151
|
Schie IW, Krafft C, Popp J. Applications of coherent Raman scattering microscopies to clinical and biological studies. Analyst 2015; 140:3897-909. [PMID: 25811305 DOI: 10.1039/c5an00178a] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Coherent anti-Stokes Raman scattering (CARS) microscopy and stimulated Raman scattering (SRS) microscopy are two nonlinear optical imaging modalities that are at the frontier of label-free and chemical specific biological and clinical diagnostics. The applications of coherent Raman scattering (CRS) microscopies are multifold, ranging from investigation of basic aspects of cell biology to the label-free detection of pathologies. This review summarizes recent progress of biological and clinical applications of CRS between 2008 and 2014, covering applications such as lipid droplet research, single cell analysis, tissue imaging and multiphoton histopathology of atherosclerosis, myelin sheaths, skin, hair, pharmaceutics, and cancer and surgical margin detection.
Collapse
Affiliation(s)
- Iwan W Schie
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany.
| | | | | |
Collapse
|
152
|
Kwiatkowska M, Polit JT, Stępiński D, Popłońska K, Wojtczak A, Domίnguez E, Heredia A. Lipotubuloids in ovary epidermis of Ornithogalum umbellatum act as metabolons: suggestion of the name 'lipotubuloid metabolon'. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1157-63. [PMID: 25540439 PMCID: PMC4438445 DOI: 10.1093/jxb/eru469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A metabolon is a temporary, structural-functional complex formed between sequential metabolic enzymes and cellular elements. Cytoplasmic domains called lipotubuloids are present in Ornithogalum umbellatum ovary epidermis. They consist of numerous lipid bodies entwined with microtubules, polysomes, rough endoplasmic reticulum (RER), and actin filaments connected to microtubules through myosin and kinesin. A few mitochondria, Golgi structures, and microbodies are also observed and also, at later development stages, autolytic vacuoles. Each lipotubuloid is surrounded by a tonoplast as it invaginates into a vacuole. These structures appear in young cells, which grow intensively reaching 30-fold enlargement but do not divide. They also become larger due to an increasing number of lipid bodies formed in the RER by the accumulation of lipids between leaflets of the phospholipid bilayer. When a cell ceases to grow, the lipotubuloids disintegrate into individual structures. Light and electron microscope studies using filming techniques, autoradiography with [(3)H]palmitic acid, immunogold labelling with antibodies against DGAT2, phospholipase D1 and lipase, and double immunogold labelling with antibodies against myosin and kinesin, as well as experiments with propyzamide, a microtubule activity inhibitor, have shown that lipotubuloids are functionally and structurally integrated metabolons [here termed lipotubuloid metabolons (LMs)] occurring temporarily in growing cells. They synthesize lipids in lipid bodies in cooperation with microtubules. Some of these lipids are metabolized and used by the cell as nutrients, and others are transformed into cuticle whose formation is mediated by cutinsomes. The latter were discovered in planta using specific anti-cutinsome antibodies visualized by gold labelling. Moreover, LMs are able to rotate autonomously due to the interaction of microtubules, actin filaments, and motor proteins, which influence microtubules by changing their diameter.
Collapse
Affiliation(s)
- Maria Kwiatkowska
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland
| | - Justyna T Polit
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland
| | - Dariusz Stępiński
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland
| | - Katarzyna Popłońska
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland
| | - Agnieszka Wojtczak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland
| | - Eva Domίnguez
- Instituto de Hortofruicultura Subtropical y Mediterránea 'La Mayora' UMA-CSIC, Universidad de Málaga, Campus d Teatinos, 29071 Málaga, Spain
| | - Antonio Heredia
- Instituto de Hortofruicultura Subtropical y Mediterránea 'La Mayora' UMA-CSIC, Universidad de Málaga, Campus d Teatinos, 29071 Málaga, Spain
| |
Collapse
|
153
|
Izem L, Greene DJ, Bialkowska K, Morton RE. Overexpression of full-length cholesteryl ester transfer protein in SW872 cells reduces lipid accumulation. J Lipid Res 2015; 56:515-525. [PMID: 25593327 DOI: 10.1194/jlr.m053678] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cells produce two cholesteryl ester transfer protein (CETP) isoforms, full-length and a shorter variant produced by alternative splicing. Blocking synthesis of both isoforms disrupts lipid metabolism and storage. To further define the role of CETP in cellular lipid metabolism, we stably overexpressed full-length CETP in SW872 cells. These CETP(+) cells had several-fold higher intracellular CETP and accumulated 50% less TG due to a 26% decrease in TG synthesis and 2.5-fold higher TG turnover rate. Reduced TG synthesis was due to decreased fatty acid uptake and impaired conversion of diglyceride to TG even though diacylglycerol acyltransferase activity was normal. Sterol-regulatory element binding protein 1 mRNA levels were normal, and although PPARγ expression was reduced, the expression of several of its target genes including adipocyte triglyceride lipase, FASN, and APOE was normal. CETP(+) cells contained smaller lipid droplets, consistent with their higher levels of perilipin protein family (PLIN) 3 compared with PLIN1 and PLIN2. Intracellular CETP was mostly associated with the endoplasmic reticulum, although CETP near lipid droplets poorly colocalized with this membrane. A small pool of CETP resided in the cytoplasm, and a subfraction coisolated with lipid droplets. These data show that overexpression of full-length CETP disrupts lipid homeostasis resulting in the formation of smaller, more metabolically active lipid droplets.
Collapse
Affiliation(s)
- Lahoucine Izem
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Diane J Greene
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Katarzyna Bialkowska
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Richard E Morton
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195.
| |
Collapse
|
154
|
Dynamics of the lipid droplet proteome of the Oleaginous yeast rhodosporidium toruloides. EUKARYOTIC CELL 2015; 14:252-64. [PMID: 25576482 DOI: 10.1128/ec.00141-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Lipid droplets (LDs) are ubiquitous organelles that serve as a neutral lipid reservoir and a hub for lipid metabolism. Manipulating LD formation, evolution, and mobilization in oleaginous species may lead to the production of fatty acid-derived biofuels and chemicals. However, key factors regulating LD dynamics remain poorly characterized. Here we purified the LDs and identified LD-associated proteins from cells of the lipid-producing yeast Rhodosporidium toruloides cultured under nutrient-rich, nitrogen-limited, and phosphorus-limited conditions. The LD proteome consisted of 226 proteins, many of which are involved in lipid metabolism and LD formation and evolution. Further analysis of our previous comparative transcriptome and proteome data sets indicated that the transcription level of 85 genes and protein abundance of 77 proteins changed under nutrient-limited conditions. Such changes were highly relevant to lipid accumulation and partially confirmed by reverse transcription-quantitative PCR. We demonstrated that the major LD structure protein Ldp1 is an LD marker protein being upregulated in lipid-rich cells. When overexpressed in Saccharomyces cerevisiae, Ldp1 localized on the LD surface and facilitated giant LD formation, suggesting that Ldp1 plays an important role in controlling LD dynamics. Our results significantly advance the understanding of the molecular basis of lipid overproduction and storage in oleaginous yeasts and will be valuable for the development of superior lipid producers.
Collapse
|
155
|
Abramczyk H, Surmacki J, Kopeć M, Olejnik AK, Lubecka-Pietruszewska K, Fabianowska-Majewska K. The role of lipid droplets and adipocytes in cancer. Raman imaging of cell cultures: MCF10A, MCF7, and MDA-MB-231 compared to adipocytes in cancerous human breast tissue. Analyst 2015; 140:2224-35. [DOI: 10.1039/c4an01875c] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We discussed the potential of lipid droplets in nonmalignant and malignant human breast epithelial cell lines as a prognostic marker in breast cancer.
Collapse
Affiliation(s)
- Halina Abramczyk
- Lodz University of Technology
- Institute of Applied Radiation Chemistry
- Laboratory of Laser Molecular Spectroscopy
- 93-590 Lodz
- Poland
| | - Jakub Surmacki
- Lodz University of Technology
- Institute of Applied Radiation Chemistry
- Laboratory of Laser Molecular Spectroscopy
- 93-590 Lodz
- Poland
| | - Monika Kopeć
- Lodz University of Technology
- Institute of Applied Radiation Chemistry
- Laboratory of Laser Molecular Spectroscopy
- 93-590 Lodz
- Poland
| | - Alicja Klaudia Olejnik
- Lodz University of Technology
- Institute of Applied Radiation Chemistry
- Laboratory of Laser Molecular Spectroscopy
- 93-590 Lodz
- Poland
| | | | | |
Collapse
|
156
|
Varlamov O, Chu M, Cornea A, Sampath H, Roberts CT. Cell-autonomous heterogeneity of nutrient uptake in white adipose tissue of rhesus macaques. Endocrinology 2015; 156:80-9. [PMID: 25356825 PMCID: PMC4272393 DOI: 10.1210/en.2014-1699] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phenotypic diversity may play an adaptive role by providing graded biological responses to fluctuations in environmental stimuli. We used single-cell imaging of the metabolizable fluorescent fatty acid analog 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-C12 and fluorescent 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG) to explore cellular heterogeneity in nutrient uptake in white adipose tissue (WAT) explants of rhesus macaques. Surprisingly, WAT displayed a striking cell size-independent mosaic pattern, in that adjacent adipocytes varied with respect to insulin-stimulated BODIPY-C12 and 2-NBDG uptake. Relative free fatty acid (FFA) transport activity correlated with the cellular levels of FFA transporter protein-1 and the scavenger receptor CD36 in individual adipocytes. In vitro incubation of WAT explants for 24 hours caused partial desynchronization of cellular responses, suggesting that adipocytes may slowly alter their differential nutrient uptake activity. In vitro-differentiated human adipocytes also exhibited a mosaic pattern of BODIPY-C12 uptake. WAT from animals containing a homogeneous population of large adipocytes was nonmosaic, in that every adipocyte exhibited a similar level of BODIPY-C12 fluorescence, suggesting that the development of obesity is associated with the loss of heterogeneity in WAT. Hence, for the first time, we demonstrate an intrinsic heterogeneity in FFA and glucose transport activity in WAT.
