151
|
Chan CH, Chen CM, Lee YHW, You LR. DNA Damage, Liver Injury, and Tumorigenesis: Consequences of DDX3X Loss. Mol Cancer Res 2018; 17:555-566. [PMID: 30297359 DOI: 10.1158/1541-7786.mcr-18-0551] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/09/2018] [Accepted: 09/26/2018] [Indexed: 11/16/2022]
Abstract
The pleiotropic roles of DEAD-box helicase 3, X-linked (DDX3X), including its functions in transcriptional and translational regulation, chromosome segregation, DNA damage, and cell growth control, have highlighted the association between DDX3X and tumorigenesis. However, mRNA transcripts and protein levels of DDX3X in patient specimens have shown the controversial correlations of DDX3X with hepatocellular carcinoma (HCC) prevalence. In this study, generation of hepatocyte-specific Ddx3x-knockout mice revealed that loss of Ddx3x facilitates liver tumorigenesis. Loss of Ddx3x led to profound ductular reactions, cell apoptosis, and compensatory proliferation in female mutants at 6 weeks of age. The sustained phosphorylation of histone H2AX (γH2AX) and significant accumulation of DNA single-strand breaks and double-strand breaks in liver indicated that the replicative stress occurred in female mutants. Further chromatin immunoprecipitation analyses demonstrated that DDX3X bound to promoter regions and regulated the expression of DNA repair factors, DDB2 and XPA, to maintain genome stability. Loss of Ddx3x led to decreased levels of DNA repair factors, which contributed to an accumulation of unrepaired DNA damage, replication stress, and eventually, spontaneous liver tumors and DEN-induced HCCs in Alb-Cre/+;Ddx3xflox/flox mice. IMPLICATIONS: These data identify an important role of DDX3X in the regulation of DNA damage repair to protect against replication stress in liver and HCC development and progression.
Collapse
Affiliation(s)
- Chieh-Hsiang Chan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Ming Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yan-Hwa Wu Lee
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan. .,Center For Intelligent Drug Systems and Smart Bio-devices (IDSB), National Chiao Tung University, Hsinchu, Taiwan
| | - Li-Ru You
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan. .,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
152
|
Connor F, Rayner TF, Aitken SJ, Feig C, Lukk M, Santoyo-Lopez J, Odom DT. Mutational landscape of a chemically-induced mouse model of liver cancer. J Hepatol 2018; 69:840-850. [PMID: 29958939 PMCID: PMC6142872 DOI: 10.1016/j.jhep.2018.06.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Carcinogen-induced mouse models of liver cancer are used extensively to study the pathogenesis of the disease and are critical for validating candidate therapeutics. These models can recapitulate molecular and histological features of human disease. However, it is not known if the genomic alterations driving these mouse tumour genomes are comparable to those found in human tumours. Herein, we provide a detailed genomic characterisation of tumours from a commonly used mouse model of hepatocellular carcinoma (HCC). METHODS We analysed whole exome sequences of liver tumours arising in mice exposed to diethylnitrosamine (DEN). Mutational signatures were compared between liver tumours from DEN-treated and untreated mice, and human HCCs. RESULTS DEN-initiated tumours had a high, uniform number of somatic single nucleotide variants (SNVs), with few insertions, deletions or copy number alterations, consistent with the known genotoxic action of DEN. Exposure of hepatocytes to DEN left a reproducible mutational imprint in resulting tumour exomes which we could computationally reconstruct using six known COSMIC mutational signatures. The tumours carried a high diversity of low-incidence, non-synonymous point mutations in many oncogenes and tumour suppressors, reflecting the stochastic introduction of SNVs into the hepatocyte genome by the carcinogen. We identified four recurrently mutated genes that were putative oncogenic drivers of HCC in this model. Every neoplasm carried activating hotspot mutations either in codon 61 of Hras, in codon 584 of Braf or in codon 254 of Egfr. Truncating mutations of Apc occurred in 21% of neoplasms, which were exclusively carcinomas supporting a role for deregulation of Wnt/β-catenin signalling in cancer progression. CONCLUSIONS Our study provides detailed insight into the mutational landscape of tumours arising in a commonly used carcinogen model of HCC, facilitating the future use of this model to better understand the human disease. LAY SUMMARY Mouse models are widely used to study the biology of cancer and to test potential therapies. Herein, we have described the mutational landscape of tumours arising in a carcinogen-induced mouse model of liver cancer. Since cancer is a disease caused by genomic alterations, information about the patterns and types of mutations in the tumours in this mouse model should facilitate its use to study human liver cancer.
Collapse
Affiliation(s)
- Frances Connor
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Tim F Rayner
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Sarah J Aitken
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK; Department of Histopathology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK
| | - Christine Feig
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Margus Lukk
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Javier Santoyo-Lopez
- Edinburgh Genomics (Clinical), The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK.
| |
Collapse
|
153
|
Fang CC, Wu CF, Liao YJ, Huang SF, Chen M, Chen YMA. AAV serotype 8-mediated liver specific GNMT expression delays progression of hepatocellular carcinoma and prevents carbon tetrachloride-induced liver damage. Sci Rep 2018; 8:13802. [PMID: 30217986 PMCID: PMC6138656 DOI: 10.1038/s41598-018-30800-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/24/2018] [Indexed: 02/08/2023] Open
Abstract
Glycine N-methyltransferase (GNMT) is abundantly expressed in normal livers and plays a protective role against tumor formation. GNMT depletion leads to progression of hepatocellular carcinoma (HCC). In this study, we investigated the activity of ectopic GNMT delivered using recombinant adeno-associated virus (AAV) gene therapy in mouse models of liver cirrhosis and HCC. Injection of AAV serotype 8 (AAV8) vector carrying the GNMT gene (AAV8-GNMT) in Gnmt−/− mice increased GNMT expression and downregulated pro-inflammatory responses, resulting in reduced liver damage and incidence of liver tumors. Moreover, AAV8-GNMT resulted in the amelioration of carbon tetrachloride (CCl4)-induced liver fibrosis in BALB/c mice. We showed that AAV8-GNMT protected hepatocytes from CCl4-induced liver damage. AAV8-GNMT significantly attenuated the levels of pro-fibrotic markers and increased efficiency of hepatocyte proliferation. These results suggest that correction of hepatic GNMT by gene therapy of AAV8-mediated gene enhancement may provide a potential strategy for preventing and delaying development of liver diseases.
Collapse
Affiliation(s)
- Cheng-Chieh Fang
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Fen Wu
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shiu-Feng Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Marcelo Chen
- Department of Urology, Mackay Memorial Hospital, Taipei, Taiwan.,School of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Yi-Ming Arthur Chen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan. .,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan. .,Department of Microbiology and Immunology, Institute of Medical Research and Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
154
|
Mittenbühler MJ, Sprenger HG, Gruber S, Wunderlich CM, Kern L, Brüning JC, Wunderlich FT. Hepatic leptin receptor expression can partially compensate for IL-6Rα deficiency in DEN-induced hepatocellular carcinoma. Mol Metab 2018; 17:122-133. [PMID: 30224299 PMCID: PMC6197506 DOI: 10.1016/j.molmet.2018.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
Objective The current obesity pandemic represents a major health burden, given that it predisposes to the development of numerous obesity-associated disorders. The obesity-derived adipokines not only impair systemic insulin action but also increase the incidence of hepatocellular carcinoma (HCC), a highly prevalent cancer with poor prognosis. Thus, worldwide incidences of HCC are expected to further increase, and defining the molecular as well as cellular mechanisms will allow for establishing new potential treatment options. The adipose tissue of obese individuals increases circulating leptin and interleukin-6 (IL-6) levels, which both share similar signaling capacities such as Signal Transducer and Activator of Transcription 3 (STAT3) and Phosphoinositide 3-kinase (PI3K)/Akt activation. While mouse models with deficient IL-6 signaling show an ameliorated but not absent Diethylnitrosamine (DEN)-induced HCC development, the morbid obesity in mice with mutant leptin signaling complicates the dissection of hepatic leptin receptor (LEPR) and IL-6 signaling in HCC development. Here we have investigated the function of compensating hepatic LEPR expression in HCC development of IL-6Rα-deficient mice. Methods We generated and characterized a mouse model of hepatic LEPR deficiency that was intercrossed with IL-6Rα-deficient mice. Cohorts of single and double knockout mice were subjected to the DEN-HCC model to ascertain liver cancer development and characterize metabolic alterations. Results We demonstrate that both high-fat diet (HFD)-induced obesity and IL-6Rα deficiency induce hepatic Lepr expression. Consistently, double knockout mice show a further reduction in tumor burden in DEN-induced HCC when compared to control and single LepRL−KO/IL-6Rα knock out mice, whereas metabolism remained largely unaltered between the genotypes. Conclusions Our findings reveal a compensatory role for hepatic LEPR in HCC development of IL-6Rα-deficient mice and suggest hepatocyte-specific leptin signaling as promoter of HCC under obese conditions. High fat diet feeding induces LEPR expression in hepatocytes. IL-6Rα deficiency induces LEPR expression in hepatocytes. Hepatic LEPR deficiency fails to affect body composition and metabolism. Hepatic LEPR deficiency ameliorates HCC burden in IL-6Rα-deficient mice.
Collapse
Affiliation(s)
- Melanie J Mittenbühler
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, 50931, Germany
| | - Hans-Georg Sprenger
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Germany; Max Planck Institute for Biology of Ageing, Cologne, 50931, Germany
| | - Sabine Gruber
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, 50931, Germany
| | - Claudia M Wunderlich
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, 50931, Germany
| | - Lara Kern
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, 50931, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, 50931, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Germany
| | - F Thomas Wunderlich
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, 50931, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Germany.
| |
Collapse
|
155
|
Brown ZJ, Heinrich B, Greten TF. Mouse models of hepatocellular carcinoma: an overview and highlights for immunotherapy research. Nat Rev Gastroenterol Hepatol 2018; 15:536-554. [PMID: 29904153 DOI: 10.1038/s41575-018-0033-6] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mouse models are the basis of preclinical and translational research in hepatocellular carcinoma (HCC). Multiple methods exist to induce tumour formation in mice, including genetically engineered mouse models, chemotoxic agents, intrahepatic or intrasplenic injection of tumour cells and xenograft approaches. Additionally, as HCC generally develops in the context of diseased liver, methods exist to induce liver disease in mice to mimic viral hepatitis, fatty liver disease, fibrosis, alcohol-induced liver disease and cholestasis. Similar to HCC in humans, response to therapy in mouse models is monitored with imaging modalities such as CT or MRI, as well as additional techniques involving bioluminescence. As immunotherapy is increasingly applied to HCC, mouse models for these approaches are required for preclinical data. In studying cancer immunotherapy, it is important to consider aspects of antitumour immune responses and to produce a model that mimics the complexity of the immune system. This Review provides an overview of the different mouse models of HCC, presenting techniques to prepare an HCC mouse model and discussing different approaches to help researchers choose an appropriate model for a specific hypothesis. Specific aspects of immunotherapy research in HCC and the applied mouse models in this field are also highlighted.
Collapse
Affiliation(s)
- Zachary J Brown
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bernd Heinrich
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
156
|
Wu CJ, Tsai YT, Lee IJ, Wu PY, Lu LS, Tsao WS, Huang YJ, Chang CC, Ka SM, Tao MH. Combination of radiation and interleukin 12 eradicates large orthotopic hepatocellular carcinoma through immunomodulation of tumor microenvironment. Oncoimmunology 2018; 7:e1477459. [PMID: 30228946 PMCID: PMC6140549 DOI: 10.1080/2162402x.2018.1477459] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 02/07/2023] Open
Abstract
Immunotherapies have shown promising results in certain cancer patients. For hepatocellular carcinoma (HCC), the multiplicity of an immunotolerant microenvironment within both the tumor, and the liver per se may limit the efficacy of cancer immunotherapies. Since radiation induces immunogenic cell death and inflammatory reactions within the tumor microenvironment, we hypothesized that a combination therapy of radiation and lasting local immunostimulating agents, achieved by intratumoral injection of an adenoviral vector encoding interleukin 12, may reverse the immunotolerant microenvironment within a well-established orthotopic HCC toward a state favorable for inducing antitumor immunities. Our data showed that radiation and IL-12 combination therapy (RT/IL-12) led to dramatic tumor regression in animals bearing large subcutaneous or orthotopic HCC, induced systemic effect against distant tumor, and significantly prolonged survival. Radiation monotherapy induced tumor regression at early times but afterwards most tumors regained exponential growth, while IL-12 monotherapy only delayed tumor growth. Mechanistic studies revealed that RT/IL-12 increased expression of MHC class II and co-stimulatory molecules CD40 and CD86 on tumor-infiltrating dendritic cells, suggesting an improvement of their antigen presentation activity. RT/IL-12 also significantly reduced accumulation of tumor-infiltrating myeloid-derived suppressor cells (MDSCs) and impaired their suppressive functions by reducing production of reactive oxygen species. Accordingly, tumor-infiltrating CD8+ T cells and NK cells were significantly activated toward the antitumor phenotype, as revealed by increased expression of CD107a and TNF-α. Together, our data showed that RT/IL-12 treatment could reset the intratumoral immunotolerant state and stimulate activation of antitumor cellular immunity that is capable of eliminating large established HCC tumors.
