.e6. [PMID: 33743191 PMCID: PMC8349829 DOI: 10.1016/j.stem.2021.03.002] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 01/08/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Age-related clonal hematopoiesis (CH) is a risk factor for malignancy, cardiovascular disease, and all-cause mortality. Somatic mutations in DNMT3A are drivers of CH, but decades may elapse between the acquisition of a mutation and CH, suggesting that environmental factors contribute to clonal expansion. We tested whether infection provides selective pressure favoring the expansion of Dnmt3a mutant hematopoietic stem cells (HSCs) in mouse chimeras. We created Dnmt3a-mosaic mice by transplanting Dnmt3a-/- and WT HSCs into WT mice and observed the substantial expansion of Dnmt3a-/- HSCs during chronic mycobacterial infection. Injection of recombinant IFNγ alone was sufficient to phenocopy CH by Dnmt3a-/- HSCs upon infection. Transcriptional and epigenetic profiling and functional studies indicate reduced differentiation associated with widespread methylation alterations, and reduced secondary stress-induced apoptosis accounts for Dnmt3a-/- clonal expansion during infection. DNMT3A mutant human HSCs similarly exhibit defective IFNγ-induced differentiation. We thus demonstrate that IFNγ signaling induced during chronic infection can drive DNMT3A-loss-of-function CH.
Collapse
Affiliation(s)
- Daniel Hormaechea-Agulla
- Department of Pediatrics, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katie A Matatall
- Department of Pediatrics, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Duy T Le
- Program in Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bailee Kain
- Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaochen Long
- Department of Statistics, Rice University, Houston, TX 77030, USA
| | - Pawel Kus
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Roman Jaksik
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Grant A Challen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marek Kimmel
- Department of Statistics, Rice University, Houston, TX 77030, USA; Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Katherine Y King
- Department of Pediatrics, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA; Program in Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
156
|
Laird BJ, McMillan D, Skipworth RJE, Fallon MT, Paval DR, McNeish I, Gallagher IJ. The Emerging Role of Interleukin 1β (IL-1β) in Cancer Cachexia. Inflammation 2021; 44:1223-1228. [PMID: 33907915 PMCID: PMC8285330 DOI: 10.1007/s10753-021-01429-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/07/2021] [Accepted: 01/27/2021] [Indexed: 01/06/2023]
Abstract
Treatment of cancer cachexia remains an unmet need. The host-tumour interface and the resulting sequestration of the pro-inflammatory cytokine Il-1β is critical in cachexia development. Neuroinflammation mediated via IL-1β through the hypothalamic pituitary axis results in increased muscle proteolysis and adipose lipolysis, thus creating a prolonged stress-like environment with loss of appetite and increased resting energy expenditure. Recent trials using a monoclonal antibody targeting IL-1β, canakinumab, have shown a potential role in lung cancer; however, a potential role of targeting IL-1β to treat cachexia in patients with lung cancer is unclear, yet the underlying pathophysiology provides a sound rationale that this may be a viable therapeutic approach.
Collapse
Affiliation(s)
- Barry J Laird
- Insitute of Genetics and Cancer, University of Edinburgh, Crewe Road, EH4 2XR, Edinburgh, UK.
| | - Donald McMillan
- Department of Surgical Sciences, Glasgow Royal Infirmary, University of Glasgow, Glasgow, UK
| | | | - Marie T Fallon
- Insitute of Genetics and Cancer, University of Edinburgh, Crewe Road, EH4 2XR, Edinburgh, UK
| | - D Robert Paval
- Faculty of Health Sciences & Sport, University of Stirling, Stirling, UK
| | - Iain McNeish
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Iain J Gallagher
- Faculty of Health Sciences & Sport, University of Stirling, Stirling, UK
| |
Collapse
|
157
|
Richter J, Brouwer S, Schroder K, Walker MJ. Inflammasome activation and IL-1β signalling in group A Streptococcus disease. Cell Microbiol 2021; 23:e13373. [PMID: 34155776 DOI: 10.1111/cmi.13373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023]
Abstract
Group A Streptococcus (GAS) is a Gram-positive bacterial pathogen that causes significant morbidity and mortality worldwide. Recent clinical evidence suggests that the inflammatory marker interleukin-1β (IL-1β) plays an important role in GAS disease progression, and presents a potential target for therapeutic intervention. Interaction with GAS activates the host inflammasome pathway to stimulate production and secretion of IL-1β, but GAS can also stimulate IL-1β production in an inflammasome-independent manner. This review highlights progress that has been made in understanding the importance of host cell inflammasomes and IL-1 signalling in GAS disease, and explores challenges and unsolved problems in this host-pathogen interaction. TAKE AWAY: Inflammasome signalling during GAS infection is an emerging field of research. GAS modulates the NLRP3 inflammasome pathway through multiple mechanisms. SpeB contributes to IL-1β production independently of the inflammasome pathway. IL-1β signalling can be host-protective, but also drive severe GAS disease.
Collapse
Affiliation(s)
- Johanna Richter
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Stephan Brouwer
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Kate Schroder
- Australian Infectious Diseases Research Centre, Institute for Molecular Bioscience and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
158
|
Tear cytokine profiles in patients with extranodal marginal zone B-cell lymphoma of the ocular adnexa. Eye (Lond) 2021; 36:1396-1402. [PMID: 34183793 DOI: 10.1038/s41433-021-01650-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES To comprehensively analyse the tear cytokine levels of patients with extranodal marginal zone B-cell lymphoma (EMZL) of the ocular adnexa (OA), and the association with clinical characteristics. METHODS Tear cytokine concentrations of 21 OA-EMZL patients and 14 age- and sex-matched healthy controls were measured using a 27-multiplex bead analysis on a Luminex system. Tear break-up time, corneal fluorescent staining and other clinical and demographic data were collected as well. The diagnosis of OA-EMZL was established based on the incisional biopsy and histopathology. RESULTS The concentrations of interleukin-1 receptor antagonist (IL-1RA) and IL-8, and the ratio of IL-1RA/IL-1β were significantly increased in OA-EMZL tear samples (all P < 0.05), while the levels of three cytokines (FGF-2, IL-2 and IL-4), as well as IL-10/IL-6 ratio were significantly decreased (all P < 0.05). The American Joint Committee on Cancer Tumour stage was significantly associated with tear concentrations of FGF-2 (r = -0.44, P = 0.043), GM-CSF (r = -0.49, P = 0.025) and IL-2 (r = -0.45, P = 0.042), while lacrimal gland lymphoma invasion was related to levels of IL-8 (r = 0.53, P = 0.012), FGF-2 (r = -0.43, P = 0.049) and IL-10/IL-6 ratio (r = -0.48, P = 0.026). Receiver operating characteristic (ROC) curve analysis revealed moderate diagnostic accuracy of these indices in differentiating OA-EMZL from normal eyes (area under ROC: 0.69-0.74). CONCLUSIONS Multiple tear cytokines were significantly dysregulated in OA-EMZL patients. These cytokines could potentially serve as diagnostic biomarkers and therapeutic targets in future.
Collapse
|
159
|
Immunotherapy in AML: a brief review on emerging strategies. Clin Transl Oncol 2021; 23:2431-2447. [PMID: 34160771 DOI: 10.1007/s12094-021-02662-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML), the most common form of leukemia amongst adults, is one of the most important hematological malignancies. Epidemiological data show both high incidence rates and low survival rates, especially in secondary cases among adults. Although classic and novel chemotherapeutic approaches have extensively improved disease prognosis and survival, the need for more personalized and target-specific methods with less side effects have been inevitable. Therefore, immunotherapeutic methods are of importance. In the following review, primarily a brief understanding of the molecular basis of the disease has been represented. Second, prior to the introduction of immunotherapeutic approaches, the entangled relationship of AML and patient's immune system has been discussed. At last, mechanistic and clinical evidence of each of the immunotherapy approaches have been covered.
Collapse
|
160
|
Castillo-Juárez P, Sanchez SC, Chávez-Blanco AD, Mendoza-Figueroa HL, Correa-Basurto J. Apoptotic Effects of N-(2-Hydroxyphenyl)-2-Propylpentanamide on U87-MG and U-2 OS Cells and Antiangiogenic Properties. Anticancer Agents Med Chem 2021; 21:1451-1459. [PMID: 32723256 DOI: 10.2174/1871520620666200728125356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Histone Deacetylases (HDACs) are important therapeutic targets for many types of human cancers. A derivative of valproic acid, N-(2-hydroxyphenyl)-2-propylpentanamide (HOAAVPA), has antiproliferative properties on some cancer cell lines and inhibits the HDAC1 isoform. MATERIALS AND METHODS In this work, HO-AAVPA was tested as an antiproliferative agent in U87-MG (human glioblastoma) and U-2 OS cells (human osteosarcoma), which are types of cancer that are difficult to treat, and its antiangiogenic properties were explored. RESULTS HO-AAVPA had antiproliferative effects at 48h with an IC50=0.655mM in U87-MG cells and an IC50=0.453mM in U-2 OS cells. Additionally, in the colony formation assay, HO-AAVPA decreased the number of colonies by approximately 99% in both cell lines and induced apoptosis by 31.3% in the U-2 OS cell line and by 78.2% in the U87-MG cell line. Additionally, HO-AAVPA reduced the number of vessels in Chorioallantoic Membranes (CAMs) by approximately 67.74% and IL-6 levels in both cell lines suggesting that the biochemical mechanism on cancer cell of HO-AAVPA is different compared to VPA. CONCLUSION HO-AAVPA has antiproliferative effects on glioblastoma and osteosarcoma and antiangiogenic properties.
Collapse
Affiliation(s)
- Paola Castillo-Juárez
- Department of Microbiology, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Carpio y Plan de Ayala S/N, Casco de Santo Tomas, Mexico, CDMX. 11340, Mexico
| | - Sebastián C Sanchez
- Department of Microbiology, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Carpio y Plan de Ayala S/N, Casco de Santo Tomas, Mexico, CDMX. 11340, Mexico
| | - Alma D Chávez-Blanco
- Subdireccion de Investigacion Basica, Intituto Nacional de Cancerologia, Ciudad de Mexico, Mexico
| | - Humberto L Mendoza-Figueroa
- Laboratorio de Diseno y Desarrollo de Nuevos Farmacos e Innovacion Biotecnologica, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Díaz Miron, Ciudad de Mexico 11340, Mexico
| | - José Correa-Basurto
- Laboratorio de Diseno y Desarrollo de Nuevos Farmacos e Innovacion Biotecnologica, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Díaz Miron, Ciudad de Mexico 11340, Mexico
| |
Collapse
|
161
|
Exploring the Crosstalk between Inflammation and Epithelial-Mesenchymal Transition in Cancer. Mediators Inflamm 2021; 2021:9918379. [PMID: 34220337 PMCID: PMC8219436 DOI: 10.1155/2021/9918379] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor cells undergo invasion and metastasis through epithelial-to-mesenchymal cell transition (EMT) by activation of alterations in extracellular matrix (ECM) protein-encoding genes, enzymes responsible for the breakdown of ECM, and activation of genes that drive the transformation of the epithelial cell to the mesenchymal type. Inflammatory cytokines such as TGFβ, TNFα, IL-1, IL-6, and IL-8 activate transcription factors such as Smads, NF-κB, STAT3, Snail, Twist, and Zeb that drive EMT. EMT drives primary tumors to metastasize in different parts of the body. T and B cells, dendritic cells (DCs), and tumor-associated macrophages (TAMs) which are present in the tumor microenvironment induce EMT. The current review elucidates the interaction between EMT tumor cells and immune cells under the microenvironment. Such complex interactions provide a better understanding of tumor angiogenesis and metastasis and in defining the aggressiveness of the primary tumors. Anti-inflammatory molecules in this context may open new therapeutic options for the better treatment of tumor progression. Targeting EMT and the related mechanisms by utilizing natural compounds may be an important and safe therapeutic alternative in the treatment of tumor growth.