Collapse
Affiliation(s)
- Oleg Varlamov
- Divisions of Diabetes, Obesity, and Metabolism and Developmental and Reproductive Science (O.V., C.T.R.), and Division of Neuroscience (A.C.), Oregon National Primate Research Center, Beaverton, Oregon 97006; and Division of Endocrinology, Diabetes, and Clinical Nutrition, Department of Medicine (M.C., C.T.R.) and Center for Research Occupational and Environmental Toxicology (H.S.), Oregon Health and Science University, Portland, Oregon 97239
| | | | | | | | | |
Collapse
|
157
|
Cartwright BR, Binns DD, Hilton CL, Han S, Gao Q, Goodman JM. Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology. Mol Biol Cell 2014; 26:726-39. [PMID: 25540432 PMCID: PMC4325842 DOI: 10.1091/mbc.e14-08-1303] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Loss-of-function mutations in seipin cause severe lipodystrophy, yet seipin's function in incompletely understood. Seipin is shown here to be important specifically for initiation of droplet formation, and a deletion mutant allows dissection of this function from maintenance of droplet morphology and vectorial droplet budding. Seipin is necessary for both adipogenesis and lipid droplet (LD) organization in nonadipose tissues; however, its molecular function is incompletely understood. Phenotypes in the seipin-null mutant of Saccharomyces cerevisiae include aberrant droplet morphology (endoplasmic reticulum–droplet clusters and size heterogeneity) and sensitivity of droplet size to changes in phospholipid synthesis. It has not been clear, however, whether seipin acts in initiation of droplet synthesis or at a later step. Here we utilize a system of de novo droplet formation to show that the absence of seipin results in a delay in droplet appearance with concomitant accumulation of neutral lipid in membranes. We also demonstrate that seipin is required for vectorial budding of droplets toward the cytoplasm. Furthermore, we find that the normal rate of droplet initiation depends on 14 amino acids at the amino terminus of seipin, deletion of which results in fewer, larger droplets that are consistent with a delay in initiation but are otherwise normal in morphology. Importantly, other functions of seipin, namely vectorial budding and resistance to inositol, are retained in this mutant. We conclude that seipin has dissectible roles in both promoting early LD initiation and in regulating LD morphology, supporting its importance in LD biogenesis.
Collapse
Affiliation(s)
- Bethany R Cartwright
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9041
| | - Derk D Binns
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9041
| | - Christopher L Hilton
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9041
| | - Sungwon Han
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9041
| | - Qiang Gao
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9041
| | - Joel M Goodman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9041
| |
Collapse
|
158
|
Sims JK, Rohr B, Miller E, Lee K. Automated Image Processing for Spatially Resolved Analysis of Lipid Droplets in Cultured 3T3-L1 Adipocytes. Tissue Eng Part C Methods 2014; 21:605-13. [PMID: 25390760 DOI: 10.1089/ten.tec.2014.0513] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cellular hypertrophy of adipose tissue underlies many of the proposed proinflammatory mechanisms for obesity-related diseases. Adipose hypertrophy results from an accumulation of esterified lipids (triglycerides) into membrane-enclosed intracellular lipid droplets (LDs). The coupling between adipocyte metabolism and LD morphology could be exploited to investigate biochemical regulation of lipid pathways by monitoring the dynamics of LDs. This article describes an image processing method to identify LDs based on several distinctive optical and morphological characteristics of these cellular bodies as they appear under bright-field. The algorithm was developed against images of 3T3-L1 preadipocyte cultures induced to differentiate into adipocytes. We show that the calculated lipid volumes are in excellent agreement with enzymatic assay data on total intracellular triglyceride content. We also demonstrate that the image processing method can efficiently characterize the highly heterogeneous spatial distribution of LDs in a culture by showing that differentiation occurs in distinct clusters separated by regions of nearly undifferentiated cells. Prospectively, the LD detection method described in this work could be applied to time-lapse data collected with simple visible light microscopy equipment to quantitatively investigate LD dynamics.
Collapse
Affiliation(s)
- James Kenneth Sims
- 1Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts
| | - Brian Rohr
- 1Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts
| | - Eric Miller
- 2Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts
| | - Kyongbum Lee
- 1Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
159
|
Chu M, Sampath H, Cahana DY, Kahl CA, Somwar R, Cornea A, Roberts CT, Varlamov O. Spatiotemporal dynamics of triglyceride storage in unilocular adipocytes. Mol Biol Cell 2014; 25:4096-105. [PMID: 25298400 PMCID: PMC4263452 DOI: 10.1091/mbc.e14-06-1085] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Real-time fluorescence microscopy is used to investigate the trafficking of metabolizable fluorescent fatty acid in unilocular adipocytes from adipose tissue of nonhuman primates. The study reveals novel cell biological features that may contribute to the mechanism of adipocyte hypertrophy. The spatiotemporal dynamics of triglyceride (TG) storage in unilocular adipocytes are not well understood. Here we applied ex vivo technology to study trafficking and metabolism of fluorescent fatty acids in adipose tissue explants. Live imaging revealed multiple cytoplasmic nodules surrounding the large central lipid droplet (cLD) of unilocular adipocytes. Each cytoplasmic nodule harbors a series of closely associated cellular organelles, including micro–lipid droplets (mLDs), mitochondria, and the endoplasmic reticulum. Exogenously added free fatty acids are rapidly adsorbed by mLDs and concurrently get esterified to TG. This process is greatly accelerated by insulin. mLDs transfer their content to the cLD, serving as intermediates that mediate packaging of newly synthesized TG in the large interior of a unilocular adipocyte. This study reveals novel cell biological features that may contribute to the mechanism of adipocyte hypertrophy.
Collapse
Affiliation(s)
- Michael Chu
- Division of Endocrinology, Diabetes, and Clinical Nutrition, Department of Medicine, Portland, OR 97239
| | - Harini Sampath
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR 97239
| | - David Y. Cahana
- Divisions of Diabetes, Obesity, and Metabolism and Developmental and Reproductive Science, Beaverton, OR 97006
| | | | - Romel Somwar
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Anda Cornea
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Charles T. Roberts
- Division of Endocrinology, Diabetes, and Clinical Nutrition, Department of Medicine, Portland, OR 97239
- Divisions of Diabetes, Obesity, and Metabolism and Developmental and Reproductive Science, Beaverton, OR 97006
| | - Oleg Varlamov
- Divisions of Diabetes, Obesity, and Metabolism and Developmental and Reproductive Science, Beaverton, OR 97006
| |
Collapse
|
160
|
Moessinger C, Klizaite K, Steinhagen A, Philippou-Massier J, Shevchenko A, Hoch M, Ejsing CS, Thiele C. Two different pathways of phosphatidylcholine synthesis, the Kennedy Pathway and the Lands Cycle, differentially regulate cellular triacylglycerol storage. BMC Cell Biol 2014; 15:43. [PMID: 25491198 PMCID: PMC4293825 DOI: 10.1186/s12860-014-0043-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 11/17/2014] [Indexed: 02/01/2023] Open
Abstract
Background Lipids are stored within cells in lipid droplets (LDs). They consist of a core of neutral lipids surrounded by a monolayer of phospholipids, predominantly phosphatidylcholine (PC). LDs are very dynamic and can rapidly change in size upon lipid uptake or release. These dynamics require a fast adaptation of LD surface. We have recently shown that two Lands cycle PC synthesizing enyzmes, LPCAT1 and LPCAT2 can localize to the LD surface. Results Here, we show that knock-down of both enzymes leads to an increase in LD size without changes in the total amount of neutral lipids, while interference with the de-novo Kennedy pathway PC biosynthesis is associated with changes in triacylglyceride synthesis. We show that function of LPCAT1 and 2 is conserved in Drosophila melanogaster by the ortholog CG32699. Furthermore we demonstrate that modulation of the LD pool by LPCAT1 influences the release of lipoprotein from liver cells. Conclusion Activity of the Kennedy pathway regulates the balance between phospholipids and neutral lipids, while the Lands cycle regulates lipid droplet size by regulating surface availability and influencing surface to volume ratio. Differences in lipid droplet size may account for differences in lipid dynamics and be relevant to understand lipid overload diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12860-014-0043-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christine Moessinger
- Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany. .,Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307, Dresden, Germany.
| | - Kristina Klizaite
- Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany.
| | - Almut Steinhagen
- Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany.
| | - Julia Philippou-Massier
- Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany. .,Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307, Dresden, Germany.
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307, Dresden, Germany.
| | - Michael Hoch
- Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany.
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark.
| | - Christoph Thiele
- Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany.
| |
Collapse
|
161
|
Gavgiotaki E, Filippidis G, Kalognomou M, Tsouko AA, Skordos I, Fotakis C, Athanassakis I. Third Harmonic Generation microscopy as a reliable diagnostic tool for evaluating lipid body modification during cell activation: the example of BV-2 microglia cells. J Struct Biol 2014; 189:105-13. [PMID: 25486610 DOI: 10.1016/j.jsb.2014.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/22/2014] [Accepted: 11/30/2014] [Indexed: 10/24/2022]
Abstract
Nonlinear optical processes have found widespread applications in fields ranging from fundamental physics to biomedicine. In this study, we attempted to evaluate cell activation by using the Third Harmonic Generation (THG) imaging microscopy as a new diagnostic tool. The BV-2 microglia cell line with or without activation by lipopolysaccharide was chosen as a representative biological model. The results showed that THG imaging could discriminate between the control versus activated state of BV-2 cells not only as to THG signal intensity but also as to THG signal area, while verifying once more that the majority of the intracellular detected signal corresponds to lipid bodies. Since THG imaging is a real time, non-destructive modality and does not require any prior cell processing and staining, the results presented here provide an important tool for normal versus activated cell discrimination, which could be proved very useful in the study of inflammation.
