151
|
Takenaka M, Verbitskiy D, Zehrmann A, Härtel B, Bayer-Császár E, Glass F, Brennicke A. RNA editing in plant mitochondria—connecting RNA target sequences and acting proteins. Mitochondrion 2014; 19 Pt B:191-7. [PMID: 24732437 DOI: 10.1016/j.mito.2014.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/27/2014] [Accepted: 04/04/2014] [Indexed: 12/31/2022]
Abstract
RNA editing changes several hundred cytidines to uridines in the mRNAs of mitochondria in flowering plants. The target cytidines are identified by a subtype of PPR proteins characterized by tandem modules which each binds with a specific upstream nucleotide. Recent progress in correlating repeat structures with nucleotide identities allows to predict and identify target sites in mitochondrial RNAs. Additional proteins have been found to play a role in RNA editing; their precise function still needs to be elucidated. The enzymatic activity performing the C to U reaction may reside in the C-terminal DYW extensions of the PPR proteins; however, this still needs to be proven. Here we update recent progress in understanding RNA editing in flowering plant mitochondria.
Collapse
Affiliation(s)
| | | | - Anja Zehrmann
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany
| | | | | | | | | |
Collapse
|
152
|
Salvato F, Havelund JF, Chen M, Rao RSP, Rogowska-Wrzesinska A, Jensen ON, Gang DR, Thelen JJ, Møller IM. The potato tuber mitochondrial proteome. PLANT PHYSIOLOGY 2014; 164:637-53. [PMID: 24351685 PMCID: PMC3912095 DOI: 10.1104/pp.113.229054] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/16/2013] [Indexed: 05/17/2023]
Abstract
Mitochondria are called the powerhouses of the cell. To better understand the role of mitochondria in maintaining and regulating metabolism in storage tissues, highly purified mitochondria were isolated from dormant potato tubers (Solanum tuberosum 'Folva') and their proteome investigated. Proteins were resolved by one-dimensional gel electrophoresis, and tryptic peptides were extracted from gel slices and analyzed by liquid chromatography-tandem mass spectrometry using an Orbitrap XL. Using four different search programs, a total of 1,060 nonredundant proteins were identified in a quantitative manner using normalized spectral counts including as many as 5-fold more "extreme" proteins (low mass, high isoelectric point, hydrophobic) than previous mitochondrial proteome studies. We estimate that this compendium of proteins represents a high coverage of the potato tuber mitochondrial proteome (possibly as high as 85%). The dynamic range of protein expression spanned 1,800-fold and included nearly all components of the electron transport chain, tricarboxylic acid cycle, and protein import apparatus. Additionally, we identified 71 pentatricopeptide repeat proteins, 29 membrane carriers/transporters, a number of new proteins involved in coenzyme biosynthesis and iron metabolism, the pyruvate dehydrogenase kinase, and a type 2C protein phosphatase that may catalyze the dephosphorylation of the pyruvate dehydrogenase complex. Systematic analysis of prominent posttranslational modifications revealed that more than 50% of the identified proteins harbor at least one modification. The most prominently observed class of posttranslational modifications was oxidative modifications. This study reveals approximately 500 new or previously unconfirmed plant mitochondrial proteins and outlines a facile strategy for unbiased, near-comprehensive identification of mitochondrial proteins and their modified forms.
Collapse
Affiliation(s)
| | - Jesper F. Havelund
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211 (F.S., M.C., R.S.P.R., J.J.T.)
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-4200 Slagelse, Denmark (J.F.H., I.M.M.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark (J.F.H., A.R.-W., O.N.J.); and
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (D.R.G.)
| | - Mingjie Chen
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211 (F.S., M.C., R.S.P.R., J.J.T.)
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-4200 Slagelse, Denmark (J.F.H., I.M.M.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark (J.F.H., A.R.-W., O.N.J.); and
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (D.R.G.)
| | - R. Shyama Prasad Rao
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211 (F.S., M.C., R.S.P.R., J.J.T.)
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-4200 Slagelse, Denmark (J.F.H., I.M.M.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark (J.F.H., A.R.-W., O.N.J.); and
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (D.R.G.)
| | - Adelina Rogowska-Wrzesinska
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211 (F.S., M.C., R.S.P.R., J.J.T.)
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-4200 Slagelse, Denmark (J.F.H., I.M.M.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark (J.F.H., A.R.-W., O.N.J.); and
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (D.R.G.)
| | - Ole N. Jensen
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211 (F.S., M.C., R.S.P.R., J.J.T.)
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-4200 Slagelse, Denmark (J.F.H., I.M.M.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark (J.F.H., A.R.-W., O.N.J.); and
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (D.R.G.)
| | - David R. Gang
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211 (F.S., M.C., R.S.P.R., J.J.T.)
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-4200 Slagelse, Denmark (J.F.H., I.M.M.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark (J.F.H., A.R.-W., O.N.J.); and
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (D.R.G.)
| | - Jay J. Thelen
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211 (F.S., M.C., R.S.P.R., J.J.T.)
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-4200 Slagelse, Denmark (J.F.H., I.M.M.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark (J.F.H., A.R.-W., O.N.J.); and
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (D.R.G.)
| | | |
Collapse
|
153
|
Tetrapyrrole biosynthetic enzyme protoporphyrinogen IX oxidase 1 is required for plastid RNA editing. Proc Natl Acad Sci U S A 2014; 111:2023-8. [PMID: 24497494 DOI: 10.1073/pnas.1316183111] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
RNA editing is a posttranscriptional process that covalently alters the sequence of RNA molecules and plays important biological roles in both animals and land plants. In flowering plants, RNA editing converts specific cytidine residues to uridine in both plastid and mitochondrial transcripts. Previous studies identified pentatricopeptide repeat (PPR) motif-containing proteins as site-specific recognition factors for cytidine targets in RNA sequences. However, the regulatory mechanism underlying RNA editing was largely unknown. Here, we report that protoporphyrinogen IX oxidase 1 (PPO1), an enzyme that catalyzes protoporphyrinogen IX into protoporphyrin IX in the tetrapyrrole biosynthetic pathway, plays an unexpected role in editing multiple sites of plastid RNA transcripts, most of which encode subunits of the NADH dehydrogenase-like complex (NDH), in the reference plant Arabidopsis thaliana. We identified multiple organellar RNA editing factors (MORFs), including MORF2, MORF8, and MORF9, that interact with PPO1. We found that two conserved motifs within the 22-aa region at the N terminus of PPO1 are essential for its interaction with MORFs, its RNA editing function, and subsequently, its effect on NDH activity. However, transgenic plants lacking key domains for the tetrapyrrole biosynthetic activity of PPO1 exhibit normal RNA editing. Furthermore, MORF2 and MORF9 interact with three PPRs or related proteins required for editing of ndhB and ndhD sites. These results reveal that the tetrapyrrole biosynthetic enzyme PPO1 is required for plastid RNA editing, acting as a regulator that promotes the stability of MORF proteins through physical interaction.
Collapse
|
154
|
Larkin RM. Chloroplast Signaling in Plants. Mol Biol 2014. [DOI: 10.1007/978-1-4614-7570-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
155
|
Abstract
Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants, with more than 400 members in most species. Over the past decade, much has been learned about the molecular functions of these proteins, where they act in the cell, and what physiological roles they play during plant growth and development. A typical PPR protein is targeted to mitochondria or chloroplasts, binds one or several organellar transcripts, and influences their expression by altering RNA sequence, turnover, processing, or translation. Their combined action has profound effects on organelle biogenesis and function and, consequently, on photosynthesis, respiration, plant development, and environmental responses. Recent breakthroughs in understanding how PPR proteins recognize RNA sequences through modular base-specific contacts will help match proteins to potential binding sites and provide a pathway toward designing synthetic RNA-binding proteins aimed at desired targets.
