151
|
Global gene expression analysis of a rice high-tillering dwarf mutant. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
152
|
Rubio-Moraga A, Ahrazem O, Pérez-Clemente RM, Gómez-Cadenas A, Yoneyama K, López-Ráez JA, Molina RV, Gómez-Gómez L. Apical dominance in saffron and the involvement of the branching enzymes CCD7 and CCD8 in the control of bud sprouting. BMC PLANT BIOLOGY 2014; 14:171. [PMID: 24947472 PMCID: PMC4077219 DOI: 10.1186/1471-2229-14-171] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/12/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND In saffron (Crocus sativus), new corms develop at the base of every shoot developed from the maternal corm, a globular underground storage stem. Since the degree of bud sprouts influences the number and size of new corms, and strigolactones (SLs) suppress growth of pre-formed axillary bud, it was considered appropriate to investigate SL involvement in physiology and molecular biology in saffron. We focused on two of the genes within the SL pathway, CCD7 and CCD8, encoding carotenoid cleavage enzymes required for the production of SLs. RESULTS The CsCCD7 and CsCCD8 genes are the first ones isolated and characterized from a non-grass monocotyledonous plant. CsCCD7 and CsCCD8 expression showed some overlapping, although they were not identical. CsCCD8 was highly expressed in quiescent axillary buds and decapitation dramatically reduced its expression levels, suggesting its involvement in the suppression of axillary bud outgrowth. Furthermore, in vitro experiments showed also the involvement of auxin, cytokinin and jasmonic acid on the sprouting of axillary buds from corms in which the apical bud was removed. In addition, CsCCD8 expression, but not CsCCD7, was higher in the newly developed vascular tissue of axillary buds compared to the vascular tissue of the apical bud. CONCLUSIONS We showed that production and transport of auxin in saffron corms could act synergistically with SLs to arrest the outgrowth of the axillary buds, similar to the control of above-ground shoot branching. In addition, jasmonic acid seems to play a prominent role in bud dormancy in saffron. While cytokinins from roots promote bud outgrowth. In addition the expression results of CsCCD8 suggest that SLs could positively regulate procambial activity and the development of new vascular tissues connecting leaves with the mother corm.
Collapse
Affiliation(s)
- Angela Rubio-Moraga
- Departamento de Ciencia y Tecnología Agroforestal y Genética. Facultad de Farmacia, Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Oussama Ahrazem
- Departamento de Ciencia y Tecnología Agroforestal y Genética. Facultad de Farmacia, Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
- Fundación Parque Científico y Tecnológico de Albacete. Campus Universitario s/n, 02071 Albacete, Spain
| | - Rosa M Pérez-Clemente
- Department of Agricultural and Environmental Sciences, Universitat Jaume I, 12071 Castelló de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Department of Agricultural and Environmental Sciences, Universitat Jaume I, 12071 Castelló de la Plana, Spain
| | - Koichi Yoneyama
- Weed Science Center, Utsunomiya University, 350 Mine-machi, Utsunomiya 321-8505, Japan
| | - Juan Antonio López-Ráez
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Granada, Spain
| | - Rosa Victoria Molina
- Departamento de Biología Vegetal, Universidad Politécnica de Valencia, 46071 Valencia, Spain
| | - Lourdes Gómez-Gómez
- Departamento de Ciencia y Tecnología Agroforestal y Genética. Facultad de Farmacia, Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| |
Collapse
|
153
|
Warnasooriya SN, Brutnell TP. Enhancing the productivity of grasses under high-density planting by engineering light responses: from model systems to feedstocks. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2825-34. [PMID: 24868036 DOI: 10.1093/jxb/eru221] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The successful commercialization of bioenergy grasses as lignocellulosic feedstocks requires that they be produced, processed, and transported efficiently. Intensive breeding for higher yields in food crops has resulted in varieties that perform optimally under high-density planting but often with high input costs. This is particularly true of maize, where most yield gains in the past have come through increased planting densities and an abundance of fertilizer. For lignocellulosic feedstocks, biomass rather than grain yield and digestibility of cell walls are two of the major targets for improvement. Breeding for high-density performance of lignocellulosic crops has been much less intense and thus provides an opportunity for improving the feedstock potential of these grasses. In this review, we discuss the role of vegetative shade on growth and development and suggest targets for manipulating this response to increase harvestable biomass under high-density planting. To engineer grass architecture and modify biomass properties at increasing planting densities, we argue that new model systems are needed and recommend Setaria viridis, a panicoid grass, closely related to major fuel and bioenergy grasses as a model genetic system.
Collapse
|
154
|
Salmon J, Ward SP, Hanley SJ, Leyser O, Karp A. Functional screening of willow alleles in Arabidopsis combined with QTL mapping in willow (Salix) identifies SxMAX4 as a coppicing response gene. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:480-91. [PMID: 24393130 PMCID: PMC4238783 DOI: 10.1111/pbi.12154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/19/2013] [Accepted: 11/25/2013] [Indexed: 05/08/2023]
Abstract
Willows (Salix spp.) are important biomass crops due to their ability to grow rapidly with low fertilizer inputs and ease of cultivation in short-rotation coppice cycles. They are relatively undomesticated and highly diverse, but functional testing to identify useful allelic variation is time-consuming in trees and transformation is not yet possible in willow. Arabidopsis is heralded as a model plant from which knowledge can be transferred to advance the improvement of less tractable species. Here, knowledge and methodologies from Arabidopsis were successfully used to identify a gene influencing stem number in coppiced willows, a complex trait of key biological and industrial relevance. The strigolactone-related More AXillary growth (MAX) genes were considered candidates due to their role in shoot branching. We previously demonstrated that willow and Arabidopsis show similar response to strigolactone and that transformation rescue of Arabidopsis max mutants with willow genes could be used to detect allelic differences. Here, this approach was used to screen 45 SxMAX1, SxMAX2, SxMAX3 and SxMAX4 alleles cloned from 15 parents of 11 mapping populations varying in shoot-branching traits. Single-nucleotide polymorphism (SNP) frequencies were locus dependent, ranging from 29.2 to 74.3 polymorphic sites per kb. SxMAX alleles were 98%-99% conserved at the amino acid level, but different protein products varying in their ability to rescue Arabidopsis max mutants were identified. One poor rescuing allele, SxMAX4D, segregated in a willow mapping population where its presence was associated with increased shoot resprouting after coppicing and colocated with a QTL for this trait.
Collapse
Affiliation(s)
| | - Sally P Ward
- Sainsbury Laboratory, University of CambridgeCambridge, UK
| | | | | | - Angela Karp
- Rothamsted Research, HarpendenHertfordshire, UK
- *Correspondence (Tel +44(0) 1582 763133; fax +44(0) 1582 760 981;, email )
| |
Collapse
|
155
|
Chen F, Jiang L, Zheng J, Huang R, Wang H, Hong Z, Huang Y. Identification of differentially expressed proteins and phosphorylated proteins in rice seedlings in response to strigolactone treatment. PLoS One 2014; 9:e93947. [PMID: 24699514 PMCID: PMC3974870 DOI: 10.1371/journal.pone.0093947] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 03/11/2014] [Indexed: 11/30/2022] Open
Abstract
Strigolactones (SLs) are recently identified plant hormones that inhibit shoot branching and control various aspects of plant growth, development and interaction with parasites. Previous studies have shown that plant D10 protein is a carotenoid cleavage dioxygenase that functions in SL biosynthesis. In this work, we used an allelic SL-deficient d10 mutant XJC of rice (Oryza sativa L. spp. indica) to investigate proteins that were responsive to SL treatment. When grown in darkness, d10 mutant seedlings exhibited elongated mesocotyl that could be rescued by exogenous application of SLs. Soluble protein extracts were prepared from d10 mutant seedlings grown in darkness in the presence of GR24, a synthetic SL analog. Soluble proteins were separated on two-dimensional gels and subjected to proteomic analysis. Proteins that were expressed differentially and phosphoproteins whose phosphorylation status changed in response to GR24 treatment were identified. Eight proteins were found to be induced or down-regulated by GR24, and a different set of 8 phosphoproteins were shown to change their phosphorylation intensities in the dark-grown d10 seedlings in response to GR24 treatment. Analysis of these proteins revealed that they are important enzymes of the carbohydrate and amino acid metabolic pathways and key components of the cellular energy generation machinery. These proteins may represent potential targets of the SL signaling pathway. This study provides new insight into the complex and negative regulatory mechanism by which SLs control shoot branching and plant development.
Collapse
Affiliation(s)
- Fangyu Chen
- School of Life Sciences, Xiamen University, Xiamen, China
| | | | | | - Rongyu Huang
- School of Life Sciences, Xiamen University, Xiamen, China
- Department of Plant, Soil, and Entomological Sciences, and Program of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Idaho, United States of America
| | - Houcong Wang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Zonglie Hong
- School of Life Sciences, Xiamen University, Xiamen, China
- Department of Plant, Soil, and Entomological Sciences, and Program of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Idaho, United States of America
- * E-mail: (ZH); (YH)
| | - Yumin Huang
- School of Life Sciences, Xiamen University, Xiamen, China
- * E-mail: (ZH); (YH)
| |
Collapse
|
156
|
Chevalier F, Nieminen K, Sánchez-Ferrero JC, Rodríguez ML, Chagoyen M, Hardtke CS, Cubas P. Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis. THE PLANT CELL 2014; 26:1134-50. [PMID: 24610723 PMCID: PMC4001374 DOI: 10.1105/tpc.114.122903] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/05/2014] [Accepted: 02/11/2014] [Indexed: 05/18/2023]
Abstract
Strigolactones (SLs) are phytohormones that play a central role in regulating shoot branching. SL perception and signaling involves the F-box protein MAX2 and the hydrolase DWARF14 (D14), proposed to act as an SL receptor. We used strong loss-of-function alleles of the Arabidopsis thaliana D14 gene to characterize D14 function from early axillary bud development through to lateral shoot outgrowth and demonstrated a role of this gene in the control of flowering time. Our data show that D14 distribution in vivo overlaps with that reported for MAX2 at both the tissue and subcellular levels, allowing physical interactions between these proteins. Our grafting studies indicate that neither D14 mRNA nor the protein move over a long range upwards in the plant. Like MAX2, D14 is required locally in the aerial part of the plant to suppress shoot branching. We also identified a mechanism of SL-induced, MAX2-dependent proteasome-mediated degradation of D14. This negative feedback loop would cause a substantial drop in SL perception, which would effectively limit SL signaling duration and intensity.