Collapse
Affiliation(s)
- E Gavgiotaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, 71110 Heraklion, Greece; Department of Physics, University of Crete, Greece
| | - G Filippidis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, 71110 Heraklion, Greece
| | - M Kalognomou
- Department of Biology, University of Crete, Heraklion 71409, Crete, Greece
| | - A A Tsouko
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, 71110 Heraklion, Greece; Department of Physics, University of Crete, Greece
| | - I Skordos
- Department of Biology, University of Crete, Heraklion 71409, Crete, Greece
| | - C Fotakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, 71110 Heraklion, Greece; Department of Physics, University of Crete, Greece
| | - I Athanassakis
- Department of Biology, University of Crete, Heraklion 71409, Crete, Greece.
| |
Collapse
|
162
|
Wu L, Xu D, Zhou L, Xie B, Yu L, Yang H, Huang L, Ye J, Deng H, Yuan YA, Chen S, Li P. Rab8a-AS160-MSS4 regulatory circuit controls lipid droplet fusion and growth. Dev Cell 2014; 30:378-93. [PMID: 25158853 DOI: 10.1016/j.devcel.2014.07.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/06/2014] [Accepted: 07/10/2014] [Indexed: 11/15/2022]
Abstract
Rab GTPases, by targeting to specific membrane compartments, play essential roles in membrane trafficking. Lipid droplets (LDs) are dynamic subcellular organelles whose growth is closely linked to obesity and hepatic steatosis. Fsp27 is shown to be required for LD fusion and growth by enriching at LD-LD contact sites. Here, we identify Rab8a as a direct interactor and regulator of Fsp27 in mediating LD fusion in adipocytes. Knockdown of Rab8a in the livers of ob/ob mice results in the accumulation of smaller LDs and lower hepatic lipid levels. Surprisingly, it is the GDP-bound form of Rab8a that exhibits fusion-promoting activity. We further discover AS160 as the GTPase activating protein (GAP) for Rab8a, which forms a ternary complex with Fsp27 and Rab8a to positively regulate LD fusion. MSS4 antagonizes Fsp27-mediated LD fusion activity through Rab8a. Our results have thus revealed a mechanistic signaling circuit controlling LD fusion and fatty liver formation.
Collapse
Affiliation(s)
- Lizhen Wu
- MOE Key Laboratory of Bioinformatics and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dijin Xu
- MOE Key Laboratory of Bioinformatics and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Linkang Zhou
- MOE Key Laboratory of Bioinformatics and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bingxian Xie
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China
| | - Li Yu
- MOE Key Laboratory of Bioinformatics and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney NSW 2052, Australia
| | - Lei Huang
- Cell Biology Core Facility and Proteomics Facility, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jing Ye
- Department of Pathology, The Fourth Military Medical University, Xi'an 710032, China
| | - Haiteng Deng
- Cell Biology Core Facility and Proteomics Facility, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Y Adam Yuan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Shuai Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China
| | - Peng Li
- MOE Key Laboratory of Bioinformatics and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
163
|
Steuwe C, Patel II, Ul-Hasan M, Schreiner A, Boren J, Brindle KM, Reichelt S, Mahajan S. CARS based label-free assay for assessment of drugs by monitoring lipid droplets in tumour cells. JOURNAL OF BIOPHOTONICS 2014; 7:906-13. [PMID: 24343869 DOI: 10.1002/jbio.201300110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/23/2013] [Accepted: 11/07/2013] [Indexed: 05/03/2023]
Abstract
Coherent anti-Stokes Raman scattering (CARS) is becoming an established tool for label-free multi-photon imaging based on molecule specific vibrations in the sample. The technique has proven to be particularly useful for imaging lipids, which are abundant in cells and tissues, including cytoplasmic lipid droplets (LD), which are recognized as dynamic organelles involved in many cellular functions. The increase in the number of lipid droplets in cells undergoing cell proliferation is a common feature in many neoplastic processes [1] and an increase in LD number also appears to be an early marker of drug-induced cell stress and subsequent apoptosis [3]. In this paper, a CARS-based label-free method is presented to monitor the increase in LD content in HCT116 colon tumour cells treated with the chemotherapeutic drugs Etoposide, Camptothecin and the protein kinase inhibitor Staurosporine. Using CARS, LDs can easily be distinguished from other cell components without the application of fluorescent dyes and provides a label-free non-invasive drug screening assay that could be used not only with cells and tissues ex vivo but potentially also in vivo.
Collapse
Affiliation(s)
- Christian Steuwe
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK; Institute of Life Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
164
|
He Y, Yam C, Pomraning K, Chin JSR, Yew JY, Freitag M, Oliferenko S. Increase in cellular triacylglycerol content and emergence of large ER-associated lipid droplets in the absence of CDP-DG synthase function. Mol Biol Cell 2014; 25:4083-95. [PMID: 25318672 PMCID: PMC4263451 DOI: 10.1091/mbc.e14-03-0832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cds1 is an evolutionarily conserved CDP-DG synthase. Fission yeast are used to demonstrate that cells deficient in its function exhibit markedly increased triacylglycerol content and assemble unusual ER-associated lipid droplets that recruit the triacylglycerol synthesis machinery and grow by expansion. Excess fatty acids and sterols are stored as triacylglycerols and sterol esters in specialized cellular organelles, called lipid droplets. Understanding what determines the cellular amount of neutral lipids and their packaging into lipid droplets is of fundamental and applied interest. Using two species of fission yeast, we show that cycling cells deficient in the function of the ER-resident CDP-DG synthase Cds1 exhibit markedly increased triacylglycerol content and assemble large lipid droplets closely associated with the ER membranes. We demonstrate that these unusual structures recruit the triacylglycerol synthesis machinery and grow by expansion rather than by fusion. Our results suggest that interfering with the CDP-DG route of phosphatidic acid utilization rewires cellular metabolism to adopt a triacylglycerol-rich lifestyle reliant on the Kennedy pathway.
Collapse
Affiliation(s)
- Yue He
- Temasek Life Sciences Laboratory, 117604 Singapore Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Candice Yam
- Temasek Life Sciences Laboratory, 117604 Singapore Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Kyle Pomraning
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| | - Jacqueline S R Chin
- Temasek Life Sciences Laboratory, 117604 Singapore Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Joanne Y Yew
- Temasek Life Sciences Laboratory, 117604 Singapore Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| | - Snezhana Oliferenko
- Department of Biological Sciences, National University of Singapore, 117543 Singapore Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
165
|
Belov GA. Modulation of lipid synthesis and trafficking pathways by picornaviruses. Curr Opin Virol 2014; 9:19-23. [PMID: 25240228 DOI: 10.1016/j.coviro.2014.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/28/2014] [Indexed: 01/28/2023]
Abstract
Picornaviruses include rapidly replicating viruses that may complete their infectious cycle within a few hours. During this short time the massive development of viral replication organelles completely transforms the cellular membrane landscape. The origin of these structures and mechanism(s) underlying their rapid expansion are still poorly understood. Recent studies revealed profound reorganization of synthesis and distribution of major structural lipids in infected cells. These data show that the lipid composition of the replication organelles is significantly different from that of preexisting cellular membranes. The apparently universal activation of specific lipid syntheses by diverse picornaviruses and at least some other (+)RNA viruses suggests that the mechanism(s) of replication organelle development may be conserved among distantly related viruses.
Collapse
Affiliation(s)
- George A Belov
- Department of Veterinary Medicine, University of Maryland, and Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20742, United States.
| |
Collapse
|
166
|
Yen CLE, Nelson DW, Yen MI. Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism. J Lipid Res 2014; 56:489-501. [PMID: 25231105 DOI: 10.1194/jlr.r052902] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The intestine plays a prominent role in the biosynthesis of triacylglycerol (triglyceride; TAG). Digested dietary TAG is repackaged in the intestine to form the hydrophobic core of chylomicrons, which deliver metabolic fuels, essential fatty acids, and other lipid-soluble nutrients to the peripheral tissues. By controlling the flux of dietary fat into the circulation, intestinal TAG synthesis can greatly impact systemic metabolism. Genes encoding many of the enzymes involved in TAG synthesis have been identified. Among TAG synthesis enzymes, acyl-CoA:monoacylglycerol acyltransferase 2 and acyl-CoA:diacylglycerol acyltransferase (DGAT)1 are highly expressed in the intestine. Their physiological functions have been examined in the context of whole organisms using genetically engineered mice and, in the case of DGAT1, specific inhibitors. An emerging theme from recent findings is that limiting the rate of TAG synthesis in the intestine can modulate gut hormone secretion, lipid metabolism, and systemic energy balance. The underlying mechanisms and their implications for humans are yet to be explored. Pharmacological inhibition of TAG hydrolysis in the intestinal lumen has been employed to combat obesity and associated disorders with modest efficacy and unwanted side effects. The therapeutic potential of inhibiting specific enzymes involved in intestinal TAG synthesis warrants further investigation.
Collapse
Affiliation(s)
- Chi-Liang Eric Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| | - David W Nelson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Mei-I Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
167
|
Melo RCN, Weller PF. Unraveling the complexity of lipid body organelles in human eosinophils. J Leukoc Biol 2014; 96:703-12. [PMID: 25210147 DOI: 10.1189/jlb.3ru0214-110r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lipid-rich organelles are common in many cell types. In cells, such as adipocytes, these organelles are termed LDs, whereas in other cells, such as leukocytes, they are called LBs. The study of leukocyte LBs has attracted attention as a result of their association with human diseases. In leukocytes, such as eosinophils, LB accumulation has been documented extensively during inflammatory conditions. In these cells, LBs are linked to the regulation of immune responses by compartmentalization of several proteins and lipids involved in the control and biosynthesis of inflammatory mediators (eicosanoids). However, it has been unclear how diverse proteins, including membrane-associated enzymes involved in eicosanoid formation, incorporate into LBs, especially if the internal content of LBs is assumed to consist solely of stores of neutral lipids, as present within adipocyte LDs. Studies of the formation, function, and ultrastructure of LBs in eosinophils have been providing insights pertinent to LBs in other leukocytes. Here, we review current knowledge of the composition and function of leukocyte LBs as provided by studies of human eosinophil LBs, including recognitions of the internal architecture of eosinophil LBs based on 3D electron tomographic analyses.