Collapse
|
162
|
Ciummo SL, D’Antonio L, Sorrentino C, Fieni C, Lanuti P, Stassi G, Todaro M, Di Carlo E. The C-X-C Motif Chemokine Ligand 1 Sustains Breast Cancer Stem Cell Self-Renewal and Promotes Tumor Progression and Immune Escape Programs. Front Cell Dev Biol 2021; 9:689286. [PMID: 34195201 PMCID: PMC8237942 DOI: 10.3389/fcell.2021.689286] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 01/01/2023] Open
Abstract
Breast cancer (BC) mortality is mainly due to metastatic disease, which is primarily driven by cancer stem cells (CSC). The chemokine C-X-C motif ligand-1 (CXCL1) is involved in BC metastasis, but the question of whether it regulates breast cancer stem cell (BCSC) behavior is yet to be explored. Here, we demonstrate that BCSCs express CXCR2 and produce CXCL1, which stimulates their proliferation and self-renewal, and that CXCL1 blockade inhibits both BCSC proliferation and mammosphere formation efficiency. CXCL1 amplifies its own production and remarkably induces both tumor-promoting and immunosuppressive factors, including SPP1/OPN, ACKR3/CXCR7, TLR4, TNFSF10/TRAIL and CCL18 and, to a lesser extent, immunostimulatory cytokines, including IL15, while it downregulates CCL2, CCL28, and CXCR4. CXCL1 downregulates TWIST2 and SNAI2, while it boosts TWIST1 expression in association with the loss of E-Cadherin, ultimately promoting BCSC epithelial-mesenchymal transition. Bioinformatic analyses of transcriptional data obtained from BC samples of 1,084 patients, reveals that CXCL1 expressing BCs mostly belong to the Triple-Negative (TN) subtype, and that BC expression of CXCL1 strongly correlates with that of pro-angiogenic and cancer promoting genes, such as CXCL2-3-5-6, FGFBP1, BCL11A, PI3, B3GNT5, BBOX1, and PTX3, suggesting that the CXCL1 signaling cascade is part of a broader tumor-promoting signaling network. Our findings reveal that CXCL1 functions as an autocrine growth factor for BCSCs and elicits primarily tumor progression and immune escape programs. Targeting the CXCL1/CXCR2 axis could restrain the BCSC compartment and improve the treatment of aggressive BC.
Collapse
Affiliation(s)
- Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
| | - Luigi D’Antonio
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
| | - Cristiano Fieni
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University, Chieti, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
| |
Collapse
|
163
|
Jin H, Zheng W, Hou J, Peng H, Zhuo H. An Essential NRP1-Mediated Role for Tagln2 in Gastric Cancer Angiogenesis. Front Oncol 2021; 11:653246. [PMID: 34150622 PMCID: PMC8213069 DOI: 10.3389/fonc.2021.653246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/04/2021] [Indexed: 12/29/2022] Open
Abstract
Knowledge about the precise biological role and underlying mechanism of Tagln2 in tumor progression is relatively limited, especially in angiogenesis focused on tumor derived endothelial cells (ECs) has rarely been reported. Here, the function, molecular mechanism and potential clinical value of Tagln2 in gastric cancer (GC) angiogenesis were investigated. GC tissue microarrays were used to assess the expression of Tagln2 in ECs. The relationships between expression and clinicopathological features were analyzed to evaluate the clinical value of Tagln2. Gain- and loss-of-function approaches were performed in ECs to investigate the functions of Tagln2 in angiogenesis. A combination of angiogenesis antibody array, RNA-Seq analyses and a series of in vitro experiments were performed to reveal the proangiogenic mechanism mediated by NRP1. Immunohistochemistry performed on an independent tissue chip (n=75) revealed significant upregulation of Tagln2 in tumor-derived ECs which were specifically immunolabeled with CD34. Additionally, high Tagln2 levels correlated significantly with the presence of lymph node as well as distant metastases. Gain- and loss-of-function approaches highlighted the function of Tagln2 in promoting EC proliferation, motility, and capillary-like tube formation and in reducing apoptosis. Tagln2 upregulation led to significantly increased mRNA and protein levels of NRP1 and subsequently activated the NRP1/VEGFR2 and downstream MAPK signaling pathways. These data indicate the importance of Tagln2 in angiogenesis, as a potential therapeutic target, and as a candidate prognostic marker in GC.
Collapse
Affiliation(s)
- Hongwei Jin
- Xiamen Key Laboratory of Biomarker Translational Medicine, Medical Laboratory of Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| | - Wei Zheng
- Department of Gastrointestinal Surgery, The Affiliated Zhongshan Hospital, Xiamen University, Xiamen, China.,Department of Gastrointestinal Surgery, Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, The Affiliated Zhongshan Hospital, Xiamen University, Xiamen, China.,Department of Gastrointestinal Surgery, Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Huifang Peng
- Department of Endocrinology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Huiqin Zhuo
- Department of Gastrointestinal Surgery, The Affiliated Zhongshan Hospital, Xiamen University, Xiamen, China.,Department of Gastrointestinal Surgery, Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| |
Collapse
|
164
|
Chopra A, Zamora R, Vodovotz Y, Hodges JC, Barclay D, Brand R, Simmons RL, Lee KK, Paniccia A, Murthy P, Lotze MT, Boone BA, Zureikat AH. Baseline Plasma Inflammatory Profile Is Associated With Response to Neoadjuvant Chemotherapy in Patients With Pancreatic Adenocarcinoma. J Immunother 2021; 44:185-192. [PMID: 33935273 PMCID: PMC8102434 DOI: 10.1097/cji.0000000000000370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/12/2021] [Indexed: 11/26/2022]
Abstract
Despite its increased application in pancreatic ductal adenocarcinoma (PDAC), complete response to neoadjuvant therapy (NAT) is rare. Given the critical role of host immunity in regulating cancer, we sought to correlate baseline inflammatory profiles to significant response to NAT. PDAC patients receiving NAT were classified as responders (R) or nonresponders (NR) by carbohydrate antigen 19-9 response, pathologic tumor size, and lymph node status in the resected specimen. Baseline (treatment-naive) plasma was analyzed to determine levels of 27 inflammatory mediators. Logistic regression was used to correlate individual mediators with response. Network analysis and Pearson correlation maps were derived to determine baseline inflammatory mediator profiles. Forty patients (20R and 20NR) met study criteria. The R showed significantly higher overall survival (59.4 vs. 21.25 mo, P=0.002) and disease-free survival (50.97 vs. 10.60 mo, P=0.005), compared with NR. soluble interleukin-2 receptor alpha was a significant predictor of no response to NAT (P=0.045). Analysis of inflammatory profiles using the Pearson heat map analysis followed by network analysis depicted increased inflammatory network complexity in NR compared with R (1.69 vs. 1), signifying a more robust baseline inflammatory status of NR. A panel of inflammatory mediators identified by logistic regression and Fischer score analysis was used to create a potential decision tree to predict NAT response. We demonstrate that baseline inflammatory profiles are associated with response to NAT in PDAC, and that an upregulated inflammatory status is associated with a poor response to NAT. Further analysis into the role of inflammatory mediators as predictors of chemotherapy response is warranted.
Collapse
Affiliation(s)
- Asmita Chopra
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jacob C. Hodges
- Wolff Center of UPMC, University of Pittsburgh, Pittsburgh, PA, USA
| | - Derek Barclay
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Randall Brand
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Richard L. Simmons
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenneth K Lee
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alessandro Paniccia
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pranav Murthy
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael T. Lotze
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Departments of Immunology and Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian A. Boone
- Department of Surgery and Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, USA
| | - Amer H. Zureikat
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
165
|
Qiu Y, Su M, Liu L, Tang Y, Pan Y, Sun J. Clinical Application of Cytokines in Cancer Immunotherapy. Drug Des Devel Ther 2021; 15:2269-2287. [PMID: 34079226 PMCID: PMC8166316 DOI: 10.2147/dddt.s308578] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cytokines are key components of the immune system and play pivotal roles in anticancer immune response. Cytokines as either therapeutic agents or targets hold clinical promise for cancer precise treatment. Here, we provide an overview of the various roles of cytokines in the cancer immunity cycle, with a particular focus on the clinical researches of cytokine-based drugs in cancer therapy. We review 27 cytokines in 2630 cancer clinical trials registered with ClinicalTrials.gov that had completed recruitment up to January 2021 while summarizing important cases for each cytokine. We also discuss recent progress in methods for improving the delivery efficiency, stability, biocompatibility, and availability of cytokines in therapeutic applications.
Collapse
Affiliation(s)
- Yi Qiu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Mengxi Su
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Leyi Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yiqi Tang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yuan Pan
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Jianbo Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| |
Collapse
|
166
|
Pharmacological inhibition of MDA-9/Syntenin blocks breast cancer metastasis through suppression of IL-1β. Proc Natl Acad Sci U S A 2021; 118:2103180118. [PMID: 34016751 PMCID: PMC8166168 DOI: 10.1073/pnas.2103180118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Melanoma differentiation associated gene-9 (MDA-9), Syntenin-1, or syndecan binding protein is a differentially regulated prometastatic gene with elevated expression in advanced stages of melanoma. MDA-9/Syntenin expression positively associates with advanced disease stage in multiple histologically distinct cancers and negatively correlates with patient survival and response to chemotherapy. MDA-9/Syntenin is a highly conserved PDZ-domain scaffold protein, robustly expressed in a spectrum of diverse cancer cell lines and clinical samples. PDZ domains interact with a number of proteins, many of which are critical regulators of signaling cascades in cancer. Knockdown of MDA-9/Syntenin decreases cancer cell metastasis, sensitizing these cells to radiation. Genetic silencing of MDA-9/Syntenin or treatment with a pharmacological inhibitor of the PDZ1 domain, PDZ1i, also activates the immune system to kill cancer cells. Additionally, suppression of MDA-9/Syntenin deregulates myeloid-derived suppressor cell differentiation via the STAT3/interleukin (IL)-1β pathway, which concomitantly promotes activation of cytotoxic T lymphocytes. Biologically, PDZ1i treatment decreases metastatic nodule formation in the lungs, resulting in significantly fewer invasive cancer cells. In summary, our observations indicate that MDA-9/Syntenin provides a direct therapeutic target for mitigating aggressive breast cancer and a small-molecule inhibitor, PDZ1i, provides a promising reagent for inhibiting advanced breast cancer pathogenesis.