Collapse
Affiliation(s)
- Chia-Jen Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ting Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan
| | - I-Jung Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ping-Yi Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Long-Sheng Lu
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Wen-Shan Tsao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Jou Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Cheng Chang
- National Taiwan University College of Medicine, Graduate Institute of Medical Education & Bioethics, Taipei, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan.,Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
157
|
Hajighasemlou S, Pakzad S, Ai J, Muhammadnejad S, Mirmoghtadaei M, Hosseinzadeh F, Gharibzadeh S, Kamali A, Ahmadi A, Verdi J. Characterization and Validation of Hepatocellular Carcinoma (HCC) Xenograft tumor as a Suitable Liver Cancer Model for
Preclinical Mesenchymal Stem Cell Studies. Asian Pac J Cancer Prev 2018; 19:1627-1631. [PMID: 29936790 PMCID: PMC6103601 DOI: 10.22034/apjcp.2018.19.6.1627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the fifth most diagnosed cancer and the third leading cause of cancer-related death. sorafenib is used as a standard therapy to treat HCC. mesenchymal stromal cells (MSCs) have also been used to suppress HCC. Here we investigate the development of a xenograft model of liver cancer to study the homing of hpMSC-GFP cells, tumor kinetics and molecular characterizations of HCC. Methods: To create xenograft models of HCC, HepG2 cell lines were inoculated into the flanks of 9 nude mice bilaterally. Animals were then divided into three groups: the first group received hpMSC-GFP systemically, the second received intra-tumoral hpMSC-GFP and the third received PBS. The first two groups were sacrificed after 72 hours of MSCs injection but the third group was followed up for forty days. One tumor from each animal was then transferred to formalin buffer for H&E staining and immunohistochemistry analysis (KI67 and CD34), and the other tumor was used for ex-vivo imaging. Blood samples were taken from all subjects before sacrificing them. Results: Histopathological fidelity of heterotopic HePG2 xenograft models to human HCC tumors was demonstrated. Biochemical evaluation suggested the health of the animal’s liver and kidneys. Ex-vivo imaging illustrated homing of more hpMSC-GFP cells in tumor tissues derived from the group receiving intra-tumoral hpMSC-GFP. Conclusion: A standard method was used to inoculate tumor cells and the intervention was shown to be safe to liver and kidneys. Local injection of MSCs can be used as cell therapy to fight neoplasms.
Collapse
Affiliation(s)
- Saieh Hajighasemlou
- Tissue Engineering and Applied Cell Sciences, Tehran University of Medical Science, Tehran, Iran.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Saber S, Mahmoud A, Helal N, El-Ahwany E, Abdelghany R. Liver Protective Effects of Renin-Angiotensin System Inhibition Have No Survival Benefits in Hepatocellular Carcinoma Induced By Repetitive Administration of Diethylnitrosamine in Mice. Open Access Maced J Med Sci 2018; 6:955-960. [PMID: 29983784 PMCID: PMC6026411 DOI: 10.3889/oamjms.2018.167] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/17/2018] [Accepted: 03/23/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND: Preclinical studies have demonstrated that renin-angiotensin system (RAS) signalling has strong tumour-promoting effects and RAS inhibition was associated with improvement in the overall survival in some cancer types including hepatocellular carcinoma (HCC). OBJECTIVE: We aimed to investigate the effect of angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin-II-receptor blockers (ARBs) on the survival of mice with diethylnitrosamine (DEN) induced HCC. METHODS: HCC was induced by weekly i.p. administration of DEN. Mice were treated with sorafenib (SO) (30 mg/kg), perindopril (PE) (1 mg/kg), fosinopril (FO) (2 mg/kg), losartan (LO) (10 mg/kg), PE (1 mg/kg) + SO (30 mg/kg), FO (2 mg/kg) + SO (30 mg/kg), or LO (10 mg/kg) + SO (30 mg/kg). Survival analysis was done using the Kaplan-Meier method, and the log-rank test was used for assessing the significance of difference between groups. RESULTS: The administration of PE, FO and LO as monotherapy or as combined with SO resulted in marked improvement in the liver histologic picture with no impact on overall survival of mice. CONCLUSION: Interfering the RAS either through the inhibition of ACE or the blockade of angiotensin II type 1 (AT1) receptors has similar effects on the liver of DEN-induced HCC mice and is not associated with longer survival due to detrimental effects of DEN on other organs. Hence, repetitive administration of DEN in such models of HCC is not suitable for mortality assessment studies.
Collapse
Affiliation(s)
- Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Amr Mahmoud
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Noha Helal
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Eman El-Ahwany
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Rasha Abdelghany
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
159
|
Choiniere J, Lin MJ, Wang L, Wu J. Deficiency of pyruvate dehydrogenase kinase 4 sensitizes mouse liver to diethylnitrosamine and arsenic toxicity through inducing apoptosis. LIVER RESEARCH 2018; 2:100-107. [PMID: 31815032 PMCID: PMC6896988 DOI: 10.1016/j.livres.2018.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Pyruvate dehydrogenase kinase 4 (PDK4) is a metabolism switch that regulates glucose oxidation and the tricarboxylic acid cycle (TCA cycle) in the mitochondria. Liver detoxifies xenobiotics and is constantly challenged by various injuries. This study aims at understanding how the loss of the metabolism regulator PDK4 contributes to liver injuries. METHODS Wild-type (WT) and Pdk4 knockout (Pdk4 -/-) mice of different ages were examined for spontaneous hepatic apoptosis. Juvenile or adult mice of two genotypes were insulted by diethylnitrosamine (DEN), arsenic, galactosamine (GalN)/lipopolysaccharide (LPS), anti-CD95 (Jo2) antibody or carbon tetrachloride (CCl4). Liver injury was monitored by blood biochemistry test. Apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, poly (ADP-ribose) polymerase (PARP) cleavage, and caspase activity assay. Inflammatory response was determined by nuclear factor (NF)-κB activation and the activation of NF-κB target genes. Primary hepatocytes were isolated and cell viability was evaluated by MTS assay. RESULTS We showed that systematic Pdk4 -/- in mice resulted in age-dependent spontaneous hepatic apoptosis. PDK4-deficiency increased the toxicity of DEN in juvenile mice, which correlated with a lethal consequence and massive hepatic apoptosis. Similarly, chronic arsenic administration induced more severe hepatic apoptosis in Pdk4 -/- mice compared to WT control mice. An aggravated hepatic NF-κB mediated-inflammatory response was observed in Pdk4 -/- mice livers. In vitro, Pdk4-deficient primary hepatocytes were more vulnerable to DEN and arsenic challenges and displayed higher caspase activity than wild type cells. Notably, hepatic PDK4 mRNA level was remarkably reduced during acute liver failure induced by GalN/LPS or Jo2 antibody. The diminished PDK4 expression was also observed in CCl4-induced acute liver injury. CONCLUSIONS PDK4 may contribute to the protection from apoptotic injury in mouse liver.
Collapse
Affiliation(s)
- Jonathan Choiniere
- Department of Physiology and Neurobiology, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Matthew Junda Lin
- Department of Physiology and Neurobiology, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Li Wang
- Department of Physiology and Neurobiology, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, USA
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianguo Wu
- Department of Physiology and Neurobiology, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
160
|
Abu-Remaileh M, Khalaileh A, Pikarsky E, Aqeilan RI. WWOX controls hepatic HIF1α to suppress hepatocyte proliferation and neoplasia. Cell Death Dis 2018; 9:511. [PMID: 29724996 PMCID: PMC5938702 DOI: 10.1038/s41419-018-0510-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 12/21/2022]
Abstract
Liver cancer is one of the most lethal malignancies with very poor prognosis once diagnosed. The most common form of liver cancer is hepatocellular carcinoma (HCC). The WW domain-containing oxidoreductase (WWOX) is a large gene that is often perturbed in a wide variety of tumors, including HCC. WWOX has been shown to act as a tumor suppressor modulating cellular metabolism via regulating hypoxia-inducible factor 1α (HIF-1α) levels and function. Given that WWOX is commonly inactivated in HCC, we set to determine whether specific targeted deletion of murine Wwox affects liver biology and HCC development. WWOX liver-specific knockout mice (Wwox ΔHep ) showed more potent liver regeneration potential and enhanced proliferation as compared with their control littermates. Moreover, WWOX deficiency in hepatocytes combined with diethylnitrosamine treatment increased the tumor burden, which was associated with increased HIF1α levels and target gene transactivation. Inhibition of HIF1α by systemic treatment with digoxin significantly delayed HCC formation. Our work suggests that WWOX inactivation has a central role in promoting HCC through rewiring of cellular metabolism and modulating proliferation.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation
- Diet, High-Fat/adverse effects
- Diethylnitrosamine/pharmacology
- Digoxin/pharmacology
- Disease Models, Animal
- Gene Expression Regulation, Neoplastic
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Liver Neoplasms/etiology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Lymphatic Metastasis
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Prognosis
- Signal Transduction
- Tumor Burden/drug effects
- Tumor Suppressor Proteins/deficiency
- Tumor Suppressor Proteins/genetics
- WW Domain-Containing Oxidoreductase/deficiency
- WW Domain-Containing Oxidoreductase/genetics
Collapse
Affiliation(s)
- Muhannad Abu-Remaileh
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Abed Khalaileh
- Department of Surgery, Hebrew University-Hadassah Medical, Jerusalem, Israel
| | - Eli Pikarsky
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rami I Aqeilan
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel.
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
161
|
Hori T, Saito K, Moore R, Flake GP, Negishi M. Nuclear Receptor CAR Suppresses GADD45B-p38 MAPK Signaling to Promote Phenobarbital-induced Proliferation in Mouse Liver. Mol Cancer Res 2018; 16:1309-1318. [PMID: 29716964 DOI: 10.1158/1541-7786.mcr-18-0118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/22/2018] [Accepted: 04/11/2018] [Indexed: 11/16/2022]
Abstract
Phenobarbital, a nongenotoxic hepatocarcinogen, induces hepatic proliferation and promotes development of hepatocellular carcinoma (HCC) in rodents. Nuclear receptor constitutive active/androstane receptor (NR1I3/CAR) regulates the induction and promotion activities of phenobarbital. Here, it is demonstrated that phenobarbital treatment results in dephosphorylation of a tumor suppressor p38 MAPK in the liver of C57BL/6 and C3H/HeNCrlBR mice. The molecular mechanism entails CAR binding and inhibition of the growth arrest and DNA-damage-inducible 45 beta (GADD45B)-MAPK kinase 6 (MKK6) scaffold to repress phosphorylation of p38 MAPK. Phenobarbital-induced hepatocyte proliferation, as determined by BrdUrd incorporation, was significantly reduced in both male and female livers of GADD45B knockout (KO) mice compared with the wild-type mice. The phenobarbital-induced proliferation continued until 48 hours after phenobarbital injection in only the C57BL/6 males, but neither in males of GADD45B KO mice nor in females of C57BL/6 and GADD45B KO mice. Thus, these data reveal nuclear receptor CAR interacts with GADD45B to repress p38 MAPK signaling and elicit hepatocyte proliferation in male mice.Implications: This GADD45B-regulated male-predominant proliferation can be expanded as a phenobarbital promotion signal of HCC development in future studies.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/16/8/1309/F1.large.jpg Mol Cancer Res; 16(8); 1309-18. ©2018 AACR.