Collapse
Affiliation(s)
- Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Brazil; and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter F Weller
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
168
|
Lucken-Ardjomande Häsler S, Vallis Y, Jolin HE, McKenzie AN, McMahon HT. GRAF1a is a brain-specific protein that promotes lipid droplet clustering and growth, and is enriched at lipid droplet junctions. J Cell Sci 2014; 127:4602-19. [PMID: 25189622 PMCID: PMC4215711 DOI: 10.1242/jcs.147694] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lipid droplets are found in all cell types. Normally present at low levels in the brain, they accumulate in tumours and are associated with neurodegenerative diseases. However, little is known about the mechanisms controlling their homeostasis in the brain. We found that GRAF1a, the longest GRAF1 isoform (GRAF1 is also known as ARHGAP26), was enriched in the brains of neonates. Endogenous GRAF1a was found on lipid droplets in oleic-acid-fed primary glial cells. Exclusive localization required a GRAF1a-specific hydrophobic segment and two membrane-binding regions, a BAR and a PH domain. Overexpression of GRAF1a promoted lipid droplet clustering, inhibited droplet mobility and severely perturbed lipolysis following the chase of cells overloaded with fatty acids. Under these conditions, GRAF1a concentrated at the interface between lipid droplets. Although GRAF1-knockout mice did not show any gross abnormal phenotype, the total lipid droplet volume that accumulated in GRAF1(-/-) primary glia upon incubation with fatty acids was reduced compared to GRAF1(+/+) cells. These results provide additional insights into the mechanisms contributing to lipid droplet growth in non-adipocyte cells, and suggest that proteins with membrane sculpting BAR domains play a role in droplet homeostasis.
Collapse
Affiliation(s)
| | - Yvonne Vallis
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Helen E Jolin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Andrew N McKenzie
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Harvey T McMahon
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
169
|
Characterization of the interaction of diacylglycerol acyltransferase-2 with the endoplasmic reticulum and lipid droplets. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1318-28. [DOI: 10.1016/j.bbalip.2014.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/30/2014] [Accepted: 06/09/2014] [Indexed: 11/23/2022]
|
170
|
Jin Y, McFie PJ, Banman SL, Brandt C, Stone SJ. Diacylglycerol acyltransferase-2 (DGAT2) and monoacylglycerol acyltransferase-2 (MGAT2) interact to promote triacylglycerol synthesis. J Biol Chem 2014; 289:28237-48. [PMID: 25164810 DOI: 10.1074/jbc.m114.571190] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Acyl CoA:1,2-diacylglycerol acyltransferase (DGAT)-2 is an integral membrane protein that catalyzes triacylglycerol (TG) synthesis using diacylglycerol and fatty acyl CoA as substrates. DGAT2 resides in the endoplasmic reticulum (ER), but when cells are incubated with fatty acids, DGAT2 interacts with lipid droplets presumably to catalyze localized TG synthesis for lipid droplet expansion. Previous studies have shown that DGAT2 interacts with proteins that synthesize its fatty acyl CoA substrates. In this study, we provide additional evidence that DGAT2 is present in a protein complex. Using a chemical cross-linker, disuccinimidyl suberate (DSS), we demonstrated that DGAT2 formed a dimer and was also part of a protein complex of ∼ 650 kDa, both in membranes and on lipid droplets. Using co-immunoprecipitation experiments and an in situ proximity ligation assay, we found that DGAT2 interacted with monoacylglycerol acyltransferase (MGAT)-2, an enzyme that catalyzes the synthesis of diacylglycerol. Deletion mutagenesis showed that the interaction with MGAT2 was dependent on the two transmembrane domains of DGAT2. No significant interaction of DGAT2 with lipin1, another enzyme that synthesizes diacylglycerol, could be detected. When co-expressed in cells, DGAT2 and MGAT2 co-localized in the ER and on lipid droplets. Co-expression also resulted in increased TG storage compared with expression of DGAT2 or MGAT2 alone. Incubating McArdle rat hepatoma RH7777 cells with 2-monoacylglycerol caused DGAT2 to translocate to lipid droplets. This also led to the formation of large cytosolic lipid droplets, characteristic of DGAT2, but not DGAT1, and indicated that DGAT2 can utilize monoacylglycerol-derived diacylglycerol. These findings suggest that the interaction of DGAT2 and MGAT2 serves to channel lipid substrates efficiently for TG biosynthesis.
Collapse
Affiliation(s)
- Youzhi Jin
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and
| | - Pamela J McFie
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and
| | - Shanna L Banman
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Curtis Brandt
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and
| | - Scot J Stone
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and
| |
Collapse
|
171
|
Jiang H, Goulbourne CN, Tatar A, Turlo K, Wu D, Beigneux AP, Grovenor CRM, Fong LG, Young SG. High-resolution imaging of dietary lipids in cells and tissues by NanoSIMS analysis. J Lipid Res 2014; 55:2156-66. [PMID: 25143463 DOI: 10.1194/jlr.m053363] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nanoscale secondary ion MS (NanoSIMS) imaging makes it possible to visualize stable isotope-labeled lipids in cells and tissues at 50 nm lateral resolution. Here we report the use of NanoSIMS imaging to visualize lipids in mouse cells and tissues. After administering stable isotope-labeled fatty acids to mice by gavage, NanoSIMS imaging allowed us to visualize neutral lipids in cytosolic lipid droplets in intestinal enterocytes, chylomicrons at the basolateral surface of enterocytes, and lipid droplets in cardiomyocytes and adipocytes. After an injection of stable isotope-enriched triglyceride-rich lipoproteins (TRLs), NanoSIMS imaging documented delivery of lipids to cytosolic lipid droplets in parenchymal cells. Using a combination of backscattered electron (BSE) and NanoSIMS imaging, it was possible to correlate the chemical data provided by NanoSIMS with high-resolution BSE images of cell morphology. This combined imaging approach allowed us to visualize stable isotope-enriched TRLs along the luminal face of heart capillaries and the lipids within heart capillary endothelial cells. We also observed examples of TRLs within the subendothelial spaces of heart capillaries. NanoSIMS imaging provided evidence of defective transport of lipids from the plasma LPs to adipocytes and cardiomyocytes in mice deficient in glycosylphosphatidylinositol-anchored HDL binding protein 1.
Collapse
Affiliation(s)
- Haibo Jiang
- Materials Department, Oxford University, Oxford, United Kingdom
| | - Chris N Goulbourne
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA
| | - Angelica Tatar
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA
| | - Kirsten Turlo
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA
| | - Daniel Wu
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA
| | - Anne P Beigneux
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA
| | | | - Loren G Fong
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA
| | - Stephen G Young
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
172
|
Majzner K, Kochan K, Kachamakova-Trojanowska N, Maslak E, Chlopicki S, Baranska M. Raman Imaging Providing Insights into Chemical Composition of Lipid Droplets of Different Size and Origin: In Hepatocytes and Endothelium. Anal Chem 2014; 86:6666-74. [DOI: 10.1021/ac501395g] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Katarzyna Majzner
- Jagiellonian
Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, 30-348, Poland
- Faculty
of Chemistry, Jagiellonian University, Ingardena 3, Krakow, 30-060, Poland
| | - Kamila Kochan
- Jagiellonian
Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, 30-348, Poland
- Faculty
of Chemistry, Jagiellonian University, Ingardena 3, Krakow, 30-060, Poland
| | - Neli Kachamakova-Trojanowska
- Jagiellonian
Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, 30-348, Poland
| | - Edyta Maslak
- Jagiellonian
Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, 30-348, Poland
| | - Stefan Chlopicki
- Jagiellonian
Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, 30-348, Poland
- Department
of Experimental Pharmacology, Chair of Pharmacology, Jagiellonian University, Grzegorzecka 16, Krakow, 31-531, Poland
| | - Malgorzata Baranska
- Jagiellonian
Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, 30-348, Poland
- Faculty
of Chemistry, Jagiellonian University, Ingardena 3, Krakow, 30-060, Poland
| |
Collapse
|
173
|
Liefhebber JMP, Hague CV, Zhang Q, Wakelam MJO, McLauchlan J. Modulation of triglyceride and cholesterol ester synthesis impairs assembly of infectious hepatitis C virus. J Biol Chem 2014; 289:21276-88. [PMID: 24917668 PMCID: PMC4118089 DOI: 10.1074/jbc.m114.582999] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In hepatitis C virus infection, replication of the viral genome and virion assembly are linked to cellular metabolic processes. In particular, lipid droplets, which store principally triacylglycerides (TAGs) and cholesterol esters (CEs), have been implicated in production of infectious virus. Here, we examine the effect on productive infection of triacsin C and YIC-C8-434, which inhibit synthesis of TAGs and CEs by targeting long-chain acyl-CoA synthetase and acyl-CoA:cholesterol acyltransferase, respectively. Our results present high resolution data on the acylglycerol and cholesterol ester species that were affected by the compounds. Moreover, triacsin C, which blocks both triglyceride and cholesterol ester synthesis, cleared most of the lipid droplets in cells. By contrast, YIC-C8-434, which only abrogates production of cholesterol esters, induced an increase in size of droplets. Although both compounds slightly reduced viral RNA synthesis, they significantly impaired assembly of infectious virions in infected cells. In the case of triacsin C, reduced stability of the viral core protein, which forms the virion nucleocapsid and is targeted to the surface of lipid droplets, correlated with lower virion assembly. In addition, the virus particles that were released from cells had reduced specific infectivity. YIC-C8-434 did not alter the association of core with lipid droplets but appeared to decrease production of infectious virus particles, suggesting a block in virion assembly. Thus, the compounds have antiviral properties, indicating that targeting synthesis of lipids stored in lipid droplets might be an option for therapeutic intervention in treating chronic hepatitis C virus infection.