Collapse
Affiliation(s)
- Florian Chevalier
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Juan Carlos Sánchez-Ferrero
- Computational Systems Biology Group, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María Luisa Rodríguez
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mónica Chagoyen
- Computational Systems Biology Group, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Christian S. Hardtke
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Address correspondence to
| |
Collapse
|
157
|
Cardoso C, Zhang Y, Jamil M, Hepworth J, Charnikhova T, Dimkpa SON, Meharg C, Wright MH, Liu J, Meng X, Wang Y, Li J, McCouch SR, Leyser O, Price AH, Bouwmeester HJ, Ruyter-Spira C. Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs. Proc Natl Acad Sci U S A 2014; 111:2379-84. [PMID: 24464483 PMCID: PMC3926036 DOI: 10.1073/pnas.1317360111] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rice (Oryza sativa) cultivar Azucena--belonging to the Japonica subspecies--exudes high strigolactone (SL) levels and induces high germination of the root parasitic plant Striga hermonthica. Consistent with the fact that SLs also inhibit shoot branching, Azucena is a low-tillering variety. In contrast, Bala, an Indica cultivar, is a low-SL producer, stimulates less Striga germination, and is highly tillered. Using a Bala × Azucena F6 population, a major quantitative trait loci--qSLB1.1--for the exudation of SL, tillering, and induction of Striga germination was detected on chromosome 1. Sequence analysis of the corresponding locus revealed a rearrangement of a 51- to 59-kbp stretch between 28.9 and 29 Mbp in the Bala genome, resulting in the deletion of two cytochrome P450 genes--SLB1 and SLB2--with high homology to the Arabidopsis SL biosynthesis gene, MAX1. Both rice genes rescue the Arabidopsis max1-1 highly branched mutant phenotype and increase the production of the SL, ent-2'-epi-5-deoxystrigol, when overexpressed in Bala. Furthermore, analysis of this region in 367 cultivars of the publicly available Rice Diversity Panel population shows that the rearrangement at this locus is a recurrent natural trait associated with the Indica/Japonica divide in rice.
Collapse
Affiliation(s)
- Catarina Cardoso
- Laboratory of Plant Physiology, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Muhammad Jamil
- Laboratory of Plant Physiology, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Jo Hepworth
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Tatsiana Charnikhova
- Laboratory of Plant Physiology, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Stanley O. N. Dimkpa
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, United Kingdom
| | - Caroline Meharg
- Institute of Global Food Security, David Keir Building, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland
| | - Mark H. Wright
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853
| | - Junwei Liu
- Laboratory of Plant Physiology, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Susan R. McCouch
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853
| | - Ottoline Leyser
- Department of Biology, University of York, York YO10 5DD, United Kingdom
- Sainsbury Laboratory, School of Biological Sciences, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Adam H. Price
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, United Kingdom
| | - Harro J. Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, 6708 PB, Wageningen, The Netherlands
- Centre for Biosystems Genomics, 6700 AB, Wageningen, The Netherlands; and
| | - Carolien Ruyter-Spira
- Laboratory of Plant Physiology, Wageningen University, 6708 PB, Wageningen, The Netherlands
- Bioscience, Plant Research International, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
158
|
Genetic control of rhizomes and genomic localization of a major-effect growth habit QTL in perennial wildrye. Mol Genet Genomics 2014; 289:383-97. [DOI: 10.1007/s00438-014-0817-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 01/22/2014] [Indexed: 12/28/2022]
|
159
|
Janssen BJ, Drummond RSM, Snowden KC. Regulation of axillary shoot development. CURRENT OPINION IN PLANT BIOLOGY 2014; 17:28-35. [PMID: 24507491 DOI: 10.1016/j.pbi.2013.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/30/2013] [Accepted: 11/06/2013] [Indexed: 05/18/2023]
Abstract
Axillary meristems are formed in leaf axils and their growth into branches is a highly controlled process that is an important contributor to plant architecture. Here we discuss work that improves our understanding of the initiation and growth of axillary meristems. Recent results have implicated brassinosteroid signalling in the formation of axillary meristems. Our knowledge of axillary meristem outgrowth has also advanced, particularly in the areas of strigolactone signal production and perception, which have been shown to respond to environmental inputs. Auxins and cytokinins have also been linked to the control of axillary shoot development, revealing a complex network of signals that combine to regulate the outgrowth of an axillary meristem into a branch.
Collapse
Affiliation(s)
- Bart J Janssen
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Revel S M Drummond
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Kimberley C Snowden
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand.
| |
Collapse
|
160
|
|
161
|
Liang WH, Shang F, Lin QT, Lou C, Zhang J. Tillering and panicle branching genes in rice. Gene 2013; 537:1-5. [PMID: 24345551 DOI: 10.1016/j.gene.2013.11.058] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 11/08/2013] [Accepted: 11/27/2013] [Indexed: 11/19/2022]
Abstract
Rice (Oryza sativa L.) is one of the most important staple food crops in the world, and rice tillering and panicle branching are important traits determining grain yield. Since the gene MONOCULM 1 (MOC 1) was first characterized as a key regulator in controlling rice tillering and branching, great progress has been achieved in identifying important genes associated with grain yield, elucidating the genetic basis of yield-related traits. Some of these important genes were shown to be applicable for molecular breeding of high-yielding rice. This review focuses on recent advances, with emphasis on rice tillering and panicle branching genes, and their regulatory networks.
Collapse
Affiliation(s)
- Wei-hong Liang
- College of Life Science, Henan Normal University, Jianshe Rd., Xinxiang, Henan 453007, PR China; Key Laboratory for Microorganisms and Functional Molecules, University of Henan Province, Xinxiang, Henan 453007, PR China.
| | - Fei Shang
- College of Life Science, Henan Normal University, Jianshe Rd., Xinxiang, Henan 453007, PR China
| | - Qun-ting Lin
- College of Life Science, Henan Normal University, Jianshe Rd., Xinxiang, Henan 453007, PR China
| | - Chen Lou
- College of Life Science, Henan Normal University, Jianshe Rd., Xinxiang, Henan 453007, PR China
| | - Jing Zhang
- College of Life Science, Henan Normal University, Jianshe Rd., Xinxiang, Henan 453007, PR China
| |
Collapse
|
162
|
DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 2013; 504:401-5. [PMID: 24336200 DOI: 10.1038/nature12870] [Citation(s) in RCA: 567] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 11/06/2013] [Indexed: 01/05/2023]
Abstract
Strigolactones (SLs) are a group of newly identified plant hormones that control plant shoot branching. SL signalling requires the hormone-dependent interaction of DWARF 14 (D14), a probable candidate SL receptor, with DWARF 3 (D3), an F-box component of the Skp-Cullin-F-box (SCF) E3 ubiquitin ligase complex. Here we report the characterization of a dominant SL-insensitive rice (Oryza sativa) mutant dwarf 53 (d53) and the cloning of D53, which encodes a substrate of the SCF(D3) ubiquitination complex and functions as a repressor of SL signalling. Treatments with GR24, a synthetic SL analogue, cause D53 degradation via the proteasome in a manner that requires D14 and the SCF(D3) ubiquitin ligase, whereas the dominant form of D53 is resistant to SL-mediated degradation. Moreover, D53 can interact with transcriptional co-repressors known as TOPLESS-RELATED PROTEINS. Our results suggest a model of SL signalling that involves SL-dependent degradation of the D53 repressor mediated by the D14-D3 complex.
Collapse
|
163
|
Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L, Ma W, Gao H, Chen J, Yang C, Wang D, Tan J, Zhang X, Guo X, Wang J, Jiang L, Liu X, Chen W, Chu J, Yan C, Ueno K, Ito S, Asami T, Cheng Z, Wang J, Lei C, Zhai H, Wu C, Wang H, Zheng N, Wan J. D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling. Nature 2013; 504:406-10. [PMID: 24336215 PMCID: PMC4096652 DOI: 10.1038/nature12878] [Citation(s) in RCA: 567] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 11/15/2013] [Indexed: 01/24/2023]
Abstract
Strigolactones (SLs) are a new class of carotenoid-derived phytohormones essential for developmental processes shaping plant architecture and interactions with parasitic weeds and symbiotic arbuscular mycorrhizal fungi. Despite the rapid progress in elucidating the SL biosynthetic pathway, the perception and signaling mechanisms of SL remain poorly understood. Here we show that DWARF53 (D53) acts as a repressor of SL signaling and SLs induce its degradation. We found that the rice d53 mutant, which produces an exaggerated number of tillers compared to wild type plants, is caused by a gain-of-function mutation and is insensitive to exogenous SL treatment. The D53 gene product shares predicted features with the class I Clp ATPase proteins and can form a complex with the α/β hydrolase protein DWARF14 (D14) and the F-box protein DWARF3 (D3), two previously identified signaling components potentially responsible for SL perception. We demonstrate that, in a D14- and D3-dependent manner, SLs induce D53 degradation by the proteasome and abrogate its activity in promoting axillary bud outgrowth. Our combined genetic and biochemical data reveal that D53 acts as a repressor of the SL signaling pathway, whose hormone-induced degradation represents a key molecular link between SL perception and responses.