Collapse
|
167
|
Tan Z, Xue H, Sun Y, Zhang C, Song Y, Qi Y. The Role of Tumor Inflammatory Microenvironment in Lung Cancer. Front Pharmacol 2021; 12:688625. [PMID: 34079469 PMCID: PMC8166205 DOI: 10.3389/fphar.2021.688625] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the most common and fatal malignant tumor in the world. The tumor microenvironment (TME) is closely related to the occurrence and development of lung cancer, in which the inflammatory microenvironment plays an important role. Inflammatory cells and inflammatory factors in the tumor inflammatory microenvironment promote the activation of the NF-κB and STAT3 inflammatory pathways and the occurrence, development, and metastasis of lung cancer by promoting immune escape, tumor angiogenesis, epithelial-mesenchymal transition, apoptosis, and other mechanisms. Clinical and epidemiological studies have also shown a strong relationship among chronic infection, inflammation, inflammatory microenvironment, and lung cancer. The relationship between inflammation and lung cancer can be better understood through the gradual understanding of the tumor inflammatory microenvironment, which is advantageous to find more therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Zhaofeng Tan
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Departments of Oncology Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haibin Xue
- Eighth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Yuli Sun
- Departments of Oncology Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanlong Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yonglei Song
- Departments of Oncology Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuanfu Qi
- Departments of Oncology Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
168
|
Tartey S, Neale G, Vogel P, Malireddi RKS, Kanneganti TD. A MyD88/IL1R Axis Regulates PD-1 Expression on Tumor-Associated Macrophages and Sustains Their Immunosuppressive Function in Melanoma. Cancer Res 2021; 81:2358-2372. [PMID: 33619117 PMCID: PMC11645125 DOI: 10.1158/0008-5472.can-20-3510] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/22/2020] [Accepted: 02/18/2021] [Indexed: 11/16/2022]
Abstract
Macrophages are critical mediators of tissue homeostasis, cell proliferation, and tumor metastasis. Tumor-associated macrophages (TAM) are generally associated with tumor-promoting immunosuppressive functions in solid tumors. Here, we examined the transcriptional landscape of adaptor molecules downstream of Toll-like receptors in human cancers and found that higher expression of MYD88 correlated with tumor progression. In murine melanoma, MyD88, but not Trif, was essential for tumor progression, angiogenesis, and maintaining the immunosuppressive phenotype of TAMs. In addition, MyD88 expression in myeloid cells drove melanoma progression. The MyD88/IL1 receptor (IL1R) axis regulated programmed cell death (PD)-1 expression on TAMs by promoting recruitment of NF-κBp65 to the Pdcd1 promoter. Furthermore, a combinatorial immunotherapy approach combining the MyD88 inhibitor with anti-PD-1 blockade elicited strong antitumor effects. Thus, the MyD88/IL1R axis maintains the immunosuppressive function of TAMs and promotes tumor growth by regulating PD-1 expression. SIGNIFICANCE: These findings indicate that MyD88 regulates TAM-immunosuppressive activity, suggesting that macrophage-mediated immunotherapy combining MYD88 inhibitors with PD-1 blockade could result in better treatment outcomes in a wide variety of cancers. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/9/2358/F1.large.jpg.
Collapse
Affiliation(s)
- Sarang Tartey
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Peter Vogel
- Animal Resources Center and the Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | | |
Collapse
|
169
|
Winograd R, Simeone DM, Bar-Sagi D. A novel target for combination immunotherapy in pancreatic cancer: IL-1β mediates immunosuppression in the tumour microenvironment. Br J Cancer 2021; 124:1754-1756. [PMID: 33758330 PMCID: PMC8144204 DOI: 10.1038/s41416-021-01303-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 01/07/2023] Open
Abstract
Immune checkpoint blockade (ICB) has demonstrated efficacy in multiple cancers, offering the potential of long-term disease control not achievable with cytotoxic or targeted therapies. However, the field has not yet achieved the crucial next steps - the expansion of the response rate and achievement of clinical efficacy in so-called "cold tumours". Mechanistic studies of tumour-type specific immunosuppressive pathways can reveal underlying biological hurdles to immunotherapy and offer new therapeutic insights. Our finding that tumour-derived IL-1β mediates immunosuppression in pancreatic cancer has precipitated a new clinical trial.
Collapse
Affiliation(s)
- Rafael Winograd
- Department of Hematology and Oncology, NYU Langone Health, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Diane M Simeone
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Department of Surgery, NYU Langone Health, New York, NY, USA
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
170
|
Zhang Y, Zhou J, Wei Z, Dong H, Yang D, Deng Y, Li J, Shi S, Sun Y, Lu H, Yuan J, Ni B, Wu Y, Tian Y, Han C. TTP-mediated regulation of mRNA stability in immune cells contributes to adaptive immunity, immune tolerance and clinical applications. RNA Biol 2021; 18:2150-2156. [PMID: 33866923 DOI: 10.1080/15476286.2021.1917185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Dendritic cells (DCs) form a sentinel network to induce protective immunity against pathogens or self-tolerance. mRNA stability is an important part of the post-transcriptional regulation (PTR) that controls the maturation and function of DCs. In this review, we summarize the effects of TTP-mediated regulation of mRNA stability in DCs, focusing on DC maturation and antigen presentation, T cell activation and differentiation, immune tolerance and inflammation. We also discuss the potential DC-based immune treatment for HIV+ patients through regulation of mRNA stability. This review proposes the regulation of mRNA stability as a novel immune therapy for various inflammatory diseases, such as arthritis and dermatitis.
Collapse
Affiliation(s)
- Yiwei Zhang
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jian Zhou
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Zhiyuan Wei
- Department of Orthopedics, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Hui Dong
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Di Yang
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yuanyu Deng
- School of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jiahui Li
- School of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Saiyu Shi
- School of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yi Sun
- The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Huimin Lu
- The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jizhao Yuan
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China.,Department of Orthopedics, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yi Tian
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China.,School of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Chao Han
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| |
Collapse
|
171
|
Transcriptomic analysis identifies differences in gene expression in actinic keratoses after treatment with imiquimod and between responders and non responders. Sci Rep 2021; 11:8775. [PMID: 33888854 PMCID: PMC8062619 DOI: 10.1038/s41598-021-88424-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
The presence of actinic keratoses (AKs) increases a patient’s risk of developing squamous cell carcinoma by greater than six-fold. We evaluated the effect of topical treatment with imiquimod on the tumor microenvironment by measuring transcriptomic differences in AKs before and after treatment with imiquimod 3.75%. Biopsies were collected prospectively from 21 patients and examined histologically. RNA was extracted and transcriptomic analyses of 788 genes were performed using the nanoString assay. Imiquimod decreased number of AKs by study endpoint at week 14 (p < 0.0001). Post-imiquimod therapy, levels of CDK1, CXCL13, IL1B, GADPH, TTK, ILF3, EWSR1, BIRC5, PLAUR, ISG20, and C1QBP were significantly lower (adjusted p < 0.05). Complete responders (CR) exhibited a distinct pattern of inflammatory gene expression pre-treatment relative to incomplete responders (IR), with alterations in 15 inflammatory pathways (p < 0.05) reflecting differential expression of 103 genes (p < 0.05). Presence of adverse effects was associated with improved treatment response. Differences in gene expression were found between pre-treatment samples in CR versus IR, suggesting that higher levels of inflammation pre-treament may play a part in regression of AKs. Further characterization of the immune micro-environment in AKs may help develop biomarkers predictive of response to topical immune modulators and may guide therapy.
Collapse
|
172
|
Boldrup L, Coates P, Gu X, Wang L, Fåhraeus R, Wilms T, Sgaramella N, Nylander K. Low potential of circulating interleukin 1 receptor antagonist as a prediction marker for squamous cell carcinoma of the head and neck. J Oral Pathol Med 2021; 50:785-794. [PMID: 33880804 DOI: 10.1111/jop.13187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/21/2021] [Accepted: 04/12/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Circulating markers are attractive molecules for prognosis and management of cancer that allow sequential monitoring of patients during and after treatment. Based on previous protein profiling data, circulating interleukin 1 receptor antagonist (IL-1Ra) was evaluated as a potential diagnostic and prognostic marker for squamous cell carcinomas of the head and neck (SCCHN). In this study, we aimed at confirming the clinical relevance of plasma IL-1Ra in SCCHN and exploring its potential as a prediction marker for SCCHN. METHODS Plasma from 87 patients with SCCHN, control plasma from 28 healthy individuals and pre-diagnostic plasma from 44 patients with squamous cell carcinoma of the oral tongue (SCCOT) and 88 matched controls were analysed with IL-1Ra electrochemiluminescence immunoassays from mesoscale diagnostics. RESULTS Plasma IL-1Ra was found to be up-regulated in patients with oral tongue, gingiva and base of tongue tumours compared to healthy individuals (p < 0.01). IL-1Ra levels positively correlated with tumour size (p < 0.01) and body mass index (p = 0.013). Comparing pre-diagnostic plasma to the matched controls, similar IL1-Ra levels were seen (p = 0.05). CONCLUSION The anti-inflammatory cytokine IL-1Ra could be a diagnostic marker for SCCHN, whereas its potential as a cancer prediction marker was not supported by our data.
Collapse
Affiliation(s)
- Linda Boldrup
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Philip Coates
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Xiaolian Gu
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Lixiao Wang
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Robin Fåhraeus
- Department of Medical Biosciences, Umeå University, Umeå, Sweden.,Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic.,Institute of Molecular Genetics, University of Paris St. Louis Hospital, Paris, France
| | - Torben Wilms
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | | | - Karin Nylander
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| |
Collapse
|
173
|
Kaczanowska S, Beury DW, Gopalan V, Tycko AK, Qin H, Clements ME, Drake J, Nwanze C, Murgai M, Rae Z, Ju W, Alexander KA, Kline J, Contreras CF, Wessel KM, Patel S, Hannenhalli S, Kelly MC, Kaplan RN. Genetically engineered myeloid cells rebalance the core immune suppression program in metastasis. Cell 2021; 184:2033-2052.e21. [PMID: 33765443 PMCID: PMC8344805 DOI: 10.1016/j.cell.2021.02.048] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 09/08/2020] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
Metastasis is the leading cause of cancer-related deaths, and greater knowledge of the metastatic microenvironment is necessary to effectively target this process. Microenvironmental changes occur at distant sites prior to clinically detectable metastatic disease; however, the key niche regulatory signals during metastatic progression remain poorly characterized. Here, we identify a core immune suppression gene signature in pre-metastatic niche formation that is expressed predominantly by myeloid cells. We target this immune suppression program by utilizing genetically engineered myeloid cells (GEMys) to deliver IL-12 to modulate the metastatic microenvironment. Our data demonstrate that IL12-GEMy treatment reverses immune suppression in the pre-metastatic niche by activating antigen presentation and T cell activation, resulting in reduced metastatic and primary tumor burden and improved survival of tumor-bearing mice. We demonstrate that IL12-GEMys can functionally modulate the core program of immune suppression in the pre-metastatic niche to successfully rebalance the dysregulated metastatic microenvironment in cancer.