Collapse
Affiliation(s)
- Jolanda M P Liefhebber
- From the Medical Research Council-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, Scotland, United Kingdom and
| | - Charlotte V Hague
- From the Medical Research Council-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, Scotland, United Kingdom and
| | - Qifeng Zhang
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Michael J O Wakelam
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - John McLauchlan
- From the Medical Research Council-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, Scotland, United Kingdom and
| |
Collapse
|
174
|
McMahon D, Dinh A, Kurz D, Shah D, Han GS, Carman GM, Brasaemle DL. Comparative gene identification 58/α/β hydrolase domain 5 lacks lysophosphatidic acid acyltransferase activity. J Lipid Res 2014; 55:1750-61. [PMID: 24879803 DOI: 10.1194/jlr.m051151] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Indexed: 01/07/2023] Open
Abstract
Mutations in the gene encoding comparative gene identification 58 (CGI-58)/α/β hydrolase domain 5 (ABHD5) cause Chanarin-Dorfman syndrome, characterized by excessive triacylglycerol storage in cells and tissues. CGI-58 has been identified as a coactivator of adipose TG lipase (ATGL) and a lysophosphatidic acid acyltransferase (LPAAT). We developed a molecular model of CGI-58 structure and then mutated predicted active site residues and performed LPAAT activity assays of recombinant WT and mutated CGI-58. When mutations of predicted catalytic residues failed to reduce LPAAT activity, we determined that LPAAT activity was due to a bacterial contaminant of affinity purification procedures, plsC, the sole LPAAT in Escherichia coli Purification protocols were optimized to reduce plsC contamination, in turn reducing LPAAT activity. When CGI-58 was expressed in SM2-1(DE3) cells that lack plsC, lysates lacked LPAAT activity. Additionally, mouse CGI-58 expressed in bacteria as a glutathione-S-transferase fusion protein and human CGI-58 expressed in yeast lacked LPAAT activity. Previously reported lipid binding activity of CGI-58 was revisited using protein-lipid overlays. Recombinant CGI-58 failed to bind lysophosphatidic acid, but interestingly, bound phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 5-phosphate [PI(5)P]. Prebinding CGI-58 with PI(3)P or PI(5)P did not alter its coactivation of ATGL in vitro. In summary, purified recombinant CGI-58 that is functional as an ATGL coactivator lacks LPAAT activity.
Collapse
Affiliation(s)
- Derek McMahon
- Rutgers Center for Lipid Research and Department of Nutritional Sciences and Rutgers Center for Lipid Research and Department of Food Science
| | - Anna Dinh
- Rutgers Center for Lipid Research and Department of Nutritional Sciences and Rutgers Center for Lipid Research and Department of Food Science
| | - Daniel Kurz
- Rutgers Center for Lipid Research and Department of Nutritional Sciences and Rutgers Center for Lipid Research and Department of Food Science
| | - Dharika Shah
- Rutgers Center for Lipid Research and Department of Nutritional Sciences and Rutgers Center for Lipid Research and Department of Food Science
| | - Gil-Soo Han
- Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - George M Carman
- Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Dawn L Brasaemle
- Rutgers Center for Lipid Research and Department of Nutritional Sciences and Rutgers Center for Lipid Research and Department of Food Science
| |
Collapse
|
175
|
Küch EM, Vellaramkalayil R, Zhang I, Lehnen D, Brügger B, Sreemmel W, Ehehalt R, Poppelreuther M, Füllekrug J. Differentially localized acyl-CoA synthetase 4 isoenzymes mediate the metabolic channeling of fatty acids towards phosphatidylinositol. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:227-39. [PMID: 24201376 DOI: 10.1016/j.bbalip.2013.10.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/20/2013] [Accepted: 10/14/2013] [Indexed: 02/06/2023]
Abstract
The acyl-CoA synthetase 4 (ACSL4) has been implicated in carcinogenesis and neuronal development. Acyl-CoA synthetases are essential enzymes of lipid metabolism, and ACSL4 is distinguished by its preference for arachidonic acid. Two human ACSL4 isoforms arising from differential splicing were analyzed by ectopic expression in COS cells. We found that the ACSL4_v1 variant localized to the inner side of the plasma membrane including microvilli, and was also present in the cytosol. ACSL4_v2 contains an additional N-terminal hydrophobic region; this isoform was located at the endoplasmic reticulum and on lipid droplets. A third isoform was designed de novo by appending a mitochondrial targeting signal. All three ACSL4 variants showed the same specific enzyme activity. Overexpression of the isoenzymes increased cellular uptake of arachidonate to the same degree, indicating that the metabolic trapping of fatty acids is independent of the subcellular localization. Remarkably, phospholipid metabolism was changed by ACSL4 expression. Labeling with arachidonate showed that the amount of newly synthesized phosphatidylinositol was increased by all three ACSL4 isoenzymes but not by ACSL1. This was dependent on the expression level and the localization of the ACSL4 isoform. We conclude that in our model system exogenous fatty acids are channeled preferentially towards phosphatidylinositol by ACSL4 overexpression. The differential localization of the endogenous isoenzymes may provide compartment specific precursors of this anionic phospholipid important for many signaling processes.
Collapse
|
176
|
Arrese EL, Saudale FZ, Soulages JL. Lipid Droplets as Signaling Platforms Linking Metabolic and Cellular Functions. Lipid Insights 2014; 7:7-16. [PMID: 25221429 PMCID: PMC4161058 DOI: 10.4137/lpi.s11128] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The main cells of the adipose tissue of animals, adipocytes, are characterized by the presence of large cytosolic lipid droplets (LDs) that store triglyceride (TG) and cholesterol. However, most cells have LDs and the ability to store lipids. LDs have a well-known central role in storage and provision of fatty acids and cholesterol. However, the complexity of the regulation of lipid metabolism on the surface of the LDs is still a matter of intense study. Beyond this role, a number of recent studies have suggested that LDs have major functions in other cellular processes, such as protein storage and degradation, infection, and immunity. Thus, our perception of LDs has been radically transformed from simple globules of fat to highly dynamic organelles of unexpected complexity. Here, we compiled some recent evidence supporting the emerging view that LDs act as platforms connecting a number of relevant metabolic and cellular functions.
Collapse
Affiliation(s)
- Estela L Arrese
- Department of Biochemistry and Molecular Biology; Oklahoma State University; Stillwater, OK, 74078, USA
| | - Fredy Z Saudale
- Department of Biochemistry and Molecular Biology; Oklahoma State University; Stillwater, OK, 74078, USA
| | - Jose L Soulages
- Department of Biochemistry and Molecular Biology; Oklahoma State University; Stillwater, OK, 74078, USA
| |
Collapse
|
177
|
Pol A, Gross SP, Parton RG. Review: biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites. ACTA ACUST UNITED AC 2014; 204:635-46. [PMID: 24590170 PMCID: PMC3941045 DOI: 10.1083/jcb.201311051] [Citation(s) in RCA: 361] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipid droplets (LDs) are ubiquitous dynamic organelles that store and supply lipids in all eukaryotic and some prokaryotic cells for energy metabolism, membrane synthesis, and production of essential lipid-derived molecules. Interest in the organelle's cell biology has exponentially increased over the last decade due to the link between LDs and prevalent human diseases and the discovery of new and unexpected functions of LDs. As a result, there has been significant recent progress toward understanding where and how LDs are formed, and the specific lipid pathways that coordinate LD biogenesis.
Collapse
Affiliation(s)
- Albert Pol
- Equip de Compartiments Cellulars i Senyalització, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | | | | |
Collapse
|
178
|
Wilfling F, Haas JT, Walther TC, Farese RV. Lipid droplet biogenesis. Curr Opin Cell Biol 2014; 29:39-45. [PMID: 24736091 DOI: 10.1016/j.ceb.2014.03.008] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 11/28/2022]
Abstract
Lipid droplets (LDs) are found in most cells, where they play central roles in energy and membrane lipid metabolism. The de novo biogenesis of LDs is a fascinating, yet poorly understood process involving the formation of a monolayer bound organelle from a bilayer membrane. Additionally, large LDs can form either by growth of existing LDs or by the combination of smaller LDs through several distinct mechanisms. Here, we review recent insights into the molecular process governing LD biogenesis and highlight areas of incomplete knowledge.
Collapse
Affiliation(s)
- Florian Wilfling
- Yale School of Medicine, Department of Cell Biology, New Haven, CT, USA
| | - Joel T Haas
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California-San Francisco, CA, USA
| | - Tobias C Walther
- Yale School of Medicine, Department of Cell Biology, New Haven, CT, USA.
| | - Robert V Farese
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California-San Francisco, CA, USA; Department of Medicine, University of California-San Francisco, CA, USA.
| |
Collapse
|
179
|
Kassan A, Herms A, Fernández-Vidal A, Bosch M, Schieber NL, Reddy BJN, Fajardo A, Gelabert-Baldrich M, Tebar F, Enrich C, Gross SP, Parton RG, Pol A. Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. ACTA ACUST UNITED AC 2014; 203:985-1001. [PMID: 24368806 PMCID: PMC3871434 DOI: 10.1083/jcb.201305142] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acyl-CoA synthetase 3 is recruited early to lipid droplet assembly sites on the ER, where it is required for efficient lipid droplet nucleation and lipid storage. Control of lipid droplet (LD) nucleation and copy number are critical, yet poorly understood, processes. We use model peptides that shift from the endoplasmic reticulum (ER) to LDs in response to fatty acids to characterize the initial steps of LD formation occurring in lipid-starved cells. Initially, arriving lipids are rapidly packed in LDs that are resistant to starvation (pre-LDs). Pre-LDs are restricted ER microdomains with a stable core of neutral lipids. Subsequently, a first round of “emerging” LDs is nucleated, providing additional lipid storage capacity. Finally, in proportion to lipid concentration, new rounds of LDs progressively assemble. Confocal microscopy and electron tomography suggest that emerging LDs are nucleated in a limited number of ER microdomains after a synchronized stepwise process of protein gathering, lipid packaging, and recognition by Plin3 and Plin2. A comparative analysis demonstrates that the acyl-CoA synthetase 3 is recruited early to the assembly sites, where it is required for efficient LD nucleation and lipid storage.