Collapse
Affiliation(s)
- Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97405;
| | | |
Collapse
|
156
|
Zhang J, Ruhlman TA, Mower JP, Jansen RK. Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing. BMC PLANT BIOLOGY 2013; 13:228. [PMID: 24373163 PMCID: PMC3880972 DOI: 10.1186/1471-2229-13-228] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/20/2013] [Indexed: 05/24/2023]
Abstract
BACKGROUND Organelle genomes of Geraniaceae exhibit several unusual evolutionary phenomena compared to other angiosperm families including accelerated nucleotide substitution rates, widespread gene loss, reduced RNA editing, and extensive genomic rearrangements. Since most organelle-encoded proteins function in multi-subunit complexes that also contain nuclear-encoded proteins, it is likely that the atypical organellar phenomena affect the evolution of nuclear genes encoding organellar proteins. To begin to unravel the complex co-evolutionary interplay between organellar and nuclear genomes in this family, we sequenced nuclear transcriptomes of two species, Geranium maderense and Pelargonium x hortorum. RESULTS Normalized cDNA libraries of G. maderense and P. x hortorum were used for transcriptome sequencing. Five assemblers (MIRA, Newbler, SOAPdenovo, SOAPdenovo-trans [SOAPtrans], Trinity) and two next-generation technologies (454 and Illumina) were compared to determine the optimal transcriptome sequencing approach. Trinity provided the highest quality assembly of Illumina data with the deepest transcriptome coverage. An analysis to determine the amount of sequencing needed for de novo assembly revealed diminishing returns of coverage and quality with data sets larger than sixty million Illumina paired end reads for both species. The G. maderense and P. x hortorum transcriptomes contained fewer transcripts encoding the PLS subclass of PPR proteins relative to other angiosperms, consistent with reduced mitochondrial RNA editing activity in Geraniaceae. In addition, transcripts for all six plastid targeted sigma factors were identified in both transcriptomes, suggesting that one of the highly divergent rpoA-like ORFs in the P. x hortorum plastid genome is functional. CONCLUSIONS The findings support the use of the Illumina platform and assemblers optimized for transcriptome assembly, such as Trinity or SOAPtrans, to generate high-quality de novo transcriptomes with broad coverage. In addition, results indicated no major improvements in breadth of coverage with data sets larger than six billion nucleotides or when sampling RNA from four tissue types rather than from a single tissue. Finally, this work demonstrates the power of cross-compartmental genomic analyses to deepen our understanding of the correlated evolution of the nuclear, plastid, and mitochondrial genomes in plants.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Integrative Biology and Institute of Cellular and Molecular Biology, The University of Texas at Austin, 205 W. 24th St. Stop C0930, Austin, TX 78712, USA
| | - Tracey A Ruhlman
- Department of Integrative Biology and Institute of Cellular and Molecular Biology, The University of Texas at Austin, 205 W. 24th St. Stop C0930, Austin, TX 78712, USA
| | - Jeffrey P Mower
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Robert K Jansen
- Department of Integrative Biology and Institute of Cellular and Molecular Biology, The University of Texas at Austin, 205 W. 24th St. Stop C0930, Austin, TX 78712, USA
- Genomics and Biotechnology Section, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
157
|
Grüttner S, Hopf C, Kumar A, Kempken F. Deletions in cox2 mRNA result in loss of splicing and RNA editing and gain of novel RNA editing sites. PLoS One 2013; 8:e82067. [PMID: 24324745 PMCID: PMC3852756 DOI: 10.1371/journal.pone.0082067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/21/2013] [Indexed: 11/28/2022] Open
Abstract
As previously demonstrated, the maize cox2 RNA is fully edited in cauliflower mitochondria. Use of constructs with a deleted cox2 intron, however, led to a loss of RNA editing at almost all editing sites, with only a few sites still partially edited. Likewise, one deletion in exon 1 and three in exon 2 abolish RNA editing at all cox2 sites analyzed. Furthermore, intron splicing is abolished using these deletions. Mutation of a cytosine residue, which is normally edited and localized directly adjacent to the intron, to thymidine did not result in restoration of splicing, indicating that the loss of splicing was not due to loss of RNA editing. One deletion in exon 2 did not lead to loss of splicing. Instead, most editing sites were found to be edited, only three were not edited. Unexpectedly, we observed additional RNA editing events at new sites. Thus it appears that deletions in the cox2 RNA sequence can have a strong effect on RNA processing, leading to loss of splicing, loss of editing at all sites, or even to a gain of new editing sites. As these effects are not limited to the vicinity of the respective deletions, but appear to be widespread or even affect all editing sites, they may not be explained by the loss of PPR binding sites. Instead, it appears that several parts of the cox2 transcript are required for proper RNA processing. This indicates the roles of the RNA sequence and structural elements in the recognition of the editing sites.
Collapse
Affiliation(s)
- Stefanie Grüttner
- Abteilung für Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | | | | | | |
Collapse
|
158
|
Abstract
Plant regulatory circuits coordinating nuclear and plastid gene expression have evolved in response to external stimuli. RNA editing is one of such control mechanisms. We determined the Arabidopsis nuclear-encoded homeodomain-containing protein OCP3 is incorporated into the chloroplast, and contributes to control over the extent of ndhB transcript editing. ndhB encodes the B subunit of the chloroplast NADH dehydrogenase-like complex (NDH) involved in cyclic electron flow (CEF) around photosystem I. In ocp3 mutant strains, ndhB editing efficiency decays, CEF is impaired and disease resistance to fungal pathogens substantially enhanced, a process recapitulated in plants defective in editing plastid RNAs encoding NDH complex subunits due to mutations in previously described nuclear-encoded pentatricopeptide-related proteins (i.e. CRR21, CRR2). Furthermore, we observed that following a pathogenic challenge, wild type plants respond with editing inhibition of ndhB transcript. In parallel, rapid destabilization of the plastidial NDH complex is also observed in the plant following perception of a pathogenic cue. Therefore, NDH complex activity and plant immunity appear as interlinked processes.
Collapse
|
159
|
Structural basis for the modular recognition of single-stranded RNA by PPR proteins. Nature 2013; 504:168-71. [PMID: 24162847 DOI: 10.1038/nature12651] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/12/2013] [Indexed: 11/08/2022]
Abstract
Pentatricopeptide repeat (PPR) proteins represent a large family of sequence-specific RNA-binding proteins that are involved in multiple aspects of RNA metabolism. PPR proteins, which are found in exceptionally large numbers in the mitochondria and chloroplasts of terrestrial plants, recognize single-stranded RNA (ssRNA) in a modular fashion. The maize chloroplast protein PPR10 binds to two similar RNA sequences from the ATPI-ATPH and PSAJ-RPL33 intergenic regions, referred to as ATPH and PSAJ, respectively. By protecting the target RNA elements from 5' or 3' exonucleases, PPR10 defines the corresponding 5' and 3' messenger RNA termini. Despite rigorous functional characterizations, the structural basis of sequence-specific ssRNA recognition by PPR proteins remains to be elucidated. Here we report the crystal structures of PPR10 in RNA-free and RNA-bound states at resolutions of 2.85 and 2.45 Å, respectively. In the absence of RNA binding, the nineteen repeats of PPR10 are assembled into a right-handed superhelical spiral. PPR10 forms an antiparallel, intertwined homodimer and exhibits considerable conformational changes upon binding to its target ssRNA, an 18-nucleotide PSAJ element. Six nucleotides of PSAJ are specifically recognized by six corresponding PPR10 repeats following the predicted code. The molecular basis for the specific and modular recognition of RNA bases A, G and U is revealed. The structural elucidation of RNA recognition by PPR proteins provides an important framework for potential biotechnological applications of PPR proteins in RNA-related research areas.
Collapse
|
160
|
Small ID, Rackham O, Filipovska A. Organelle transcriptomes: products of a deconstructed genome. Curr Opin Microbiol 2013; 16:652-8. [DOI: 10.1016/j.mib.2013.07.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 11/25/2022]
|
161
|
Ichinose M, Sugita C, Yagi Y, Nakamura T, Sugita M. Two DYW Subclass PPR Proteins are Involved in RNA Editing of ccmFc and atp9 Transcripts in the Moss Physcomitrella patens: First Complete Set of PPR Editing Factors in Plant Mitochondria. ACTA ACUST UNITED AC 2013; 54:1907-16. [DOI: 10.1093/pcp/pct132] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
162
|
Ban T, Ke J, Chen R, Gu X, Tan MHE, Zhou XE, Kang Y, Melcher K, Zhu JK, Xu HE. Structure of a PLS-class pentatricopeptide repeat protein provides insights into mechanism of RNA recognition. J Biol Chem 2013; 288:31540-8. [PMID: 24047899 DOI: 10.1074/jbc.m113.496828] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are sequence-specific RNA-binding proteins that form a pervasive family of proteins conserved in yeast, plants, and humans. The plant PPR proteins are grouped mainly into the P and PLS classes. Here, we report the crystal structure of a PLS-class PPR protein from Arabidopsis thaliana called THA8L (THA8-like) at 2.0 Å. THA8L resembles THA8 (thylakoid assembly 8), a protein that is required for the splicing of specific group II introns of genes involved in biogenesis of chloroplast thylakoid membranes. The THA8L structure contains three P-type PPR motifs flanked by one L-type motif and one S-type motif. We identified several putative THA8L-binding sites, enriched with purine sequences, in the group II introns. Importantly, THA8L has strong binding preference for single-stranded RNA over single-stranded DNA or double-stranded RNA. Structural analysis revealed that THA8L contains two extensive patches of positively charged residues next to the residues that are proposed to comprise the RNA-binding codes. Mutations in these two positively charged patches greatly reduced THA8L RNA-binding activity. On the basis of these data, we constructed a model of THA8L-RNA binding that is dependent on two forces: one is the interaction between nucleotide bases and specific amino acids in the PPR motifs (codes), and the other is the interaction between the negatively charged RNA backbone and positively charged residues of PPR motifs. Together, these results further our understanding of the mechanism of PPR protein-RNA interactions.
Collapse
Affiliation(s)
- Ting Ban
- From the Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Guzman F, Almerão MP, Korbes AP, Christoff AP, Zanella CM, Bered F, Margis R. Identification of potential miRNAs and their targets in Vriesea carinata (Poales, Bromeliaceae). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 210:214-23. [PMID: 23849128 DOI: 10.1016/j.plantsci.2013.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 04/24/2013] [Accepted: 05/23/2013] [Indexed: 05/15/2023]
Abstract
The miRNAs play important roles in regulation of gene expression at the post-transcriptional level. A small RNA and RNA-seq of libraries were constructed to identify miRNAs in Vriesea carinata, a native bromeliad species from Brazilian Atlantic Rainforest. Illumina technology was used to perform high throughput sequencing and data was analyzed using bioinformatics tools. We obtained 2,191,509 mature miRNAs sequences representing 54 conserved families in plant species. Further analysis allowed the prediction of secondary structures for 19 conserved and 16 novel miRNAs. Potential targets were predicted from pre-miRNAs by sequence homology and validated using RTqPCR approach. This study provides the first identification of miRNAs and their potential targets of a bromeliad species.