Collapse
Affiliation(s)
- Feng Zhou
- 1] National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China [2] National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lihong Zhu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kunneng Zhou
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Nitzan Shabek
- 1] Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA [2] Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, Washington 98195, USA
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haibin Mao
- 1] Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA [2] Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, Washington 98195, USA
| | - Wei Dong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lu Gan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weiwei Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - He Gao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Yang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junjie Tan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiqi Chen
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1-2 Beichen West Road, Beijing 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1-2 Beichen West Road, Beijing 100101, China
| | - Cunyu Yan
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1-2 Beichen West Road, Beijing 100101, China
| | - Kotomi Ueno
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Shinsaku Ito
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Tadao Asami
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huqu Zhai
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuanyin Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ning Zheng
- 1] Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA [2] Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, Washington 98195, USA
| | - Jianmin Wan
- 1] National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China [2] National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
164
|
Liu W, Zhang D, Tang M, Li D, Zhu Y, Zhu L, Chen C. THIS1 is a putative lipase that regulates tillering, plant height, and spikelet fertility in rice. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4389-402. [PMID: 24085578 DOI: 10.1093/jxb/ert256] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Proper branching and successful reproductive growth is of great importance for rice productivity. Substantial progress has been made in uncovering the molecular mechanisms underlying tillering control and spikelet sterility. However, rice tillering is developmentally controlled, and how it is regulated coordinately with reproductive growth remains unclear. This study characterized a rice mutant, the most obvious phenotypes of which are high tillering, reduced height, and infertile spikelets (named this1). Similarly to the high tiller number and dwarf mutants in rice, the increased tiller number of this1 plants is ascribed to the release of tiller bud outgrowth rather than to increased tiller bud formation. In the this1 mutant, however, the accelerated rate of branching was delayed until the stem elongation stage, while other mutants lost the ability to control branching at all developmental stages. The seed-setting rate of this1 was less than half that of the wild type, owing to defects in pollen maturation, anther dehiscence, and flower opening. Histological analyses showed that the mutation in this1 resulted in anisotropic cell expansion and cell division. Using a map-based cloning approach, This1 was found to encode a class III lipase. Homology searches revealed that THIS1 is conserved in both monocots and eudicots, suggesting that it plays fundamental role in regulating branch and spikelet fertility, as well as other aspects of developmental control. The relative change in expression of marker genes highlighted the possibility that This1 is involved in phytohormone signalling pathways, such as those for strigolactone and auxin. Thus, This1 provides joint control between shoot branching and reproductive development.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | | | | | | | | | | | | |
Collapse
|
165
|
de Saint Germain A, Ligerot Y, Dun EA, Pillot JP, Ross JJ, Beveridge CA, Rameau C. Strigolactones stimulate internode elongation independently of gibberellins. PLANT PHYSIOLOGY 2013; 163:1012-25. [PMID: 23943865 PMCID: PMC3793021 DOI: 10.1104/pp.113.220541] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/08/2013] [Indexed: 05/18/2023]
Abstract
Strigolactone (SL) mutants in diverse species show reduced stature in addition to their extensive branching. Here, we show that this dwarfism in pea (Pisum sativum) is not attributable to the strong branching of the mutants. The continuous supply of the synthetic SL GR24 via the root system using hydroponics can restore internode length of the SL-deficient rms1 mutant but not of the SL-response rms4 mutant, indicating that SLs stimulate internode elongation via RMS4. Cytological analysis of internode epidermal cells indicates that SLs control cell number but not cell length, suggesting that SL may affect stem elongation by stimulating cell division. Consequently, SLs can repress (in axillary buds) or promote (in the stem) cell division in a tissue-dependent manner. Because gibberellins (GAs) increase internode length by affecting both cell division and cell length, we tested if SLs stimulate internode elongation by affecting GA metabolism or signaling. Genetic analyses using SL-deficient and GA-deficient or DELLA-deficient double mutants, together with molecular and physiological approaches, suggest that SLs act independently from GAs to stimulate internode elongation.
Collapse
Affiliation(s)
| | | | - Elizabeth A. Dun
- Institut Jean-Pierre Bourgin, INRA UMR1318, INRA-AgroParisTech, F–78000 Versailles, France (A.d.S.G., Y.L., J-P.P., C.R.)
- University of Queensland, School of Biological Sciences, St. Lucia, Queensland 4072 Australia (E.A.D., C.A.B.); and
- School of Plant Science, University of Tasmania, Sandy Bay, Tasmania 7005 Australia (J.J.R.)
| | - Jean-Paul Pillot
- Institut Jean-Pierre Bourgin, INRA UMR1318, INRA-AgroParisTech, F–78000 Versailles, France (A.d.S.G., Y.L., J-P.P., C.R.)
- University of Queensland, School of Biological Sciences, St. Lucia, Queensland 4072 Australia (E.A.D., C.A.B.); and
- School of Plant Science, University of Tasmania, Sandy Bay, Tasmania 7005 Australia (J.J.R.)
| | - John J. Ross
- Institut Jean-Pierre Bourgin, INRA UMR1318, INRA-AgroParisTech, F–78000 Versailles, France (A.d.S.G., Y.L., J-P.P., C.R.)
- University of Queensland, School of Biological Sciences, St. Lucia, Queensland 4072 Australia (E.A.D., C.A.B.); and
- School of Plant Science, University of Tasmania, Sandy Bay, Tasmania 7005 Australia (J.J.R.)
| | - Christine A. Beveridge
- Institut Jean-Pierre Bourgin, INRA UMR1318, INRA-AgroParisTech, F–78000 Versailles, France (A.d.S.G., Y.L., J-P.P., C.R.)
- University of Queensland, School of Biological Sciences, St. Lucia, Queensland 4072 Australia (E.A.D., C.A.B.); and
- School of Plant Science, University of Tasmania, Sandy Bay, Tasmania 7005 Australia (J.J.R.)
| | | |
Collapse
|
166
|
The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat Commun 2013; 4:1566. [PMID: 23463009 PMCID: PMC3615354 DOI: 10.1038/ncomms2542] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 01/24/2013] [Indexed: 01/11/2023] Open
Abstract
Rice tillering is a multigenic trait that influences grain yield, but its regulation molecular module is poorly understood. Here we report that OsMADS57 interacts with OsTB1 (TEOSINTE BRANCHED1) and targets D14 (Dwarf14) to control the outgrowth of axillary buds in rice. An activation-tagged mutant osmads57-1 and OsMADS57-overexpression lines showed increased tillers, whereas OsMADS57 antisense lines had fewer tillers. OsMIR444a-overexpressing lines exhibited suppressed OsMADS57 expression and tillering. Furthermore, osmads57-1 was insensitive to strigolactone treatment to inhibit axillary bud outgrowth, and OsMADS57’s function in tillering was dependent on D14. D14 expression was downregulated in osmads57-1, but upregulated in antisense and OsMIR444a-overexpressing lines. OsMADS57 bound to the CArG motif [C(A/T)TTAAAAAG] in the promoter and directly suppressed D14 expression. Interaction of OsMADS57 with OsTB1 reduced OsMADS57 inhibition of D14 transcription. Therefore, OsMIR444a-regulated OsMADS57, together with OsTB1, target D14 to control tillering. This regulation mechanism could have important application in rice molecular breeding programs focused on high grain yield. Tillering is a multigenic complex trait that influences grain yield in cereal; however, the molecular network for its regulation remains unclear. Guo et al. show that OsMADS57, a transcription factor controlled by miR444a, interacts with OsTEOSINTE BRANCHED1 and targets DWARF14 to control tillering in rice.
Collapse
|
167
|
Ward SP, Salmon J, Hanley SJ, Karp A, Leyser O. Using Arabidopsis to study shoot branching in biomass willow. PLANT PHYSIOLOGY 2013; 162:800-11. [PMID: 23610219 PMCID: PMC3668071 DOI: 10.1104/pp.113.218461] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 04/19/2013] [Indexed: 05/20/2023]
Abstract
The success of the short-rotation coppice system in biomass willow (Salix spp.) relies on the activity of the shoot-producing meristems found on the coppice stool. However, the regulation of the activity of these meristems is poorly understood. In contrast, our knowledge of the mechanisms behind axillary meristem regulation in Arabidopsis (Arabidopsis thaliana) has grown rapidly in the past few years through the exploitation of integrated physiological, genetic, and molecular assays. Here, we demonstrate that these assays can be directly transferred to study the control of bud activation in biomass willow and to assess similarities with the known hormone regulatory system in Arabidopsis. Bud hormone response was found to be qualitatively remarkably similar in Salix spp. and Arabidopsis. These similarities led us to test whether Arabidopsis hormone mutants could be used to assess allelic variation in the cognate Salix spp. hormone genes. Allelic differences in Salix spp. strigolactone genes were observed using this approach. These results demonstrate that both knowledge and assays from Arabidopsis axillary meristem biology can be successfully applied to Salix spp. and can increase our understanding of a fundamental aspect of short-rotation coppice biomass production, allowing more targeted breeding.