Collapse
Affiliation(s)
- Adam Kassan
- Equip de Senyalització i Proliferació Cellular, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Tan JSY, Seow CJP, Goh VJ, Silver DL. Recent advances in understanding proteins involved in lipid droplet formation, growth and fusion. J Genet Genomics 2014; 41:251-9. [PMID: 24894352 DOI: 10.1016/j.jgg.2014.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/03/2014] [Accepted: 03/05/2014] [Indexed: 01/29/2023]
Abstract
Lipid droplets (LDs) were once viewed as simple, inert lipid micelles. However, they are now known to be organelles with a rich proteome involved in a myriad of cellular processes. LDs are heterogeneous in nature with different sizes and compositions of phospholipids, neutral lipids and proteins. This review takes a focused look at the roles of proteins involved in the regulation of LD formation, expansion, and morphology. The related proteins are summarized such as the fat-specific protein (Fsp27), fat storage-inducing transmembrane (FIT) proteins, seipin and ADP-ribosylation factor 1-coat protein complex I (Arf-COPI). Finally, we present important challenges in LD biology for a deeper understanding of this dynamic organelle to be achieved.
Collapse
Affiliation(s)
- Jolene S Y Tan
- Signature Research Program in Cardiovascular & Metabolic Disorders, Duke-NUS Graduate Medical School Singapore, Singapore 169857, Singapore
| | - Colin J P Seow
- Signature Research Program in Cardiovascular & Metabolic Disorders, Duke-NUS Graduate Medical School Singapore, Singapore 169857, Singapore
| | - Vera J Goh
- Signature Research Program in Cardiovascular & Metabolic Disorders, Duke-NUS Graduate Medical School Singapore, Singapore 169857, Singapore
| | - David L Silver
- Signature Research Program in Cardiovascular & Metabolic Disorders, Duke-NUS Graduate Medical School Singapore, Singapore 169857, Singapore.
| |
Collapse
|
181
|
Sahini N, Borlak J. Recent insights into the molecular pathophysiology of lipid droplet formation in hepatocytes. Prog Lipid Res 2014; 54:86-112. [PMID: 24607340 DOI: 10.1016/j.plipres.2014.02.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/17/2014] [Accepted: 02/21/2014] [Indexed: 12/11/2022]
Abstract
Triacyglycerols are a major energy reserve of the body and are normally stored in adipose tissue as lipid droplets (LDs). The liver, however, stores energy as glycogen and digested triglycerides in the form of fatty acids. In stressed condition such as obesity, imbalanced nutrition and drug induced liver injury hepatocytes accumulate excess lipids in the form of LDs whose prolonged storage leads to disease conditions most notably non-alcoholic fatty liver disease (NAFLD). Fatty liver disease has become a major health burden with more than 90% of obese, nearly 70% of overweight and about 25% of normal weight patients being affected. Notably, research in recent years has shown LD as highly dynamic organelles for maintaining lipid homeostasis through fat storage, protein sorting and other molecular events studied in adipocytes and other cells of living organisms. This review focuses on the molecular events of LD formation in hepatocytes and the importance of cross talk between different cell types and their signalling in NAFLD as to provide a perspective on molecular mechanisms as well as possibilities for different therapeutic intervention strategies.
Collapse
Affiliation(s)
- Nishika Sahini
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
182
|
Bouwman FG, Wang P, van Baak M, Saris WHM, Mariman ECM. Increased β-oxidation with improved glucose uptake capacity in adipose tissue from obese after weight loss and maintenance. Obesity (Silver Spring) 2014; 22:819-27. [PMID: 23512564 DOI: 10.1002/oby.20359] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/19/2012] [Indexed: 12/12/2022]
Abstract
OBJECTIVE We investigated protein markers for pathways of the fatty acids (FAs) and glucose metabolism in human adipose tissue after a weight loss program by calorie restriction. METHODS Overweight/obese subjects underwent an intervention of 5 weeks of a very low-calorie diet followed by a 3-week weight maintenance diet. Abdominal subcutaneous adipose tissue biopsies were sampled before and after the intervention. Seventeen target proteins as markers of metabolic pathways for the uptake and handling of FAs and glucose were quantified by Western blotting and 11 were retrieved from previous proteomics work. Correlation coefficients were calculated among changes of these proteins. RESULTS Short-chain 3-hydroxyacyl-CoA dehydrogenase, catalase, fatty acid translocase, fatty acid transporter protein 3, adipose triglyceride lipase, fatty acid-binding protein 4, aldolase-C, tubulin-β-5, and annexin A2 changed significantly, and lipoprotein lipase, perilipin 1, and hormone-sensitive lipase tended to change. On an average, increased glucose transporter type 4 translocation was observed, supported by a consistent increase of tyr-24 phosphorylated annexin A2. CONCLUSIONS Our findings suggest that after weight loss by calorie restriction and a short period of maintenance, adipose tissue has an increased capacity for glucose uptake, and lipid mobilization and oxidation. Such metabolic profile may relate to the health benefit of weight loss.
Collapse
Affiliation(s)
- Freek G Bouwman
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
183
|
Ehmke M, Luthe K, Schnabel R, Döring F. S-Adenosyl methionine synthetase 1 limits fat storage in Caenorhabditis elegans. GENES & NUTRITION 2014; 9:386. [PMID: 24510589 PMCID: PMC3968293 DOI: 10.1007/s12263-014-0386-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/27/2014] [Indexed: 11/30/2022]
Abstract
Cytosolic lipid droplets are versatile, evolutionarily conserved organelles that are important for the storage and utilization of lipids in almost all cell types. To obtain insight into the physiological importance of lipid droplet size, we isolated and characterized a new S-adenosyl methionine synthetase 1 (SAMS-1)-deficient Caenorhabditis elegans mutant, which have enlarged lipid droplets throughout its life cycle. We found that the sams-1 mutant showed a markedly reduced body size and progeny number; impaired synthesis of phosphatidylcholine, a major membrane phospholipid; and elevated expression of key lipogenic genes, such as dgat-2, resulting in the accumulation of triacylglyceride in fewer, but larger, lipid droplets. The sams-1 mutant store more than 50 % (wild type: 10 %) of its intestinal fat in large lipid droplets, ≥10 μm(3) in size. In response to starvation, SAMS-1 deficiency causes reduced depletion of a subset of lipid droplets located in the anterior intestine. Given the importance of liberation of fatty acids from lipid droplets, we propose that the physiological function of SAMS-1, a highly conserved enzyme involved in one-carbon metabolism, is the limitation of fat storage to ensure proper growth and reproduction.
Collapse
Affiliation(s)
- Madeleine Ehmke
- />Department of Molecular Prevention, Institute of Human Nutrition and Food Sciences, University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | - Katharina Luthe
- />Department of Developmental Genetics, Institute of Genetics, TU Braunschweig, Spielmannstr. 7, 38106 Brunswick, Germany
| | - Ralf Schnabel
- />Department of Developmental Genetics, Institute of Genetics, TU Braunschweig, Spielmannstr. 7, 38106 Brunswick, Germany
| | - Frank Döring
- />Department of Molecular Prevention, Institute of Human Nutrition and Food Sciences, University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| |
Collapse
|
184
|
Dictyostelium discoideum Dgat2 can substitute for the essential function of Dgat1 in triglyceride production but not in ether lipid synthesis. EUKARYOTIC CELL 2014; 13:517-26. [PMID: 24562909 DOI: 10.1128/ec.00327-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Triacylglycerol (TAG), the common energy storage molecule, is formed from diacylglycerol and a coenzyme A-activated fatty acid by the action of an acyl coenzyme A:diacylglycerol acyltransferase (DGAT). In order to conduct this step, most organisms rely on more than one enzyme. The two main candidates in Dictyostelium discoideum are Dgat1 and Dgat2. We show, by creating single and double knockout mutants, that the endoplasmic reticulum (ER)-localized Dgat1 enzyme provides the predominant activity, whereas the lipid droplet constituent Dgat2 contributes less activity. This situation may be opposite from what is seen in mammalian cells. Dictyostelium Dgat2 is specialized for the synthesis of TAG, as is the mammalian enzyme. In contrast, mammalian DGAT1 is more promiscuous regarding its substrates, producing diacylglycerol, retinyl esters, and waxes in addition to TAG. The Dictyostelium Dgat1, however, produces TAG, wax esters, and, most interestingly, also neutral ether lipids, which represent a significant constituent of lipid droplets. Ether lipids had also been found in mammalian lipid droplets, but the role of DGAT1 in their synthesis was unknown. The ability to form TAG through either Dgat1 or Dgat2 activity is essential for Dictyostelium to grow on bacteria, its natural food substrate.
Collapse
|
185
|
Wilfling F, Thiam AR, Olarte MJ, Wang J, Beck R, Gould TJ, Allgeyer ES, Pincet F, Bewersdorf J, Farese RV, Walther TC. Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. eLife 2014; 3:e01607. [PMID: 24497546 PMCID: PMC3913038 DOI: 10.7554/elife.01607] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lipid droplets (LDs) are ubiquitous organelles that store neutral lipids, such as triacylglycerol (TG), as reservoirs of metabolic energy and membrane precursors. The Arf1/COPI protein machinery, known for its role in vesicle trafficking, regulates LD morphology, targeting of specific proteins to LDs and lipolysis through unclear mechanisms. Recent evidence shows that Arf1/COPI can bud nano-LDs (∼60 nm diameter) from phospholipid-covered oil/water interfaces in vitro. We show that Arf1/COPI proteins localize to cellular LDs, are sufficient to bud nano-LDs from cellular LDs, and are required for targeting specific TG-synthesis enzymes to LD surfaces. Cells lacking Arf1/COPI function have increased amounts of phospholipids on LDs, resulting in decreased LD surface tension and impairment to form bridges to the ER. Our findings uncover a function for Arf1/COPI proteins at LDs and suggest a model in which Arf1/COPI machinery acts to control ER-LD connections for localization of key enzymes of TG storage and catabolism. DOI: http://dx.doi.org/10.7554/eLife.01607.001.