Collapse
Affiliation(s)
- Takeshi Hori
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Kosuke Saito
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Rick Moore
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Gordon P Flake
- Cellular and Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Masahiko Negishi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina.
| |
Collapse
|
162
|
Diethylnitrosamine Increases Proliferation in Early Stages of Hepatic Carcinogenesis in Insulin-Treated Type 1 Diabetic Mice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9472939. [PMID: 29850590 PMCID: PMC5937583 DOI: 10.1155/2018/9472939] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/01/2018] [Accepted: 03/14/2018] [Indexed: 12/13/2022]
Abstract
Diethylnitrosamine (DEN) induces hepatocarcinogenesis, increasing mitotic hepatocytes and leading to chronic inflammation. In addition, type 1 diabetes mellitus (T1DM) is also characterized by a proinflammatory state and by requiring insulin exogenous treatment. Given the association of diabetes, insulin treatment, and cell proliferation, our specific goal was to determine whether the liver in the diabetic state presents a greater response to DEN-induced cell cycle alteration, which is essential for the malignant transformation. Male C57BL/6 mice (four-week-old) were divided into 4 groups: C, C + DEN, T1DM, and T1DM + DEN. Mice were euthanized ten weeks after DEN injection. DEN per se produced an increase in liver lipid peroxidation levels. Besides, in T1DM + DEN, we found a greater increase in the proliferation index, in comparison with C + DEN. These results are in agreement with the increased expression observed in cell cycle progression markers: cyclin D1 and E1. In addition, a proapoptotic factor, such as activated caspase-3, evidenced a decrease in T1DM + DEN, while the Vascular Endothelial Growth Factor (VEGF) and the protooncogene p53 showed a higher increase with respect to C + DEN. Overall, the results allow us to highlight a major DEN response in T1DM, which may explain in part the greater predisposition to the development of hepatocarcinoma (HCC) during the diabetic state.
Collapse
|
163
|
Li Y, Liu M, Cui J, Yang K, Zhao L, Gong M, Wang Y, He Y, He T, Bi Y. Hepa1-6-FLuc cell line with the stable expression of firefly luciferase retains its primary properties with promising bioluminescence imaging ability. Oncol Lett 2018; 15:6203-6210. [PMID: 29616102 PMCID: PMC5876459 DOI: 10.3892/ol.2018.8132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/01/2018] [Indexed: 01/10/2023] Open
Abstract
Reliable animal models are required for the in vivo study of the molecular mechanisms and effects of chemotherapeutic drugs in hepatocarcinoma. In vivo tracing techniques based on firefly luciferase (FLuc) may optimize the non-invasive monitoring of experimental animals. The present study established a murine Hepa1-6-FLuc cell line that stably expressed a retrovirus-delivered FLuc protein gene. The cell morphology, proliferation, migration and invasion ability of Hepa1-6-FLuc cells were the same as that of the Hepa1-6 cells, and thus is suitable to replace Hepa1-6 cells in the construction of hepatocarcinoma animal models. No differences in subcutaneous tumor mass and its pathomorphology from implanted Hepa1-6-FLuc cells were observed compared with Hepa1-6 control tumors. Bioluminescence imaging indicated that the Luc signal of the Hepa1-6-FLuc cells was consistently strengthened with increases in tumor mass; however, the Luc signal of Hepa1-6-AdFLuc became weaker and eventually disappeared during tumor development. Therefore, compared with the transient expression by adenovirus, stable expression of the FLuc gene in Hepa1-6 cells may better reflect cell proliferation and survival in vivo, and provide a reliable source for the establishment of hepatocarcinoma models.
Collapse
Affiliation(s)
- Yasha Li
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Key Laboratory of Pediatrics in Chongqing, International Science and Technology Cooperation Base of Child Development and Critical Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Mengnan Liu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jiejie Cui
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Key Laboratory of Pediatrics in Chongqing, International Science and Technology Cooperation Base of Child Development and Critical Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Ke Yang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Key Laboratory of Pediatrics in Chongqing, International Science and Technology Cooperation Base of Child Development and Critical Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Li Zhao
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Key Laboratory of Pediatrics in Chongqing, International Science and Technology Cooperation Base of Child Development and Critical Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Mengjia Gong
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Key Laboratory of Pediatrics in Chongqing, International Science and Technology Cooperation Base of Child Development and Critical Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yi Wang
- Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yun He
- Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Tongchuan He
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Key Laboratory of Pediatrics in Chongqing, International Science and Technology Cooperation Base of Child Development and Critical Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Key Laboratory of Pediatrics in Chongqing, International Science and Technology Cooperation Base of Child Development and Critical Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
164
|
Cordyceps cicadae NTTU 868 mycelium prevents CCl 4 -induced hepatic fibrosis in BALB/c mice via inhibiting the expression of pro-inflammatory and pro-fibrotic cytokines. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
165
|
Gavriilidis P, Poutahidis T, Giakoustidis A, Makedou K, Angelopoulou K, Hardas A, Andreani P, Zacharioudaki A, Saridis G, Gargavanis A, Louri E, Antoniadis N, Karampela E, Psychalakis N, Michalopoulos A, Papalois A, Iliadis S, Mudan S, Azoulay D, Giakoustidis D. Targeting hepatocarcinogenesis model in C56BL6 mice with pan-aurora kinase inhibitor Danusertib. J Cancer 2018; 9:914-922. [PMID: 29581770 PMCID: PMC5868156 DOI: 10.7150/jca.22329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/29/2018] [Indexed: 12/23/2022] Open
Abstract
Background: To elucidate the expression of Aurora kinases (AURK) and the anticancer effects of pan-aurora kinase inhibitor Danusertib in hepatocarcinogenesis model in C56Bl6 mice. Methods: Thirty mice C56Bl6 were randomly divided into Group A or control, Group B animals who underwent experimental hepatocarcinogenesis with diethylnitrosamine (DEN), and Group C animals with DEN-induced hepatocarcinogenenesis that treated with pan-aurora kinase inhibitor Danusertib. Primary antibodies for immunochistochemistry (IHC) included rabbit antibodies against Ki-67, DKK1, INCENP, cleaved caspase-3, NF-κB p65, c-Jun, β-catenin. Hepatocyte growth factor receptor (C-MET/HGFR) and Bcl-2 antagonist of cell death (BAD) serum levels were determined using a quantitative sandwich enzyme immunoassay technique. Results: Inhibition of AURK reduced the number of DEN-induced liver tumours. Apoptosis and proliferation was very low in both DEN-induced and anti- AURK groups respectively. The hepatocellular adenoma cells of DEN-treated mice uniformly had ample nuclear INCENP whereas in anti- AURK markedly decreased. Expression of β-catenin, NF-kB and c-Jun did not differ in liver tumors of both AURK -depleted and non-depleted mice. Conclusions: Depletion of AURK reduced the number of DEN-induced hepatic tumours. However, their size did not differ significantly between the groups.
Collapse
Affiliation(s)
- Paschalis Gavriilidis
- Department of Hepato-Pancreato-Biliary and Liver Transplant surgery, Queen Elizabeth University Hospitals Birmingham NHS Foundation Trust, B15 1NU, UK.,Division of Transplant Surgery, Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University and Hippokration General Hospital, Thessaloniki, Greece
| | - Theofilos Poutahidis
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
| | | | - Kali Makedou
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
| | - Katerina Angelopoulou
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
| | - Alexander Hardas
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
| | - Paola Andreani
- Service de Chirurgie Digestive et Hépatobiliaire, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris-Université Paris-Est, Créteil, France
| | | | - George Saridis
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
| | - Athanasios Gargavanis
- Division of Transplant Surgery, Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University and Hippokration General Hospital, Thessaloniki, Greece
| | - Eleni Louri
- Academic Department of Surgery, The Royal Marsden Hospital, London, UK
| | - Nikolaos Antoniadis
- Division of Transplant Surgery, Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University and Hippokration General Hospital, Thessaloniki, Greece
| | | | | | - Antonios Michalopoulos
- Propaedeutic Division of Surgery, Department of Surgery School of Medicine, Faculty of Health Sciences, Aristotle University and AHEPA University Hospital, Thessaloniki, Greece
| | | | - Stavros Iliadis
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
| | - Satvinder Mudan
- Academic Department of Surgery, The Royal Marsden Hospital, London, UK
| | - Daniel Azoulay
- Service de Chirurgie Digestive et Hépatobiliaire, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris-Université Paris-Est, Créteil, France
| | - Dimitrios Giakoustidis
- Division of Transplant Surgery, Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University and Hippokration General Hospital, Thessaloniki, Greece
| |
Collapse
|
166
|
Obeid M, Khabbaz RC, Garcia KD, Schachtschneider KM, Gaba RC. Translational Animal Models for Liver Cancer. ACTA ACUST UNITED AC 2018. [DOI: 10.25259/ajir-11-2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Animal models have become increasingly important in the study of hepatocellular carcinoma (HCC), as they serve as a critical bridge between laboratory-based discoveries and human clinical trials. Developing an ideal animal model for translational use is challenging, as the perfect model must be able to reproduce human disease genetically, anatomically, physiologically, and pathologically. This brief review provides an overview of the animal models currently available for translational liver cancer research, including rodent, rabbit, non-human primate, and pig models, with a focus on their respective benefits and shortcomings. While small animal models offer a solid starting point for investigation, large animal HCC models are becoming increasingly important for translation of preclinical results to clinical practice.
Collapse
Affiliation(s)
- Michele Obeid
- Department of Radiology, University of Illinois, 1740 West Taylor Street MC 931, Chicago, IL, 60612, United States
| | - Ramzy C. Khabbaz
- Department of Radiology, University of Illinois, 1740 West Taylor Street MC 931, Chicago, IL, 60612, United States
| | - Kelly D. Garcia
- College of Medicine, University of Illinois, 1740 West Taylor Street MC 931, Chicago, IL, 60612, United States
| | - Kyle M. Schachtschneider
- Department of Biological Resources Laboratory, University of Illinois, 1740 West Taylor Street MC 931, Chicago, IL, 60612, United States
| | - Ron C. Gaba
- Department of Radiology, University of Illinois, 1740 West Taylor Street MC 931, Chicago, IL, 60612, United States
| |
Collapse
|
167
|
Zhang S, Zhou K, Luo X, Li L, Tu HC, Sehgal A, Nguyen LH, Zhang Y, Gopal P, Tarlow BD, Siegwart DJ, Zhu H. The Polyploid State Plays a Tumor-Suppressive Role in the Liver. Dev Cell 2018; 44:447-459.e5. [PMID: 29429824 DOI: 10.1016/j.devcel.2018.01.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/06/2017] [Accepted: 01/09/2018] [Indexed: 12/17/2022]
Abstract
Most cells in the liver are polyploid, but the functional role of polyploidy is unknown. Polyploidization occurs through cytokinesis failure and endoreduplication around the time of weaning. To interrogate polyploidy while avoiding irreversible manipulations of essential cell-cycle genes, we developed orthogonal mouse models to transiently and potently alter liver ploidy. Premature weaning, as well as knockdown of E2f8 or Anln, allowed us to toggle between diploid and polyploid states. While there was no detectable impact of ploidy alterations on liver function, metabolism, or regeneration, mice with more polyploid hepatocytes suppressed tumorigenesis and mice with more diploid hepatocytes accelerated tumorigenesis in mutagen- and high-fat-induced models. Mechanistically, the diploid state was more susceptible to Cas9-mediated tumor-suppressor loss but was similarly susceptible to MYC oncogene activation, indicating that polyploidy differentially protected the liver from distinct genomic aberrations. This suggests that polyploidy evolved in part to prevent malignant outcomes of liver injury.
Collapse
Affiliation(s)
- Shuyuan Zhang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kejin Zhou
- Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xin Luo
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Li
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ho-Chou Tu
- Alnylam Pharmaceuticals, Cambridge, MA 02142, USA
| | | | - Liem H Nguyen
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu Zhang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Purva Gopal
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Branden D Tarlow
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel J Siegwart
- Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
168
|
Avci ME, Keskus AG, Targen S, Isilak ME, Ozturk M, Atalay RC, Adams MM, Konu O. Development of a novel zebrafish xenograft model in ache mutants using liver cancer cell lines. Sci Rep 2018; 8:1570. [PMID: 29371671 PMCID: PMC5785479 DOI: 10.1038/s41598-018-19817-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/05/2018] [Indexed: 01/09/2023] Open
Abstract
Acetylcholinesterase (AChE), an enzyme responsible for degradation of acetylcholine, has been identified as a prognostic marker in liver cancer. Although in vivo Ache tumorigenicity assays in mouse are present, no established liver cancer xenograft model in zebrafish using an ache mutant background exists. Herein, we developed an embryonic zebrafish xenograft model using epithelial (Hep3B) and mesenchymal (SKHep1) liver cancer cell lines in wild-type and ache sb55 sibling mutant larvae after characterization of cholinesterase expression and activity in cell lines and zebrafish larvae. The comparison of fluorescent signal reflecting tumor size at 3-days post-injection (dpi) revealed an enhanced tumorigenic potential and a reduced migration capacity in cancer cells injected into homozygous ache sb55 mutants when compared with the wild-type. Increased tumor load was confirmed using an ALU based tumor DNA quantification method modified for use in genotyped xenotransplanted zebrafish embryos. Confocal microscopy using the Huh7 cells stably expressing GFP helped identify the distribution of tumor cells in larvae. Our results imply that acetylcholine accumulation in the microenvironment directly or indirectly supports tumor growth in liver cancer. Use of this model system for drug screening studies holds potential in discovering new cholinergic targets for treatment of liver cancers.