Collapse
|
168
|
Liu J, Novero M, Charnikhova T, Ferrandino A, Schubert A, Ruyter-Spira C, Bonfante P, Lovisolo C, Bouwmeester HJ, Cardinale F. Carotenoid cleavage dioxygenase 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1967-81. [PMID: 23567864 PMCID: PMC3638823 DOI: 10.1093/jxb/ert056] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Strigolactones (SLs) are newly identified hormones that regulate multiple aspects of plant development, infection by parasitic weeds, and mutualistic symbiosis in the roots. In this study, the role of SLs was studied for the first time in the model plant Lotus japonicus using transgenic lines silenced for carotenoid cleavage dioxygenase 7 (LjCCD7), the orthologue of Arabidopsis More Axillary Growth 3. Transgenic LjCCD7-silenced plants displayed reduced height due to shorter internodes, and more branched shoots and roots than the controls, and an increase in total plant biomass, while their root:shoot ratio remained unchanged. Moreover, these lines had longer primary roots, delayed senescence, and reduced flower/pod numbers from the third round of flower and pod setting onwards. Only a mild reduction in determinate nodule numbers and hardly any impact on the colonization by arbuscular mycorrhizal fungi were observed. The results show that the impairment of CCD7 activity in L. japonicus leads to a phenotype linked to SL functions, but with specific features possibly due to the peculiar developmental pattern of this plant species. It is believed that the data also link determinate nodulation, plant reproduction, and senescence to CCD7 function for the first time.
Collapse
Affiliation(s)
- Junwei Liu
- Department of Agriculture, Forestry and Food Sciences, University of Turin, via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy
| | - Mara Novero
- Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli 25, 10025 Turin, Italy
| | - Tatsiana Charnikhova
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Alessandra Ferrandino
- Department of Agriculture, Forestry and Food Sciences, University of Turin, via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy
| | - Andrea Schubert
- Department of Agriculture, Forestry and Food Sciences, University of Turin, via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy
| | - Carolien Ruyter-Spira
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli 25, 10025 Turin, Italy
| | - Claudio Lovisolo
- Department of Agriculture, Forestry and Food Sciences, University of Turin, via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy
| | - Harro J. Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Francesca Cardinale
- Department of Agriculture, Forestry and Food Sciences, University of Turin, via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy
| |
Collapse
|
169
|
Challis RJ, Hepworth J, Mouchel C, Waites R, Leyser O. A role for more axillary growth1 (MAX1) in evolutionary diversity in strigolactone signaling upstream of MAX2. PLANT PHYSIOLOGY 2013; 161:1885-902. [PMID: 23424248 PMCID: PMC3613463 DOI: 10.1104/pp.112.211383] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Strigolactones (SLs) are carotenoid-derived phytohormones with diverse roles. They are secreted from roots as attractants for arbuscular mycorrhizal fungi and have a wide range of endogenous functions, such as regulation of root and shoot system architecture. To date, six genes associated with SL synthesis and signaling have been molecularly identified using the shoot-branching mutants more axillary growth (max) of Arabidopsis (Arabidopsis thaliana) and dwarf (d) of rice (Oryza sativa). Here, we present a phylogenetic analysis of the MAX/D genes to clarify the relationships of each gene with its wider family and to allow the correlation of events in the evolution of the genes with the evolution of SL function. Our analysis suggests that the notion of a distinct SL pathway is inappropriate. Instead, there may be a diversity of SL-like compounds, the response to which requires a D14/D14-like protein. This ancestral system could have been refined toward distinct ligand-specific pathways channeled through MAX2, the most downstream known component of SL signaling. MAX2 is tightly conserved among land plants and is more diverged from its nearest sister clade than any other SL-related gene, suggesting a pivotal role in the evolution of SL signaling. By contrast, the evidence suggests much greater flexibility upstream of MAX2. The MAX1 gene is a particularly strong candidate for contributing to diversification of inputs upstream of MAX2. Our functional analysis of the MAX1 family demonstrates the early origin of its catalytic function and both redundancy and functional diversification associated with its duplication in angiosperm lineages.
Collapse
|
170
|
The transcription factor AtDOF4.2 regulates shoot branching and seed coat formation in Arabidopsis. Biochem J 2013; 449:373-88. [PMID: 23095045 DOI: 10.1042/bj20110060] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plant-specific DOF (DNA-binding with one finger)-type transcription factors regulate various biological processes. In the present study we characterized a silique-abundant gene AtDOF (Arabidopsis thaliana DOF) 4.2 for its functions in Arabidopsis. AtDOF4.2 is localized in the nuclear region and has transcriptional activation activity in both yeast and plant protoplast assays. The T-M-D motif in AtDOF4.2 is essential for its activation. AtDOF4.2-overexpressing plants exhibit an increased branching phenotype and mutation of the T-M-D motif in AtDOF4.2 significantly reduces branching in transgenic plants. AtDOF4.2 may achieve this function through the up-regulation of three branching-related genes, AtSTM (A. thaliana SHOOT MERISTEMLESS), AtTFL1 (A. thaliana TERMINAL FLOWER1) and AtCYP83B1 (A. thaliana CYTOCHROME P450 83B1). The seeds of an AtDOF4.2-overexpressing plant show a collapse-like morphology in the epidermal cells of the seed coat. The mucilage contents and the concentration and composition of mucilage monosaccharides are significantly changed in the seed coat of transgenic plants. AtDOF4.2 may exert its effects on the seed epidermis through the direct binding and activation of the cell wall loosening-related gene AtEXPA9 (A. thaliana EXPANSIN-A9). The dof4.2 mutant did not exhibit changes in branching or its seed coat; however, the silique length and seed yield were increased. AtDOF4.4, which is a close homologue of AtDOF4.2, also promotes shoot branching and affects silique size and seed yield. Manipulation of these genes should have a practical use in the improvement of agronomic traits in important crops.
Collapse
|
171
|
Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H. The biology of strigolactones. TRENDS IN PLANT SCIENCE 2013. [PMID: 23182342 DOI: 10.1016/j.tplants.2012.10.003] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The strigolactones are rhizosphere signaling molecules as well as a new class of plant hormones with a still increasing number of biological functions being uncovered. Here, we review a recent major breakthrough in our understanding of strigolactone biosynthesis, which has revealed the unexpected simplicity of the originally postulated complex pathway. Moreover, the discovery and localization of a strigolactone exporter sheds new light on putative strigolactone fluxes to the rhizosphere as well as within the plant. The combination of these data with information on the expression and regulation of strigolactone biosynthetic and downstream signaling genes provides new insights into how strigolactones control the many different aspects of plant development and how their rhizosphere signaling role may have evolved.
Collapse
Affiliation(s)
- Carolien Ruyter-Spira
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | | | |
Collapse
|
172
|
Dun EA, de Saint Germain A, Rameau C, Beveridge CA. Dynamics of strigolactone function and shoot branching responses in Pisum sativum. MOLECULAR PLANT 2013; 6:128-40. [PMID: 23220942 DOI: 10.1093/mp/sss131] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Strigolactones (SLs), or their metabolites, were recently identified as endogenous inhibitors of shoot branching. However, certain key features and dynamics of SL action remained to be physiologically characterized. Here we show that successive direct application of SL to axillary buds at every node along the stem can fully inhibit branching. The SL inhibition of early outgrowth did not require inhibitory signals from other growing buds or the shoot tip. In addition to this very early or initial suppression of outgrowth, we also found SL to be effective, up to a point, at moderating the continuing growth of axillary branches. The effectiveness of SL at affecting bud and branch growth correlated with the ability of SL to regulate expression of PsBRC1. PsBRC1 is a transcription factor that is expressed strongly in axillary buds and is required for SL inhibition of shoot branching. Consistent with a dynamic role of the hormone, SL inhibition of bud growth did not prevent buds from later responding to a decapitation treatment, even though SL treatment immediately after decapitation inhibits the outgrowth response. Also, as expected from the hypothesized branching control network in plants, treatment of exogenous SL caused feedback down-regulation of SL biosynthesis genes within 2 h. Altogether, these results reveal new insights into the dynamics of SL function and support the premise that SLs or SL-derived metabolites function dynamically as a shoot branching hormone and that they act directly in axillary buds.
Collapse
Affiliation(s)
- Elizabeth A Dun
- The University of Queensland, School of Biological Sciences, St Lucia, QLD, 4072 Australia
| | | | | | | |
Collapse
|
173
|
Cheng X, Ruyter-Spira C, Bouwmeester H. The interaction between strigolactones and other plant hormones in the regulation of plant development. FRONTIERS IN PLANT SCIENCE 2013; 4:199. [PMID: 23785379 PMCID: PMC3683633 DOI: 10.3389/fpls.2013.00199] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/28/2013] [Indexed: 05/18/2023]
Abstract
Plant hormones are small molecules derived from various metabolic pathways and are important regulators of plant development. The most recently discovered phytohormone class comprises the carotenoid-derived strigolactones (SLs). For a long time these compounds were only known to be secreted into the rhizosphere where they act as signaling compounds, but now we know they are also active as endogenous plant hormones and they have been in the spotlight ever since. The initial discovery that SLs are involved in the inhibition of axillary bud outgrowth, initiated a multitude of other studies showing that SLs also play a role in defining root architecture, secondary growth, hypocotyl elongation, and seed germination, mostly in interaction with other hormones. Their coordinated action enables the plant to respond in an appropriate manner to environmental factors such as temperature, shading, day length, and nutrient availability. Here, we will review the current knowledge on the crosstalk between SLs and other plant hormones-such as auxin, cytokinin, abscisic acid (ABA), ethylene (ET), and gibberellins (GA)-during different physiological processes. We will furthermore take a bird's eye view of how this hormonal crosstalk enables plants to respond to their ever changing environments.