Collapse
Affiliation(s)
- Sabina Kaczanowska
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Daniel W Beury
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Arielle K Tycko
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Haiying Qin
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Miranda E Clements
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Justin Drake
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Chiadika Nwanze
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Meera Murgai
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Zachary Rae
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Wei Ju
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Katherine A Alexander
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Jessica Kline
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Cristina F Contreras
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Kristin M Wessel
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Shil Patel
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Michael C Kelly
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Rosandra N Kaplan
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
174
|
Faria SS, Costantini S, de Lima VCC, de Andrade VP, Rialland M, Cedric R, Budillon A, Magalhães KG. NLRP3 inflammasome-mediated cytokine production and pyroptosis cell death in breast cancer. J Biomed Sci 2021; 28:26. [PMID: 33840390 PMCID: PMC8040227 DOI: 10.1186/s12929-021-00724-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/03/2021] [Indexed: 12/27/2022] Open
Abstract
Breast cancer is the most diagnosed malignancy in women. Increasing evidence has highlighted the importance of chronic inflammation at the local and/or systemic level in breast cancer pathobiology, influencing its progression, metastatic potential and therapeutic outcome by altering the tumor immune microenvironment. These processes are mediated by a variety of cytokines, chemokines and growth factors that exert their biological functions either locally or distantly. Inflammasomes are protein signaling complexes that form in response to damage- and pathogen-associated molecular patterns (DAMPS and PAMPS), triggering the release of pro-inflammatory cytokines. The dysregulation of inflammasome activation can lead to the development of inflammatory diseases, neurodegeneration, and cancer. A crucial signaling pathway leading to acute and chronic inflammation occurs through the activation of NLRP3 inflammasome followed by caspase 1-dependent release of IL-1β and IL-18 pro-inflammatory cytokines, as well as, by gasdermin D-mediated pyroptotic cell death. In this review we focus on the role of NLRP3 inflammasome and its components in breast cancer signaling, highlighting that a more detailed understanding of the clinical relevance of these pathways could significantly contribute to the development of novel therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Sara Socorro Faria
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, DF, Brazil
| | - Susan Costantini
- Experimental Pharmacology Unit - Laboratory of Mercogliano (AV), Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | | | | | - Mickaël Rialland
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1231, 21000, Dijon, France
- UFR Sciences de la Vie, Terre et Environnement, Université de Bourgogne Franche-Comté, 21000, Dijon, France
| | - Rebe Cedric
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, 21000, Dijon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1231, 21000, Dijon, France
| | - Alfredo Budillon
- Experimental Pharmacology Unit - Laboratory of Mercogliano (AV), Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, DF, Brazil.
| |
Collapse
|
175
|
Barone R, Caruso Bavisotto C, Rappa F, Gargano ML, Macaluso F, Paladino L, Vitale AM, Alfano S, Campanella C, Gorska M, Di Felice V, Cappello F, Venturella G, Marino Gammazza A. JNK pathway and heat shock response mediate the survival of C26 colon carcinoma bearing mice fed with the mushroom Pleurotus eryngii var. eryngii without affecting tumor growth or cachexia. Food Funct 2021; 12:3083-3095. [PMID: 33720221 DOI: 10.1039/d0fo03171b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the last few years, there has been emerging interest in developing treatments against human diseases using natural bioactive content. Here, the powder of the edible mushroom Pleurotus eryngii var. eryngii was mixed with the normal diet of mice bearing C26 colon carcinoma. Interestingly, it was evidenced by a significant increase in the survival rate of C26 tumor-bearing mice accompanied by a significant increase in Hsp90 and Hsp27 protein levels in the tumors. These data were paralleled by a decrease in Hsp60 levels. The mushroom introduced in the diet induced the inhibition of the transcription of the pro-inflammatory cytokines IL-6 and IL-1 exerting an anti-inflammatory action. The effects of the mushroom were mediated by the activation of c-Jun NH2-terminal kinases as a result of metabolic stress induced by the micronutrients introduced in the diet. In the tumors of C26 bearing mice fed with Pleurotus eryngii there was also a decreased expression of the mitotic regulator survivin and the anti-apoptotic factor Bcl-xL as well as an increase in the expression levels of Atg7, a protein that drives autophagy. In our hypothesis the interplay of these molecules favored the survival of the mice fed with the mushroom. These data are promising for the introduction of Pleurotus eryngii as a dietary supplement or as an adjuvant in anti-cancer therapy.
Collapse
Affiliation(s)
- Rosario Barone
- Department of Biomedicine, Neurosciences and advanced Diagnostics, University of Palermo, Palermo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
IL-1R2 expression in human gastric cancer and its clinical significance. Biosci Rep 2021; 41:228069. [PMID: 33704402 PMCID: PMC8011276 DOI: 10.1042/bsr20204425] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Interleukin-1 receptor type II (IL-1R2), also known as
CD121b, is a member of the IL-1 receptor family. IL-1R2 acts as negative
regulator of the IL-1 system, modulating IL-1 availability for the signaling
receptor. IL-1R2 is abnormally expressed in many human inflammatory diseases and
cancers, and has important clinical significance. The present study was designed
to investigate IL-1R2 expression in human gastric cancer (GC) tissues and the
associated clinical implications. Methods: Immunohistochemistry was
used to identify the clinical significance and prognostic value of IL-1R2
expression in GC tissues. We investigated IL-1R2 expression in GC tissues,
cells, and serum using real-time PCR (RT-PCR) and enzyme-linked immunosorbent
assay (ELISA) assays. Results: IL-1R2 was highly expressed in GC
tissues, and the overall survival in patients with advanced GC and high IL-1R2
expression was significantly poorer than that in patients with advanced GC and
low IL-1R2 expression. Moreover, IL-1R2 mRNA levels in GC
tissues and most GC cells were higher than those in para-cancer tissues and GES1
human gastric mucosal epithelial cells. The level of plasma-soluble IL-1R2 in GC
patients was higher than that of the healthy control group.
Conclusion: Increased IL-1R2 levels are involved in the
initiation and progression of human GC, and IL-1R2 might be employed to develop
immunotherapeutic approaches targeting GC.
Collapse
|
177
|
Marin-Acevedo JA, Kimbrough EO, Lou Y. Next generation of immune checkpoint inhibitors and beyond. J Hematol Oncol 2021; 14:45. [PMID: 33741032 PMCID: PMC7977302 DOI: 10.1186/s13045-021-01056-8] [Citation(s) in RCA: 350] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
The immune system is the core defense against cancer development and progression. Failure of the immune system to recognize and eliminate malignant cells plays an important role in the pathogenesis of cancer. Tumor cells evade immune recognition, in part, due to the immunosuppressive features of the tumor microenvironment. Immunotherapy augments the host immune system to generate an antitumor effect. Immune checkpoints are pathways with inhibitory or stimulatory features that maintain self-tolerance and assist with immune response. The most well-described checkpoints are inhibitory in nature and include the cytotoxic T lymphocyte-associated molecule-4 (CTLA-4), programmed cell death receptor-1 (PD-1), and programmed cell death ligand-1 (PD-L1). Molecules that block these pathways to enhance the host immunologic activity against tumors have been developed and become standard of care in the treatment of many malignancies. Only a small percentage of patients have meaningful responses to these treatments, however. New pathways and molecules are being explored in an attempt to improve responses and application of immune checkpoint inhibition therapy. In this review, we aim to elucidate these novel immune inhibitory pathways, potential therapeutic molecules that are under development, and outline particular advantages and challenges with the use of each one of them.
Collapse
Affiliation(s)
| | - ErinMarie O Kimbrough
- Division of Hematology and Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Yanyan Lou
- Division of Hematology and Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
178
|
Di Martile M, Farini V, Consonni FM, Trisciuoglio D, Desideri M, Valentini E, D'Aguanno S, Tupone MG, Buglioni S, Ercolani C, Gallo E, Amadio B, Terrenato I, Foddai ML, Sica A, Del Bufalo D. Melanoma-specific bcl-2 promotes a protumoral M2-like phenotype by tumor-associated macrophages. J Immunother Cancer 2021; 8:jitc-2019-000489. [PMID: 32269145 PMCID: PMC7254128 DOI: 10.1136/jitc-2019-000489] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2020] [Indexed: 12/11/2022] Open
Abstract
Background A bidirectional crosstalk between tumor cells and the surrounding microenvironment contributes to tumor progression and response to therapy. Our previous studies have demonstrated that bcl-2 affects melanoma progression and regulates the tumor microenvironment. The aim of this study was to evaluate whether bcl-2 expression in melanoma cells could influence tumor-promoting functions of tumor-associated macrophages, a major constituent of the tumor microenvironment that affects anticancer immunity favoring tumor progression. Methods THP-1 monocytic cells, monocyte-derived macrophages and melanoma cells expressing different levels of bcl-2 protein were used. ELISA, qRT-PCR and Western blot analyses were used to evaluate macrophage polarization markers and protein expression levels. Chromatin immunoprecipitation assay was performed to evaluate transcription factor recruitment at specific promoters. Boyden chamber was used for migration experiments. Cytofluorimetric and immunohistochemical analyses were carried out to evaluate infiltrating macrophages and T cells in melanoma specimens from patients or mice. Results Higher production of tumor-promoting and chemotactic factors, and M2-polarized activation was observed when macrophages were exposed to culture media from melanoma cells overexpressing bcl-2, while bcl-2 silencing in melanoma cells inhibited the M2 macrophage polarization. In agreement, the number of melanoma-infiltrating macrophages in vivo was increased, in parallel with a greater expression of bcl-2 in tumor cells. Tumor-derived interleukin-1β has been identified as the effector cytokine of bcl-2-dependent macrophage reprogramming, according to reduced tumor growth, decreased number of M2-polarized tumor-associated macrophages and increased number of infiltrating CD4+IFNγ+ and CD8+IFNγ+ effector T lymphocytes, which we observed in response to in vivo treatment with the IL-1 receptor antagonist kineret. Finally, in tumor specimens from patients with melanoma, high bcl-2 expression correlated with increased infiltration of M2-polarized CD163+ macrophages, hence supporting the clinical relevance of the crosstalk between tumor cells and microenvironment. Conclusions Taken together, our results show that melanoma-specific bcl-2 controls an IL-1β-driven axis of macrophage diversion that establishes tumor microenvironmental conditions favoring melanoma development. Interfering with this pathway might provide novel therapeutic strategies.
Collapse
Affiliation(s)
- Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Farini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Daniela Trisciuoglio
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.,Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Marianna Desideri
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Elisabetta Valentini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Grazia Tupone
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.,Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Simonetta Buglioni
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Cristiana Ercolani
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Enzo Gallo
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Bruno Amadio
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Irene Terrenato
- Biostatistics and Bioinformatic Unit-Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Laura Foddai
- Immunohematology and Transfusional Medicine Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Antonio Sica
- Molecular Immunology Lab, Humanitas Clinical and Research Center, Milan, Italy .,Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
179
|
Cytokine Signature of Dengue Patients at Different Severity of the Disease. Int J Mol Sci 2021; 22:ijms22062879. [PMID: 33809042 PMCID: PMC7999441 DOI: 10.3390/ijms22062879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022] Open
Abstract
Clinical presentations of dengue fever (DF) are diverse and non-specific, causing unpredictable progression and outcomes. Its progression and severity have been associated with cytokine levels alteration. In this study, dengue patients were classified into groups following the 2009 WHO dengue classification scheme to investigate the cytokine signature at different severity of the disease: dengue without warning sign symptoms (A); dengue with warning signs (B); severe dengue (C); other fever (OF) and healthy (Healthy). We analyzed 23 different cytokines simultaneously, namely IL-1b, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-17A, IL-33, CD14, CD54, CD62E, CD62L, CD62p, CD106, CD121b, CD154, CD178, GM-CSF, IFN-g, MIF, ST2 and TNF from patients admitted to National Cheng Kung University Hospital during the 2015 Taiwan dengue outbreak. Cytokines TNF, CD54, CD62E, CD62L, CD62P, GM-CSF, IL-1b, IL-2, IL-6, IL-8, IL-10, IL-12p70, IL-17A, INF-g and MIF were elevated while CD106, CD154, IL-4 and L-33 were decreased when compared to the control. IL-10 demonstrated to be a potential diagnostic marker for DF (H and A group; AUC = 0.944, H and OF group; AUC = 0.969). CD121b demonstrated to be predictive of the SD (A and B group; AUC = 0.744, B and C group; AUC = 0.775). Our results demonstrate the cytokine profile changes during the progression of dengue and highlight possible biomarkers for optimizing effective intervention strategies.