Collapse
Affiliation(s)
- M Ender Avci
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Ankara, Turkey.
- Izmir International Biomedicine and Genome Institute (iBG-izmir), Dokuz Eylul University, 35340, Izmir, Turkey.
| | - Ayse Gokce Keskus
- Interdisciplinary Program in Neuroscience, Bilkent University, 06800, Ankara, Turkey
| | - Seniye Targen
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Ankara, Turkey
| | - M Efe Isilak
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Ankara, Turkey
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Mehmet Ozturk
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Ankara, Turkey
- Izmir International Biomedicine and Genome Institute (iBG-izmir), Dokuz Eylul University, 35340, Izmir, Turkey
| | - Rengul Cetin Atalay
- Medical Informatics Department, Graduate School of Informatics, Middle East Technical University, 06800, Ankara, Turkey
| | - Michelle M Adams
- Department of Psychology, Bilkent University, 06800, Ankara, Turkey
- Interdisciplinary Program in Neuroscience, Bilkent University, 06800, Ankara, Turkey
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Ankara, Turkey.
- Interdisciplinary Program in Neuroscience, Bilkent University, 06800, Ankara, Turkey.
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
169
|
Zhang J, Song K, Wang J, Li Y, Liu S, Dai C, Chen L, Wang S, Qin Z. S100A4 blockage alleviates agonistic anti-CD137 antibody-induced liver pathology without disruption of antitumor immunity. Oncoimmunology 2018; 7:e1296996. [PMID: 29632708 PMCID: PMC5889198 DOI: 10.1080/2162402x.2017.1296996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/11/2017] [Accepted: 02/14/2017] [Indexed: 01/01/2023] Open
Abstract
Liver-related autoimmune toxicities triggered by agonistic anti-CD137 antibodies have greatly limited their use in clinical applications. Here, we found that anti-CD137 monoclonal antibody (mAb) treatment in mice induced the infiltration of a large number of S100A4+ macrophages into the liver. Depletion of these cells or deficiency of S100A4 decreased inflammatory cytokine profiles and drastically reduced the number of liver pathogenic CD8+ T cells. Mechanistically, soluble S100A4 directly activated the Akt pathway and specifically prolonged CD8+ T cell survival. Interestingly, one S100A4 neutralizing mAb selectively alleviated liver abnormalities but did not affect the antitumor immunity induced by anti-CD137 mAb therapy. Thus, our study presents a novel molecular link to the liver pathology induced by an immune stimulatory antibody and proposes that combinational immunotherapies targeting those pathways could potentially elicit optimal antitumor immunity with minimal side effects.
Collapse
Affiliation(s)
- Jinhua Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kun Song
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Wang
- Department of Immunobiology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Yanan Li
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuangqing Liu
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chengliang Dai
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lieping Chen
- Department of Immunobiology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Shengdian Wang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhihai Qin
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
170
|
Lau JKC, Zhang X, Yu J. Animal Models of Non-alcoholic Fatty Liver Diseases and Its Associated Liver Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1061:139-147. [DOI: 10.1007/978-981-10-8684-7_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
171
|
Engelholm LH, Riaz A, Serra D, Dagnæs-Hansen F, Johansen JV, Santoni-Rugiu E, Hansen SH, Niola F, Frödin M. CRISPR/Cas9 Engineering of Adult Mouse Liver Demonstrates That the Dnajb1-Prkaca Gene Fusion Is Sufficient to Induce Tumors Resembling Fibrolamellar Hepatocellular Carcinoma. Gastroenterology 2017; 153:1662-1673.e10. [PMID: 28923495 PMCID: PMC5801691 DOI: 10.1053/j.gastro.2017.09.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Fibrolamellar hepatocellular carcinoma (FL-HCC) is a primary liver cancer that predominantly affects children and young adults with no underlying liver disease. A somatic, 400 Kb deletion on chromosome 19 that fuses part of the DnaJ heat shock protein family (Hsp40) member B1 gene (DNAJB1) to the protein kinase cAMP-activated catalytic subunit alpha gene (PRKACA) has been repeatedly identified in patients with FL-HCC. However, the DNAJB1-PRKACA gene fusion has not been shown to induce liver tumorigenesis. We used the CRISPR/Cas9 technique to delete in mice the syntenic region on chromosome 8 to create a Dnajb1-Prkaca fusion and monitored the mice for liver tumor development. METHODS We delivered CRISPR/Cas9 vectors designed to juxtapose exon 1 of Dnajb1 with exon 2 of Prkaca to create the Dnajb1-Prkaca gene fusion associated with FL-HCC, or control Cas9 vector, via hydrodynamic tail vein injection to livers of 8-week-old female FVB/N mice. These mice did not have any other engineered genetic alterations and were not exposed to liver toxins or carcinogens. Liver tissues were collected 14 months after delivery; genomic DNA was analyzed by PCR to detect the Dnajb1-Prkaca fusion, and tissues were characterized by histology, immunohistochemistry, RNA sequencing, and whole-exome sequencing. RESULTS Livers from 12 of the 15 mice given the vectors to induce the Dnajb1-Prkaca gene fusion, but none of the 11 mice given the control vector, developed neoplasms. The tumors contained the Dnajb1-Prkaca gene fusion and had histologic and cytologic features of human FL-HCCs: large polygonal cells with granular, eosinophilic, and mitochondria-rich cytoplasm, prominent nucleoli, and markers of hepatocytes and cholangiocytes. In comparing expression levels of genes between the mouse tumor and non-tumor liver cells, we identified changes similar to those detected in human FL-HCC, which included genes that affect cell cycle and mitosis regulation. Genomic analysis of mouse neoplasms induced by the Dnajb1-Prkaca fusion revealed a lack of mutations in genes commonly associated with liver cancers, as observed in human FL-HCC. CONCLUSIONS Using CRISPR/Cas9 technology, we found generation of the Dnajb1-Prkaca fusion gene in wild-type mice to be sufficient to initiate formation of tumors that have many features of human FL-HCC. Strategies to block DNAJB1-PRKACA might be developed as therapeutics for this form of liver cancer.
Collapse
Affiliation(s)
- Lars H Engelholm
- Finsen Laboratory, Rigshospitalet, Copenhagen Biocenter, Copenhagen, Denmark,Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anjum Riaz
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Denise Serra
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Jens V Johansen
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eric Santoni-Rugiu
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Steen H Hansen
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark,GI Cell Biology Research Laboratory, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Francesco Niola
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Morten Frödin
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
172
|
Ezhuthupurakkal PB, Ariraman S, Arumugam S, Subramaniyan N, Muthuvel SK, Kumpati P, Rajamani B, Chinnasamy T. Anticancer potential of ZnO nanoparticle-ferulic acid conjugate on Huh-7 and HepG2 cells and diethyl nitrosamine induced hepatocellular cancer on Wistar albino rat. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:415-428. [PMID: 29166623 DOI: 10.1016/j.nano.2017.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/12/2017] [Accepted: 11/04/2017] [Indexed: 02/07/2023]
Abstract
Drawbacks and limitations of recently available therapies to hepatocellular cancer (HCC) devoted the scientist to focus on emerging new strategies. ZnO nanoparticles (ZnONPs) based chemotherapeutics has been emanating as a promising approach to maximize therapeutic synergy facilitating the discovery of novel multitargeted combinations. In the present study we conjugated ZnONPs with ferulic acid (ZnONPs-FAC) characterized by computational, spectroscopic and microscopic techniques. In vitro anticancer potential has been evaluated by assessing cell viability, morphology, ROS generation, mitochondrial membrane permeability, comet assay, immunofluorescent staining of 8-OHdG, Ki67 and γ-H2AX, cell cycle analysis and western blot analysis and in vivo anticancer potential against DEN induced HCC was analyzed by histopathological and immunohistochemical methods. The results revealed that ZnONPs-FAC induces cell death through apoptosis and can suppress the DEN-induced HCC. Our study documents therapeutic potential of nanoparticle conjugated with phytochemicals, suggesting a new platform for combinatorial chemotherapy.
Collapse
Affiliation(s)
| | - Subastri Ariraman
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Suyavaran Arumugam
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | | | | - Premkumar Kumpati
- Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, India
| | - Bharathidasan Rajamani
- Centre for Animal Research, Training and Services, CIDRF-DBT, Sri Balaji Vidyapeeth University, Puducherry, India
| | | |
Collapse
|
173
|
Sklavos A, Poutahidis T, Giakoustidis A, Makedou K, Angelopoulou K, Hardas A, Andreani P, Zacharioudaki A, Saridis G, Goulopoulos T, Tsarea K, Karamperi M, Papadopoulos V, Papanikolaou V, Papalois A, Iliadis S, Mudan S, Azoulay D, Giakoustidis D. Effects of Wnt-1 blockade in DEN-induced hepatocellular adenomas of mice. Oncol Lett 2017; 15:1211-1219. [PMID: 29399175 DOI: 10.3892/ol.2017.7427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/01/2017] [Indexed: 12/19/2022] Open
Abstract
Recent evidence has suggested that downregulation of the Wnt/β-catenin signaling pathway may contribute to the development and growth of HCC. Consequently, elements of this pathway have begun to emerge as potential targets for improving outcomes of anti-HCC. Thus, the present study sought to examine the effects of Wnt-1 blockade using the classical diethylnitrosamine (DEN)-induced chemical carcinogenesis mouse model of HCC. The depletion of Wnt-1 using neutralizing antisera was done for ten consecutive days at the age of 9 months and mice were examined for the following 20 days. At that time, DEN-treated mice had multiple variably-sized hepatic cell adenomas. Anti-Wnt-1 was particularly potent in suppressing the expression of critical elements of the Wnt/β-catenin signaling pathway, such as β-catenin and Frizzled-1 receptor, however, not Dickkopf-related protein 1. This effect co-existed with the suppression of Cyclin D1, FOXM1, NF-κΒ and c-Jun commensurate with proliferation and apoptosis blockade in hepatocellular adenomas, and reduced Bcl-2 and c-Met in the serum of mice. Nonetheless, tumor size and multiplicity were found to be unaffected, suggesting that apoptosis may be equally important to proliferation in the context of counteracting DEN induced hepatocellular adenomas of mice.
Collapse
Affiliation(s)
- Argyrios Sklavos
- Division of Transplant Surgery, Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University and Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Theofilos Poutahidis
- Laboratory of Pathology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | - Kali Makedou
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Katerina Angelopoulou
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Alexander Hardas
- Laboratory of Pathology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Paola Andreani
- Service de Chirurgie Digestive et Hépatobiliaire, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris-Université Paris-Est, Créteil 94000, France
| | | | - George Saridis
- Laboratory of Pathology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Thomas Goulopoulos
- Division of Transplant Surgery, Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University and Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Kalliopi Tsarea
- Experimental and Research Center ELPEN Pharmaceuticals, Athens 19009, Greece
| | - Maria Karamperi
- Experimental and Research Center ELPEN Pharmaceuticals, Athens 19009, Greece
| | - Vassilios Papadopoulos
- Propedeutic Division of Surgery, Department of Surgery School of Medicine, Faculty of Health Sciences, Aristotle University and AHEPA University Hospital, Thessaloniki 54124, Greece
| | - Vassilios Papanikolaou
- Division of Transplant Surgery, Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University and Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Apostolos Papalois
- Experimental and Research Center ELPEN Pharmaceuticals, Athens 19009, Greece
| | - Stavros Iliadis
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Satvinder Mudan
- Academic Department of Surgery, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Daniel Azoulay
- Service de Chirurgie Digestive et Hépatobiliaire, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris-Université Paris-Est, Créteil 94000, France
| | - Dimitrios Giakoustidis
- Division of Transplant Surgery, Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University and Hippokration General Hospital, Thessaloniki 54642, Greece
| |
Collapse
|
174
|
Liebig M, Hassanzada A, Kämmerling M, Genz B, Vollmar B, Abshagen K. Microcirculatory disturbances and cellular changes during progression of hepatic steatosis to liver tumors. Exp Biol Med (Maywood) 2017; 243:1-12. [PMID: 29065724 DOI: 10.1177/1535370217738730] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease is closely associated with metabolic syndrome and comprises a pathological spectrum of liver disease ranging from steatosis to steatohepatitis and can progress to fibrosis/cirrhosis and hepatocellular carcinoma. In 2013, a mouse model was described that mimics non-alcoholic fatty liver disease progression from steatohepatitis to tumors in a short time span and with high incidence. As microcirculatory disturbances play a crucial role in liver disease, the suitability of the steatosis-inflammation-tumor model for microcirculatory studies was assessed. Herein, we present a comprehensive view on morphological, microvascular, cellular, and functional aspects of non-alcoholic fatty liver disease progression in the steatosis-inflammation-tumor model using intravital microscopy, biochemical, and histological techniques. Mice develop steatohepatitis, mild fibrosis, and liver tumors at ages of 6, 12, and 20 weeks, respectively. Non-alcoholic fatty liver disease progression was accompanied by several general aspects of disease severity like increasing liver/body weight index, non-alcoholic fatty liver disease activity score, and hepatocellular apoptosis. Intravital microscopic analysis revealed significant changes in hepatic microcirculation with increasing structural alterations, elevated leukocyte adherence, and impaired nutritive perfusion. Non-alcoholic fatty liver disease was further characterized by a lower sinusoidal density with a striking rise at 20 weeks. The characteristic microcirculatory changes make the model a convenient tool for analysis of microcirculation during progression from steatosis to liver tumor. Impact statement Significant alterations of microcirculation contribute to progression of NAFLD, a chronic liver disease with increasing medical and socio-economic impact. Characterization of microcirculation in a NAFLD model reflecting all relevant stages of disease progression was still missing. Thus, we evaluated microcirculatory and cellular changes in a steatosis-inflammation-tumor model using in vivo microscopy. Analyses revealed increasing structural alterations, elevated leukocyte-endothelial interaction, and impaired nutritive perfusion. Thus, this model is suitable for further studies investigating therapeutic approaches targeting these progressive microcirculatory disturbances.