Collapse
Affiliation(s)
| | | | - Harro Bouwmeester
- *Correspondence: Harro Bouwmeester, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands e-mail:
| |
Collapse
|
174
|
Fukui K, Ito S, Asami T. Selective mimics of strigolactone actions and their potential use for controlling damage caused by root parasitic weeds. MOLECULAR PLANT 2013. [PMID: 23204501 DOI: 10.1093/mp/sss138] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Strigolactones (SLs) are a novel class of plant hormones and rhizosphere communication signals, although the molecular mechanisms underlying their activities have not yet been fully determined. Nor is their application in agriculture well developed. The importance of plant hormone agonists has been demonstrated in both basic and applied research, and chemicals that mimic strigolactone functions should greatly facilitate strigolactone research. Here, we report our discovery of a new phenoxyfuranone compound, 4-Br debranone (4BD), that shows similar activity to that of the major strigolactone (SL) analog GR24 in many aspects of a biological assay on plants. 4BD strongly inhibited tiller bud outgrowth in the SL-deficient rice mutant d10 at the same concentration as GR24, with no adverse effects, even during prolonged cultivation. This result was also observed in the Arabidopsis thaliana SL-deficient mutants max1, max3, and max4. However, the application of 4BD to the Arabidopsis SL-insensitive mutant max2 induced no morphological changes in it. The expression of SL biosynthetic genes was also reduced by 4BD treatment, probably via negative feedback regulation. However, in a seed germination assay on Striga hermonthica, a root parasitic plant, 4BD showed far less activity than GR24. These results suggest that 4BD is the first plant-specific strigolactone mimic.
Collapse
Affiliation(s)
- Kosuke Fukui
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
175
|
Kebrom TH, Spielmeyer W, Finnegan EJ. Grasses provide new insights into regulation of shoot branching. TRENDS IN PLANT SCIENCE 2013; 18:41-8. [PMID: 22858267 DOI: 10.1016/j.tplants.2012.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 06/29/2012] [Accepted: 07/05/2012] [Indexed: 05/08/2023]
Abstract
Tillering (branching) is a major determinant of crop yield that is controlled by complex interactions between hormonal, developmental, and environmental factors. Historically, research on shoot branching has focused on eudicots, mainly due to the ease of manipulating branching by shoot decapitation and grafting in these species. These studies demonstrated hormonal control of branching. Recent studies in monocots have contributed to our knowledge of tillering/branching by identifying novel branching genes and regulatory mechanisms. A comparison of branching controls in eudicots and monocots reveals that the regulatory signals and genes are broadly conserved, but that there are differences in the detail.
Collapse
|
176
|
Tripathi AK, Pareek A, Sopory SK, Singla-Pareek SL. Narrowing down the targets for yield improvement in rice under normal and abiotic stress conditions via expression profiling of yield-related genes. RICE (NEW YORK, N.Y.) 2012; 5:37. [PMID: 24280046 PMCID: PMC4883727 DOI: 10.1186/1939-8433-5-37] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 12/12/2012] [Indexed: 05/03/2023]
Abstract
BACKGROUND Crop improvement targeting high yield and tolerance to environmental stresses has become the need of the hour. Yield improvement via breeding or gene pyramiding aiming comprehensive incorporation of the agronomically favored traits requires an in-depth understanding of the molecular basis of these traits. The present study describes expression profiling of yield-related genes in rice with respect to different developmental stages and various abiotic stress conditions. RESULTS Our analysis indicates developmental regulation of the yield-related genes pertaining to the genetic reprogramming involved at the corresponding developmental stage. The gene expression data can be utilized to specifically select particular genes which can potentially function synergistically for enhancing the yield while maintaining the source-sink balance. Furthermore, to gain some insights into the molecular basis of yield penalty during various abiotic stresses, the expression of selected yield-related genes has also been analyzed by qRT-PCR under such stress conditions. Our analysis clearly showed a tight transcriptional regulation of a few of these yield-related genes by abiotic stresses. The stress-responsive expression patterns of these genes could explain some of the most important stress-related physiological manifestations such as reduced tillering, smaller panicles and early completion of the life cycle owing to reduced duration of vegetative and reproductive phases. CONCLUSIONS Development of high yielding rice varieties which maintain their yield even under stress conditions may be achieved by simultaneous genetic manipulation of certain combination of genes such as LRK1 and LOG, based on their function and expression profile obtained in the present study. Our study would aid in investigating in future, whether over-expressing or knocking down such yield-related genes can improve the grain yield potential in rice.
Collapse
Affiliation(s)
- Amit K Tripathi
- />Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067 India
| | - Ashwani Pareek
- />Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Sudhir K Sopory
- />Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067 India
| | - Sneh L Singla-Pareek
- />Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067 India
| |
Collapse
|
177
|
Guan JC, Koch KE, Suzuki M, Wu S, Latshaw S, Petruff T, Goulet C, Klee HJ, McCarty DR. Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork. PLANT PHYSIOLOGY 2012; 160:1303-17. [PMID: 22961131 PMCID: PMC3490586 DOI: 10.1104/pp.112.204503] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 09/01/2012] [Indexed: 05/18/2023]
Abstract
Strigolactones (SLs) control lateral branching in diverse species by regulating transcription factors orthologous to Teosinte branched1 (Tb1). In maize (Zea mays), however, selection for a strong central stalk during domestication is attributed primarily to the Tb1 locus, leaving the architectural roles of SLs unclear. To determine how this signaling network is altered in maize, we first examined effects of a knockout mutation in an essential SL biosynthetic gene that encodes CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8), then tested interactions between SL signaling and Tb1. Comparative genome analysis revealed that maize depends on a single CCD8 gene (ZmCCD8), unlike other panicoid grasses that have multiple CCD8 paralogs. Function of ZmCCD8 was confirmed by transgenic complementation of Arabidopsis (Arabidopsis thaliana) max4 (ccd8) and by phenotypic rescue of the maize mutant (zmccd8::Ds) using a synthetic SL (GR24). Analysis of the zmccd8 mutant revealed a modest increase in branching that contrasted with prominent pleiotropic changes that include (1) marked reduction in stem diameter, (2) reduced elongation of internodes (independent of carbon supply), and (3) a pronounced delay in development of the centrally important, nodal system of adventitious roots. Analysis of the tb1 zmccd8 double mutant revealed that Tb1 functions in an SL-independent subnetwork that is not required for the other diverse roles of SL in development. Our findings indicate that in maize, uncoupling of the Tb1 subnetwork from SL signaling has profoundly altered the balance between conserved roles of SLs in branching and diverse aspects of plant architecture.
Collapse
Affiliation(s)
- Jiahn Chou Guan
- Horticultural Sciences Department, Plant Molecular and Cellular Biology Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Seto Y, Kameoka H, Yamaguchi S, Kyozuka J. Recent advances in strigolactone research: chemical and biological aspects. PLANT & CELL PHYSIOLOGY 2012; 53:1843-53. [PMID: 23054391 DOI: 10.1093/pcp/pcs142] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Strigolactones (SLs) are a group of terpenoid lactones that were discovered in the 1960s. They were initially characterized as allelochemicals secreted from roots to the rhizosphere, and have functions in parasitic and symbiotic interactions with root parasitic plants and arbuscular mycorrhizal (AM) fungi, respectively. In 2008, SLs were shown to act as endogenous hormones that regulate shoot branching. The discovery of a hormonal function for SLs has provided a link between genetically studied shoot branching mutants and chemically characterized SLs in earlier studies. This has offered new strategies and experimental tools to address a number of intriguing questions as to the biological function and molecular action of SLs. In this review, we will provide an overview of recent topics on SLs, and highlight new discoveries regarding its biosynthetic pathway and multiple hormonal roles in plant development and adaptive responses.
Collapse
Affiliation(s)
- Yoshiya Seto
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577 Japan
| | | | | | | |
Collapse
|
179
|
Increasing Food Production in Africa by Boosting the Productivity of Understudied Crops. AGRONOMY-BASEL 2012. [DOI: 10.3390/agronomy2040240] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
180
|
Baker RL, Hileman LC, Diggle PK. Patterns of shoot architecture in locally adapted populations are linked to intraspecific differences in gene regulation. THE NEW PHYTOLOGIST 2012; 196:271-281. [PMID: 22882227 DOI: 10.1111/j.1469-8137.2012.04245.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
• Shoot architecture, including the number and location of branches, is a crucial aspect of plant function, morphological diversification, life history evolution and crop domestication. • Genes controlling shoot architecture are well characterized in, and largely conserved across, model flowering plant species. The role of these genes in the evolution of morphological diversity in natural populations, however, has not been explored. • We identify axillary meristem outgrowth as a primary driver of divergent branch number and life histories in two locally adapted populations of the monkeyflower, Mimulus guttatus. • Furthermore, we show that MORE AXILLARY GROWTH (MAX) gene expression strongly correlates with natural variation in branch outgrowth in this species, linking modification of the MAX-dependent pathway to the evolutionary diversification of shoot architecture.