Collapse
Affiliation(s)
- Frank Guzman
- PPGBM at Federal University of Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
164
|
Liu S, Melonek J, Boykin LM, Small I, Howell KA. PPR-SMRs: ancient proteins with enigmatic functions. RNA Biol 2013; 10:1501-10. [PMID: 24004908 PMCID: PMC3858433 DOI: 10.4161/rna.26172] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A small subset of the large pentatricopeptide repeat (PPR) protein family in higher plants contain a C-terminal small MutS-related (SMR) domain. Although few in number, they figure prominently in the chloroplast biogenesis and retrograde signaling literature due to their striking mutant phenotypes. In this review, we summarize current knowledge of PPR-SMR proteins focusing on Arabidopsis and maize proteomic and mutant studies. We also examine their occurrence in other organisms and have determined by phylogenetic analysis that, while they are limited to species that contain chloroplasts, their presence in algae and early branching land plant lineages indicates that the coupling of PPR motifs and an SMR domain into a single protein occurred early in the evolution of the Viridiplantae clade. In addition, we discuss their possible function and have examined conservation between SMR domains from Arabidopsis PPR proteins with those from other species that have been shown to possess endonucleolytic activity.
Collapse
Affiliation(s)
- Sheng Liu
- Australian Research Council Centre of Excellence in Plant Energy Biology; The University of Western Australia; Crawley, WA Australia
| | - Joanna Melonek
- Australian Research Council Centre of Excellence in Plant Energy Biology; The University of Western Australia; Crawley, WA Australia
| | - Laura M Boykin
- Centre of Excellence in Computational Systems Biology; The University of Western Australia; Crawley, WA Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology; The University of Western Australia; Crawley, WA Australia; Centre of Excellence in Computational Systems Biology; The University of Western Australia; Crawley, WA Australia
| | - Katharine A Howell
- Australian Research Council Centre of Excellence in Plant Energy Biology; The University of Western Australia; Crawley, WA Australia
| |
Collapse
|
165
|
Colcombet J, Lopez-Obando M, Heurtevin L, Bernard C, Martin K, Berthomé R, Lurin C. Systematic study of subcellular localization of Arabidopsis PPR proteins confirms a massive targeting to organelles. RNA Biol 2013; 10:1557-75. [PMID: 24037373 PMCID: PMC3858439 DOI: 10.4161/rna.26128] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Four hundred and fifty-eight genes coding for PentatricoPeptide Repeat (PPR) proteins are annotated in the Arabidopsis thaliana genome. Over the past 10 years, numerous reports have shown that many of these proteins function in organelles to target specific transcripts and are involved in post-transcriptional regulation. Therefore, they are thought to be important players in the coordination between nuclear and organelle genome expression. Only four of these proteins have been described to be addressed outside organelles, indicating that some PPRs could function in post-transcriptional regulations of nuclear genes. In this work, we updated and improved our current knowledge on the localization of PPR proteins of Arabidopsis within the plant cell. We particularly investigated the subcellular localization of 166 PPR proteins whose targeting predictions were ambiguous, using a combination of high-throughput cloning and microscopy. Through systematic localization experiments and data integration, we confirmed that PPR proteins are largely targeted to organelles and showed that dual targeting to both the mitochondria and plastid occurs more frequently than expected. These results allow us to speculate that dual-targeted PPR proteins could be important for the fine coordination of gene expressions in both organelles.
Collapse
Affiliation(s)
- Jean Colcombet
- Unité de Recherche en Génomique Végétale (URGV); UMR INRA/UEVE - ERL CNRS 91057; CP 5708; 91057 EVRY CEDEX, France
| | - Mauricio Lopez-Obando
- Unité de Recherche en Génomique Végétale (URGV); UMR INRA/UEVE - ERL CNRS 91057; CP 5708; 91057 EVRY CEDEX, France
| | - Laure Heurtevin
- Unité de Recherche en Génomique Végétale (URGV); UMR INRA/UEVE - ERL CNRS 91057; CP 5708; 91057 EVRY CEDEX, France
| | - Clément Bernard
- Unité de Recherche en Génomique Végétale (URGV); UMR INRA/UEVE - ERL CNRS 91057; CP 5708; 91057 EVRY CEDEX, France
| | - Karine Martin
- Unité de Recherche en Génomique Végétale (URGV); UMR INRA/UEVE - ERL CNRS 91057; CP 5708; 91057 EVRY CEDEX, France
| | - Richard Berthomé
- Unité de Recherche en Génomique Végétale (URGV); UMR INRA/UEVE - ERL CNRS 91057; CP 5708; 91057 EVRY CEDEX, France
| | - Claire Lurin
- Unité de Recherche en Génomique Végétale (URGV); UMR INRA/UEVE - ERL CNRS 91057; CP 5708; 91057 EVRY CEDEX, France
| |
Collapse
|
166
|
Identification of Pentatricopeptide Repeat Proteins in the Model Organism Dictyostelium discoideum. Int J Genomics 2013; 2013:586498. [PMID: 23998118 PMCID: PMC3753752 DOI: 10.1155/2013/586498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/11/2013] [Indexed: 11/18/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are RNA binding proteins with functions in organelle RNA metabolism. They are found in all eukaryotes but have been most extensively studied in plants. We report on the identification of 12 PPR-encoding genes in the genome of the protist Dictyostelium discoideum, with potential homologs in other members of the same lineage and some predicted novel functions for the encoded gene products in protists. For one of the gene products, we show that it localizes to the mitochondria, and we also demonstrate that antisense inhibition of its expression leads to slower growth, a phenotype associated with mitochondrial dysfunction.
Collapse
|
167
|
Fujii S, Sato N, Shikanai T. Mutagenesis of individual pentatricopeptide repeat motifs affects RNA binding activity and reveals functional partitioning of Arabidopsis PROTON gradient regulation3. THE PLANT CELL 2013; 25:3079-88. [PMID: 23975900 PMCID: PMC3784600 DOI: 10.1105/tpc.113.112193] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins bind RNA and act in multiple eukaryotic processes, including RNA editing, RNA stability, and translation. Here, we investigated the mechanism underlying the functional versatility of Arabidopsis thaliana proton gradient regulation3 (PGR3), a chloroplast protein harboring 27 PPR motifs. Previous studies suggested that PGR3 acts in (1) stabilization of photosynthetic electron transport L (petL) operon RNA, (2) translation of petL, and (3) translation of ndhA. We showed here that replacement of the 4th amino acid of the 12th PPR with nonpolar or charged amino acids abolished functions (1) and (2) but not (3) of PGR3 by compromising the function of this specific PPR. This discovery enabled us to knock out the RNA binding ability of individual PPR motifs. Consequently, we showed that the 16 N-terminal PPRs were sufficient for function (1) via sequence-specific RNA binding, whereas the 11 C-terminal motifs were essential for functions (2) and (3) by activating translation. We also clarified that the 14th amino acid of the 12th PPR should be positively charged to make the PPR functionally active. Our finding opens up the possibility of selectively manipulating the functions of PPR proteins.
Collapse
Affiliation(s)
- Sota Fujii
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Nozomi Sato
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan
- Address correspondence to
| |
Collapse
|
168
|
Shoguchi E, Shinzato C, Kawashima T, Gyoja F, Mungpakdee S, Koyanagi R, Takeuchi T, Hisata K, Tanaka M, Fujiwara M, Hamada M, Seidi A, Fujie M, Usami T, Goto H, Yamasaki S, Arakaki N, Suzuki Y, Sugano S, Toyoda A, Kuroki Y, Fujiyama A, Medina M, Coffroth M, Bhattacharya D, Satoh N. Draft Assembly of the Symbiodinium minutum Nuclear Genome Reveals Dinoflagellate Gene Structure. Curr Biol 2013; 23:1399-408. [DOI: 10.1016/j.cub.2013.05.062] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 10/26/2022]
|
169
|
Schallenberg-Rüdinger M, Lenz H, Polsakiewicz M, Gott JM, Knoop V. A survey of PPR proteins identifies DYW domains like those of land plant RNA editing factors in diverse eukaryotes. RNA Biol 2013; 10:1549-56. [PMID: 23899506 DOI: 10.4161/rna.25755] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The pentatricopeptide repeat modules of PPR proteins are key to their sequence-specific binding to RNAs. Gene families encoding PPR proteins are greatly expanded in land plants where hundreds of them participate in RNA maturation, mainly in mitochondria and chloroplasts. Many plant PPR proteins contain additional carboxyterminal domains and have been identified as essential factors for specific events of C-to-U RNA editing, which is abundant in the two endosymbiotic plant organelles. Among those carboxyterminal domain additions to plant PPR proteins, the so-called DYW domain is particularly interesting given its similarity to cytidine deaminases. The frequency of organelle C-to-U RNA editing and the diversity of DYW-type PPR proteins correlate well in plants and both were recently identified outside of land plants, in the protist Naegleria gruberi. Here we present a systematic survey of PPR protein genes and report on the identification of additional DYW-type PPR proteins in the protists Acanthamoeba castellanii, Malawimonas jakobiformis, and Physarum polycephalum. Moreover, DYW domains were also found in basal branches of multi-cellular lineages outside of land plants, including the alga Nitella flexilis and the rotifers Adineta ricciae and Philodina roseola. Intriguingly, the well-characterized and curious patterns of mitochondrial RNA editing in the slime mold Physarum also include examples of C-to-U changes. Finally, we identify candidate sites for mitochondrial RNA editing in Malawimonas, further supporting a link between DYW-type PPR proteins and C-to-U editing, which may have remained hitherto unnoticed in additional eukaryote lineages.