Collapse
|
180
|
Chehrazi-Raffle A, Meza L, Alcantara M, Dizman N, Bergerot P, Salgia N, Hsu J, Ruel N, Salgia S, Malhotra J, Karczewska E, Kortylewski M, Pal S. Circulating cytokines associated with clinical response to systemic therapy in metastatic renal cell carcinoma. J Immunother Cancer 2021; 9:jitc-2020-002009. [PMID: 33688021 PMCID: PMC7944971 DOI: 10.1136/jitc-2020-002009] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 12/22/2022] Open
Abstract
Background Circulating cytokines and angiogenic factors have been associated with clinical outcomes in patients with metastatic renal cell carcinoma (RCC) receiving systemic therapy. However, none have yet examined cytokine concentrations in parallel cohorts receiving either immunotherapy or targeted therapy. Methods In this prospective correlative study, we enrolled 56 patients who were planned for treatment with either a vascular endothelial growth factor-tyrosine kinase inhibitor (VEGF-TKI) or immune checkpoint inhibitor (ICI). Eligibility requirements permitted any RCC histologic subtype, International Metastatic Renal Cell Carcinoma risk classification, and line of therapy. Immunologic profile was assessed at baseline and after 1 month on treatment using a Human Cytokine 30-plex protein assay (Invitrogen). Clinical benefit was defined as complete response, partial response, or stable disease ≥6 months per RECIST (Response Evaluation Criteria in Solid Tumors) V.1.1 criteria. Results Clinical benefit was similar between VEGF-TKI and ICI arms (65% vs 54%). Patients with clinical benefit from VEGF-TKIs had lower pretreatment levels of interleukin-6 (IL-6) (p=0.02), IL-1RA (p=0.03), and granulocyte colony-stimulating factor (CSF) (p=0.02). At 1 month, patients with clinical benefit from ICIs had higher levels of interferon-γ (IFN-γ) (p=0.04) and IL-12 (p=0.03). Among patients on VEGF-TKIs, those with clinical benefit had lower 1 month IL-13 (p=0.02) and granulocyte macrophage CSF (p=0.01) as well as higher 1 month VEGF (p=0.04) compared with patients with no clinical benefit. Conclusion For patients receiving VEGF-TKI or ICI therapy, distinct plasma cytokines were associated with clinical benefit. Our findings support additional investigation into plasma cytokines as biomarkers in metastatic RCC.
Collapse
Affiliation(s)
- Alexander Chehrazi-Raffle
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Luis Meza
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Marice Alcantara
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Nazli Dizman
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Paulo Bergerot
- Department of Medical Oncology, Cettro Cancer Center, Brasilia, Brazil
| | - Nicholas Salgia
- Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, Brazil
| | - JoAnn Hsu
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Nora Ruel
- Department of Computational and Quantitative Medicine, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Sabrina Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Jasnoor Malhotra
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Ewa Karczewska
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Marcin Kortylewski
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Sumanta Pal
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| |
Collapse
|
181
|
Carrero YN, Callejas DE, Mosquera JA. In situ immunopathological events in human cervical intraepithelial neoplasia and cervical cancer: Review. Transl Oncol 2021; 14:101058. [PMID: 33677234 PMCID: PMC7937982 DOI: 10.1016/j.tranon.2021.101058] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Neoplasia of the cervix represents one of the most common cancers in women. Clinical and molecular research has identified immunological impairment in squamous intraepithelial cervical lesions and cervical cancer patients. The in-situ expression of several cytokines by uterine epithelial cells and by infiltrating leukocytes occurs during the cervical intraepithelial neoplasia and cervical cancer. Some of these cytokines can prevent and others can induce the progression of the neoplasm. The infiltrating leukocytes also produce cytokines and growth factors relate to angiogenesis, chemotaxis, and apoptosis capable of modulating the dysplasia progression. In this review we analyzed several interleukins with an inductive effect or blocking effect on the neoplastic progression. We also analyze the genetic polymorphism of some cytokines and their relationship with the risk of developing cervical neoplasia. In addition, we describe the leukocyte cells that infiltrate the cervical uterine tissue during the neoplasia and their effects on neoplasia progression.
Collapse
Affiliation(s)
- Yenddy N Carrero
- Facultad de Ciencias de la Salud. Carrera de Medicina, Universidad Técnica de Ambato, Ambato, Ecuador.
| | - Diana E Callejas
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo, Ecuador.
| | - Jesús A Mosquera
- Instituto de Investigaciones Clínicas Dr. Américo Negrette. Facultad de Medicina, Universidad del Zulia. Maracaibo, Venezuela.
| |
Collapse
|
182
|
Garrido P, Pujol JL, Kim ES, Lee JM, Tsuboi M, Gómez-Rueda A, Benito A, Moreno N, Gorospe L, Dong T, Blin C, Rodrik-Outmezguine V, Passos VQ, Mok TS. Canakinumab with and without pembrolizumab in patients with resectable non-small-cell lung cancer: CANOPY-N study design. Future Oncol 2021; 17:1459-1472. [PMID: 33648347 DOI: 10.2217/fon-2020-1098] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Canakinumab is a human IgGκ monoclonal antibody, with high affinity and specificity for IL-1β. The Canakinumab Anti-Inflammatory Thrombosis Outcome Study (CANTOS) trial, evaluating canakinumab for cardiovascular disease, provided the first signal of the potential of IL-1β inhibition on lung cancer incidence reduction. Here, we describe the rationale and design for CANOPY-N, a randomized Phase II trial evaluating IL-1β inhibition with or without immune checkpoint inhibition as neoadjuvant treatment in patients with non-small-cell lung cancer. Patients with stage IB to IIIA non-small-cell lung cancer eligible for complete resection will receive canakinumab or pembrolizumab as monotherapy, or in combination. The primary end point is major pathological response by central review; secondary end points include overall response rate, major pathological response (local review), surgical feasibility rate and pharmacokinetics. Clinical trial registration: NCT03968419 (ClinicalTrials.gov).
Collapse
Affiliation(s)
| | | | - Edward S Kim
- Levine Cancer Institute, Atrium Health, Charlotte, NC 28202, USA
| | - Jay M Lee
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Masahiro Tsuboi
- National Cancer Center Hospital East, Kashiwa, 112-0002, Japan
| | | | | | | | | | - Tuochuan Dong
- Novartis Pharmaceuticals Corporation, East Hanover, NJ 07936, USA
| | - Cecile Blin
- Novartis Pharma AG, Basel, CH-4056, Switzerland
| | | | - Vanessa Q Passos
- Novartis Pharmaceuticals Corporation, East Hanover, NJ 07936, USA
| | - Tony Sk Mok
- The Chinese University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
183
|
Chauhan A, Midha S, Kumar R, Meena R, Singh P, Jha SK, Kuanr BK. Rapid tumor inhibition via magnetic hyperthermia regulated by caspase 3 with time-dependent clearance of iron oxide nanoparticles. Biomater Sci 2021; 9:2972-2990. [PMID: 33635305 DOI: 10.1039/d0bm01705a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among conventional cancer therapies, radio-frequency magnetic hyperthermia (MHT) has widely been investigated for use with magnetic nanoparticles (MNPs). However, the majority of in vivo biodistribution studies have tested very low MNP dosages (equivalent to magnetic resonance imaging (MRI) applications) to check for clearance rate; which is far below the clinical dose of MHT. Due to this poor validation in preclinical scenarios, quite a few MNPs already in clinical use were later discontinued, on grounds of unexpected clinical outcomes in terms of inflammation, and prolonged clearance in vivo. By exploiting an economical method of synthesis, we have developed chitosan-coated Fe3O4 nanoparticles with high heating efficiency performance. Their anti-tumor response was evaluated in an ectopic tumor model of C6 glioblastoma by MHT. The intratumoral injection of MNPs on days 1 and 7 resulted in rapid tumor inhibition rate of 69.4% within 8 days, with complete inhibition within 32 days, and no recurrence recorded over a 5-month follow-up. Notably, the MNP-mediated MHT therapy achieved the highest degree of therapeutic efficacy required for complete tumor ablation by combining controlled temperature range (<44 °C), reduced MNP dosage; much lower than in most reported studies, and AMF parameters (time of exposure and frequency) within the clinical safety limit. Periodic body weight measurements confirmed negligible adverse side effects in rats. The anti-tumor activity was validated by severe apoptosis (TUNEL, cleaved Caspase-3), reduced proliferation (Ki 67) and disrupted vasculature (CD 31) in the Fe3O4-MHT-treated group. Real-time gene expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1α, IL-1β) confirmed the intratumoral activation of IL-6, suggesting the role of immunomodulation in triggering the adaptive immune response for faster tumor regression in the treated group. In addition, the biodistribution and clearance rate of MNPs monitored using ICP-OES confirmed their time-dependent biodegradation via excretion (urine, feces), phagocytosis (liver) and circulatory system (blood), with negligible deposition in other major organs (kidney, heart, lungs). Although we could not show complete clearance of our MNPs within the time frame tested, future studies should focus on combining MHT with immunotherapy, and target tumors at a much-reduced iron dose, consequently improving in vivo clearance rate, and hence overcoming the limitations of MHT in clinical therapy.
Collapse
Affiliation(s)
- Anjali Chauhan
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India. and School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Swati Midha
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India. and UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - Ravi Kumar
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Ravindra Meena
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Pooja Singh
- National Institute of Plant Genome research, New Delhi-110067, India
| | - Sushil K Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Bijoy K Kuanr
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
184
|
Lv Q, Xia Q, Li A, Wang Z. The Potential Role of IL1RAP on Tumor Microenvironment-Related Inflammatory Factors in Stomach Adenocarcinoma. Technol Cancer Res Treat 2021; 20:1533033821995282. [PMID: 33602046 PMCID: PMC7897808 DOI: 10.1177/1533033821995282] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study was performed to investigate the role of interleukin-1 receptor accessory protein (IL1RAP) in stomach carcinoma in vitro and in vivo, determine whether IL1RAP knockdown could regulate the development of stomach carcinoma, and elucidate the relationship between IL1RAP knockdown and inflammation by tumor microenvironment-related inflammatory factors in stomach carcinoma. We first used TCGA and GEPIA systems to predict the potential function of IL1RAP. Second, western blot and RT-PCR were used to analyze the expression, or mRNA level, of IL1RAP at different tissue or cell lines. Third, the occurrence and development of stomach carcinoma in vitro and in vivo were observed by using IL1RAP knockdown lentivirus. Finally, the inflammation of stomach carcinoma in vitro and in vivo was observed. Results show that in GEPIA and TCGA systems, IL1RAP expression in STAD tumor tissue was higher than normal, and high expression of IL1RAP in STAD patients had a worse prognostic outcome. Besides, GSEA shown IL1RAP was negative correlation of apopopsis, TLR4 and NF-κB signaling pathway. We also predicted that IL1RAP may related to IL-1 s, IL-33, and IL-36 s in STAD. The IL1RAP expression and mRNA level in tumor, or MGC803, cells were increased. Furthermore, IL1RAP knockdown by lentivirus could inhibit stomach carcinoma development in vitro and in vivo through weakening tumor cell proliferation, migration, invasion, therefore reducing tumor volume, weight, and biomarker levels, and increasing apoptotic level. Finally, we found IL1RAP knockdown could increase inflammation of tumor microenvironment-related inflammatory factors of stomach carcinoma, in vitro and in vivo. Our study demonstrates that IL1RAP is possibly able to regulate inflammation and apoptosis in stomach carcinoma. Furthermore, TLR4, NF-κB, IL-1 s, IL-33, and IL-36 s maybe the downstream target factor of IL1RAP in inflammation. These results may provide a new strategy for stomach carcinoma development by regulating inflammation.