Collapse
Affiliation(s)
- Marie Liebig
- 1 Institute for Experimental Surgery, University Medicine Rostock, Rostock 18057, Germany
| | - Alireza Hassanzada
- 1 Institute for Experimental Surgery, University Medicine Rostock, Rostock 18057, Germany
| | - Malte Kämmerling
- 1 Institute for Experimental Surgery, University Medicine Rostock, Rostock 18057, Germany
| | - Berit Genz
- 1 Institute for Experimental Surgery, University Medicine Rostock, Rostock 18057, Germany.,2 QIMR Berghofer Medical Research Institute, Brisbane QLD 4006, Australia
| | - Brigitte Vollmar
- 1 Institute for Experimental Surgery, University Medicine Rostock, Rostock 18057, Germany
| | - Kerstin Abshagen
- 1 Institute for Experimental Surgery, University Medicine Rostock, Rostock 18057, Germany
| |
Collapse
|
175
|
Keshari AK, Singh AK, Kumar U, Raj V, Rai A, Kumar P, Kumar D, Maity B, Nath S, Prakash A, Saha S. 5H-benzo[h]thiazolo[2,3-b]quinazolines ameliorate NDEA-induced hepatocellular carcinogenesis in rats through IL-6 downregulation along with oxidative and metabolic stress reduction. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2981-2995. [PMID: 29075102 PMCID: PMC5648320 DOI: 10.2147/dddt.s143075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
5H-benzo[h]thiazolo[2,3-b]quinazoline scaffold is known to have an antitumor effect on certain types of malignancies; however, its effect on hepatocellular carcinoma (HCC) remains unclear. Previously, we reported p-toluenesulfonic acid-promoted syntheses, molecular modeling and in vitro antitumor activity of 5H-benzo[h]thiazolo[2,3-b]quinazoline against human hepatoma (Hep-G2) cells where compounds 4A and 6A were found to be potent inhibitors among the series. In continuation to our previous effort to develop novel therapeutic strategies for HCC treatment, here we investigated the in vivo antitumor activity and the mechanism underlying the effects of 4A and 6A in N-nitrosodiethylamine (NDEA)-induced HCC using male Wistar rats. NDEA was administered weekly intraperitoneally at a dose of 100 mg/kg for 6 weeks. Various physiological and morphological changes, oxidative parameters, liver marker enzymes and cytokines were assessed to evaluate the antitumor effect of 4A and 6A. In addition, proton nuclear magnetic resonance-based serum metabolomics were performed to analyze the effects of 4A and 6A against HCC-induced metabolic alterations. Significant tumor incidences with an imbalance in carcinogen metabolizing enzymes and cellular redox status were observed in carcinogenic rats. Tumor inhibitory effects of 4A and 6A were noted by histopathology and biochemical profiles in NDEA-induced hepatic cancer. Compounds 4A and 6A had a potential role in normalizing the elevated levels of inflammatory mediators such as interleukin-1β (IL-1β), IL-2, IL-6 and IL-10. At molecular level, the real-time quantitative reverse-transcribed polymerase chain reaction analysis revealed that 4A and 6A attenuated the IL-6 gene overexpression in hepatic cancer. Further, orthogonal partial least squares discriminant analysis scores plot demonstrated a significant separation of 4A and 6A-treated groups from carcinogen control group. Both the compounds have potential to restore the imbalanced metabolites due to HCC, signifying promising hepatoprotective activities. All these findings suggested that 4A and 6A could be potential drug candidates to treat HCC.
Collapse
Affiliation(s)
- Amit K Keshari
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University
| | - Ashok K Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University
| | - Umesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus
| | - Vinit Raj
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University
| | - Amit Rai
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University
| | - Pranesh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University
| | | | | | - Sneha Nath
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Anand Prakash
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University
| |
Collapse
|
176
|
Tschida BR, Temiz NA, Kuka TP, Lee LA, Riordan JD, Tierrablanca CA, Hullsiek R, Wagner S, Hudson WA, Linden MA, Amin K, Beckmann PJ, Heuer RA, Sarver AL, Yang JD, Roberts LR, Nadeau JH, Dupuy AJ, Keng VW, Largaespada DA. Sleeping Beauty Insertional Mutagenesis in Mice Identifies Drivers of Steatosis-Associated Hepatic Tumors. Cancer Res 2017; 77:6576-6588. [PMID: 28993411 DOI: 10.1158/0008-5472.can-17-2281] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/11/2017] [Accepted: 09/27/2017] [Indexed: 12/24/2022]
Abstract
Hepatic steatosis is a strong risk factor for the development of hepatocellular carcinoma (HCC), yet little is known about the molecular pathology associated with this factor. In this study, we performed a forward genetic screen using Sleeping Beauty (SB) transposon insertional mutagenesis in mice treated to induce hepatic steatosis and compared the results to human HCC data. In humans, we determined that steatosis increased the proportion of female HCC patients, a pattern also reflected in mice. Our genetic screen identified 203 candidate steatosis-associated HCC genes, many of which are altered in human HCC and are members of established HCC-driving signaling pathways. The protein kinase A/cyclic AMP signaling pathway was altered frequently in mouse and human steatosis-associated HCC. We found that activated PKA expression drove steatosis-specific liver tumorigenesis in a mouse model. Another candidate HCC driver, the N-acetyltransferase NAT10, which we found to be overexpressed in human steatosis-associated HCC and associated with decreased survival in human HCC, also drove liver tumorigenesis in a steatotic mouse model. This study identifies genes and pathways promoting HCC that may represent novel targets for prevention and treatment in the context of hepatic steatosis, an area of rapidly growing clinical significance. Cancer Res; 77(23); 6576-88. ©2017 AACR.
Collapse
Affiliation(s)
- Barbara R Tschida
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Nuri A Temiz
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Timothy P Kuka
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Lindsey A Lee
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | | | - Carlos A Tierrablanca
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Robert Hullsiek
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Sandra Wagner
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Wendy A Hudson
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Michael A Linden
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Khalid Amin
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Pauline J Beckmann
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Rachel A Heuer
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Aaron L Sarver
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Ju Dong Yang
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | - Adam J Dupuy
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Vincent W Keng
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China. .,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - David A Largaespada
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
177
|
|
178
|
Zheng X, Ma W, Sun R, Yin H, Lin F, Liu Y, Xu W, Zeng H. Butaselen prevents hepatocarcinogenesis and progression through inhibiting thioredoxin reductase activity. Redox Biol 2017; 14:237-249. [PMID: 28965082 PMCID: PMC5633849 DOI: 10.1016/j.redox.2017.09.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for most of primary liver cancer, of which five-year survival rate remains low and chemoprevention has become a strategy to reduce disease burden of HCC. We aim to explore the in vivo chemopreventive effect of an organoselenium-containing compound butaselen (BS) against hepatocarcinogenesis and its underlying mechanisms. Pre- and sustained BS treatment (9, 18 and 36mg/Kg BS) could dose-dependently inhibit chronic hepatic inflammation, fibrosis, cirrhosis and HCC on murine models with 24 weeks treatment scheme. The thioredoxin reductase (TrxR), NF-κB pathway and pro-inflammatory factors were activated during hepatocarcinogenesis, while their expression were decreased by BS treatment. BS treatment could also significantly reduce tumor volume in H22-bearing models and remarkably slow tumor growth. HCC cell lines HepG2, Bel7402 and Huh7 were time- and dose-dependently inhibited by BS treatment. G2/M arrest and apoptosis were observed in HepG2 cells after BS treatment, which were mediated by TrxR/Ref-1 and NF-κB pathways inhibition. BS generated reactive oxygen species (ROS), which could be reduced by antioxidant N-acetyl-L-cysteine (NAC) and NADPH oxidase inhibitor DPI. NAC could markedly increase HepG2 cells viability. TrxR activity of HepG2 cells treated with BS were significantly decreased in parallel with proliferative inhibition. The TrxR1-knockdown HepG2 cells also exhibited low TrxR1 activity, high ROS level, relatively low proliferation rate and increased resistance to BS treatment. In conclusion, BS can prevent hepatocarcinogenesis through inhibiting chronic inflammation, cirrhosis and tumor progression. The underlying mechanisms may include TrxR activity inhibition, leading to ROS elevation, G2/M arrest and apoptosis.
Collapse
Affiliation(s)
- Xiaoqing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, No. 38, Xueyuan Road, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China
| | - Weiwei Ma
- State Key Laboratory of Natural and Biomimetic Drugs, No. 38, Xueyuan Road, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China
| | - Ruoxuan Sun
- State Key Laboratory of Natural and Biomimetic Drugs, No. 38, Xueyuan Road, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China
| | - Hanwei Yin
- Keaise Center for Clinical Laboratory, No. 666, Gaoxin Road, Wuhan 430000, PR China
| | - Fei Lin
- National Institutes for Food and Drug Control, No. 2, Tiantanxili, Beijing 100050, PR China
| | - Yuxi Liu
- State Key Laboratory of Natural and Biomimetic Drugs, No. 38, Xueyuan Road, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China
| | - Wei Xu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Huihui Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, No. 38, Xueyuan Road, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China.
| |
Collapse
|
179
|
Ratna A, Mandrekar P. Alcohol and Cancer: Mechanisms and Therapies. Biomolecules 2017; 7:E61. [PMID: 28805741 PMCID: PMC5618242 DOI: 10.3390/biom7030061] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/14/2022] Open
Abstract
Several scientific and clinical studies have shown an association between chronic alcohol consumption and the occurrence of cancer in humans. The mechanism for alcohol-induced carcinogenesis has not been fully understood, although plausible events include genotoxic effects of acetaldehyde, cytochrome P450 2E1 (CYP2E1)-mediated generation of reactive oxygen species, aberrant metabolism of folate and retinoids, increased estrogen, and genetic polymorphisms. Here, we summarize the impact of alcohol drinking on the risk of cancer development and potential underlying molecular mechanisms. The interactions between alcohol abuse, anti-tumor immune response, tumor growth, and metastasis are complex. However, multiple studies have linked the immunosuppressive effects of alcohol with tumor progression and metastasis. The influence of alcohol on the host immune system and the development of possible effective immunotherapy for cancer in alcoholics are also discussed here. The conclusive biological effects of alcohol on tumor progression and malignancy have not been investigated extensively using an animal model that mimics the human disease. This review provides insights into cancer pathogenesis in alcoholics, alcohol and immune interactions in different cancers, and scope and future of targeted immunotherapeutic modalities in patients with alcohol abuse.