Collapse
Affiliation(s)
- Robert L Baker
- Department of Ecology and Evolutionary Biology, Campus Box 334, University of Colorado at Boulder, Boulder, CO 80309, USA
- Current address: Department of Botany, University of Wyoming, Laramie WY 80271, USA
| | - Lena C Hileman
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, USA
| | - Pamela K Diggle
- Department of Ecology and Evolutionary Biology, Campus Box 334, University of Colorado at Boulder, Boulder, CO 80309, USA
| |
Collapse
|
181
|
Luo L, Li W, Miura K, Ashikari M, Kyozuka J. Control of Tiller Growth of Rice by OsSPL14 and Strigolactones, Which Work in Two Independent Pathways. ACTA ACUST UNITED AC 2012; 53:1793-801. [DOI: 10.1093/pcp/pcs122] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
182
|
Kebrom TH, Chandler PM, Swain SM, King RW, Richards RA, Spielmeyer W. Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. PLANT PHYSIOLOGY 2012; 160:308-18. [PMID: 22791303 PMCID: PMC3440208 DOI: 10.1104/pp.112.197954] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/03/2012] [Indexed: 05/18/2023]
Abstract
Tillering (branching) is a major yield component and, therefore, a target for improving the yield of crops. However, tillering is regulated by complex interactions of endogenous and environmental signals, and the knowledge required to achieve optimal tiller number through genetic and agronomic means is still lacking. Regulatory mechanisms may be revealed through physiological and molecular characterization of naturally occurring and induced tillering mutants in the major crops. Here we characterize a reduced tillering (tin, for tiller inhibition) mutant of wheat (Triticum aestivum). The reduced tillering in tin is due to early cessation of tiller bud outgrowth during the transition of the shoot apex from the vegetative to the reproductive stage. There was no observed difference in the development of the main stem shoot apex between tin and the wild type. However, tin initiated internode development earlier and, unlike the wild type, the basal internodes in tin were solid rather than hollow. We hypothesize that tin represents a novel type of reduced tillering mutant associated with precocious internode elongation that diverts sucrose (Suc) away from developing tillers. Consistent with this hypothesis, we have observed upregulation of a gene induced by Suc starvation, downregulation of a Suc-inducible gene, and a reduced Suc content in dormant tin buds. The increased expression of the wheat Dormancy-associated (DRM1-like) and Teosinte Branched1 (TB1-like) genes and the reduced expression of cell cycle genes also indicate bud dormancy in tin. These results highlight the significance of Suc in shoot branching and the possibility of optimizing tillering by manipulating the timing of internode elongation.
Collapse
Affiliation(s)
- Tesfamichael H. Kebrom
- Commonwealth Scientific and Industrial Research Organization Division of Plant Industry, Canberra, Australian Capital Territory 2601, Australia (T.H.K., P.M.C., S.M.S., R.W.K., R.A.R., W.S.)
| | - Peter M. Chandler
- Commonwealth Scientific and Industrial Research Organization Division of Plant Industry, Canberra, Australian Capital Territory 2601, Australia (T.H.K., P.M.C., S.M.S., R.W.K., R.A.R., W.S.)
| | - Steve M. Swain
- Commonwealth Scientific and Industrial Research Organization Division of Plant Industry, Canberra, Australian Capital Territory 2601, Australia (T.H.K., P.M.C., S.M.S., R.W.K., R.A.R., W.S.)
| | - Rod W. King
- Commonwealth Scientific and Industrial Research Organization Division of Plant Industry, Canberra, Australian Capital Territory 2601, Australia (T.H.K., P.M.C., S.M.S., R.W.K., R.A.R., W.S.)
| | - Richard A. Richards
- Commonwealth Scientific and Industrial Research Organization Division of Plant Industry, Canberra, Australian Capital Territory 2601, Australia (T.H.K., P.M.C., S.M.S., R.W.K., R.A.R., W.S.)
| | - Wolfgang Spielmeyer
- Commonwealth Scientific and Industrial Research Organization Division of Plant Industry, Canberra, Australian Capital Territory 2601, Australia (T.H.K., P.M.C., S.M.S., R.W.K., R.A.R., W.S.)
| |
Collapse
|
183
|
High-throughput discovery of mutations in tef semi-dwarfing genes by next-generation sequencing analysis. Genetics 2012; 192:819-29. [PMID: 22904035 DOI: 10.1534/genetics.112.144436] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Tef (Eragrostis tef) is a major cereal crop in Ethiopia. Lodging is the primary constraint to increasing productivity in this allotetraploid species, accounting for losses of ∼15-45% in yield each year. As a first step toward identifying semi-dwarf varieties that might have improved lodging resistance, an ∼6× fosmid library was constructed and used to identify both homeologues of the dw3 semi-dwarfing gene of Sorghum bicolor. An EMS mutagenized population, consisting of ∼21,210 tef plants, was planted and leaf materials were collected into 23 superpools. Two dwarfing candidate genes, homeologues of dw3 of sorghum and rht1 of wheat, were sequenced directly from each superpool with 454 technology, and 120 candidate mutations were identified. Out of 10 candidates tested, six independent mutations were validated by Sanger sequencing, including two predicted detrimental mutations in both dw3 homeologues with a potential to improve lodging resistance in tef through further breeding. This study demonstrates that high-throughput sequencing can identify potentially valuable mutations in under-studied plant species like tef and has provided mutant lines that can now be combined and tested in breeding programs for improved lodging resistance.
Collapse
|
184
|
Thangasamy S, Chen PW, Lai MH, Chen J, Jauh GY. Rice LGD1 containing RNA binding activity affects growth and development through alternative promoters. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:288-302. [PMID: 22409537 DOI: 10.1111/j.1365-313x.2012.04989.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Tiller initiation and panicle development are important agronomical traits for grain production in Oryza sativa L. (rice), but their regulatory mechanisms are not yet fully understood. In this study, T-DNA mutant and RNAi transgenic approaches were used to functionally characterize a unique rice gene, LAGGING GROWTH AND DEVELOPMENT 1 (LGD1). The lgd1 mutant showed slow growth, reduced tiller number and plant height, altered panicle architecture and reduced grain yield. The fewer unelongated internodes and cells in lgd1 led to respective reductions in tiller number and to semi-dwarfism. Several independent LGD1-RNAi lines exhibited defective phenotypes similar to those observed in lgd1. Interestingly, LGD1 encodes multiple transcripts with different transcription start sites (TSSs), which were validated by RNA ligase-mediated rapid amplification of 5' and 3' cDNA ends (RLM-RACE). Additionally, GUS assays and a luciferase promoter assay confirmed the promoter activities of LGD1.1 and LGD1.5. LGD1 encoding a von Willebrand factor type A (vWA) domain containing protein is a single gene in rice that is seemingly specific to grasses. GFP-tagged LGD1 isoforms were predominantly detected in the nucleus, and weakly in the cytoplasm. In vitro northwestern analysis showed the RNA-binding activity of the recombinant C-terminal LGD1 protein. Our results demonstrated that LGD1 pleiotropically regulated rice vegetative growth and development through both the distinct spatiotemporal expression patterns of its multiple transcripts and RNA binding activity. Hence, the study of LGD1 will strengthen our understanding of the molecular basis of the multiple transcripts, and their corresponding polypeptides with RNA binding activity, that regulate pleiotropic effects in rice.
Collapse
|
185
|
Reduced tillering in Basmati rice T-DNA insertional mutant OsTEF1 associates with differential expression of stress related genes and transcription factors. Funct Integr Genomics 2012; 12:291-304. [PMID: 22367482 DOI: 10.1007/s10142-012-0264-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Revised: 02/02/2012] [Accepted: 02/06/2012] [Indexed: 01/10/2023]
Abstract
A T-DNA insertional mutant OsTEF1 of rice gives 60-80% reduced tillering, retarded growth of seminal roots, and sensitivity to salt stress compared to wild type Basmati 370. The insertion occurred in a gene encoding a transcription elongation factor homologous to yeast elf1, on chromosome 2 of rice. Detailed transcriptomic profiling of OsTEF1 revealed that mutation in the transcription elongation factor differentially regulates the expression of more than 100 genes with known function and finely regulates tillering process in rice by inducing the expression of cytochrome P450. Along with different transcription factors, several stress associated genes were also affected due to a single insertion. In silico analysis of the TEF1 protein showed high conservation among different organisms. This transcription elongation factor predicted to interact with other proteins that directly or indirectly positively regulate tillering in rice.
Collapse
|
186
|
Xia K, Wang R, Ou X, Fang Z, Tian C, Duan J, Wang Y, Zhang M. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One 2012; 7:e30039. [PMID: 22253868 PMCID: PMC3254625 DOI: 10.1371/journal.pone.0030039] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 12/08/2011] [Indexed: 11/29/2022] Open
Abstract
The microRNA miR393 has been shown to play a role in plant development and in the stress response by targeting mRNAs that code for the auxin receptors in Arabidopsis. In this study, we verified that two rice auxin receptor gene homologs (OsTIR1 and OsAFB2) could be targeted by OsmiR393 (Os for Oryza sativa). Two new phenotypes (increased tillers and early flowering) and two previously observed phenotypes (reduced tolerance to salt and drought and hyposensitivity to auxin) were observed in the OsmiR393-overexpressing rice plants. The OsmiR393-overexpressing rice demonstrated hyposensitivity to synthetic auxin-analog treatments. These data indicated that the phenotypes of OsmiR393-overexpressing rice may be caused through hyposensitivity to the auxin signal by reduced expression of two auxin receptor genes (OsTIR1 and OsAFB2). The expression of an auxin transporter (OsAUX1) and a tillering inhibitor (OsTB1) were downregulated by overexpression of OsmiR393, which suggested that a gene chain from OsmiR393 to rice tillering may be from OsTIR1 and OsAFB2 to OsAUX1, which affected the transportation of auxin, then to OsTB1, which finally controlled tillering. The positive phenotypes (increased tillers and early flowering) and negative phenotypes (reduced tolerance to salt and hyposensitivity to auxin) of OsmiR393-overexpressing rice present a dilemma for molecular breeding.