Collapse
Affiliation(s)
| | - Henning Lenz
- Abteilung Molekulare Evolution; Institut für Zelluläre und Molekulare Botanik; Universität Bonn; Bonn, Germany
| | - Monika Polsakiewicz
- Abteilung Molekulare Evolution; Institut für Zelluläre und Molekulare Botanik; Universität Bonn; Bonn, Germany
| | - Jonatha M Gott
- Center for RNA Molecular Biology; Case Western Reserve University; Cleveland, OH USA
| | - Volker Knoop
- Abteilung Molekulare Evolution; Institut für Zelluläre und Molekulare Botanik; Universität Bonn; Bonn, Germany
| |
Collapse
|
170
|
Chen Y, Varani G. Engineering RNA-binding proteins for biology. FEBS J 2013; 280:3734-54. [PMID: 23742071 DOI: 10.1111/febs.12375] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 12/20/2022]
Abstract
RNA-binding proteins play essential roles in the regulation of gene expression. Many have modular structures and combine relatively few common domains in various arrangements to recognize RNA sequences and/or structures. Recent progress in engineering the specificity of the PUF class RNA-binding proteins has shown that RNA-binding domains may be combined with various effector or functional domains to regulate the metabolism of targeted RNAs. Designer RNA-binding proteins with tailored sequence specificity will provide valuable tools for biochemical research as well as potential therapeutic applications. In this review, we discuss the suitability of various RNA-binding domains for engineering RNA-binding specificity, based on the structural basis for their recognition. We also compare various protein engineering and design methods applied to RNA-binding proteins, and discuss future applications of these proteins.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biochemistry, University of Washington, Seattle, WA 98195-1700, USA.
| | | |
Collapse
|
171
|
Chupeau MC, Granier F, Pichon O, Renou JP, Gaudin V, Chupeau Y. Characterization of the early events leading to totipotency in an Arabidopsis protoplast liquid culture by temporal transcript profiling. THE PLANT CELL 2013; 25:2444-63. [PMID: 23903317 PMCID: PMC3753376 DOI: 10.1105/tpc.113.109538] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/31/2013] [Accepted: 07/03/2013] [Indexed: 05/19/2023]
Abstract
The molecular mechanisms underlying plant cell totipotency are largely unknown. Here, we present a protocol for the efficient regeneration of plants from Arabidopsis thaliana protoplasts. The specific liquid medium used in our study leads to a high rate of reentry into the cell cycle of most cell types, providing a powerful system to study dedifferentiation/regeneration processes in independent somatic cells. To identify the early events in the establishment of totipotency, we monitored the genome-wide transcript profiles of plantlets and protoplast-derived cells (PdCs) during the first week of culture. Plant cells rapidly dedifferentiated. Then, we observed the reinitiation and reorientation of protein synthesis, accompanied by the reinitiation of cell division and de novo cell wall synthesis. Marked changes in the expression of chromatin-associated genes, especially of those in the histone variant family, were observed during protoplast culture. Surprisingly, the epigenetic status of PdCs and well-established cell cultures differed, with PdCs exhibiting rare reactivated transposons and epigenetic changes. The differentially expressed genes identified in this study are interesting candidates for investigating the molecular mechanisms underlying plant cell plasticity and totipotency. One of these genes, the plant-specific transcription factor ABERRANT LATERAL ROOT FORMATION4, is required for the initiation of protoplast division.
Collapse
Affiliation(s)
- Marie-Christine Chupeau
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318–AgroParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique–Centre de Versailles-Grignon, F-78026 Versailles cedex, France
| | - Fabienne Granier
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318–AgroParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique–Centre de Versailles-Grignon, F-78026 Versailles cedex, France
| | - Olivier Pichon
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1165, Unité Mixte de Recherche en Génomique Végétale, F-91057 Évry cedex 2, France
| | - Jean-Pierre Renou
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1165, Unité Mixte de Recherche en Génomique Végétale, F-91057 Évry cedex 2, France
| | - Valérie Gaudin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318–AgroParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique–Centre de Versailles-Grignon, F-78026 Versailles cedex, France
| | - Yves Chupeau
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318–AgroParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique–Centre de Versailles-Grignon, F-78026 Versailles cedex, France
- Address correspondence to
| |
Collapse
|
172
|
RNA editing events in mitochondrial genes by ultra-deep sequencing methods: a comparison of cytoplasmic male sterile, fertile and restored genotypes in cotton. Mol Genet Genomics 2013; 288:445-57. [DOI: 10.1007/s00438-013-0764-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 06/15/2013] [Indexed: 10/26/2022]
|
173
|
Härtel B, Zehrmann A, Verbitskiy D, Takenaka M. The longest mitochondrial RNA editing PPR protein MEF12 in Arabidopsis thaliana requires the full-length E domain. RNA Biol 2013; 10:1543-8. [PMID: 23845994 DOI: 10.4161/rna.25484] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mitochondrial RNA editing factor 12 (MEF12) was identified in a screen for editing defects of a chemically mutated plant population in Arabidopsis thaliana. The MEF12 editing protein is required for the C to U change of nucleotide nad5-374. The MEF12 polypeptide is characterized by an exceptionally long stretch of 25 pentatricopeptide repeats (PPR) and a C-terminal extension domain. Editing is lost in mutant plants with a stop codon in the extending element. A T-DNA insertion substituting the 10 C-terminal amino acids of the extension domain reduces RNA editing to about 20% at the target site in a mutant plant. These results support the importance of the full-length extension module for functional RNA editing in plant mitochondria.
Collapse
|
174
|
Pinker F, Bonnard G, Gobert A, Gutmann B, Hammani K, Sauter C, Gegenheimer PA, Giegé P. PPR proteins shed a new light on RNase P biology. RNA Biol 2013; 10:1457-68. [PMID: 23925311 PMCID: PMC3858429 DOI: 10.4161/rna.25273] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A fast growing number of studies identify pentatricopeptide repeat (PPR) proteins as major players in gene expression processes. Among them, a subset of PPR proteins called PRORP possesses RNase P activity in several eukaryotes, both in nuclei and organelles. RNase P is the endonucleolytic activity that removes 5′ leader sequences from tRNA precursors and is thus essential for translation. Before the characterization of PRORP, RNase P enzymes were thought to occur universally as ribonucleoproteins, although some evidence implied that some eukaryotes or cellular compartments did not use RNA for RNase P activity. The characterization of PRORP reveals a two-domain enzyme, with an N-terminal domain containing multiple PPR motifs and assumed to achieve target specificity and a C-terminal domain holding catalytic activity. The nature of PRORP interactions with tRNAs suggests that ribonucleoprotein and protein-only RNase P enzymes share a similar substrate binding process.
Collapse
Affiliation(s)
- Franziska Pinker
- Institut de Biologie Moléculaire des Plantes du CNRS; Université de Strasbourg; Strasbourg, France; Institut de Biologie Moléculaire et Cellulaire du CNRS; Architecture et Réactivité de l'ARN; Université de Strasbourg; Strasbourg, France
| | - Géraldine Bonnard
- Institut de Biologie Moléculaire des Plantes du CNRS; Université de Strasbourg; Strasbourg, France
| | - Anthony Gobert
- Institut de Biologie Moléculaire des Plantes du CNRS; Université de Strasbourg; Strasbourg, France
| | - Bernard Gutmann
- Institut de Biologie Moléculaire des Plantes du CNRS; Université de Strasbourg; Strasbourg, France
| | - Kamel Hammani
- Institut de Biologie Moléculaire des Plantes du CNRS; Université de Strasbourg; Strasbourg, France
| | - Claude Sauter
- Institut de Biologie Moléculaire et Cellulaire du CNRS; Architecture et Réactivité de l'ARN; Université de Strasbourg; Strasbourg, France
| | | | - Philippe Giegé
- Institut de Biologie Moléculaire des Plantes du CNRS; Université de Strasbourg; Strasbourg, France
| |
Collapse
|
175
|
Takenaka M, Zehrmann A, Brennicke A, Graichen K. Improved computational target site prediction for pentatricopeptide repeat RNA editing factors. PLoS One 2013; 8:e65343. [PMID: 23762347 PMCID: PMC3675099 DOI: 10.1371/journal.pone.0065343] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/24/2013] [Indexed: 01/22/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins with an E domain have been identified as specific factors for C to U RNA editing in plant organelles. These PPR proteins bind to a unique sequence motif 5′ of their target editing sites. Recently, involvement of a combinatorial amino acid code in the P (normal length) and S type (short) PPR domains in sequence specific RNA binding was reported. PPR proteins involved in RNA editing, however, contain not only P and S motifs but also their long variants L (long) and L2 (long2) and the S2 (short2) motifs. We now find that inclusion of these motifs improves the prediction of RNA editing target sites. Previously overlooked RNA editing target sites are suggested from the PPR motif structures of known E-class PPR proteins and are experimentally verified. RNA editing target sites are assigned for the novel PPR protein MEF32 (mitochondrial editing factor 32) and are confirmed in the cDNA.