Collapse
Affiliation(s)
- Anuradha Ratna
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Pranoti Mandrekar
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
180
|
Subastri A, Suyavaran A, Preedia Babu E, Nithyananthan S, Barathidasan R, Thirunavukkarasu C. Troxerutin with copper generates oxidative stress in cancer cells: Its possible chemotherapeutic mechanism against hepatocellular carcinoma. J Cell Physiol 2017. [PMID: 28628229 DOI: 10.1002/jcp.26061] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Troxerutin (TXER) a rutin derivative is known for its anticancer effect against hepatocellular carcinoma (HCC). As part of large study, recently we have shown TXER interact with genetic material and its anti-mutagenic property. In the present study we have explored its possible mode of action in HCC. Since TXER alone did not show significant anticancer effect on Huh-7 cells, in vitro biochemical assays were performed for determining anticancer efficacy of TXER + metal complex using transition metals such as Cu, Zn, and Fe. The anticancer efficacy of TXER + Cu on Huh-7 cells were evaluated using MTT assay, DCFDA, JC-1 staining, comet assay, cell cycle analysis, immunocytochemistry, and Western blotting. Non-toxic nature of TXER was analyzed on primary rat hepatocytes. The in vivo efficacy of TXER was tested in N-nitrosodiethylamine initiated and γ-benzene hexachloride and partial hepatectomy promoted rat liver cancer. Liver markers, transition metal levels, histopathological examination, and expression levels of GST-P, 8-OHdG and Ki-67 were studied to assess the in vivo anticancer effect of TXER. We observed that TXER + Cu induced extensive cellular death on Huh-7 cells through generating free radicals and did not possess any toxic effect on normal hepatocytes. The in vivo studies revealed that TXER possess significant anti-cancer effect as assessed through improved liver markers and suppressed GST-P, 8-OHdG, and Ki-67 expression. TXER treatment reduced the hepatic Cu level in cancer bearing animals. Current study brings the putative mechanism involved in anti-cancer effect of TXER, further it will help to formulate phytoconstituents coupled anti-cancer drug for effective treatment of HCC.
Collapse
Affiliation(s)
- Ariraman Subastri
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Arumugam Suyavaran
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | | | | - Rajamani Barathidasan
- Centre for Animal Research, Training and Services, CIDRF-DBT, Sri Balaji Vidyapeeth University, Puducherry, India
| | | |
Collapse
|
181
|
Li L, Bao X, Zhang QY, Negishi M, Ding X. Role of CYP2B in Phenobarbital-Induced Hepatocyte Proliferation in Mice. Drug Metab Dispos 2017; 45:977-981. [PMID: 28546505 PMCID: PMC5518717 DOI: 10.1124/dmd.117.076406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/23/2017] [Indexed: 11/22/2022] Open
Abstract
Phenobarbital (PB) promotes liver tumorigenesis in rodents, in part through activation of the constitutive androstane receptor (CAR) and the consequent changes in hepatic gene expression and increases in hepatocyte proliferation. A typical effect of CAR activation by PB is a marked induction of Cyp2b10 expression in the liver; the latter has been suspected to be vital for PB-induced hepatocellular proliferation. This hypothesis was tested here by using a Cyp2a(4/5)bgs-null (null) mouse model in which all Cyp2b genes are deleted. Adult male and female wild-type (WT) and null mice were treated intraperitoneally with PB at 50 mg/kg once daily for 5 successive days and tested on day 6. The liver-to-body weight ratio, an indicator of liver hypertrophy, was increased by 47% in male WT mice, but by only 22% in male Cyp2a(4/5)bgs-null mice, by the PB treatment. The fractions of bromodeoxyuridine-positive hepatocyte nuclei, assessed as a measure of the rate of hepatocyte proliferation, were also significantly lower in PB-treated male null mice compared with PB-treated male WT mice. However, whereas few proliferating hepatocytes were detected in saline-treated mice, many proliferating hepatocytes were still detected in PB-treated male null mice. In contrast, female WT mice were much less sensitive than male WT mice to PB-induced hepatocyte proliferation, and PB-treated female WT and PB-treated female null mice did not show significant difference in rates of hepatocyte proliferation. These results indicate that CYP2B induction plays a significant, but partial, role in PB-induced hepatocyte proliferation in male mice.
Collapse
Affiliation(s)
- Lei Li
- College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.); Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (L.L., X.B., Q.Z., X.D.); and National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (M.N.)
| | - Xiaochen Bao
- College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.); Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (L.L., X.B., Q.Z., X.D.); and National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (M.N.)
| | - Qing-Yu Zhang
- College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.); Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (L.L., X.B., Q.Z., X.D.); and National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (M.N.)
| | - Masahiko Negishi
- College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.); Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (L.L., X.B., Q.Z., X.D.); and National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (M.N.)
| | - Xinxin Ding
- College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.); Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (L.L., X.B., Q.Z., X.D.); and National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (M.N.)
| |
Collapse
|
182
|
Lo Re O, Panebianco C, Porto S, Cervi C, Rappa F, Di Biase S, Caraglia M, Pazienza V, Vinciguerra M. Fasting inhibits hepatic stellate cells activation and potentiates anti-cancer activity of Sorafenib in hepatocellular cancer cells. J Cell Physiol 2017; 233:1202-1212. [PMID: 28471474 DOI: 10.1002/jcp.25987] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/03/2017] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) has a poor outcome. Most HCCs develop in the context of liver fibrosis and cirrhosis caused by chronic inflammation. Short-term fasting approaches enhance the activity of chemotherapy in preclinical cancer models, other than HCC. Multi-tyrosine kinase inhibitor Sorafenib is the mainstay of treatment in HCC. However, its benefit is frequently short-lived. Whether fasting can alleviate liver fibrosis and whether combining fasting with Sorafenib is beneficial remains unknown. A 24 hr fasting (2% serum, 0.1% glucose)-induced changes on human hepatic stellate cells (HSC) LX-2 proliferation/viability/cell cycle were assessed by MTT and flow cytometry. Expression of lypolysaccharide (LPS)-induced activation markers (vimentin, αSMA) was evaluated by qPCR and immunoblotting. Liver fibrosis and inflammation were evaluated in a mouse model of steatohepatitis exposed to cycles of fasting, by histological and biochemical analyses. A 24 hr fasting-induced changes were also analyzed on the proliferation/viability/glucose uptake of human HCC cells exposed to Sorafenib. An expression panel of genes involved in survival, inflammation, and metabolism was examined by qPCR in HCC cells exposed to fasting and/or Sorafenib. Fasting decreased the proliferation and the activation of HSC. Repeated cycles of short term starvation were safe in mice but did not improve fibrosis. Fasting synergized with Sorafenib in hampering HCC cell growth and glucose uptake. Finally, fasting normalized the expression levels of genes which are commonly altered by Sorafenib in HCC cells. Fasting or fasting-mimicking diet diets should be evaluated in preclinical studies as a mean to potentiate the activity of Sorafenib in clinical use.
Collapse
Affiliation(s)
- Oriana Lo Re
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic.,Department of Biology, Masaryk University, Brno, Czech Republic
| | - Concetta Panebianco
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Stefania Porto
- Department of Biochemistry, Biophysics and General Pathology, University of Campania Luigi Vanvitelli, Naples, Italy.,Institute for Liver and Digestive Health, University College London (UCL), Royal Free Hospital, London, UK
| | - Carlo Cervi
- Institute for Liver and Digestive Health, University College London (UCL), Royal Free Hospital, London, UK
| | - Francesca Rappa
- Department of Experimental Biomedicine and Clinical Neurosciences, Section of Human Anatomy, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Stefano Di Biase
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), California
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania Luigi Vanvitelli, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Valerio Pazienza
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Manlio Vinciguerra
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic.,Institute for Liver and Digestive Health, University College London (UCL), Royal Free Hospital, London, UK
| |
Collapse
|
183
|
Garcia K, Regan D. Bigger Is Better: Refinement of an Animal Model of Hepatocellular Carcinoma and Transfemoral Arterial Embolization. J Vasc Interv Radiol 2017. [PMID: 28645501 DOI: 10.1016/j.jvir.2017.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Kelly Garcia
- Biologic Resources Laboratory, University of Illinois at Chicago, (MC533) 1840 West Taylor Street, Chicago, IL 60612.
| | - Dan Regan
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
184
|
Hassoun SM, Abdel-Rahman N, Eladl EI, El-Shishtawy MM. Antiangiogenic activity of vitexicarpine in experimentally induced hepatocellular carcinoma: Impact on vascular endothelial growth factor pathway. Tumour Biol 2017; 39:1010428317707376. [PMID: 28651490 DOI: 10.1177/1010428317707376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
Angiogenesis plays important roles in progression of hepatocellular carcinoma. The antiangiogenic mechanisms of vitexicarpine are not fully defined. Therefore, we conducted the following study to evaluate the antiangiogenic mechanism and antitumor activity of vitexicarpine in vivo model of hepatocellular carcinoma through modulation of vascular endothelial growth factor signaling pathway. Hepatocellular carcinoma was induced in Sprague Dawley rats by thioacetamide. Hepatocellular carcinoma was assessed by measuring serum alpha-fetoprotein and investigating liver sections stained with hematoxylin/eosin. Hepatocellular carcinoma rats were injected with vitexicarpine (150 mg/kg) for 2 weeks. Hepatic vascular endothelial growth factor was measured by enzyme-linked immunosorbent assay. Protein and expression of hepatic phospho-Ser473-AKT (p-AKT) and phospho-Tyr419-Src (p-Src) were determined. The apoptotic pathway was evaluated by assessment of protein expression of caspase-3. Vitexicarpine increased rats' survival time and decreased serum alpha-fetoprotein as well as it ameliorated fibrosis and massive hepatic tissue breakdown. It attenuated hepatocellular carcinoma-induced protein and gene expression of vascular endothelial growth factor, p-AKT, p-Src, and caspase-3. In conclusion, this study suggests that vitexicarpine possesses both antiangiogenic and antitumor activities through inhibition of vascular endothelial growth factor, p-AKT/AKT, and p-Src with subsequent inhibition of apoptotic pathway.
Collapse
MESH Headings
- Angiogenesis Inhibitors/administration & dosage
- Animals
- Apigenin/administration & dosage
- Apoptosis/drug effects
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Liver Neoplasms/chemically induced
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neovascularization, Pathologic/chemically induced
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Rats
- Signal Transduction/drug effects
- Thioacetamide/toxicity
- Vascular Endothelial Growth Factor A/genetics
- Xenograft Model Antitumor Assays
- alpha-Fetoproteins/metabolism
Collapse
Affiliation(s)
- Shimaa M Hassoun
- 1 Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Noha Abdel-Rahman
- 1 Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Entsar I Eladl
- 2 Department of Pathology, Oncology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
185
|
Kumar S, Wang J, Shanmukhappa SK, Gandhi CR. Toll-Like Receptor 4-Independent Carbon Tetrachloride-Induced Fibrosis and Lipopolysaccharide-Induced Acute Liver Injury in Mice: Role of Hepatic Stellate Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1356-1367. [PMID: 28412299 PMCID: PMC5455062 DOI: 10.1016/j.ajpath.2017.01.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/30/2017] [Indexed: 12/29/2022]
Abstract
Gram-negative bacterial endotoxin lipopolysaccharide (LPS) is implicated in acute and chronic liver injury; its effects are mediated predominantly via the membrane receptor Toll-like receptor 4 (TLR4). However, TLR4-independent effects of LPS may play important role in hepatic pathophysiology. We investigated carbon tetrachloride (CCl4)-induced fibrosis and LPS-induced acute liver injury in wild-type (WT) and B6.B10ScN-Tlr4lps-del/JthJ [TLR4-knockout (KO)] mice. Effects of LPS on fibrogenic hepatic stellate cells (HSCs) from WT and TLR4-KO mice were assessed in vitro. CCl4 produced similar fibrosis and necroinflammation and increased the mRNA and protein expression of cytokines and chemokines in WT and TLR4-KO mice. However, circulating LPS concentration did not increase in CCl4-treated mice. Interestingly, LPS down-modulated α-smooth muscle actin (activated HSC marker) and collagen 1 in both WT and TLR4-KO HSCs. LPS induced similar activation of NF-κB, and stimulated the expression of cytokines and chemokines in WT and TLR4-KO HSCs. Finally, LPS caused similar inflammation and injury in previously untreated WT and TLR4-KO mice. The results provide evidence of the TLR4/LPS-independent mechanisms of liver fibrosis and also indicate that TLR4 is not entirely critical to LPS-induced acute liver injury. The results further indicate that LPS signaling in activated HSCs might be a mechanism of limiting liver fibrosis.