Collapse
MESH Headings
- 2,4-Dichlorophenoxyacetic Acid/pharmacology
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Droughts
- Flowers/drug effects
- Flowers/genetics
- Flowers/physiology
- Gene Expression Profiling
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant/genetics
- Indoleacetic Acids/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Models, Biological
- Naphthaleneacetic Acids/pharmacology
- Organ Specificity/drug effects
- Organ Specificity/genetics
- Oryza/drug effects
- Oryza/genetics
- Oryza/physiology
- Phenotype
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Real-Time Polymerase Chain Reaction
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Reproducibility of Results
- Sequence Homology, Nucleic Acid
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Sodium Chloride/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Kuaifei Xia
- Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ren Wang
- Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojin Ou
- Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Zhongming Fang
- Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Changen Tian
- School of Life Science, Guangzhou University, Guangzhou, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yaqin Wang
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou, China
- * E-mail: (YQW); (MYZ)
| | - Mingyong Zhang
- Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- * E-mail: (YQW); (MYZ)
| |
Collapse
|
187
|
Choi MS, Woo MO, Koh EB, Lee J, Ham TH, Seo HS, Koh HJ. Teosinte Branched 1 modulates tillering in rice plants. PLANT CELL REPORTS 2012; 31:57-65. [PMID: 21912860 DOI: 10.1007/s00299-011-1139-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/11/2011] [Accepted: 08/18/2011] [Indexed: 05/04/2023]
Abstract
Tillering is an important trait of cereal crops that optimizes plant architecture for maximum yield. Teosinte Branched 1 (TB1) is a negative regulator of lateral branching and an inducer of female inflorescence formation in Zea mays (maize). Recent studies indicate that TB1 homologs in Oryza sativa (rice), Sorghum bicolor and Arabidopsis thaliana act downstream of the auxin and MORE AUXILIARY GROWTH (MAX) pathways. However, the molecular mechanism by which rice produces tillers remains unknown. In this study, transgenic rice plants were produced that overexpress the maize TB1 (mTB1) or rice TB1 (OsTB1) genes and silence the OsTB1 gene through RNAi-mediated knockdown. Because lateral branching in rice is affected by the environmental conditions, the phenotypes of transgenic plants were observed in both the greenhouse and the paddy field. Compared to wild-type plants, the number of tillers and panicles was reduced and increased in overexpressed and RNAi-mediated knockdown OsTB1 rice plants, respectively, under both environmental conditions. However, the effect was small for plants grown in paddy fields. These results demonstrate that both mTB1 and OsTB1 moderately regulate the tiller development in rice.
Collapse
Affiliation(s)
- Min-Seon Choi
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
188
|
Strigolactones in Root Exudates as a Signal in Symbiotic and Parasitic Interactions. SIGNALING AND COMMUNICATION IN PLANTS 2012. [DOI: 10.1007/978-3-642-23047-9_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
189
|
Dun EA, de Saint Germain A, Rameau C, Beveridge CA. Antagonistic action of strigolactone and cytokinin in bud outgrowth control. PLANT PHYSIOLOGY 2012; 158:487-98. [PMID: 22042819 PMCID: PMC3252097 DOI: 10.1104/pp.111.186783] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 10/28/2011] [Indexed: 05/18/2023]
Abstract
Cytokinin (CK) has long been implicated as a promoter of bud outgrowth in plants, but exactly how this is achieved in coordination with other plant hormones is unclear. The recent discovery of strigolactones (SLs) as the long-sought branch-inhibiting hormone allowed us to test how CK and SL coordinately regulate bud outgrowth in pea (Pisum sativum). We found that SL-deficient plants are more sensitive to stimulation of bud growth by low concentrations of locally applied CK than wild-type plants. Furthermore, in contrast with SL mutant plants, buds of wild-type plants are almost completely resistant to stimulation by CK supplied to the vasculature. Regardless of whether the exogenous hormones were supplied locally or to the xylem stream, SL and CK acted antagonistically on bud outgrowth. These data suggest that SLs do not affect the delivery of CK to axillary buds and vice versa. Rather, these data combined with dose-response experiments suggest that SLs and CK can act directly in buds to control their outgrowth. These hormones may converge at a common point in the bud outgrowth regulatory pathway. The expression of pea BRANCHED1, a TCP transcription factor expressed strongly in buds and thought to act downstream of SLs in shoot branching, is regulated by CK and SL without a requirement for protein synthesis and in a manner that correlates with observed bud growth responses.
Collapse
Affiliation(s)
| | | | | | - Christine A. Beveridge
- University of Queensland, School of Biological Sciences, St Lucia, Queensland, 4072 Australia (E.A.D., C.A.B.); Institut Jean-Pierre Bourgin, INRA UMR1318 INRA-AgroParisTech, F–78000 Versailles, France (A.d.S.G., C.R.)
| |
Collapse
|
190
|
Jiang Y, Cai Z, Xie W, Long T, Yu H, Zhang Q. Rice functional genomics research: progress and implications for crop genetic improvement. Biotechnol Adv 2011; 30:1059-70. [PMID: 21888963 DOI: 10.1016/j.biotechadv.2011.08.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 07/08/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
Rice is a staple food crop and has become a reference of monocot plant for functional genomic research. With the availability of high quality rice genome sequence, there has been rapid accumulation of functional genomic resources, including: large mutant libraries by T-DNA insertion, transposon tagging, and chemical mutagenesis; global expression profiles of the genes in the entire life cycle of rice growth and development; full-length cDNAs for both indica and japonica rice; sequences from resequencing large numbers of diverse germplasm accessions. Such resource development has greatly accelerated gene cloning. By the end of 2010, over 600 genes had been cloned using various methods. Many of the genes control agriculturally useful traits such as yield, grain quality, resistances to biotic and abiotic stresses, and nutrient-use efficiency, thus have potential utility in crop genetic improvement. This review was aimed to provide a comprehensive summary of such progress. We also presented our perspective for future studies.
Collapse
Affiliation(s)
- Yunhe Jiang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China.
| | | | | | | | | | | |
Collapse
|
191
|
Zhang B, Tian F, Tan L, Xie D, Sun C. Characterization of a novel high-tillering dwarf 3 mutant in rice. J Genet Genomics 2011; 38:411-8. [PMID: 21930100 DOI: 10.1016/j.jgg.2011.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/05/2011] [Accepted: 08/05/2011] [Indexed: 11/28/2022]
Abstract
Tiller number and culm length are important components of plant architecture and determinate grain production in rice. A line SIL046, derived from an introgression lines population developed by an accession of common wild rice (Oryza rufipogon Griff.) and a high-yielding indica cultivar Guichao 2 (Oryza sativa L.), exhibits a higher tiller number and shorter culm length phenotype than the recipient parent Guichao 2 (GC2). Genetic analysis showed that the high-tillering dwarf phenotype was controlled by a novel single recessive gene, referred to as the high-tillering dwarf 3 (htd3), which located within the genetic distance of 13.4 cM between SSR makers RM7003 and RM277 on chromosome 12. By means of fine-mapping strategy, we mapped HTD3 gene within the genetic distance of 2.5 cM and the physical distance of 3100 kb in the centromere of chromosome 12. Further identification of HTD3 gene would provide a new opportunity to uncover the molecular mechanism of the development of culm and tiller, two important components of yields in rice.
Collapse
Affiliation(s)
- Bosen Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
192
|
Abstract
Shoot branching is a highly plastic developmental process in which axillary buds are formed in the axil of each leaf and may subsequently be activated to give branches. Three classes of plant hormones, auxins, cytokinins and strigolactones (or strigolactone derivatives) are central to the control of bud activation. These hormones move throughout the plant forming a network of systemic signals. The past decade brought great progress in understanding the mechanisms of shoot branching control. Biological and computational studies have led to the proposal of two models, the auxin transport canalization-based model and the second messenger model, which provide mechanistic explanations for apical dominance.
Collapse
|
193
|
Liang YS, Jeon YA, Lim SH, Kim JK, Lee JY, Kim YM, Lee YH, Ha SH. Vascular-specific activity of the Arabidopsis carotenoid cleavage dioxygenase 7 gene promoter. PLANT CELL REPORTS 2011; 30:973-80. [PMID: 21243360 DOI: 10.1007/s00299-010-0999-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/22/2010] [Accepted: 12/29/2010] [Indexed: 05/08/2023]
Abstract
Carotenoid cleavage dioxygenases (CCDs) are involved in the production of diverse apocarotenoids including phytohormones, the visual molecules and the aromatic volatile compounds derived from carotenoids. Here, we examined the spatial expression of four of the CCD genes (AtCcd1, 4, 7 and 8) among the nine members of this family in Arabidopsis by RT-PCR. We found that the AtCcd7 gene showed strong expression in seeds. However, the promoter activity of the 1,867-bp 5'-upstream region of this gene exhibited a vascular specificity at all developmental stages throughout the transgenic Arabidopsis plants tested. The strength of the AtCcd7 promoter was also found to be lower than that of the 35S promoter by about 60%. The whole body expression of the β-glucuronidase (GUS) reporter gene driven by the AtCcd7 promoter in Arabidopsis plants was confirmed in different organs by RT-PCR and GUS enzymatic assays. Histochemical GUS staining further revealed that the AtCcd7 promoter has utility in limiting the expression of target genes to the vascular tissues in all plant organs such as the leaf, stem, root, flower and seed.
Collapse
Affiliation(s)
- Ying Shi Liang
- National Academy of Agricultural Science, Rural Development Administration, 225 Seodun-dong, Suwon 441-707, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
194
|
F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2011; 108:8897-902. [PMID: 21555559 DOI: 10.1073/pnas.1100987108] [Citation(s) in RCA: 314] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Smoke is an important abiotic cue for plant regeneration in postfire landscapes. Karrikins are a class of compounds discovered in smoke that promote seed germination and influence early development of many plants by an unknown mechanism. A genetic screen for karrikin-insensitive mutants in Arabidopsis thaliana revealed that karrikin signaling requires the F-box protein MAX2, which also mediates responses to the structurally-related strigolactone family of phytohormones. Karrikins and the synthetic strigolactone GR24 trigger similar effects on seed germination, seedling photomorphogenesis, and expression of a small set of genes during these developmental stages. Karrikins also repress MAX4 and IAA1 transcripts, which show negative feedback regulation by strigolactone. We demonstrate that all of these common responses are abolished in max2 mutants. Unlike strigolactones, however, karrikins do not inhibit shoot branching in Arabidopsis or pea, indicating that plants can distinguish between these signals. These results suggest that a MAX2-dependent signal transduction mechanism was adapted to mediate responses to two chemical cues with distinct roles in plant ecology and development.