Collapse
Affiliation(s)
- Qing Lv
- Department of Gastrointestinal Surgery, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Qinghua Xia
- Department of Gastrointestinal Surgery, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Anshu Li
- Department of Gastrointestinal Surgery, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Zhiyong Wang
- Department of Gastrointestinal Surgery, Wuhan Union Hospital, Wuhan, Hubei, China
| |
Collapse
|
185
|
Liu Y, Zou L, Wang P, Zhou J, Yuan C, Wang J. Construction of differential expression plasmids of NGF to detect its influence on PC12 cell neuronal differentiation. Exp Ther Med 2021; 21:363. [PMID: 33732336 PMCID: PMC7903390 DOI: 10.3892/etm.2021.9794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/13/2020] [Indexed: 11/30/2022] Open
Abstract
Alongside angiogenesis and lymphangiogenesis, neurogenesis also occurs within the cancer microenvironment. Neurogenesis is a complex process involving multiple factors, among which nerve growth factor (NGF) possesses the dual biological roles of neuron nutrition and axon growth promotion. Thus, NGF might be a key molecule involved in regulating cancer-related neurogenesis, which could play a crucial role in the signal transmission system that controls nerve growth in tumors, and enhances the abilities of migration, invasion and metastasis of tumor cells. The present study aimed to construct differential expression plasmids of NGF, in order to detect whether NGF has a vital role in neurogenesis in breast cancer cells. In the present study, 92 clinical cases of breast cancer were collected and immunohistochemical analysis was performed to verify the existence of neurons in the breast cancer microenvironment. Furthermore, recombinant NGF lentiviral overexpression, knockout and silencing plasmids were constructed, and whether NGF has an effect on neuron growth was preliminarily confirmed, indicating that the successfully constructed plasmids could be used to verify the roles of NGF in cancer-associated neurogenesis.
Collapse
Affiliation(s)
- Yu Liu
- Central Laboratory, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Department of Oncology, Gong'an County Hospital, Jingzhou, Hubei 434300, P.R. China
| | - Lili Zou
- Central Laboratory, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Infection and Inflammation Institute, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Peng Wang
- Central Laboratory, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Infection and Inflammation Institute, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Jingxuan Zhou
- Central Laboratory, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Infection and Inflammation Institute, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Chunling Yuan
- Central Laboratory, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Jun Wang
- Central Laboratory, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
186
|
Udagawa K, Niki Y, Kikuchi T, Fukuhara Y, Takeda Y, Miyamoto T, Matsumoto M, Nakamura M. Overexpression of Interleukin-1α Suppresses Liver Metastasis of Lymphoma: Implications for Antitumor Effects of CD8+ T-cells. J Histochem Cytochem 2021; 69:245-255. [PMID: 33559519 DOI: 10.1369/0022155421991634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Interleukin (IL)-1 plays a key role in carcinogenesis, tumor progression, and metastasis. Although IL-1 may enhance the expansion of CD8+ T-cells, the pathological contribution of IL-1-activated CD8+ T-cells to tumor metastasis remains unclear. This study used a liver metastasis model of the EL4 T-cell lymphoma cells transplanted into human IL (hIL)-1α conditional transgenic (hIL-1α cTg) mice. Overproduction of hIL-1α suppressed both macroscopic and histological liver metastasis of EL4 T-cell lymphoma. The hIL-1α-induced inflammatory state increased the number of CD8+ T-cells both within and around metastatic tumors. Moreover, larger numbers of CD8+ T-cells showed greater infiltration of liver blood vessels in hIL-1α cTg mice than in control wild-type mice. Terminal deoxynucleotidyl transferase dUTP nick-end labeling staining of liver tissue from hIL-1α cTg mice indicated increased apoptosis of cells in the tumor. Localization of apoptosis cells resembled that of CD8+ T-cells. In addition, cytotoxicity assay showed that CD8+ T-cell counts from tumor-bearing hIL-1α cTg mice correlated with cytotoxicity against EL4. In summary, IL-1α suppresses lymphoma metastasis, and IL-1α-activated CD8+ T-cells may play important roles in inhibiting both tumor metastasis and metastatic tumor growth.
Collapse
Affiliation(s)
- Kazuhiko Udagawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yasuo Niki
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Toshiyuki Kikuchi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan.,National Hospital Organization Murayama Medical Center, Tokyo, Japan
| | - Yusuke Fukuhara
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Takeda
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Miyamoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Department of Orthopaedic Surgery, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
187
|
Lopez-Bergami P, Barbero G. The emerging role of Wnt5a in the promotion of a pro-inflammatory and immunosuppressive tumor microenvironment. Cancer Metastasis Rev 2021; 39:933-952. [PMID: 32435939 DOI: 10.1007/s10555-020-09878-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Wnt5a is the prototypical activator of the non-canonical Wnt pathways, and its overexpression has been implicated in the progression of several tumor types by promoting cell motility, invasion, EMT, and metastasis. Recent evidences have revealed a novel role of Wnt5a in the phosphorylation of the NF-κB subunit p65 and the activation of the NF-κB pathway in cancer cells. In this article, we review the molecular mechanisms and mediators defining a Wnt5a/NF-κB signaling pathway and propose that the aberrant expression of Wnt5a in some tumors drives a Wnt5a/NF-κB/IL-6/STAT3 positive feedback loop that amplifies the effects of Wnt5a. The evidences discussed here suggest that Wnt5a has a double effect on the tumor microenvironment. First, it activates an autocrine ROR1/Akt/p65 pathway that promotes inflammation and chemotaxis of immune cells. Then, Wnt5a activates a TLR/MyD88/p50 pathway exclusively in myelomonocytic cells promoting the synthesis of the anti-inflammatory cytokine IL-10 and a tolerogenic phenotype. As a result of these mechanisms, Wnt5a plays a negative role on immune cell function that contributes to an immunosuppressive tumor microenvironment and would contribute to resistance to immunotherapy. Finally, we summarized the development of different strategies targeting either Wnt5a or the Wnt5a receptor ROR1 that can be helpful for cancer therapy by contributing to generate a more immunostimulatory tumor microenvironment.
Collapse
Affiliation(s)
- Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimonides, Hidalgo 775, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Gastón Barbero
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimonides, Hidalgo 775, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
188
|
Gottschlich A, Endres S, Kobold S. Therapeutic Strategies for Targeting IL-1 in Cancer. Cancers (Basel) 2021; 13:477. [PMID: 33530653 PMCID: PMC7865618 DOI: 10.3390/cancers13030477] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Since its discovery, interleukin-1 has been extensively studied in a wide range of medical fields. Besides carrying out vital physiological functions, it has been implicated with a pivotal role in the progression and spreading of different cancer entities. During the last years, several clinical trials have been conducted, shedding light on the role of IL-1 blocking agents for the treatment of cancer. Additionally, recent developments in the field of immuno-oncology have implicated IL-1-induced signaling cascades as a major driver of severe chimeric antigen receptor T cell-associated toxicities such as cytokine release syndrome and immune effector cell-associated neurotoxicity. In this review, we summarize current clinical trials investigating the role of IL-1 blockade in cancer treatment and elaborate the proposed mechanism of these innovative treatment approaches. Additionally, we highlight cutting-edge developments utilizing IL-1 blocking agents to enhance the safety and efficacy of adoptive T cell therapy.
Collapse
Affiliation(s)
- Adrian Gottschlich
- Center for Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany; (A.G.); (S.E.)
| | - Stefan Endres
- Center for Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany; (A.G.); (S.E.)
- German Center for Translational Cancer Research (DKTK), Partner Site Munich, 80337 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), 85764 Neuherberg, Germany
| | - Sebastian Kobold
- Center for Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany; (A.G.); (S.E.)
- German Center for Translational Cancer Research (DKTK), Partner Site Munich, 80337 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), 85764 Neuherberg, Germany
| |
Collapse
|
189
|
Cavalli G, Colafrancesco S, Emmi G, Imazio M, Lopalco G, Maggio MC, Sota J, Dinarello CA. Interleukin 1α: a comprehensive review on the role of IL-1α in the pathogenesis and treatment of autoimmune and inflammatory diseases. Autoimmun Rev 2021; 20:102763. [PMID: 33482337 DOI: 10.1016/j.autrev.2021.102763] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
The interleukin (IL)-1 family member IL-1α is a ubiquitous and pivotal pro-inflammatory cytokine. The IL-1α precursor is constitutively present in nearly all cell types in health, but is released upon necrotic cell death as a bioactive mediator. IL-1α is also expressed by infiltrating myeloid cells within injured tissues. The cytokine binds the IL-1 receptor 1 (IL-1R1), as does IL-1β, and induces the same pro-inflammatory effects. Being a bioactive precursor released upon tissue damage and necrotic cell death, IL-1α is central to the pathogenesis of numerous conditions characterized by organ or tissue inflammation. These include conditions affecting the lung and respiratory tract, dermatoses and inflammatory skin disorders, systemic sclerosis, myocarditis, pericarditis, myocardial infarction, coronary artery disease, inflammatory thrombosis, as well as complex multifactorial conditions such as COVID-19, vasculitis and Kawasaki disease, Behcet's syndrome, Sjogren Syndrome, and cancer. This review illustrates the clinical relevance of IL-1α to the pathogenesis of inflammatory diseases, as well as the rationale for the targeted inhibition of this cytokine for treatment of these conditions. Three biologics are available to reduce the activities of IL-1α; the monoclonal antibody bermekimab, the IL-1 soluble receptor rilonacept, and the IL-1 receptor antagonist anakinra. These advances in mechanistic understanding and therapeutic management make it incumbent on physicians to be aware of IL-1α and of the opportunity for therapeutic inhibition of this cytokine in a broad spectrum of diseases.
Collapse
Affiliation(s)
- Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy, and Rare Diseases, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University, Milan, Italy.
| | - Serena Colafrancesco
- Dipartimento of Clinical Sciences (Internal Medicine, Anesthesia and Resuscitation, and Cardiology), Rheumatology Unit, Sapienza University of Rome, Rome, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, Careggi University Hospital, Firenze, Italy
| | - Massimo Imazio
- University Division of Cardiology, Cardiovascular and Throracic Department, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Giuseppe Lopalco
- Department of Emergency and Organ Transplantation, Rheumatology Unit, University of Bari, Bari, Italy
| | - Maria Cristina Maggio
- Department of Health Promotion, Maternal and Infantile Care, Department of Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Jurgen Sota
- Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease Clinic, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
190
|
Yin Y, Li F, Tong L, Chen C, Yuan B. Effects of in IL-1B/IL-1RN variants on the susceptibility to head and neck cancer in a chinese Han population. Cancer Cell Int 2021; 21:59. [PMID: 33472637 PMCID: PMC7816368 DOI: 10.1186/s12935-021-01750-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/02/2021] [Indexed: 02/01/2023] Open
Abstract
Background The study aimed to evaluate the relationship of IL-1B/IL-1RN polymorphisms to the predisposition of head and neck cancer (HNC) in a Chinese Han population. Methods Nine single-nucleotide polymorphisms (SNPs) in IL-1B/IL-1RN were genotyped based on Agena MassARRAY platform. Logistic regression models were used to analyze the genetic association between these SNPs and HNC risk by calculating odds ratios (ORs) and 95% confidence intervals (CI). Haplotype analysis were performed using Haploview program and logistic regression model. Results The genetic association between rs1143643 in IL-1B and the higher risk of HNC was found (OR = 1.23, 95% CI 1.04–1.46) in the overall. IL-1RN rs17042888 was related to a reduced risk of HNC in the subjects aged > 46 years (OR = 0.70, 95% CI: 0.50–0.98) and in females (OR = 0.71, 95% CI 0.52–0.98), while rs1143643 increased the predisposition of HNC among females (OR = 1.76, 95% CI 1.13–2.74). Furthermore, rs1143643 had an increased susceptibility to thyroid carcinoma (OR = 1.61, 95% CI 1.10–2.34). Moreover, compared with stage I–II, the frequency of IL-1RN rs452204-AG genotype was lower in patients with stage III–IV. Conclusions IL-1B (rs1143643) and IL-1RN (rs17042888 and rs452204) polymorphisms might be related to the individual susceptibility of HNC in the Chinese Han population. These results might help to improve the understanding of IL-1B and IL-1RN genes in the occurrence of HNC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01750-0.