Collapse
Affiliation(s)
- Florian Wilfling
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Boschi F, Rizzatti V, Zamboni M, Sbarbati A. Lipid droplets fusion in adipocyte differentiated 3T3-L1 cells: A Monte Carlo simulation. Exp Cell Res 2014; 321:201-8. [DOI: 10.1016/j.yexcr.2013.12.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/09/2013] [Accepted: 12/26/2013] [Indexed: 10/25/2022]
|
187
|
Kuerschner L, Thiele C. Multiple bonds for the lipid interest. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1031-7. [PMID: 24412758 DOI: 10.1016/j.bbalip.2013.12.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/23/2013] [Accepted: 12/26/2013] [Indexed: 10/25/2022]
Abstract
Polyene lipids and alkyne lipids allow study of lipid organization, dynamics and metabolism. Both types of lipids contain multiple bonds as the essential functional group, leading to minimal disturbance of the hydrophobic properties on which the characteristic behavior of lipids is based. Polyene lipids can directly be traced due to their intrinsic fluorescence, while alkyne lipids need the copper-catalyzed click reaction to an azido-reporter for detection. This review describes recent developments in synthesis and application of both types of lipid analogs with emphasis on metabolic tracing and microscopy imaging. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Lars Kuerschner
- Life & Medical Sciences Institute (LIMES), University of Bonn, Carl-Troll-Str. 31, D-53115 Bonn, Germany.
| | - Christoph Thiele
- Life & Medical Sciences Institute (LIMES), University of Bonn, Carl-Troll-Str. 31, D-53115 Bonn, Germany.
| |
Collapse
|
188
|
Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Prog Lipid Res 2014; 53:18-81. [DOI: 10.1016/j.plipres.2013.10.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/20/2013] [Accepted: 10/01/2013] [Indexed: 12/21/2022]
|
189
|
Ohsaki Y, Suzuki M, Fujimoto T. Open Questions in Lipid Droplet Biology. ACTA ACUST UNITED AC 2014; 21:86-96. [DOI: 10.1016/j.chembiol.2013.08.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 08/12/2013] [Accepted: 08/23/2013] [Indexed: 12/31/2022]
|
190
|
Bader CA, Brooks RD, Ng YS, Sorvina A, Werrett MV, Wright PJ, Anwer AG, Brooks DA, Stagni S, Muzzioli S, Silberstein M, Skelton BW, Goldys EM, Plush SE, Shandala T, Massi M. Modulation of the organelle specificity in Re(i) tetrazolato complexes leads to labeling of lipid droplets. RSC Adv 2014. [DOI: 10.1039/c4ra00050a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neutral Re(i) tetrazolato complexes exhibit labeling of lipid droplets with high specificity.
Collapse
Affiliation(s)
- Christie A. Bader
- School of Pharmacy and Medical Science
- University of South Australia
- Adelaide, Australia
| | - Robert D. Brooks
- School of Pharmacy and Medical Science
- University of South Australia
- Adelaide, Australia
| | - Yeap S. Ng
- School of Pharmacy and Medical Science
- University of South Australia
- Adelaide, Australia
| | - Alexandra Sorvina
- School of Pharmacy and Medical Science
- University of South Australia
- Adelaide, Australia
| | | | | | - Ayad G. Anwer
- Department of Physics and Astronomy
- Macquarie University
- North Ryde, Australia
| | - Douglas A. Brooks
- School of Pharmacy and Medical Science
- University of South Australia
- Adelaide, Australia
| | - Stefano Stagni
- Department of Industrial Chemistry
- University of Bologna
- Bologna 40126, Italy
| | - Sara Muzzioli
- Department of Industrial Chemistry
- University of Bologna
- Bologna 40126, Italy
| | | | - Brian W. Skelton
- Centre for Microscopy
- Characterisation and Analysis
- University of Western Australia
- Crawley, Australia
| | - Ewa M. Goldys
- Department of Physics and Astronomy
- Macquarie University
- North Ryde, Australia
| | - Sally E. Plush
- School of Pharmacy and Medical Science
- University of South Australia
- Adelaide, Australia
| | - Tetyana Shandala
- School of Pharmacy and Medical Science
- University of South Australia
- Adelaide, Australia
| | | |
Collapse
|
191
|
Markgraf DF, Klemm RW, Junker M, Hannibal-Bach HK, Ejsing CS, Rapoport TA. An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER. Cell Rep 2013; 6:44-55. [PMID: 24373967 PMCID: PMC3947819 DOI: 10.1016/j.celrep.2013.11.046] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/01/2013] [Accepted: 11/27/2013] [Indexed: 01/22/2023] Open
Abstract
Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption.
Collapse
Affiliation(s)
- Daniel F Markgraf
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Robin W Klemm
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mirco Junker
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hans K Hannibal-Bach
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Tom A Rapoport
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
192
|
Xu J, Kazachkov M, Jia Y, Zheng Z, Zou J. Expression of a type 2 diacylglycerol acyltransferase from Thalassiosira pseudonana in yeast leads to incorporation of docosahexaenoic acid β-oxidation intermediates into triacylglycerol. FEBS J 2013; 280:6162-72. [PMID: 24128189 DOI: 10.1111/febs.12537] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/18/2013] [Accepted: 09/06/2013] [Indexed: 11/26/2022]
Abstract
Glycerolipids of the marine diatom Thalassiosira pseudonana are enriched particularly with eicosapentaenoic acid (EPA), and also with an appreciable level of docosahexaenoic acid (DHA). The present study describes the functional characterization of a type 2 diacylglycerol acyltransferase (DGAT2, EC 2.3.1.20) from T. pseudonana, designated TpDGAT2, which catalyzes the final step of triacylglycerol (TAG) synthesis. Heterologous expression of this gene restored TAG formation in a yeast mutant devoid of TAG biosynthesis. TpDGAT2 was also shown to exert a large impact on the fatty acid profile of TAG. Its expression caused a 10-12% increase of 18:1 and a concomitant decrease of 16:0 relative to that of AtDGAT1(Arabidopsis thaliana). Furthermore, in the presence of the very-long-chain polyunsaturated fatty acids (VLCPUFA) EPA and DHA, TAG formed by TpDGAT2 displayed three- to six-fold increases in the percentage of VLCPUFA relative to that of AtDGAT1 even though TpDGAT2 conferred much lower TAG-synthetic activities than Arabidopsis DGAT1. Strikingly, when fed DHA, the yeast mutant expressing TpDGAT2 incorporated high levels of EPA and DHA isomers derived from DHA β-oxidation. In contrast, no such phenomenon occurred in the cells expressing AtDGAT1. These results suggested that, in addition to the role in breaking down storage lipids, yeast peroxisomes also contribute to lipid synthesis by recycling acyl-CoAs when a fatty acyl assembly system is available to capture and utilize the fatty acyl pools generated via β-oxidation. Our study hence illustrated a case where the efficiency and substrate preference of an acyltransferase can elicit far reaching metabolic adjustments that affect TAG composition.
Collapse
Affiliation(s)
- Jingyu Xu
- National Research Council Canada, Saskatoon, Canada
| | | | | | | | | |
Collapse
|
193
|
Rasineni K, McVicker BL, Tuma DJ, McNiven MA, Casey CA. Rab GTPases associate with isolated lipid droplets (LDs) and show altered content after ethanol administration: potential role in alcohol-impaired LD metabolism. Alcohol Clin Exp Res 2013; 38:327-35. [PMID: 24117505 DOI: 10.1111/acer.12271] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 08/06/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND Alcoholic liver disease is manifested by the presence of fatty liver, primarily due to accumulation of hepatocellular lipid droplets (LDs). The presence of membrane-trafficking proteins (e.g., Rab GTPases) with LDs indicates that LDs may be involved in trafficking pathways known to be altered in ethanol (EtOH) damaged hepatocytes. As these Rab GTPases are crucial regulators of protein trafficking, we examined the effect EtOH administration has on hepatic Rab protein content and association with LDs. METHODS Male Wistar rats were pair-fed Lieber-DeCarli diets for 5 to 8 weeks. Whole liver and isolated LD fractions were analyzed. Identification of LDs and associated Rab proteins was performed in frozen liver or paraffin-embedded sections followed by immunohistochemical analysis. RESULTS Lipid accumulation was characterized by larger LD vacuoles and increased total triglyceride content in EtOH-fed rats. Rabs 1, 2, 3d, 5, 7, and 18 were analyzed in postnuclear supernatant (PNS) as well as LDs. All of the Rabs were found in the PNS, and Rabs 1, 2, 5, and 7 did not show alcohol-altered content, while Rab 3d content was reduced by over 80%, and Rab 18 also showed EtOH-induced reduction in content. Rab 3d was not found to associate with LDs, while all other Rabs were found in the LD fractions, and several showed an EtOH-related decrease (Rabs 2, 5, 7, 18). Immunohistochemical analysis revealed the enhanced content of a LD-associated protein, perilipin 2 (PLIN2) that was paralleled with an associated decrease of Rab 18 in EtOH-fed rat sections. CONCLUSIONS Chronic EtOH feeding was associated with increased PLIN2 and altered Rab GTPase content in enriched LD fractions. Although mechanisms driving these changes are not established, further studies on intracellular protein trafficking and LD biology after alcohol administration will likely contribute to our understanding of fatty liver disease.
Collapse
Affiliation(s)
- Karuna Rasineni
- The Liver Study Unit, VA Nebraska-Western Iowa Health Care System (VA NWIHCS), Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | | | |
Collapse
|
194
|
Jüngst C, Klein M, Zumbusch A. Long-term live cell microscopy studies of lipid droplet fusion dynamics in adipocytes. J Lipid Res 2013; 54:3419-29. [PMID: 24103784 DOI: 10.1194/jlr.m042515] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the adipogenic differentiation process of mesenchymal stem cells, lipid droplets (LDs) grow slowly by transferring lipids between each other. Recent findings hint at the possibility that a fusion pore is involved. In this study, we analyze lipid transfer data obtained in long-term label-free microscopy studies in the framework of a Hagen-Poiseuille model. The data obtained show a LD fusion process in which the lipid transfer directionality depends on the size difference between LDs, whereas the respective rates depend on the size difference and additionally on the diameter of the smaller LDs. For the data analysis, the viscosity of the transferred material has to be known. We demonstrate that a viscosity-dependent molecular rotor dye can be used to measure LD viscosities in live cells. On this basis, we calculate the diameter of a putative lipid transfer channel which appears to have a direct dependence on the diameter of the smaller of the two participating LDs.