Collapse
|
176
|
Chateigner-Boutin AL, Colas des Francs-Small C, Fujii S, Okuda K, Tanz SK, Small I. The E domains of pentatricopeptide repeat proteins from different organelles are not functionally equivalent for RNA editing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:935-45. [PMID: 23521509 DOI: 10.1111/tpj.12180] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 03/11/2013] [Indexed: 05/10/2023]
Abstract
RNA editing in plants is an essential post-transcriptional process that modifies the genetic information encoded in organelle genomes. Forward and reverse genetics approaches have revealed the prevalent role of pentatricopeptide repeat (PPR) proteins in editing in both plastids and mitochondria, confirming the shared origin of this process in both organelles. The E domain at or near the C terminus of these proteins has been shown to be essential for editing, and is presumed to recruit the enzyme that deaminates the target cytidine residue. Here, we describe two mutants, otp71 and otp72, disrupted in genes encoding mitochondrial E-type PPR proteins with single editing defects in ccmFN 2 and rpl16 transcripts, respectively. Comparisons between the E domains of these proteins and previously reported editing factors from chloroplasts suggested that there are characteristic differences in the proteins between the two organelles. To test this, we swapped E domains between two mitochondrial and two chloroplast editing factors. In all cases investigated, E domains from the same organelle (chloroplast or mitochondria) were found to be exchangeable; however, swapping the E domain between organelles led to non-functional editing factors. We conclude that the E domains of mitochondrial and plastid PPR proteins are not functionally equivalent, and therefore that an important component of the putative editing complexes in the two organelles may be different.
Collapse
Affiliation(s)
- Anne-Laure Chateigner-Boutin
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA 6009, Australia
| | | | | | | | | | | |
Collapse
|
177
|
Abstract
PPR proteins form a huge family in flowering plants and are involved in RNA maturation in plastids and mitochondria. These proteins are sequence-specific RNA-binding proteins that recruit the machinery of RNA processing. We summarize progress in the research on the functional mechanisms of divergent RNA maturation and on the mechanism by which RNA sequences are recognized. We further focus on two topics. RNA editing is an enigmatic process of RNA maturation in organelles, in which members of the PLS subfamily contribute to target site recognition. As the first topic, we speculate on why the PLS subfamily was selected by the RNA editing machinery. Second, we discuss how the regulation of plastid gene expression contributes to efficient photosynthesis. Although the molecular functions of PPR proteins have been studied extensively, information on the physiological significance of regulation by these proteins remains very limited.
Collapse
Affiliation(s)
| | - Sota Fujii
- Graduate School of Science; Kyoto University; Kyoto, Japan
| |
Collapse
|
178
|
Yagi Y, Tachikawa M, Noguchi H, Satoh S, Obokata J, Nakamura T. Pentatricopeptide repeat proteins involved in plant organellar RNA editing. RNA Biol 2013; 10:1419-25. [PMID: 23669716 PMCID: PMC3858424 DOI: 10.4161/rna.24908] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
C-to-U RNA editing has been widely observed in organellar RNAs in terrestrial plants. Recent research has revealed the significance of a large, plant-specific family of pentatricopeptide repeat (PPR) proteins for RNA editing and other RNA processing events in plant mitochondria and chloroplasts. PPR protein is a sequence-specific RNA-binding protein that identifies specific C residues for editing. Discovery of the RNA recognition code for PPR motifs, including verification and prediction of the individual RNA editing site and its corresponding PPR protein, expanded our understanding of the molecular function of PPR proteins in plant organellar RNA editing. Using this knowledge and the co-expression database, we have identified two new PPR proteins that mediate chloroplast RNA editing. Further, computational target assignment using the PPR RNA recognition codes suggests a distinct, unknown mode-of-action, by which PPR proteins serve a function beyond site recognition in RNA editing.
Collapse
Affiliation(s)
- Yusuke Yagi
- Faculty of Agriculture; Kyushu University; Fukuoka, Japan
| | - Makoto Tachikawa
- Graduate School of Life and Environmental Sciences; Kyoto Prefectural University; Kyoto, Japan
| | - Hisayo Noguchi
- Faculty of Agriculture; Kyushu University; Fukuoka, Japan
| | - Soichirou Satoh
- Graduate School of Life and Environmental Sciences; Kyoto Prefectural University; Kyoto, Japan
| | - Junichi Obokata
- Graduate School of Life and Environmental Sciences; Kyoto Prefectural University; Kyoto, Japan
| | - Takahiro Nakamura
- Faculty of Agriculture; Kyushu University; Fukuoka, Japan; Biotron Application Center; Kyushu University; Fukuoka, Japan
| |
Collapse
|
179
|
Sugita M, Ichinose M, Ide M, Sugita C. Architecture of the PPR gene family in the moss Physcomitrella patens. RNA Biol 2013; 10:1439-45. [PMID: 23645116 PMCID: PMC3858427 DOI: 10.4161/rna.24772] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are widespread in eukaryotes and in particular, include several hundred members in land plants. The majority of PPR proteins are localized in mitochondria and plastids, where they play a crucial role in various aspects of RNA metabolism at the post-transcriptional level in gene expression. However, many of their functions remain to be characterized. In contrast to vascular plants, the moss Physcomitrella patens has only 105 PPR genes. This number may represent a minimum set of PPR proteins required for post-transcriptional regulation in plant organelles. Here, we review the overall structure of the P. patens PPR gene family and the current status of the functional characterization of moss PPR proteins.
Collapse
Affiliation(s)
- Mamoru Sugita
- Center for Gene Research; Nagoya University; Chikusa-ku; Nagoya, Japan
| | - Mizuho Ichinose
- Center for Gene Research; Nagoya University; Chikusa-ku; Nagoya, Japan
| | - Mizuki Ide
- Center for Gene Research; Nagoya University; Chikusa-ku; Nagoya, Japan
| | - Chieko Sugita
- Center for Gene Research; Nagoya University; Chikusa-ku; Nagoya, Japan
| |
Collapse
|
180
|
Lightowlers RN, Chrzanowska-Lightowlers ZMA. Human pentatricopeptide proteins: only a few and what do they do? RNA Biol 2013; 10:1433-8. [PMID: 23635806 PMCID: PMC3858426 DOI: 10.4161/rna.24770] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins constitute a large family of RNA-binding proteins that contain a canonical 35 residue repeat motif. Originally identified in Arabidopsis thaliana, family members are found in protists, fungi, and metazoan but are by far most abundant in plant organelles. Seven examples have been identified in human mitochondria and roles have been tentatively ascribed to each. In this review, we briefly outline each of these PPR proteins and discuss the role each is believed to play in facilitating mitochondrial gene expression.
Collapse
Affiliation(s)
- Robert N Lightowlers
- The Wellcome Trust Centre for Mitochondrial Research; Institute for Cell and Molecular Biosciences; Newcastle University; The Medical School; Framlington Place; Newcastle upon Tyne, UK
| | - Zofia M A Chrzanowska-Lightowlers
- The Wellcome Trust Centre for Mitochondrial Research; Institute for Ageing and Health; Newcastle University; The Medical School; Framlington Place; Newcastle upon Tyne, UK
| |
Collapse
|
181
|
Abstract
The huge variation between mitochondrial genomes makes untangling their evolutionary histories difficult. Richardson et al. report on the remarkably unaltered 'fossil' genome of the tulip tree, giving us many clues as to how the mitochondrial genomes of flowering plants have evolved over the last 150 million years, and raising questions about how such extraordinary sequence conservation can be maintained.
Collapse
Affiliation(s)
- Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, Bayliss Building, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
182
|
Yagi Y, Hayashi S, Kobayashi K, Hirayama T, Nakamura T. Elucidation of the RNA recognition code for pentatricopeptide repeat proteins involved in organelle RNA editing in plants. PLoS One 2013; 8:e57286. [PMID: 23472078 PMCID: PMC3589468 DOI: 10.1371/journal.pone.0057286] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/23/2013] [Indexed: 11/18/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are eukaryotic RNA-binding proteins that are commonly found in plants. Organelle transcript processing and stability are mediated by PPR proteins in a gene-specific manner through recognition by tandem arrays of degenerate 35-amino-acid repeating units, the PPR motifs. However, the sequence-specific RNA recognition mechanism of the PPR protein remains largely unknown. Here, we show the principle underlying RNA recognition for PPR proteins involved in RNA editing. The distance between the PPR-RNA alignment and the editable C was shown to be conserved. Amino acid variation at 3 particular positions within the motif determined recognition of a specific RNA in a programmable manner, with a 1-motif to 1-nucleotide correspondence, with no gap sequence. Data from the decoded nucleotide frequencies for these 3 amino acids were used to assign accurate interacting sites to several PPR proteins for RNA editing and to predict the target site for an uncharacterized PPR protein.