Collapse
Affiliation(s)
- Yanhai Yin
- Department of Nuclear medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan general Hospital, Haikou, Hainan Province, China
| | - Fen Li
- Department of Nuclear medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan general Hospital, Haikou, Hainan Province, China
| | - Liangqian Tong
- Department of Nuclear medicine, Haikou general Hospital, Haikou, Hainan Province, China
| | - Chunru Chen
- Department of Nuclear medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan general Hospital, Haikou, Hainan Province, China
| | - Bo Yuan
- Department of General surgery, Hainan Affiliated Hospital of Hainan Medical University, Hainan general Hospital, #19 Xiuhua Road, Xiuying District, Haikou, Hainan Province, 570311, China.
| |
Collapse
|
191
|
Aggen DH, Ager CR, Obradovic A, Chowdhury N, Ghasemzadeh A, Mao W, Chaimowitz M, Lopez-Bujanda ZA, Spina CS, Hawley JE, Dallos MC, Zhang C, Wang V, Li H, Guo X, Drake CG. Blocking IL1 Beta Promotes Tumor Regression and Remodeling of the Myeloid Compartment in a Renal Cell Carcinoma Model: Multidimensional Analyses. Clin Cancer Res 2021; 27:608-621. [PMID: 33148676 PMCID: PMC7980495 DOI: 10.1158/1078-0432.ccr-20-1610] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/11/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Intratumoral immunosuppression mediated by myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) represents a potential mechanism of immune checkpoint inhibitor (ICI) resistance in solid tumors. By promoting TAM and MDSC infiltration, IL1β may drive adaptive and innate immune resistance in renal cell carcinoma (RCC) and in other tumor types. EXPERIMENTAL DESIGN Using the RENCA model of RCC, we evaluated clinically relevant combinations of anti-IL1β plus either anti-PD-1 or the multitargeted tyrosine kinase inhibitor (TKI), cabozantinib. We performed comprehensive immune profiling of established RENCA tumors via multiparameter flow cytometry, tumor cytokine profiling, and single-cell RNA sequencing (RNA-seq). Similar analyses were extended to the MC38 tumor model. RESULTS Analyses via multiparameter flow cytometry, tumor cytokine profiling, and single-cell RNA-seq showed that anti-IL1β reduces infiltration of polymorphonuclear MDSCs and TAMs. Combination treatment with anti-IL1β plus anti-PD-1 or cabozantinib showed increased antitumor activity that was associated with decreases in immunosuppressive MDSCs and increases in M1-like TAMs. CONCLUSIONS Single-cell RNA-seq analyses show that IL1β blockade and ICI or TKI remodel the myeloid compartment through nonredundant, relatively T-cell-independent mechanisms. IL1β is an upstream mediator of adaptive myeloid resistance and represents a potential target for kidney cancer immunotherapy.
Collapse
Affiliation(s)
- David H. Aggen
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY USA 10032
- Current Address: Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY USA 10065
- Department of Hematology Oncology, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Casey R. Ager
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Aleksandar Obradovic
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Nivedita Chowdhury
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Ali Ghasemzadeh
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Wendy Mao
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY USA 10032
- Current Address: Kite Pharma, 930 Clopper Rd Suite 200, Gaithersburg, MD USA 20878
| | - Matthew Chaimowitz
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Zoila A. Lopez-Bujanda
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21205
| | - Catherine S. Spina
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Jessica E. Hawley
- Department of Hematology Oncology, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Matthew C. Dallos
- Department of Hematology Oncology, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN USA 55905
| | - Vinson Wang
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Urology, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Hu Li
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Xinzheng Guo
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Charles G. Drake
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Hematology Oncology, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Urology, Columbia University Irving Medical Center, New York, NY USA 10032
| |
Collapse
|
192
|
Mu X, Zhao Q, Chen W, Zhao Y, Yan Q, Peng R, Zhu J, Yang C, Lan K, Gu X, Wang Y. IL-37 Confers Anti-Tumor Activity by Regulation of m6A Methylation. Front Oncol 2021; 10:526866. [PMID: 33489865 PMCID: PMC7821743 DOI: 10.3389/fonc.2020.526866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
N6-methyladenosine (m6A) is a common transcriptomic modification in cancer. Recently, it has been found to be involved in the regulation of non-small cell lung cancer (NSCLC) formation and metastasis. Interleukin 37 (IL-37) plays a crucial protective role in lung cancer. In our previous studies, we found that IL-37 is a potential novel tumor suppressor by inhibiting IL-6 expression to suppress STAT3 activation and decreasing epithelial-to-mesenchymal transition. Moreover, we found that treatment of IL-37 in lung cancer cells induced widespread and dynamic RNA m6A methylation. The effects of RNA m6A methylation of IL-37 treatment require further study. However, the functions of RNA m6A methylation of IL-37 treatment still await elucidation. Using MeRIP-seq and RNA-seq, we uncovered a unique m6A methylation profile in the treatment of IL-37 on the A549 cell line. We also showed the expression of m6A writers METTL3, METTL14, and WTAP and erasers ALKBH5 and FTO in A549 cells and lung cancer tissues after the treatment of IL-37. This study showed that IL-37 could lead to changes in m6A methylation level and related molecule expression level in A546 cells and may downregulate the proliferation by inhibiting Wnt5a/5b pathway in A549 cells. We conclude that IL-37 suppresses tumor growth through regulation of RNA m6A methylation in lung cancer cells.
Collapse
Affiliation(s)
- Xiaofeng Mu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Qi Zhao
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Wen Chen
- Department of Hyperbaric Oxygen, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Yuxiang Zhao
- Institute of Bioengineering, Biotrans Technology Co., LTD., Shanghai, China.,United New Drug Research and Development Center, Biotrans Technology Co., LTD., Ningbo, China
| | - Qing Yan
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Rui Peng
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Jie Zhu
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Chunrui Yang
- Department of Pathology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ketao Lan
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Xiaosong Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Ye Wang
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
193
|
De Salvo C, Pastorelli L, Petersen CP, Buttò LF, Buela KA, Omenetti S, Locovei SA, Ray S, Friedman HR, Duijser J, Xin W, Osme A, Cominelli F, Mahabeleshwar GH, Mills JC, Goldenring JR, Pizarro TT. Interleukin 33 Triggers Early Eosinophil-Dependent Events Leading to Metaplasia in a Chronic Model of Gastritis-Prone Mice. Gastroenterology 2021; 160:302-316.e7. [PMID: 33010253 PMCID: PMC7755675 DOI: 10.1053/j.gastro.2020.09.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Interleukin (IL)33/IL1F11 is an important mediator for the development of type 2 T-helper cell (Th2)-driven inflammatory disorders and has also been implicated in the pathogenesis of gastrointestinal (GI)-related cancers, including gastric carcinoma. We therefore sought to mechanistically determine IL33's potential role as a critical factor linking chronic inflammation and gastric carcinogenesis using gastritis-prone SAMP1/YitFc (SAMP) mice. METHODS SAMP and (parental control) AKR mice were assessed for baseline gastritis and progression to metaplasia. Expression/localization of IL33 and its receptor, ST2/IL1R4, were characterized in corpus tissues, and activation and neutralization studies were both performed targeting the IL33/ST2 axis. Dissection of immune pathways leading to metaplasia was evaluated, including eosinophil depletion studies using anti-IL5/anti-CCR3 treatment. RESULTS Progressive gastritis and, ultimately, intestinalized spasmolytic polypeptide-expressing metaplasia (SPEM) was detected in SAMP stomachs, which was absent in AKR but could be moderately induced with exogenous, recombinant IL33. Robust peripheral (bone marrow) expansion of eosinophils and local recruitment of both eosinophils and IL33-expressing M2 macrophages into corpus tissues were evident in SAMP. Interestingly, IL33 blockade did not affect bone marrow-derived expansion and local infiltration of eosinophils, but markedly decreased M2 macrophages and SPEM features, while eosinophil depletion caused a significant reduction in both local IL33-producing M2 macrophages and SPEM in SAMP. CONCLUSIONS IL33 promotes metaplasia and the sequelae of eosinophil-dependent downstream infiltration of IL33-producing M2 macrophages leading to intestinalized SPEM in SAMP, suggesting that IL33 represents a critical link between chronic gastritis and intestinalizing metaplasia that may serve as a potential therapeutic target for preneoplastic conditions of the GI tract.
Collapse
Affiliation(s)
| | - Luca Pastorelli
- Department of Pathology; Department of IRCCS Policlinico San Donato, Gastroenterology & Gastrointestinal Endoscopy Unit, San Donato Milanese, 20097 and Department of Biomedical Sciences, University of Milan, Milan, 20122, Italy
| | - Christine P. Petersen
- Department of Department of Surgery and the Epithelial Biology Center, Vanderbilt University, Nashville, TN, 37235, USA
| | - Ludovica F. Buttò
- Department of Medicine/Division of Gastroenterology & Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | | | | | - Silviu A. Locovei
- Department of Pathology; Department of Medicine/Division of Gastroenterology & Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | | | | | | | | | | | - Fabio Cominelli
- Department of Medicine/Division of Gastroenterology & Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | | | - Jason C. Mills
- Department of Medicine, Gastroenterology Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - James R. Goldenring
- Department of Department of Surgery and the Epithelial Biology Center, Vanderbilt University, Nashville, TN, 37235, USA
| | | |
Collapse
|
194
|
Qiu YL, Zheng H, Devos A, Selby H, Gevaert O. A meta-learning approach for genomic survival analysis. Nat Commun 2020; 11:6350. [PMID: 33311484 PMCID: PMC7733508 DOI: 10.1038/s41467-020-20167-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
RNA sequencing has emerged as a promising approach in cancer prognosis as sequencing data becomes more easily and affordably accessible. However, it remains challenging to build good predictive models especially when the sample size is limited and the number of features is high, which is a common situation in biomedical settings. To address these limitations, we propose a meta-learning framework based on neural networks for survival analysis and evaluate it in a genomic cancer research setting. We demonstrate that, compared to regular transfer-learning, meta-learning is a significantly more effective paradigm to leverage high-dimensional data that is relevant but not directly related to the problem of interest. Specifically, meta-learning explicitly constructs a model, from abundant data of relevant tasks, to learn a new task with few samples effectively. For the application of predicting cancer survival outcome, we also show that the meta-learning framework with a few samples is able to achieve competitive performance with learning from scratch with a significantly larger number of samples. Finally, we demonstrate that the meta-learning model implicitly prioritizes genes based on their contribution to survival prediction and allows us to identify important pathways in cancer.
Collapse
Affiliation(s)
- Yeping Lina Qiu
- Department of Electrical Engineering, Stanford University, Stanford, USA
- Department of Medicine, Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, USA
| | - Hong Zheng
- Department of Medicine, Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, USA
| | - Arnout Devos
- School of Computer and Communication Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Heather Selby
- Department of Medicine, Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, USA
| | - Olivier Gevaert
- Department of Medicine, Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, USA.