Collapse
Affiliation(s)
- Sudhir Kumar
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Cincinnati VA Medical Center, Cincinnati, Ohio; Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Shiva Kumar Shanmukhappa
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Chandrashekhar R Gandhi
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Cincinnati VA Medical Center, Cincinnati, Ohio; Department of Surgery, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
186
|
Mansy SS, El-Ahwany E, Mahmoud S, Hassan S, Seleem MI, Abdelaal A, Helmy AH, Zoheiry MK, AbdelFattah AS, Hassanein MH. Potential ultrastructure predicting factors for hepatocellular carcinoma in HCV infected patients. Ultrastruct Pathol 2017; 41:209-226. [PMID: 28494215 DOI: 10.1080/01913123.2017.1316330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus represents one of the rising causes of hepatocellular carcinoma (HCC). Although the early diagnosis of HCC is vital for successful curative treatment, the majority of lesions are diagnosed in an irredeemable phase. This work deals with a comparative ultrastructural study of experimentally gradually induced HCC, surgically resected HCC, and potential premalignant lesions from HCV-infected patients, with the prospect to detect cellular criteria denoting premalignant transformation. Among the main detected pathological changes which are postulated to precede frank HCC: failure of normal hepatocyte regeneration with star shape clonal fragmentation, frequent elucidation of hepatic progenitor cells and Hering canals, hepatocytes of different electron density loaded with small sized rounded monotonous mitochondria, increase junctional complexes bordering bile canaliculi and in between hepatocyte membranes, abundant cellular proteinaceous material with hypertrophied or vesiculated rough endoplasmic reticulum (RER), sequestrated nucleus with proteinaceous granular material or hypertrophied RER, formation of lipolysosomes, large autophagosomes, and micro-vesicular fat deposition. In conclusion, the present work has visualized new hepatocytic division or regenerative process that mimic splitting or clonal fragmentation that occurs in primitive creature. Also, new observations that may be of value or assist in predicting HCC and identifying the appropriate patient for surveillance have been reported. Moreover, it has pointed to the possible malignant potentiality of liver stem/progenitor cells. For reliability, the results can be subjected to cohort longitudinal study.
Collapse
Affiliation(s)
- Soheir S Mansy
- a Electron Microscopy Research Department (Pathology) , Theodor Bilharz Research Institute , Giza , Egypt
| | - Eman El-Ahwany
- b Immunology Department , Theodor Bilharz Research Institute , Giza , Egypt
| | - Soheir Mahmoud
- c Parasitology Department , Theodor Bilharz Research Institute , Giza , Egypt
| | - Sara Hassan
- a Electron Microscopy Research Department (Pathology) , Theodor Bilharz Research Institute , Giza , Egypt
| | - Mohammed I Seleem
- d Hepatobiliary Surgery and Liver Transplantation , National Hepatology and Tropical Medicine Research Institute , Cairo , Egypt
| | - Amr Abdelaal
- e Surgery Department , Faculty of Medicine, Ain Shams University , Cairo , Egypt
| | - Ahmed H Helmy
- f Surgery Department , Theodor Bilharz Research Institute , Giza , Egypt
| | - Mona K Zoheiry
- b Immunology Department , Theodor Bilharz Research Institute , Giza , Egypt
| | - Ahmed S AbdelFattah
- g Hepatogastroenterology Department , Theodor Bilharz Research Institute , Giza , Egypt
| | - Moataz H Hassanein
- g Hepatogastroenterology Department , Theodor Bilharz Research Institute , Giza , Egypt
| |
Collapse
|
187
|
Chiew GGY, Wei N, Sultania S, Lim S, Luo KQ. Bioengineered three-dimensional co-culture of cancer cells and endothelial cells: A model system for dual analysis of tumor growth and angiogenesis. Biotechnol Bioeng 2017; 114:1865-1877. [PMID: 28369747 DOI: 10.1002/bit.26297] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 01/15/2023]
Abstract
Angiogenesis marks the transformation of a benign local tumor into a life-threatening disease. Many in vitro assays are available on two-dimensional (2D) platforms, however, limited research has been conducted to investigate the behavior of tumors and endothelial cells (ECs) grown on three-dimensional (3D) platforms. This study provides a 3D co-culture spheroid of tumor cells with ECs to study the interplay between ECs and tumor cells. In a 3D co-culture with HepG2 hepatocellular carcinoma (HCC) cells, ECs differentiate to form tubule networks when in co-culture. Addition of angiogenic factors or angiogenesis inhibitors to the model system enhanced or inhibited endothelial differentiation in the 3D model, enabling investigations of the cellular signaling pathways utilized in HCC development. The 3D model demonstrated similar protein expression levels as a HCC xenograft, as well as exhibited upregulation of essential signaling proteins such as Akt/mTor in the 3D model, which is not reflected in the 2D model. The effects of several anti-angiogenic agents, such as sorafenib, sunitinib, and axitinib were analyzed in the 3D co-culture model by utilizing fluorescent proteins and a fluorescence resonance energy transfer (FRET)-based caspase-3 sensor in the ECs, which can detect apoptosis in real time. The apoptotic capability of a drug to inhibit angiogenesis in the 3D model can be easily distinguished via the FRET sensor, and dual screening of anti-angiogenesis and anti-tumor drugs can be achieved in a single step via the 3D co-culture model. In summary, a 3D co-culture model is constructed, where a HCC tumor microenvironment with a hypoxic core and true gradient penetration of drugs is achieved for drug screening purposes and in vitro studies utilizing a small HCC tumor. Biotechnol. Bioeng. 2017;114: 1865-1877. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Geraldine Giap Ying Chiew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Na Wei
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Samiksha Sultania
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
188
|
Chacko S, Samanta S. A novel approach towards design, synthesis and evaluation of some Schiff base analogues of 2-aminopyridine and 2-aminobezothiazole against hepatocellular carcinoma. Biomed Pharmacother 2017; 89:162-176. [DOI: 10.1016/j.biopha.2017.01.108] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/08/2017] [Accepted: 01/17/2017] [Indexed: 02/07/2023] Open
|
189
|
c-MYC-Making Liver Sick: Role of c-MYC in Hepatic Cell Function, Homeostasis and Disease. Genes (Basel) 2017; 8:genes8040123. [PMID: 28422055 PMCID: PMC5406870 DOI: 10.3390/genes8040123] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/30/2017] [Accepted: 04/12/2017] [Indexed: 12/20/2022] Open
Abstract
Over 35 years ago, c-MYC, a highly pleiotropic transcription factor that regulates hepatic cell function, was identified. In recent years, a considerable increment in the number of publications has significantly shifted the way that the c-MYC function is perceived. Overexpression of c-MYC alters a wide range of roles including cell proliferation, growth, metabolism, DNA replication, cell cycle progression, cell adhesion and differentiation. The purpose of this review is to broaden the understanding of the general functions of c-MYC, to focus on c-MYC-driven pathogenesis in the liver, explain its mode of action under basal conditions and during disease, and discuss efforts to target c-MYC as a plausible therapy for liver disease.
Collapse
|
190
|
Santos NP, Colaço AA, Oliveira PA. Animal models as a tool in hepatocellular carcinoma research: A Review. Tumour Biol 2017; 39:1010428317695923. [PMID: 28347231 DOI: 10.1177/1010428317695923] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cancer is the first cause of death in developed countries and the second in developing countries. Concerning the most frequent worldwide-diagnosed cancer, primary liver cancer represents approximately 4% of all new cancer cases diagnosed globally. However, among primary liver cancer, hepatocellular carcinoma is by far the most common histological subtype. Notwithstanding the health promotion and disease prevention campaigns, more than half a million new hepatocellular carcinoma cases are reported yearly, being estimated to growth continuously until 2020. Taking this scenario under consideration and the fact that some aspects concerning hepatocellular carcinoma evolution and metastasize process are still unknown, animal models assume a crucial role to understand this disease. The animal models have also provided the opportunity to screen new therapeutic strategies. The present review was supported on research and review papers aiming the complexity and often neglected chemically induced animal models in hepatocarcinogenesis research. Despite the ongoing debate, chemically induced animal models, namely, mice and rat, can provide unique valuable information on the biotransformation mechanisms against xenobiotics and apprehend the deleterious effects on DNA and cell proteins leading to carcinogenic development. In addition, taking under consideration that no model achieves all hepatocellular carcinoma research purposes, criteria to define the " ideal" animal model, depending on the researchers' approach, are also discussed in this review.
Collapse
Affiliation(s)
- Nuno Paula Santos
- 1 Department of Veterinary Sciences, Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,2 Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Aura Antunes Colaço
- 1 Department of Veterinary Sciences, Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Paula Alexandra Oliveira
- 1 Department of Veterinary Sciences, Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,2 Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
191
|
Abstract
In chronic liver diseases, an ongoing hepatocellular injury together with inflammatory reaction results in activation of hepatic stellate cells (HSCs) and increased deposition of extracellular matrix (ECM) termed as liver fibrosis. It can progress to cirrhosis that is characterized by parenchymal and vascular architectural changes together with the presence of regenerative nodules. Even at late stage, liver fibrosis is reversible and the underlying mechanisms include a switch in the inflammatory environment, elimination or regression of activated HSCs and degradation of ECM. While animal models have been indispensable for our understanding of liver fibrosis, they possess several important limitations and need to be further refined. A better insight into the liver fibrogenesis resulted in a large number of clinical trials aiming at reversing liver fibrosis, particularly in patients with non-alcoholic steatohepatitis. Collectively, the current developments demonstrate that reversal of liver fibrosis is turning from fiction to reality.
Collapse
Affiliation(s)
- Miguel Eugenio Zoubek
- Department of Internal Medicine III, RWTH Aachen University Hospital, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, RWTH Aachen University Hospital, Aachen, Germany.
| | - Pavel Strnad
- Department of Internal Medicine III, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
192
|
Xie G, Wang X, Zhao A, Yan J, Chen W, Jiang R, Ji J, Huang F, Zhang Y, Lei S, Ge K, Zheng X, Rajani C, Alegado RA, Liu J, Liu P, Nicholson J, Jia W. Sex-dependent effects on gut microbiota regulate hepatic carcinogenic outcomes. Sci Rep 2017; 7:45232. [PMID: 28345673 PMCID: PMC5366919 DOI: 10.1038/srep45232] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/20/2017] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence points to a strong association between sex and gut microbiota, bile acids (BAs), and gastrointestinal cancers. Here, we investigated the mechanistic link between microbiota and hepatocellular carcinogenesis using a streptozotocin-high fat diet (STZ-HFD) induced nonalcoholic steatohepatitis-hepatocellular carcinoma (NASH-HCC) murine model and compared results for both sexes. STZ-HFD feeding induced a much higher incidence of HCC in male mice with substantially increased intrahepatic retention of hydrophobic BAs and decreased hepatic expression of tumor-suppressive microRNAs. Metagenomic analysis showed differences in gut microbiota involved in BA metabolism between normal male and female mice, and such differences were amplified when mice of both sexes were exposed to STZ-HFD. Treating STZ-HFD male mice with 2% cholestyramine led to significant improvement of hepatic BA retention, tumor-suppressive microRNA expressions, microbial gut communities, and prevention of HCC. Additionally the sex-dependent differences in BA profiles in the murine model can be correlated to the differential BA profiles between men and women during the development of HCC. These results uncover distinct male and female profiles for gut microbiota, BAs, and microRNAs that may contribute to sex-based disparity in liver carcinogenesis, and suggest new possibilities for preventing and controlling human obesity-related gastrointestinal cancers that often exhibit sex differences.
Collapse
Affiliation(s)
- Guoxiang Xie
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA
| | - Xiaoning Wang
- E-institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201204, China
| | - Aihua Zhao
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Jingyu Yan
- E-institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenlian Chen
- University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA
| | - Runqiu Jiang
- University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA
| | - Junfang Ji
- University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA
| | - Fengjie Huang
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Yunjing Zhang
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Sha Lei
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Kun Ge
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Xiaojiao Zheng
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Cynthia Rajani
- University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA
| | - Rosanna A. Alegado
- Department of Oceanography, University of Hawaii at Mānoa, Honolulu, Hawaii 96822, USA
| | - Jiajian Liu
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Ping Liu
- E-institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201204, China
| | - Jeremy Nicholson
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London SW7 2AZ, United Kingdom
| | - Wei Jia
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA
| |
Collapse
|
193
|
Inhibition of hepatic lipogenesis enhances liver tumorigenesis by increasing antioxidant defence and promoting cell survival. Nat Commun 2017; 8:14689. [PMID: 28290443 PMCID: PMC5424065 DOI: 10.1038/ncomms14689] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
The metabolic pathway of de novo lipogenesis is frequently upregulated in human liver tumours, and its upregulation is associated with poor prognosis. Blocking lipogenesis in cultured liver cancer cells is sufficient to decrease cell viability; however, it is not known whether blocking lipogenesis in vivo can prevent liver tumorigenesis. Herein, we inhibit hepatic lipogenesis in mice by liver-specific knockout of acetyl-CoA carboxylase (ACC) genes and treat the mice with the hepatocellular carcinogen diethylnitrosamine (DEN). Unexpectedly, mice lacking hepatic lipogenesis have a twofold increase in tumour incidence and multiplicity compared to controls. Metabolomics analysis of ACC-deficient liver identifies a marked increase in antioxidants including NADPH and reduced glutathione. Importantly, supplementing primary wild-type hepatocytes with glutathione precursors improves cell survival following DEN treatment to a level indistinguishable from ACC-deficient primary hepatocytes. This study shows that lipogenesis is dispensable for liver tumorigenesis in mice treated with DEN, and identifies an important role for ACC enzymes in redox regulation and cell survival.