Collapse
Affiliation(s)
- Yusuke Yagi
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
183
|
Härtel B, Zehrmann A, Verbitskiy D, van der Merwe JA, Brennicke A, Takenaka M. MEF10 is required for RNA editing at nad2-842 in mitochondria of Arabidopsis thaliana and interacts with MORF8. PLANT MOLECULAR BIOLOGY 2013; 81:337-346. [PMID: 23288601 DOI: 10.1007/s11103-012-0003-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 12/15/2012] [Indexed: 06/01/2023]
Abstract
A forwards genetic screen of a chemically mutated plant population identified mitochondrial RNA editing factor 10 (MEF10) in Arabidopsis thaliana. MEF10 is a trans-factor required specifically for the C to U editing of site nad2-842. The MEF10 protein is characterized by a stretch of pentatricopeptide repeats (PPR) and a C-terminal extension domain ending with the amino acids DYW. Editing is lost in mutant plants but is recovered by transgenic introduction of an intact MEF10 gene. The MEF10 protein interacts with multiple organellar RNA editing factor 8 (MORF8) but not with other mitochondrial MORF proteins in yeast two hybrid assays. These results support the model that specific combinations of MORF and MEF proteins are involved in RNA editing in plant mitochondria.
Collapse
Affiliation(s)
- Barbara Härtel
- Molekulare Botanik, Universität Ulm, 89069, Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
184
|
Liu YJ, Xiu ZH, Meeley R, Tan BC. Empty pericarp5 encodes a pentatricopeptide repeat protein that is required for mitochondrial RNA editing and seed development in maize. THE PLANT CELL 2013; 25:868-83. [PMID: 23463776 PMCID: PMC3634694 DOI: 10.1105/tpc.112.106781] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 12/28/2012] [Accepted: 02/15/2013] [Indexed: 05/18/2023]
Abstract
In flowering plants, RNA editing is a posttranscriptional mechanism that converts specific cytidines to uridines in both mitochondrial and plastidial transcripts, altering the information encoded by these genes. Here, we report the molecular characterization of the empty pericarp5 (emp5) mutants in maize (Zea mays). Null mutation of Emp5 results in abortion of embryo and endosperm development at early stages. Emp5 encodes a mitochondrion-targeted DYW subgroup pentatricopeptide repeat (PPR) protein. Analysis of the mitochondrial transcripts revealed that loss of the EMP5 function abolishes the C-to-U editing of ribosomal protein L16 at the rpl16-458 site (100% edited in the wild type), decreases the editing at nine sites in NADH dehydrogenase9 (nad9), cytochrome c oxidase3 (cox3), and ribosomal protein S12 (rps12), and surprisingly increases the editing at five sites of ATP synthase F0 subunit a (atp6), apocytochrome b (cob), nad1, and rpl16. Mutant EMP5-4 lacking the E+ and DYW domains still retains the substrate specificity and editing function, only at reduced efficiency. This suggests that the E+ and DYW domains of EMP5 are not essential to the EMP5 editing function but are necessary for efficiency. Analysis of the ortholog in rice (Oryza sativa) indicates that rice EMP5 has a conserved function in C-to-U editing of the rice mitochondrial rpl16-458 site. EMP5 knockdown expression in transgenics resulted in slow growth and defective seeds. These results demonstrate that Emp5 encodes a PPR-DYW protein that is required for the editing of multiple transcripts in mitochondria, and the editing events, particularly the C-to-U editing at the rpl16-458 site, are critical to the mitochondrial functions and, hence, to seed development in maize.
Collapse
Affiliation(s)
- Yu-Jun Liu
- State Key Lab of Agrobiotechnology, Institute of Plant Molecular Biology and Agrobiotechnology, School of Life Science, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Zhi-Hui Xiu
- State Key Lab of Agrobiotechnology, Institute of Plant Molecular Biology and Agrobiotechnology, School of Life Science, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | | | - Bao-Cai Tan
- State Key Lab of Agrobiotechnology, Institute of Plant Molecular Biology and Agrobiotechnology, School of Life Science, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
- Address correspondence to
| |
Collapse
|
185
|
Arenas-M A, Takenaka M, Moreno S, Gómez I, Jordana X. Contiguous RNA editing sites in the mitochondrialnad1transcript ofArabidopsis thalianaare recognized by different proteins. FEBS Lett 2013; 587:887-91. [PMID: 23416303 DOI: 10.1016/j.febslet.2013.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
|
186
|
Caroca R, Howell KA, Hasse C, Ruf S, Bock R. Design of chimeric expression elements that confer high-level gene activity in chromoplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:368-79. [PMID: 23004223 DOI: 10.1111/tpj.12031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/14/2012] [Accepted: 09/17/2012] [Indexed: 05/05/2023]
Abstract
Non-green plastids, such as chromoplasts, generally have much lower activity of gene expression than chloroplasts in photosynthetically active tissues. Suppression of plastid genes in non-green tissues occurs through a complex interplay of transcriptional and translational control, with the contribution of regulation of transcript abundance versus translational activity being highly variable between genes. Here, we have investigated whether the low expression of the plastid genome in chromoplasts results from inherent limitations in gene expression capacity, or can be overcome by designing appropriate combinations of promoters and translation initiation signals in the 5' untranslated region (5'-UTR). We constructed chimeric expression elements that combine promoters and 5'-UTRs from plastid genes, which are suppressed during chloroplast-to-chromoplast conversion in Solanum lycopersicum (tomato) fruit ripening, either just at the translational level or just at the level of mRNA accumulation. These chimeric expression elements were introduced into the tomato plastid genome by stable chloroplast transformation. We report the identification of promoter-UTR combinations that confer high-level gene expression in chromoplasts of ripe tomato fruits, resulting in the accumulation of reporter protein GFP to up to 1% of total cellular protein. Our work demonstrates that non-green plastids are capable of expressing genes to high levels. Moreover, the chimeric cis-elements for chromoplasts developed here are widely applicable in basic and applied research using transplastomic methods.
Collapse
Affiliation(s)
- Rodrigo Caroca
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | | | | | | | | |
Collapse
|
187
|
Stoppel R, Meurer J. Complex RNA metabolism in the chloroplast: an update on the psbB operon. PLANTA 2013; 237:441-9. [PMID: 23065055 PMCID: PMC3555233 DOI: 10.1007/s00425-012-1782-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/28/2012] [Indexed: 05/03/2023]
Abstract
Expression of most plastid genes involves multiple post-transcriptional processing events, such as splicing, editing, and intercistronic processing. The latter involves the formation of mono-, di-, and multicistronic transcripts, which can further be regulated by differential stability and expression. The plastid pentacistronic psbB transcription unit has been well characterized in vascular plants. It encodes the subunits CP47 (psbB), T (psbT), and H (psbH) of photosystem II as well as cytochrome b (6) (petB) and subunit IV (petD) of the cytochrome b (6) f complex. Each of the petB and petD genes contains a group II intron, which is spliced during post-transcriptional modification. The small subunit of photosystem II, PsbN, is encoded in the intercistronic region between psbH and psbT but is transcribed in the opposite direction. Expression of the psbB gene cluster necessitates different processing events along with numerous newly evolved specificity factors conferring stability to many of the processed RNA transcripts, and thus exemplarily shows the complexity of RNA metabolism in the chloroplast.
Collapse
Affiliation(s)
- Rhea Stoppel
- Plant Molecular Biology (Botany), Department Biology I, Ludwig Maximilians University, Großhadernerstrasse 2-4, Planegg-Martinsried, Germany.
| | | |
Collapse
|
188
|
Larkin RM. Cytoplasm: Chloroplast Signaling. Mol Biol 2013. [DOI: 10.1007/978-1-4939-0263-7_10-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
189
|
Zhang B, Carrie C, Ivanova A, Narsai R, Murcha MW, Duncan O, Wang Y, Law SR, Albrecht V, Pogson B, Giraud E, Van Aken O, Whelan J. LETM proteins play a role in the accumulation of mitochondrially encoded proteins in Arabidopsis thaliana and AtLETM2 displays parent of origin effects. J Biol Chem 2012; 287:41757-73. [PMID: 23043101 PMCID: PMC3516725 DOI: 10.1074/jbc.m112.383836] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 10/01/2012] [Indexed: 11/06/2022] Open
Abstract
The Arabidopsis thaliana genome contains two genes with homology to the mitochondrial protein LETM1 (leucine zipper-EF-hand-containing transmembrane protein). Inactivation of both genes, Atletm1 and Atletm2, together is lethal. Plants that are hemizygous for AtLETM2 and homozygous for Atletm1 (letm1(-/-) LETM2(+/-)) displayed a mild retarded growth phenotype during early seedling growth. It was shown that accumulation of mitochondrial proteins was reduced in hemizygous (letm1(-/-) LETM2(+/-)) plants. Examination of respiratory chain proteins by Western blotting, blue native PAGE, and enzymatic activity assays revealed that the steady state level of ATP synthase was reduced in abundance, whereas the steady state levels of other respiratory chain proteins remained unchanged. The absence of a functional maternal AtLETM2 allele in an Atletm1 mutant background resulted in early seed abortion. Reciprocal crosses revealed that maternally, but not paternally, derived AtLETM2 was absolutely required for seed development. This requirement for a functional maternal allele of AtLETM2 was confirmed using direct sequencing of reciprocal crosses of Col-0 and Ler accessions. Furthermore, AtLETM2 promoter β-glucuronidase constructs displayed exclusive maternal expression patterns.