- Department of Biomedical Data Science, Stanford University, Stanford, USA.
| |
Collapse
|
195
|
de França JS, de Sales-Neto JM, Carvalho DCM, de Almeida Lima É, Olegário TR, Mendes RKS, Lima-Junior CG, de Almeida Vasconcellos MLA, Rodrigues-Mascarenhas S. Morita-Baylis-Hillman Adduct 2-(3-Hydroxy-2-oxoindolin-3-yl)acrylonitrile (ISACN) Modulates Inflammatory Process In vitro and In vivo. Inflammation 2020; 44:899-907. [PMID: 33236262 DOI: 10.1007/s10753-020-01385-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
Morita-Baylis-Hillman adducts (MBHA) are synthetic molecules with several biological actions already described in the literature. It has been previously described that adduct 2-(3-hydroxy-2-oxoindolin-3-yl)acrylonitrile (ISACN) has anticancer potential in leukemic cells. Inflammation is often associated with the development and progression of cancer. Therefore, to better understand the effect of ISACN, this study aimed to evaluate the anti-inflammatory potential of ISACN both in vitro and in vivo. Results demonstrated that ISACN negatively modulated the production of inflammatory cytokines IL-1β, TNF-α, and IL-6 by cultured macrophages. In vivo, ISACN 6 and 24 mg/kg treatment promoted reduced leukocyte migration, especially neutrophils, to the peritoneal cavity of zymosan-challenged animals. ISACN displays no anti-edematogenic activity, but it was able to promote a significant reduction in the production of inflammatory cytokines in the peritoneal cavity. These data show, for the first time, that MBHA ISACN negatively modulates several aspects of the inflammatory response, such as cell migration and cytokine production in vivo and in vitro, thus having an anti-inflammatory potential.
Collapse
Affiliation(s)
| | | | - Deyse Cristina Madruga Carvalho
- Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, Joao Pessoa, PB, CEP: 58051-900, Brazil
| | - Éssia de Almeida Lima
- Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, Joao Pessoa, PB, CEP: 58051-900, Brazil
| | | | | | | | | | - Sandra Rodrigues-Mascarenhas
- Centro de Ciências da Saúde, Universidade Federal da Paraíba, Joao Pessoa, PB 58051-900, Brazil. .,Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, Joao Pessoa, PB, CEP: 58051-900, Brazil.
| |
Collapse
|
196
|
Jiang B, Shi W, Li P, Wu Y, Li Y, Bao C. The mechanism of and the association between interleukin-27 and chemotherapeutic drug sensitivity in lung cancer. Oncol Lett 2020; 21:14. [PMID: 33240420 PMCID: PMC7681223 DOI: 10.3892/ol.2020.12275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 04/12/2019] [Indexed: 02/06/2023] Open
Abstract
Interleukins (ILs) are involved in the occurrence and development of numerous types of cancer, and serve a critical role in the development of effective cancer therapeutics. The aim of the present study was to investigate the effect of IL-27 on chemotherapy resistance in lung cancer cells, and analyze its potential molecular mechanism in lung cancer tissues. Western blot analysis and reverse transcription-quantitative polymerase chain reaction were performed to examine the RNA and protein expression levels of IL-27. A Cell Counting Kit-8 assay was performed to evaluate the proliferation rates of the lung cancer line A549. Flow cytometry was subsequently applied to determine the rate of apoptosis in A549 cells. The data obtained revealed that the expression of IL-27 with cisplatin, significantly suppressed the proliferation and apoptosis of A549 cells compared with that in the cisplatin treatment group alone. The expression of Akt and apoptosis factors such as Caspase-3 and Bcl-2/Bax also ascertained that upregulated IL-27 inhibited the development of cancer and increased apoptosis in the A549 cells. Therefore, IL-27 may represent a potential target for antitumor therapy, especially when considering the clinical challenges presented by the development of chemoresistance in tumors. These findings suggest that IL-27 is a promising biomarker and represents a novel treatment strategy for patients with lung cancer.
Collapse
Affiliation(s)
- Bingdong Jiang
- Department of Medical Oncology, Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Wenbo Shi
- Department of Oncology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Peng Li
- Department of Radiotherapy, Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Yanli Wu
- Department of Oncology, Guangshui No. 1 People's Hospital, Guangshui, Hubei 432700, P.R. China
| | - Yun Li
- Department of Medical Oncology, Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Chuanming Bao
- Department of Cardiothoracic Surgery, Suizhou Central Hospital, Suizhou, Hubei 441300, P.R. China
| |
Collapse
|
197
|
Odom GJ, Ban Y, Colaprico A, Liu L, Silva TC, Sun X, Pico AR, Zhang B, Wang L, Chen X. PathwayPCA: an R/Bioconductor Package for Pathway Based Integrative Analysis of Multi-Omics Data. Proteomics 2020; 20:e1900409. [PMID: 32430990 PMCID: PMC7677175 DOI: 10.1002/pmic.201900409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/01/2020] [Indexed: 01/01/2023]
Abstract
The authors present pathwayPCA, an R/Bioconductor package for integrative pathway analysis that utilizes modern statistical methodology, including supervised and adaptive, elastic-net, sparse principal component analysis. pathwayPCA can be applied to continuous, binary, and survival outcomes in studies with multiple covariates and/or interaction effects. It outperforms several alternative methods at identifying disease-associated pathways in integrative analysis using both simulated and real datasets. In addition, several case studies are provided to illustrate pathwayPCA analysis with gene selection, estimating, and visualizing sample-specific pathway activities, identifying sex-specific pathway effects in kidney cancer, and building integrative models for predicting patient prognosis. pathwayPCA is an open-source R package, freely available through the Bioconductor repository. pathwayPCA is expected to be a useful tool for empowering the wider scientific community to analyze and interpret the wealth of available proteomics data, along with other types of molecular data recently made available by Clinical Proteomic Tumor Analysis Consortium and other large consortiums.
Collapse
Affiliation(s)
- Gabriel J. Odom
- Department of Biostatistics, Florida International University, Stempel College of Public Health, Miami, FL 33199, USA
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Yuguang Ban
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Antonio Colaprico
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Lizhong Liu
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Tiago Chedraoui Silva
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Xiaodian Sun
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Alexander R. Pico
- Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA
| | - Lily Wang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xi Chen
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
198
|
Li J, Burgess DJ. Nanomedicine-based drug delivery towards tumor biological and immunological microenvironment. Acta Pharm Sin B 2020; 10:2110-2124. [PMID: 33304781 PMCID: PMC7714990 DOI: 10.1016/j.apsb.2020.05.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022] Open
Abstract
The complex tumor microenvironment is a most important factor in cancer development. The biological microenvironment is composed of a variety of barriers including the extracellular matrix and associated cells such as endothelia cells, pericytes, and cancer-associated fibroblasts. Different strategies can be utilized to enhance nanoparticle-based drug delivery and distribution into tumor tissues addressing the extracellular matrix or cellular components. In addition to the biological microenvironment, the immunological conditions around the tumor tissue can be very complicated and cancer cells have various ways of evading immune surveillance. Nanoparticle drug delivery systems can enhance cancer immunotherapy by tuning the immunological response and memory of various immune cells such as T cells, B cells, macrophages, and dendritic cells. In this review, the main components in the tumor biological and immunological environment are discussed. The focus is on recent advances in nanoparticle-based drug delivery systems towards targets within the tumor microenvironment to improve cancer chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Jin Li
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA
| | - Diane J. Burgess
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA
| |
Collapse
|
199
|
Francescangeli F, De Angelis ML, Baiocchi M, Rossi R, Biffoni M, Zeuner A. COVID-19-Induced Modifications in the Tumor Microenvironment: Do They Affect Cancer Reawakening and Metastatic Relapse? Front Oncol 2020; 10:592891. [PMID: 33194755 PMCID: PMC7649335 DOI: 10.3389/fonc.2020.592891] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/07/2020] [Indexed: 01/18/2023] Open
Abstract
Severe coronavirus disease 2019 (COVID-19) causes an uncontrolled activation of the innate immune response, resulting in acute respiratory distress syndrome and systemic inflammation. The effects of COVID-19-induced inflammation on cancer cells and their microenvironment are yet to be elucidated. Here, we formulate the hypothesis that COVID-19-associated inflammation may generate a microenvironment favorable to tumor cell proliferation and particularly to the reawakening of dormant cancer cells (DCCs). DCCs often survive treatment of primary tumors and populate premetastatic niches in the lungs and other organs, retaining the potential for metastatic outgrowth. DCCs reawakening may be promoted by several events associated to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, including activation of neutrophils and monocytes/macrophages, lymphopenia and an uncontrolled production of pro-inflammatory cytokines. Among pro-inflammatory factors produced during COVID-19, neutrophil extracellular traps (NETs) released by activated neutrophils have been specifically shown to activate premetastatic cancer cells disseminated in the lungs, suggesting they may be involved in DCCs reawakening in COVID-19 patients. If confirmed by further studies, the links between COVID-19, DCCs reactivation and tumor relapse may support the use of specific anti-inflammatory and anti-metastatic therapies in patients with COVID-19 and an active or previous cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Ann Zeuner
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
200
|
Quagliariello V, De Laurentiis M, Cocco S, Rea G, Bonelli A, Caronna A, Lombari MC, Conforti G, Berretta M, Botti G, Maurea N. NLRP3 as Putative Marker of Ipilimumab-Induced Cardiotoxicity in the Presence of Hyperglycemia in Estrogen-Responsive and Triple-Negative Breast Cancer Cells. Int J Mol Sci 2020; 21:E7802. [PMID: 33096896 PMCID: PMC7589802 DOI: 10.3390/ijms21207802] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Hyperglycemia, obesity and metabolic syndrome are negative prognostic factors in breast cancer patients. Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, achieving unprecedented efficacy in multiple malignancies. However, ICIs are associated with immune-related adverse events involving cardiotoxicity. We aimed to study if hyperglycemia could affect ipilimumab-induced anticancer efficacy and enhance its cardiotoxicity. Human cardiomyocytes and estrogen-responsive and triple-negative breast cancer cells (MCF-7 and MDA-MB-231 cell lines) were exposed to ipilimumab under high glucose (25 mM); low glucose (5.5 mM); high glucose and co-administration of SGLT-2 inhibitor (empagliflozin); shifting from high glucose to low glucose. Study of cell viability and the expression of new putative biomarkers of cardiotoxicity and resistance to ICIs (NLRP3, MyD88, cytokines) were quantified through ELISA (Cayman Chemical) methods. Hyperglycemia during treatment with ipilimumab increased cardiotoxicity and reduced mortality of breast cancer cells in a manner that is sensitive to NLRP3. Notably, treatment with ipilimumab and empagliflozin under high glucose or shifting from high glucose to low glucose reduced significantly the magnitude of the effects, increasing responsiveness to ipilimumab and reducing cardiotoxicity. To our knowledge, this is the first evidence that hyperglycemia exacerbates ipilimumab-induced cardiotoxicity and decreases its anticancer efficacy in MCF-7 and MDA-MB-231 cells. This study sets the stage for further tests on other breast cancer cell lines and primary cardiomyocytes and for preclinical trials in mice aimed to decrease glucose through nutritional interventions or administration of gliflozines during treatment with ipilimumab.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, 80131 Napoli, Italy; (A.B.); (A.C.); (M.C.L.); (G.C.)
| | - Michelino De Laurentiis
- Breast Unit, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, 80131 Napoli, Italy; (M.D.L.); (S.C.)
| | - Stefania Cocco
- Breast Unit, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, 80131 Napoli, Italy; (M.D.L.); (S.C.)
| | - Giuseppina Rea
- UOC Bersagli Molecolari del Microambiente, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131 Naples, Italy;
| | - Annamaria Bonelli
- Division of Cardiology, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, 80131 Napoli, Italy; (A.B.); (A.C.); (M.C.L.); (G.C.)
| | - Antonietta Caronna
- Division of Cardiology, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, 80131 Napoli, Italy; (A.B.); (A.C.); (M.C.L.); (G.C.)
| | - Maria Cristina Lombari
- Division of Cardiology, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, 80131 Napoli, Italy; (A.B.); (A.C.); (M.C.L.); (G.C.)
| | - Gabriele Conforti
- Division of Cardiology, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, 80131 Napoli, Italy; (A.B.); (A.C.); (M.C.L.); (G.C.)
| | - Massimiliano Berretta
- Department of MedicalOncology-Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, 80131 Napoli, Italy; (A.B.); (A.C.); (M.C.L.); (G.C.)
| |
Collapse
|