Collapse
Affiliation(s)
- Christian Jüngst
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | | | | |
Collapse
|
195
|
Park IW, Ndjomou J, Wen Y, Liu Z, Ridgway ND, Kao CC, He JJ. Inhibition of HCV replication by oxysterol-binding protein-related protein 4 (ORP4) through interaction with HCV NS5B and alteration of lipid droplet formation. PLoS One 2013; 8:e75648. [PMID: 24069433 PMCID: PMC3775767 DOI: 10.1371/journal.pone.0075648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 08/20/2013] [Indexed: 12/21/2022] Open
Abstract
Hepatitis C virus (HCV) RNA replication involves complex interactions among the 3’x RNA element within the HCV 3’ untranslated region, viral and host proteins. However, many of the host proteins remain unknown. In this study, we devised an RNA affinity chromatography /2D/MASS proteomics strategy and identified nine putative 3’ X-associated host proteins; among them is oxysterol-binding protein-related protein 4 (ORP4), a cytoplasmic receptor for oxysterols. We determined the relationship between ORP4 expression and HCV replication. A very low level of constitutive ORP4 expression was detected in hepatocytes. Ectopically expressed ORP4 was detected in the endoplasmic reticulum and inhibited luciferase reporter gene expression in HCV subgenomic replicon cells and HCV core expression in JFH-1-infected cells. Expression of ORP4S, an ORP4 variant that lacked the N-terminal pleckstrin-homology domain but contained the C-terminal oxysterol-binding domain also inhibited HCV replication, pointing to an important role of the oxysterol-binding domain in ORP4-mediated inhibition of HCV replication. ORP4 was found to associate with HCV NS5B and its expression led to inhibition of the NS5B activity. ORP4 expression had little effect on intracellular lipid synthesis and secretion, but it induced lipid droplet formation in the context of HCV replication. Taken together, these results demonstrate that ORP4 is a negative regulator of HCV replication, likely via interaction with HCV NS5B in the replication complex and regulation of intracellular lipid homeostasis. This work supports the important role of lipids and their metabolism in HCV replication and pathogenesis.
Collapse
Affiliation(s)
- In-Woo Park
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Jean Ndjomou
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yahong Wen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Ziqing Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Neale D. Ridgway
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - C. Cheng Kao
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Johnny J. He
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- * E-mail:
| |
Collapse
|
196
|
Abstract
Across all kingdoms of life, cells store energy in a specialized organelle, the lipid droplet. In general, it consists of a hydrophobic core of triglycerides and steryl esters surrounded by only one leaflet derived from the endoplasmic reticulum membrane to which a specific set of proteins is bound. We have chosen the unicellular organism Dictyostelium discoideum to establish kinetics of lipid droplet formation and degradation and to further identify the lipid constituents and proteins of lipid droplets. Here, we show that the lipid composition is similar to what is found in mammalian lipid droplets. In addition, phospholipids preferentially consist of mainly saturated fatty acids, whereas neutral lipids are enriched in unsaturated fatty acids. Among the novel protein components are LdpA, a protein specific to Dictyostelium, and Net4, which has strong homologies to mammalian DUF829/Tmem53/NET4 that was previously only known as a constituent of the mammalian nuclear envelope. The proteins analyzed so far appear to move from the endoplasmic reticulum to the lipid droplets, supporting the concept that lipid droplets are formed on this membrane.
Collapse
|
197
|
Wong DM, Franz AK. A comparison of lipid storage in Phaeodactylum tricornutum and Tetraselmis suecica using laser scanning confocal microscopy. J Microbiol Methods 2013; 95:122-8. [PMID: 23933493 DOI: 10.1016/j.mimet.2013.07.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
Abstract
Microalgae contain lipid bodies (LBs) composed of triacylglycerols, which can be converted to biodiesel. Here we demonstrate a method to study the accumulation patterns of LBs in different microalgae strains and culture conditions utilizing laser scanning confocal microscopy (LSCM) with BODIPY 505/515 (4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene) staining, in parallel with Nile Red (9-diethylamino-5H-benzo-a-phenoxazine-5-one) fluorescence analysis of intracellular lipids in microplates. Phaeodactylum tricornutum and Tetraselmis suecica were selected as model organisms and monitored throughout the growth phases in standard and nitrogen-deficient growth conditions. Utilizing image quantification techniques, the number and morphology of LBs suggest that P. tricornutum accumulates lipids by merging with existing LBs, while T. suecica synthesizes new LBs. We observed that T. suecica accumulates a higher number of LBs and total volume of lipids per cell, while P. tricornutum accumulates only 1-2 LBs with a larger volume per LB. LSCM analysis complements Nile Red (NR) methods because LSCM provides three-dimensional images of lipid accumulation at a cellular level, while NR analysis can quickly monitor the total levels of intracellular lipids for phenotypic screening. Using NR analysis, we have observed that the optimal harvest date for P. tricornutum and T. suecica in standard cultivation conditions is 24 and 42 days, respectively. Comparison with nitrogen-deficient growth conditions is utilized as a model to confirm that LSCM and NR analysis can be used to study lipid storage and productivity for diverse growth conditions and various strains of microalgae.
Collapse
Affiliation(s)
- Diana M Wong
- University of California, Davis, Department of Chemistry, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
198
|
Demignot S, Beilstein F, Morel E. Triglyceride-rich lipoproteins and cytosolic lipid droplets in enterocytes: key players in intestinal physiology and metabolic disorders. Biochimie 2013; 96:48-55. [PMID: 23871915 DOI: 10.1016/j.biochi.2013.07.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/08/2013] [Indexed: 02/07/2023]
Abstract
During the post-prandial phase, intestinal triglyceride-rich lipoproteins (TRL) i.e. chylomicrons are the main contributors to the serum lipid level, which is linked to coronary artery diseases. Hypertriglyceridemia can originate from decreased clearance or increased production of TRL. During lipid absorption, enterocytes produce and secrete chylomicrons and transiently store lipid droplets (LDs) in the cytosol. The dynamic fluctuation of triglycerides in cytosolic LDs suggests that they contribute to TRL production and may thus control the length and amplitude of the post-prandial hypertriglyceridemia. In this review, we will describe the recent advances in the characterization of enterocytic LDs. The role of LDs in chylomicron production and secretion as well as potential previously unsuspected functions in the metabolism of vitamins, steroids and prostaglandins and in viral infection will also be discussed.
Collapse
Affiliation(s)
- Sylvie Demignot
- Université Pierre et Marie Curie, UMR S 872, Centre de Recherche des Cordeliers, Paris, France; Inserm, U 872, Paris, France; Ecole Pratique des Hautes Etudes, Laboratoire de Pharmacologie Cellulaire et Moléculaire, Paris, France; Université Paris Descartes, UMR S 872, Paris, France; Institut de Cardiométabolisme et Nutrition (ICAN), Paris, France.
| | | | | |
Collapse
|
199
|
Wei S, Du M, Jiang Z, Duarte MS, Fernyhough-Culver M, Albrecht E, Will K, Zan L, Hausman GJ, Elabd EMY, Bergen WG, Basu U, Dodson MV. Bovine dedifferentiated adipose tissue (DFAT) cells: DFAT cell isolation. Adipocyte 2013; 2:148-59. [PMID: 23991361 PMCID: PMC3756103 DOI: 10.4161/adip.24589] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 12/15/2022] Open
Abstract
Dedifferentiated fat cells (DFAT cells) are derived from lipid-containing (mature) adipocytes, which possess the ability to symmetrically or asymmetrically proliferate, replicate, and redifferentiate/transdifferentiate. Robust cell isolation and downstream culture methods are needed to isolate large numbers of DFAT cells from any (one) adipose depot in order to establish population dynamics and regulation of the cells within and across laboratories. In order to establish more consistent/repeatable methodology here we report on two different methods to establish viable DFAT cell cultures: both traditional cell culture flasks and non-traditional (flat) cell culture plates were used for ceiling culture establishment. Adipocytes (maternal cells of the DFAT cells) were easier to remove from flat culture plates than flasks and the flat plates also allowed cloning rings to be utilized for cell/cell population isolation. While additional aspects of usage of flat-bottomed cell culture plates may yet need to be optimized by definition of optimum bio-coating to enhance cell attachment, utilization of flat plate approaches will allow more efficient study of the dedifferentiation process or the DFAT progeny cells. To extend our preliminary observations, dedifferentiation of Wagyu intramuscular fat (IMF)-derived mature adipocytes and redifferentiation ability of DFAT cells utilizing the aforementioned isolation protocols were examined in traditional basal media/differentiation induction media (DMI) containing adipogenic inducement reagents. In the absence of treatment approximately 10% isolated Wagyu IMF-mature adipocytes dedifferentiated spontaneously and 70% DFAT cells displayed protracted adipogenesis 12 d after confluence in vitro. Lipid-free intracellular vesicles in the cytoplasm (vesicles possessing an intact membrane but with no any observable or stainable lipid inside) were observed during redifferentiation. One to 30% DFAT cells redifferentiated into lipid-assimilating adipocytes in the DMI media, with distinct lipid-droplets in the cytoplasm and with no observable lipid-free vesicles inside. Moreover, a high confluence level promoted the redifferentiation efficiency of DFAT cells. Wagyu IMF dedifferentiated DFAT cells exhibited unique adipogenesis modes in vitro, revealing a useful cell model for studying adipogenesis and lipid metabolism.
Collapse
|
200
|
Borén J, Taskinen MR, Olofsson SO, Levin M. Ectopic lipid storage and insulin resistance: a harmful relationship. J Intern Med 2013; 274:25-40. [PMID: 23551521 DOI: 10.1111/joim.12071] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Obesity increases the risk of metabolic diseases, including insulin resistance and type 2 diabetes, as well as cardiovascular disease. In addition to lipid accumulation in adipose tissue, obesity is associated with increased lipid storage in ectopic tissues, such as skeletal muscle and liver. Furthermore, lipid accumulation in the heart may result in cardiac dysfunction and heart failure. It has recently been demonstrated that intracellular lipid accumulation in ectopic tissues leads to pathological responses and impaired insulin signalling. Here, we will review the current understanding of how lipid storage and lipid droplet physiology affect the risk of developing metabolic diseases.
Collapse
Affiliation(s)
- J Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | |
Collapse
|