Collapse
Affiliation(s)
- Botao Zhang
- From the Australian Research Council Centre of Excellence in Plant Energy Biology and
| | - Chris Carrie
- From the Australian Research Council Centre of Excellence in Plant Energy Biology and
| | - Aneta Ivanova
- From the Australian Research Council Centre of Excellence in Plant Energy Biology and
| | - Reena Narsai
- From the Australian Research Council Centre of Excellence in Plant Energy Biology and
- Centre for Computational Systems Biology, Bayliss Building M316 University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia and
| | - Monika W. Murcha
- From the Australian Research Council Centre of Excellence in Plant Energy Biology and
| | - Owen Duncan
- From the Australian Research Council Centre of Excellence in Plant Energy Biology and
| | - Yan Wang
- From the Australian Research Council Centre of Excellence in Plant Energy Biology and
| | - Simon R. Law
- From the Australian Research Council Centre of Excellence in Plant Energy Biology and
| | - Verónica Albrecht
- the Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton 2601, Australian Capital Territory, Australia
| | - Barry Pogson
- the Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton 2601, Australian Capital Territory, Australia
| | - Estelle Giraud
- From the Australian Research Council Centre of Excellence in Plant Energy Biology and
| | - Olivier Van Aken
- From the Australian Research Council Centre of Excellence in Plant Energy Biology and
| | - James Whelan
- From the Australian Research Council Centre of Excellence in Plant Energy Biology and
| |
Collapse
|
190
|
Guzman F, Almerão MP, Körbes AP, Loss-Morais G, Margis R. Identification of microRNAs from Eugenia uniflora by high-throughput sequencing and bioinformatics analysis. PLoS One 2012; 7:e49811. [PMID: 23166775 PMCID: PMC3499529 DOI: 10.1371/journal.pone.0049811] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/17/2012] [Indexed: 11/27/2022] Open
Abstract
Background microRNAs or miRNAs are small non-coding regulatory RNAs that play important functions in the regulation of gene expression at the post-transcriptional level by targeting mRNAs for degradation or inhibiting protein translation. Eugenia uniflora is a plant native to tropical America with pharmacological and ecological importance, and there have been no previous studies concerning its gene expression and regulation. To date, no miRNAs have been reported in Myrtaceae species. Results Small RNA and RNA-seq libraries were constructed to identify miRNAs and pre-miRNAs in Eugenia uniflora. Solexa technology was used to perform high throughput sequencing of the library, and the data obtained were analyzed using bioinformatics tools. From 14,489,131 small RNA clean reads, we obtained 1,852,722 mature miRNA sequences representing 45 conserved families that have been identified in other plant species. Further analysis using contigs assembled from RNA-seq allowed the prediction of secondary structures of 25 known and 17 novel pre-miRNAs. The expression of twenty-seven identified miRNAs was also validated using RT-PCR assays. Potential targets were predicted for the most abundant mature miRNAs in the identified pre-miRNAs based on sequence homology. Conclusions This study is the first large scale identification of miRNAs and their potential targets from a species of the Myrtaceae family without genomic sequence resources. Our study provides more information about the evolutionary conservation of the regulatory network of miRNAs in plants and highlights species-specific miRNAs.
Collapse
Affiliation(s)
- Frank Guzman
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mauricio P. Almerão
- PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana P. Körbes
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Guilherme Loss-Morais
- PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rogerio Margis
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Biofisica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
191
|
Caruso CM, Case AL, Bailey MF. The evolutionary ecology of cytonuclear interactions in angiosperms. TRENDS IN PLANT SCIENCE 2012; 17:638-643. [PMID: 22784826 DOI: 10.1016/j.tplants.2012.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/08/2012] [Accepted: 06/13/2012] [Indexed: 06/01/2023]
Abstract
Interactions between cytoplasmic and nuclear genomes have significant evolutionary consequences. In angiosperms, the most common cytonuclear interaction is between mitochondrial genes that disrupt pollen production (cytoplasmic male sterility, CMS) and nuclear genes that restore it (nuclear male fertility restorers, Rf). The outcome of CMS/Rf interactions can depend on whether Rf alleles have negative pleiotropic effects on fitness. Although these fitness costs are often considered to be independent of the ecological context, we argue that the effects of Rf alleles on fitness should be context dependent. Thus, measuring the cost of restoration across a range of environments could help explain geographic and phylogenetic variation in the distribution of Rf alleles and the outcome of CMS/Rf interactions.
Collapse
Affiliation(s)
- Christina M Caruso
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | | |
Collapse
|
192
|
Toda T, Fujii S, Noguchi K, Kazama T, Toriyama K. Rice MPR25 encodes a pentatricopeptide repeat protein and is essential for RNA editing of nad5 transcripts in mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:450-60. [PMID: 22747551 DOI: 10.1111/j.1365-313x.2012.05091.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins are involved in the modification of organelle transcripts. In this study, we investigated the molecular function in rice of the mitochondrial PPR-encoding gene MITOCHONDRIAL PPR25 (MPR25), which belongs to the E subgroup of the PPR family. A Tos17 knockout mutant of MPR25 exhibited growth retardation and pale-green leaves with reduced chlorophyll content during the early stages of plant development. The photosynthetic rate in the mpr25 mutant was significantly decreased, especially under strong light conditions, although the respiration rate did not differ from that of wild-type plants. MPR25 was preferentially expressed in leaves. FLAG-tagged MPR25 accumulated in mitochondria but not in chloroplasts. Direct sequencing revealed that the mpr25 mutant fails to edit a C-U RNA editing site at nucleotide 1580 of nad5, which encodes a subunit of complex I (NADH dehydrogenase) of the respiratory chain in mitochondria. RNA editing of this site is responsible for a change in amino acid from serine to leucine. Recombinant MPR25 directly interacted with the proximal region of the editing site of nad5 transcripts. However, the NADH dehydrogenase activity of complex I was not affected in the mutant. By contrast, genes encoding alternative NADH dehydrogenases and alternative oxidase were up-regulated. The mpr25 mutant may therefore provide new information on the coordinated interaction between mitochondria and chloroplasts.
Collapse
MESH Headings
- Amino Acid Substitution
- Cell Respiration
- Chloroplasts/genetics
- Chloroplasts/metabolism
- Gene Expression Regulation, Plant/genetics
- Gene Knockout Techniques
- Light
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Mutagenesis, Insertional
- NADH Dehydrogenase/genetics
- NADH Dehydrogenase/metabolism
- Oryza/enzymology
- Oryza/genetics
- Oryza/growth & development
- Oryza/radiation effects
- Oxidoreductases/genetics
- Oxidoreductases/metabolism
- Phenotype
- Photosynthesis
- Plant Components, Aerial/enzymology
- Plant Components, Aerial/genetics
- Plant Components, Aerial/growth & development
- Plant Components, Aerial/radiation effects
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Roots/enzymology
- Plant Roots/genetics
- Plant Roots/growth & development
- Plant Roots/radiation effects
- Protein Transport
- RNA Editing
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Recombinant Fusion Proteins
- Seedlings/enzymology
- Seedlings/genetics
- Seedlings/growth & development
- Seedlings/radiation effects
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Takushi Toda
- Laboratory of Environmental Plant Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai 981-8555, Japan
| | | | | | | | | |
Collapse
|
193
|
Takenaka M, Brennicke A. Using multiplex single-base extension typing to screen for mutants defective in RNA editing. Nat Protoc 2012; 7:1931-45. [PMID: 23037308 DOI: 10.1038/nprot.2012.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA editing is an RNA maturation process that changes the nucleotide present at particular positions (editing sites) in specific RNAs; in plant organelles, the most common nucleotide change is from cytidine (C) to uridine (U). In a mutant suspected of affecting RNA editing, all known editing sites have to be analyzed. Therefore, to screen a population of mutants, all individuals must be analyzed at every editing site. We describe a multiplex single-nucleotide polymorphism (SNP)-typing procedure to economically screen a mutant individual or population for differences at hundreds of nucleotide positions in RNA or DNA. By using this protocol, we have previously identified mutants defective in RNA editing in a randomly mutated population of Arabidopsis thaliana. The procedure requires 2-3 weeks to identify the individual plant in the mutant population. The time required to locate the mutated gene is between 3 and 24 months in Arabidopsis. Although this procedure has been developed to study RNA editing in plants, it could also be used to investigate other RNA modification processes. It could also be adapted to investigate RNA editing in other organisms.