Collapse
|
194
|
Henderson JM, Zhang HE, Polak N, Gorrell MD. Hepatocellular carcinoma: Mouse models and the potential roles of proteases. Cancer Lett 2017; 387:106-113. [PMID: 27045475 DOI: 10.1016/j.canlet.2016.03.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/24/2016] [Accepted: 03/24/2016] [Indexed: 02/07/2023]
Abstract
Primary liver cancer is the second most common cause of mortality from cancer. The most common models of hepatocellular carcinoma, which use a chemical and/or metabolic insult, xenograft, or genetic manipulation, are discussed in this review. In the tumour microenvironment lymphocytes, fibroblasts, endothelial cells and antigen presenting cells are important determinants of cell fate. These cells make a range of proteases that modify the biological activity of other proteins, particularly extracellular matrix proteins that alter cell migration of tumour cells, fibroblasts and leucocytes, and chemokines that alter leucocyte migration. The DPP4 family of post-proline peptidase enzymes modifies cell movement and the activities of many bioactive molecules including growth factors and chemokines.
Collapse
Affiliation(s)
- James M Henderson
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 Australia
| | - Hui Emma Zhang
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 Australia
| | - Natasa Polak
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 Australia
| | - Mark D Gorrell
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 Australia.
| |
Collapse
|
195
|
Highly tumorigenic hepatocellular carcinoma cell line with cancer stem cell-like properties. PLoS One 2017; 12:e0171215. [PMID: 28152020 PMCID: PMC5289561 DOI: 10.1371/journal.pone.0171215] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/18/2017] [Indexed: 12/21/2022] Open
Abstract
There are limited numbers of models to study hepatocellular carcinoma (HCC) in vivo in immunocompetent hosts. In an effort to develop a cell line with improved tumorigenicity, we derived a new cell line from Hepa1-6 cells through an in vivo passage in C57BL/6 mice. The resulting Dt81Hepa1-6 cell line showed enhanced tumorigenicity compared to Hepa1-6 with more frequent (28±12 vs. 0±0 lesions at 21 days) and more rapid tumor development (21 (100%) vs. 70 days (10%)) in C57BL/6 mice. The minimal Dt81Hepa1-6 cell number required to obtain visible tumors was 100,000 cells. The Dt81Hepa1-6 cell line showed high hepatotropism with subcutaneous injection leading to liver tumors without development of tumors in lungs or spleen. In vitro, Dt81Hepa1-6 cells showed increased anchorage-independent growth (34.7±6.8 vs. 12.3±3.3 colonies; P<0.05) and increased EpCAM (8.7±1.1 folds; P<0.01) and β-catenin (5.4±1.0 folds; P<0.01) expression. A significant proportion of Dt81Hepa1-6 cells expressed EpCAM compared to Hepa1-6 (34.8±1.1% vs 0.9±0.13%; P<0.001). Enriched EpCAM+ Dt81Hepa1-6 cells led to higher tumor load than EpCAM- Dt81Hepa1-6 cells (1093±74 vs 473±100 tumors; P<0.01). The in vivo selected Dt81Hepa1-6 cell line shows high liver specificity and increased tumorigenicity compared to Hepa1-6 cells. These properties are associated with increased expression of EpCAM and β-catenin confirming that EpCAM+ HCC cells comprise a subset with characteristics of tumor-initiating cells with stem/progenitor cell features. The Dt81Hepa1-6 cell line with its cancer stem cell-like properties will be a useful tool for the study of hepatocellular carcinoma in vivo.
Collapse
|
196
|
Abstract
The SV40 viral oncogene has been used since the 1970s as a reliable and reproducible method to generate transgenic mouse models. This seminal discovery has taught us an immense amount about how tumorigenesis occurs, and its success has led to the evolution of many mouse models of cancer. Despite the development of more modern and targeted approaches for developing genetically engineered mouse models of cancer, SV40-induced mouse models still remain frequently used today. This review discusses a number of cancer types in which SV40 mouse models of cancer have been developed and highlights their relevance and importance to preclinical research.
Collapse
Affiliation(s)
- Amanda L Hudson
- Amanda L. Hudson, PhD, is a Sydney Neuro-Oncology Group postdoctoral fellow at the Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, NSW, Australia. Emily K. Colvin is a Cancer Institute NSW postdoctoral fellow at the Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, NSW, Australia
| | - Emily K Colvin
- Amanda L. Hudson, PhD, is a Sydney Neuro-Oncology Group postdoctoral fellow at the Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, NSW, Australia. Emily K. Colvin is a Cancer Institute NSW postdoctoral fellow at the Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, NSW, Australia
| |
Collapse
|
197
|
Lau JKC, Zhang X, Yu J. Animal models of non-alcoholic fatty liver disease: current perspectives and recent advances. J Pathol 2016; 241:36-44. [PMID: 27757953 PMCID: PMC5215469 DOI: 10.1002/path.4829] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/12/2016] [Accepted: 10/13/2016] [Indexed: 12/12/2022]
Abstract
Non‐alcoholic fatty liver disease (NAFLD) is a continuous spectrum of diseases characterized by excessive lipid accumulation in hepatocytes. NAFLD progresses from simple liver steatosis to non‐alcoholic steatohepatitis and, in more severe cases, to liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Because of its growing worldwide prevalence, various animal models that mirror both the histopathology and the pathophysiology of each stage of human NAFLD have been developed. The selection of appropriate animal models continues to be one of the key questions faced in this field. This review presents a critical analysis of the histopathology and pathogenesis of NAFLD, the most frequently used and recently developed animal models for each stage of NAFLD and NAFLD‐induced HCC, the main mechanisms involved in the experimental pathogenesis of NAFLD in different animal models, and a brief summary of recent therapeutic targets found by the use of animal models. Integrating the data from human disease with those from animal studies indicates that, although current animal models provide critical guidance in understanding specific stages of NAFLD pathogenesis and progression, further research is necessary to develop more accurate models that better mimic the disease spectrum, in order to provide both increased mechanistic understanding and identification/testing of novel therapeutic approaches. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jennie Ka Ching Lau
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, PR China.,Faculty of Medicine, SHHO College, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Xiang Zhang
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Jun Yu
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
198
|
Kotiya D, Jaiswal B, Ghose S, Kaul R, Datta K, Tyagi RK. Role of PXR in Hepatic Cancer: Its Influences on Liver Detoxification Capacity and Cancer Progression. PLoS One 2016; 11:e0164087. [PMID: 27760163 PMCID: PMC5070842 DOI: 10.1371/journal.pone.0164087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 09/19/2016] [Indexed: 01/22/2023] Open
Abstract
The role of nuclear receptor PXR in detoxification and clearance of xenobiotics and endobiotics is well-established. However, its projected role in hepatic cancer is rather illusive where its expression is reported altered in different cancers depending on the tissue-type and microenvironment. The expression of PXR, its target genes and their biological or clinical significance have not been examined in hepatic cancer. In the present study, by generating DEN-induced hepatic cancer in mice, we report that the expression of PXR and its target genes CYP3A11 and GSTa2 are down-regulated implying impairment of hepatic detoxification capacity. A higher state of inflammation was observed in liver cancer tissues as evident from upregulation of inflammatory cytokines IL-6 and TNF-α along with NF-κB and STAT3. Our data in mouse model suggested a negative correlation between down-regulation of PXR and its target genes with that of higher expression of inflammatory proteins (like IL-6, TNF-α, NF-κB). In conjunction, our findings with relevant cell culture based assays showed that higher expression of PXR is involved in reduction of tumorigenic potential in hepatic cancer. Overall, the findings suggest that inflammation influences the expression of hepatic proteins important in drug metabolism while higher PXR level reduces tumorigenic potential in hepatic cancer.
Collapse
Affiliation(s)
- Deepak Kotiya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Bharti Jaiswal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sampa Ghose
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rachna Kaul
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Kasturi Datta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh K. Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
199
|
Down-regulation of β-arrestin2 promotes tumour invasion and indicates poor prognosis of hepatocellular carcinoma. Sci Rep 2016; 6:35609. [PMID: 27759077 PMCID: PMC5069669 DOI: 10.1038/srep35609] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/04/2016] [Indexed: 12/24/2022] Open
Abstract
β-arrestins, including β-arrestin1 and β-arrestin2, are multifunctional adaptor proteins. β-arrestins have recently been found to play new roles in regulating intracellular signalling networks associated with malignant cell functions. Altered β-arrestin expression has been reported in many cancers, but its role in hepatocellular carcinoma (HCC) is not clear. We therefore examined the roles of β-arrestins in HCC using an animal model of progressive HCC, HCC patient samples and HCC cell lines with stepwise metastatic potential. We demonstrated that β-arrestin2 level, but not β-arrestin1 level, decreased in conjunction with liver tumourigenesis in a mouse diethylnitrosamine-induced liver tumour model. Furthermore, β-arrestin2 expression was reduced in HCC tissues compared with noncancerous tissues in HCC patients. β-arrestin2 down-regulation in HCC was significantly associated with poor patient prognoses and aggressive pathologic features. In addition, our in vitro study showed that β-arrestin2 overexpression significantly reduced cell migration and invasion in cultured HCC cells. Furthermore, β-arrestin2 overexpression up-regulated E-cadherin expression and inhibited vimentin expression and Akt activation. These results suggest that β-arrestin2 down-regulation increases HCC cell migration and invasion ability. Low β-arrestin2 expression may be indicative of a poor prognosis or early cancer recurrence in patients who have undergone surgery for HCC.
Collapse
|
200
|
Gupta P, Bhatia N, Bansal MP, Koul A. Lycopene modulates cellular proliferation, glycolysis and hepatic ultrastructure during hepatocellular carcinoma. World J Hepatol 2016; 8:1222-1233. [PMID: 27803767 PMCID: PMC5067442 DOI: 10.4254/wjh.v8.i29.1222] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/20/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of lycopene extracted from tomatoes (LycT) on ultrastructure, glycolytic enzymes, cell proliferation markers and hypoxia during N-Nitrosodiethylamine (NDEA)-induced hepatocarcinogenesis.
METHODS Female BALB/c mice were randomly divided into four groups: The Control, NDEA (200 mg NDEA/kg b.w. given i.p.), LycT (5 mg/kg b.w. given orally on alternate days) and LycT + NDEA group. The mRNA and protein expression of various cell proliferation markers (PCNA, Cyclin D1, and p21) were assessed by reverse transcription-polymerase chain reaction and enzyme linked immunosorbent assay, respectively. The ultrastructure of hepatic tissue was analyzed using scanning and transmission electron microscopy. The enzymatic activity of glycolytic enzymes was estimated using standardized protocols, while glucose-6-phosphate dehydrogenase activity level was estimated using a kit obtained from Reckon Diagnostic P. Ltd. (India).
RESULTS Uncontrolled proliferation in the liver of NDEA (P ≤ 0.001) mice was evident from the high expression of cell-proliferation associated genes (PCNA, Cyclin D1, and p21) when compared to control and LycT mice. In addition, enhanced activities of hexokinase, phosphoglucoisomerase, aldolase, glucose-6-phosphate dehydrogenase and hypoxia-inducible factor-1α were observed in NDEA mice as compared to control (P ≤ 0.001) and LycT (P ≤ 0.001) mice. The alterations in hepatic ultrastructure observed in the NDEA group correlated with the changes in the above parameters. LycT pre-treatment in NDEA-challenged mice ameliorated the investigated pathways disrupted by NDEA treatment. Moreover, hepatic electron micrographs from the LycT + NDEA group showed increased macrophages, apoptotic bodies and well-differentiated hepatocellular carcinoma (HCC) in comparison to undifferentiated HCC as observed in the NDEA treated group.
CONCLUSION This study demonstrates that dietary supplementation with LycT has a multidimensional role in preventing HCC development.
Collapse
|