Collapse
|
195
|
Luan W, Liu Y, Zhang F, Song Y, Wang Z, Peng Y, Sun Z. OsCD1 encodes a putative member of the cellulose synthase-like D sub-family and is essential for rice plant architecture and growth. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:513-24. [PMID: 20955181 DOI: 10.1111/j.1467-7652.2010.00570.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The cell wall plays important roles in plant architecture and morphogenesis. The cellulose synthase-like super-families were reported to contain glycosyltransferases motif and are required for the biosynthesis of cell wall polysaccharides. Here, we describe a curled leaf and dwarf mutant, cd1, in rice, which exhibits multiple phenotypic traits such as the reduction of plant height and leaf width, curled leaf morphology and a decrease in the number of grains and in the panicle length. Map-based cloning indicates that a member of the cellulose synthase-like D (CSLD) group is a candidate for OsCD1. RNAi transgenic plants with the candidate CSLD gene display a similar phenotype to the cd1 mutant, suggesting that OsCD1 is a member of the CSLD sub-family. Furthermore, sequence analysis indicates that OsCD1 contains the common D,D,D,QXXRW motif, which is a feature of the cellulose synthase-like super-family. Analysis of OsCD1 promoter with GUS fusion expression shows that OsCD1 exhibits higher expression in young meristem tissues such as fresh roots, young panicle and stem apical meristem. Cell wall composition analysis reveals that cellulose content and the level of xylose are significantly reduced in mature culm owing to loss of OsCD1 function. Take together, the work presented here is useful for expanding the understanding of cell wall biosynthesis.
Collapse
Affiliation(s)
- Weijiang Luan
- College of Life Science, Tianjin Key Laboratory of Cyto-Genetical and Molecular Regulation, Tianjin Normal University, Tianjin, China.
| | | | | | | | | | | | | |
Collapse
|
196
|
QIU LJ, GUO Y, LI Y, WANG XB, ZHOU GA, LIU ZX, ZHOU SR, LI XH, MA YZ, WANG JK, WAN JM. Novel Gene Discovery of Crops in China: Status, Challenging, and Perspective. ZUOWU XUEBAO 2011. [DOI: 10.3724/sp.j.1006.2011.00001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
197
|
Van Norman JM, Murphy C, Sieburth LE. BYPASS1: synthesis of the mobile root-derived signal requires active root growth and arrests early leaf development. BMC PLANT BIOLOGY 2011; 11:28. [PMID: 21291559 PMCID: PMC3045294 DOI: 10.1186/1471-2229-11-28] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 02/03/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND The Arabidopsis bypass1 (bps1) mutant root produces a biologically active mobile compound that induces shoot growth arrest. However it is unknown whether the root retains the capacity to synthesize the mobile compound, or if only shoots of young seedlings are sensitive. It is also unknown how this compound induces arrest of shoot growth. This study investigated both of these questions using genetic, inhibitor, reporter gene, and morphological approaches. RESULTS Production of the bps1 root-synthesized mobile compound was found to require active root growth. Inhibition of postembryonic root growth, by depleting glutathione either genetically or chemically, allowed seedlings to escape shoot arrest. However, the treatments were not completely effective, as the first leaf pair remained radialized, but elongated. This result indicated that the embryonic root transiently synthesized a small amount of the mobile substance. In addition, providing glutathione later in vegetative development caused shoot growth arrest to be reinstated, revealing that these late-arising roots were still capable of producing the mobile substance, and that the older vegetative leaves were still responsive. To gain insight into how leaf development responds to the mobile signal, leaf development was followed morphologically and using the CYCB1,1::GUS marker for G2/M phase cells. We found that arrest of leaf growth is a fully penetrant phenotype, and a dramatic decrease in G2/M phase cells was coincident with arrest. Analyses of stress phenotypes found that late in development, bps1 cotyledons produced necrotic lesions, however neither hydrogen peroxide nor superoxide were abundant as leaves underwent arrest. CONCLUSIONS bps1 roots appear to require active growth in order to produce the mobile bps1 signal, but the potential for this compound's synthesis is present both early and late during vegetative development. This prolonged capacity to synthesize and respond to the mobile compound is consistent with a possible role for the mobile compound in linking shoot growth to subterranean conditions. The specific growth-related responses in the shoot indicated that the mobile substance prevents full activation of cell division in leaves, although whether cell division is a direct response remains to be determined.
Collapse
Affiliation(s)
| | - Caroline Murphy
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah, 84112, USA
| | - Leslie E Sieburth
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah, 84112, USA
| |
Collapse
|
198
|
Wang Y, Li J. Branching in rice. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:94-9. [PMID: 21144796 DOI: 10.1016/j.pbi.2010.11.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/14/2010] [Accepted: 11/11/2010] [Indexed: 05/05/2023]
Abstract
Rice branching, including the formation of tillers and panicle branches, has been well investigated over the past several years because of its agronomic importance. A major breakthrough in elucidating rice tillering in the recent years was the discovery of strigolactones, a specific group of terpenoid lactones that can inhibit axillary bud outgrowth. Since that discovery, new tillering mutants, that is, dwarf 27 (d27) or dwarf14 (d14, also reported as d88 or htd2), have been identified with reduced strigolactone levels or strigolactone response. DWARF27 (D27) and DWARF14 (D14) probably act on strigolactone biosynthesis and signal transduction, respectively. Additionally, several genes controlling panicle branches have been identified recently. DEP1 and IPA1/WFP are essential dominant/semidominant regulators that determine rice panicle branches and thus affect the grain yields. More importantly, dep1 and ipa1 alleles have been shown to be applicable for the improvement of rice grain yields in molecular breeding.
Collapse
Affiliation(s)
- Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
199
|
Amoroso A, Concia L, Maggio C, Raynaud C, Bergounioux C, Crespan E, Cella R, Maga G. Oxidative DNA damage bypass in Arabidopsis thaliana requires DNA polymerase λ and proliferating cell nuclear antigen 2. THE PLANT CELL 2011; 23:806-22. [PMID: 21325140 PMCID: PMC3077771 DOI: 10.1105/tpc.110.081455] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/13/2011] [Accepted: 01/23/2011] [Indexed: 05/21/2023]
Abstract
The oxidized base 7,8-oxoguanine (8-oxo-G) is the most common DNA lesion generated by reactive oxygen species. This lesion is highly mutagenic due to the frequent misincorporation of A opposite 8-oxo-G during DNA replication. In mammalian cells, the DNA polymerase (pol) family X enzyme DNA pol λ catalyzes the correct incorporation of C opposite 8-oxo-G, together with the auxiliary factor proliferating cell nuclear antigen (PCNA). Here, we show that Arabidopsis thaliana DNA pol λ, the only member of the X family in plants, is as efficient in performing error-free translesion synthesis past 8-oxo-G as its mammalian homolog. Arabidopsis, in contrast with animal cells, possesses two genes for PCNA. Using in vitro and in vivo approaches, we observed that PCNA2, but not PCNA1, physically interacts with DNA pol λ, enhancing its fidelity and efficiency in translesion synthesis. The levels of DNA pol λ in transgenic plantlets characterized by overexpression or silencing of Arabidopsis POLL correlate with the ability of cell extracts to perform error-free translesion synthesis. The important role of DNA pol λ is corroborated by the observation that the promoter of POLL is activated by UV and that both overexpressing and silenced plants show altered growth phenotypes.
Collapse
Affiliation(s)
- Alessandra Amoroso
- Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy
| | - Lorenzo Concia
- Department of Genetics and Microbiology, University of Pavia, 27100 Pavia, Italy
| | - Caterina Maggio
- Department of Genetics and Microbiology, University of Pavia, 27100 Pavia, Italy
| | - Cécile Raynaud
- Institut de Biotechnologie des Plantes, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 8618, Plateau du Moulon, Université Paris-Sud, 91405 Orsay, France
| | - Catherine Bergounioux
- Institut de Biotechnologie des Plantes, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 8618, Plateau du Moulon, Université Paris-Sud, 91405 Orsay, France
| | - Emmanuele Crespan
- Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy
| | - Rino Cella
- Department of Genetics and Microbiology, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy
- Address correspondence to
| |
Collapse
|
200
|
Ledger SE, Janssen BJ, Karunairetnam S, Wang T, Snowden KC. Modified CAROTENOID CLEAVAGE DIOXYGENASE8 expression correlates with altered branching in kiwifruit (Actinidia chinensis). THE NEW PHYTOLOGIST 2010; 188:803-13. [PMID: 20659299 DOI: 10.1111/j.1469-8137.2010.03394.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• CAROTENOID CLEAVAGE DIOXYGENASE (CCD) genes have been demonstrated to play an integral role in the control of branch development in model plants, including Arabidopsis, pea (Pisum sativum), petunia (Petunia hybrida) and rice (Oryza sativa). • Actinidia chinensis is a woody perennial plant grown for commercial production of kiwifruit. CCD7 and CCD8 genes were isolated from A. chinensis and these genes are predominantly expressed in the roots of kiwifruit. AcCCD7 and AcCCD8 were able to complement the corresponding Arabidopsis mutants max3 and max4. The function of AcCCD8 in branch development was determined in transgenic kiwifruit plants containing an RNAi construct for AcCCD8. • Reduction in expression of AcCCD8 correlated with an increase in branch development and delayed leaf senescence. • The CCD pathway for control of branch development is conserved across a wide range of species, including kiwifruit, a woody perennial.
Collapse
Affiliation(s)
- Susan E Ledger
- New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | | | | | | | | |
Collapse
|