Collapse
|
194
|
Phylogenetic genomewide comparisons of the pentatricopeptide repeat gene family in indica and japonica rice. Biochem Genet 2012; 50:978-89. [PMID: 22983666 DOI: 10.1007/s10528-012-9537-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 06/26/2012] [Indexed: 10/27/2022]
Abstract
More than 400 pentatricopeptide repeat (PPR) genes have been found in higher plants, but most of them have not been functionally analyzed and their origins are still obscure. In this study, we performed phylogenetic genomewide comparisons of the PPR gene family in indica and japonica rice to explore the expansion mechanisms of these genes in higher plants. The functions of PPR genes in plant CMS/Rf systems are also discussed. The results indicate that (1) unequal crossing over participated in the expansion of the newly evolved PPR genes in indica and japonica rice genomes, (2) CMS/Rf systems are different in monocots and dicots, (3) the BT-type CMS/Rf system exists in both indica and japonica rice, and (4) both the PPR gene family and the BT-type CMS/Rf system may have existed before the divergence of indica and japonica rice.
Collapse
|
195
|
Verbitskiy D, Zehrmann A, Härtel B, Brennicke A, Takenaka M. Two related RNA-editing proteins target the same sites in mitochondria of Arabidopsis thaliana. J Biol Chem 2012; 287:38064-72. [PMID: 22977245 DOI: 10.1074/jbc.m112.397992] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The facilitators for specific cytosine-to-uridine RNA-editing events in plant mitochondria and plastids are pentatricopeptide repeat (PPR)-containing proteins with specific additional C-terminal domains. Here we report the related PPR proteins mitochondrial editing factor 8 (MEF8) and MEF8S with only five such repeats each to be both involved in RNA editing at the same two sites in mitochondria of Arabidopsis thaliana. Mutants of MEF8 show diminished editing in leaves but not in pollen, whereas mutants of the related protein MEF8S show reduced RNA editing in pollen but not in leaves. Overexpressed MEF8 or MEF8S both increase editing at the two target sites in a mef8 mutant. Double mutants of MEF8 and MEF8S are not viable although both identified target sites are in mRNAs for nonessential proteins. This suggests that MEF8 and MEF8S may have other essential functions beyond these two editing sites in complex I mRNAs.
Collapse
|
196
|
Boussardon C, Salone V, Avon A, Berthomé R, Hammani K, Okuda K, Shikanai T, Small I, Lurin C. Two interacting proteins are necessary for the editing of the NdhD-1 site in Arabidopsis plastids. THE PLANT CELL 2012; 24:3684-94. [PMID: 23001034 PMCID: PMC3480295 DOI: 10.1105/tpc.112.099507] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
After transcription, mRNA editing in angiosperm chloroplasts and mitochondria results in the conversion of cytidine to uridine by deamination. Analysis of Arabidopsis thaliana mutants affected in RNA editing have shown that many pentatricopeptide repeat proteins (PPRs) are required for specific cytidine deamination events. PPR proteins have been shown to be sequence-specific RNA binding proteins allowing the recognition of the C to be edited. The C-terminal DYW domain present in many editing factors has been proposed to catalyze C deamination, as it shows sequence similarities with cytidine deaminases in other organisms. However, many editing factors, such as the first to be discovered, CHLORORESPIRATORY REDUCTION4 (CRR4), lack this domain, so its importance has been unclear. Using a reverse genetic approach, we identified DYW1, an RNA editing factor acting specifically on the plastid ndhD-1 editing site recognized by CRR4. Unlike other known editing factors, DYW1 contains no identifiable PPR motifs but does contain a clear DYW domain. We were able to show interaction between CRR4 and DYW1 by bimolecular fluorescence complementation and to reconstitute a functional chimeric CRR4-DYW1 protein complementing the crr4 dyw1double mutant. We propose that CRR4 and DYW1 act together to edit the ndhD-1 site.
Collapse
Affiliation(s)
- Clément Boussardon
- Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche, Institut National de la Recherche Agronomique/Université Evry Val d'Essonne/Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique 91057, 91057 Evry cedex, France
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Véronique Salone
- Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche, Institut National de la Recherche Agronomique/Université Evry Val d'Essonne/Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique 91057, 91057 Evry cedex, France
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Alexandra Avon
- Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche, Institut National de la Recherche Agronomique/Université Evry Val d'Essonne/Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique 91057, 91057 Evry cedex, France
| | - Richard Berthomé
- Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche, Institut National de la Recherche Agronomique/Université Evry Val d'Essonne/Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique 91057, 91057 Evry cedex, France
| | - Kamel Hammani
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Kenji Okuda
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Claire Lurin
- Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche, Institut National de la Recherche Agronomique/Université Evry Val d'Essonne/Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique 91057, 91057 Evry cedex, France
- Address correspondence to
| |
Collapse
|
197
|
Barkan A, Rojas M, Fujii S, Yap A, Chong YS, Bond CS, Small I. A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins. PLoS Genet 2012; 8:e1002910. [PMID: 22916040 PMCID: PMC3420917 DOI: 10.1371/journal.pgen.1002910] [Citation(s) in RCA: 421] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/04/2012] [Indexed: 11/18/2022] Open
Abstract
The pentatricopeptide repeat (PPR) is a helical repeat motif found in an exceptionally large family of RNA-binding proteins that functions in mitochondrial and chloroplast gene expression. PPR proteins harbor between 2 and 30 repeats and typically bind single-stranded RNA in a sequence-specific fashion. However, the basis for sequence-specific RNA recognition by PPR tracts has been unknown. We used computational methods to infer a code for nucleotide recognition involving two amino acids in each repeat, and we validated this model by recoding a PPR protein to bind novel RNA sequences in vitro. Our results show that PPR tracts bind RNA via a modular recognition mechanism that differs from previously described RNA-protein recognition modes and that underpins a natural library of specific protein/RNA partners of unprecedented size and diversity. These findings provide a significant step toward the prediction of native binding sites of the enormous number of PPR proteins found in nature. Furthermore, the extraordinary evolutionary plasticity of the PPR family suggests that the PPR scaffold will be particularly amenable to redesign for new sequence specificities and functions.
Collapse
Affiliation(s)
- Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- * E-mail: (AB); (IS)
| | - Margarita Rojas
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Sota Fujii
- Centre of Excellence in Computational Systems Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Aaron Yap
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Yee Seng Chong
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
| | - Charles S. Bond
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ian Small
- Centre of Excellence in Computational Systems Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- * E-mail: (AB); (IS)
| |
Collapse
|
198
|
Rackham O, Mercer TR, Filipovska A. The human mitochondrial transcriptome and the RNA-binding proteins that regulate its expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:675-95. [DOI: 10.1002/wrna.1128] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
199
|
Nuclear DYW-type PPR gene families diversify with increasing RNA editing frequencies in liverwort and moss mitochondria. J Mol Evol 2012; 74:37-51. [PMID: 22302222 DOI: 10.1007/s00239-012-9486-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
Abstract
RNA editing in mitochondria and chloroplasts of land plants alters transcript sequences by site-specific conversions of cytidines into uridines. RNA editing frequencies vary extremely between land plant clades, ranging from zero in some liverworts to more than 2,000 sites in lycophytes. Unique pentatricopeptide repeat (PPR) proteins with variable domain extension (E/E+/DYW) have recently been identified as specific editing site recognition factors in model plants. The distinctive functions of these PPR protein domain additions have remained unclear, although deaminase function has been proposed for the DYW domain. To shed light on diversity of RNA editing and DYW proteins at the origin of land plant evolution, we investigated editing patterns of the mitochondrial nad5, nad4, and nad2 genes in a wide sampling of more than 100 liverworts and mosses using the recently developed PREPACT program (www.prepact.de) and exemplarily confirmed predicted RNA editing sites in selected taxa. Extreme variability in RNA editing frequency is seen both in liverworts and mosses. Only few editings exist in the liverwort Lejeunea cavifolia or the moss Pogonatum urnigerum whereas up to 20% of cytidines are edited in the liverwort Haplomitrium mnioides or the moss Takakia lepidozioides. Interestingly, the latter are taxa that branch very early within their respective clades. Amplicons targeting the E/E+/DYW domains and subsequent random clone sequencing show DYW domains among bryophytes to be highly conserved in comparison with their angiosperm counterparts and to correlate well with RNA editing frequencies regarding their diversities. We propose that DYW proteins are the key players of RNA editing at the origin of land plants.
Collapse
|
200
|
Nakamura T, Yagi Y, Kobayashi K. Mechanistic insight into pentatricopeptide repeat proteins as sequence-specific RNA-binding proteins for organellar RNAs in plants. PLANT & CELL PHYSIOLOGY 2012; 53:1171-9. [PMID: 22576772 DOI: 10.1093/pcp/pcs069] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The pentatricopeptide repeat (PPR) protein family is highly expanded in terrestrial plants. Arabidopsis contains 450 PPR genes, which represents 2% of the total protein-coding genes. PPR proteins are eukaryote-specific RNA-binding proteins implicated in multiple aspects of RNA metabolism of organellar genes. Most PPR proteins affect a single or small subset of gene(s), acting in a gene-specific manner. Studies over the last 10 years have revealed the significance of this protein family in coordinated gene expression in different compartments: the nucleus, chloroplast and mitochondrion. Here, we summarize recent studies addressing the mechanistic aspect of PPR proteins.
Collapse
Affiliation(s)
- Takahiro Nakamura
- Department of Research Superstar Program, Institute of Advanced Study, Kyushu University, Fukuoka 812-8581, Japan.
| | | | | |
Collapse
|