151
|
Liu C, Zhang T. Expansion and stress responses of the AP2/EREBP superfamily in cotton. BMC Genomics 2017; 18:118. [PMID: 28143399 PMCID: PMC5282909 DOI: 10.1186/s12864-017-3517-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 01/26/2017] [Indexed: 11/24/2022] Open
Abstract
Background The allotetraploid cotton originated from one hybridization event between an extant progenitor of Gosssypium herbaceum (A1) or G. arboreum (A2) and another progenitor, G. raimondii Ulbrich (D5) 1–1.5 million years ago (Mya). The APETALA2/ethylene-responsive element binding protein (AP2/EREBP) transcription factors constitute one of the largest and most conserved gene families in plants. They are characterized by their AP2 domain, which comprises 60–70 amino acids, and are classified into four main subfamilies: the APETALA2 (AP2), Related to ABI3/VP1 (RAV), Dehydration-Responsive Element Binding protein (DREB) and Ethylene-Responsive Factor (ERF) subfamilies. The AP2/EREBP genes play crucial roles in plant growth, development and biotic and abiotic stress responses. Hence, understanding the molecular characteristics of cotton stress tolerance and gene family expansion would undoubtedly facilitate cotton resistance breeding and evolution research. Results A total of 269 AP2/EREBP genes were identified in the G. raimondii (D5) cotton genome. The protein domain architecture and intron/exon structure are simple and relatively conserved within each subfamily. They are distributed throughout all chromosomes but are clustered on various chromosomes due to genomic tandem duplication. We identified 73 tandem duplicated genes and 221 segmental duplicated gene pairs which contributed to the expansion of AP2/EREBP superfamily. Of them, tandem duplication was the most important force of the expansion of the B3 group. Transcriptome analysis showed that 504 AP2/EREBP genes were expressed in at least one tested G. hirsutum TM-1 tissues. In G. hirsutum, 151 non-repeated genes of the DREB and ERF subfamily genes were responsive to different stresses: 132 genes were induced by cold, 63 genes by drought and 94 genes by heat. qRT-PCR confirmed that 13 GhDREB and 15 GhERF genes were induced by cold and/or drought. No transcripts detected for 53 of the 111 tandem duplicated genes in TM-1. In addition, some homoeologous genes showed biased expression toward either A-or D-subgenome. Conclusions The AP2/EREBP genes were obviously expanded in Gossypium. The GhDREB and GhERF genes play crucial roles in cotton stress responses. Our genome-wide analysis of AP2/EREBP genes in cotton provides valuable information for characterizing the molecular functions of AP2/EREBP genes and reveals insights into their evolution in polyploid plants. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3517-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunxiao Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Tianzhen Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
152
|
Hong E, Lim CW, Han SW, Lee SC. Functional Analysis of the Pepper Ethylene-Responsive Transcription Factor, CaAIEF1, in Enhanced ABA Sensitivity and Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:1407. [PMID: 28878786 PMCID: PMC5572256 DOI: 10.3389/fpls.2017.01407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/28/2017] [Indexed: 05/08/2023]
Abstract
Abscisic acid (ABA) is a plant hormone that plays a critical role in the response to environmental stress conditions, especially regulation of the stomatal aperture under water-deficit conditions. The signal transduction occurring during the stress response is initiated by transcription of defense-related genes. Here, we isolated the pepper ethylene-responsive transcription factor CaAIEF1 (Capsicum annuum ABA Induced ERF 1). The CaAIEF1 gene was significantly induced after exposure to ABA, drought, and high salinity. Fusion of the acidic domain in the C-terminal region of CaAIEF1 to the GAL4 DNA-binding domain had a transactivation effect on the reporter gene in yeast. Further, the CaAIEF1-GFP fusion constructs localized in the nucleus. We used CaAIEF1-silenced plants and CaAIEF1-overexpressing (OX) plants to elucidate the biological function of CaAIEF1 in response to ABA and drought stress. CaAIEF1-silenced pepper plants and CaAIEF1-OX Arabidopsis plants displayed drought-sensitive and -tolerant phenotypes, respectively, which were characterized by regulation of transpirational water loss and stomatal aperture. In drought stress condition, quantitative RT-PCR analyses revealed that the expression levels of pepper stress-related genes were higher in CaAIEF1-silenced pepper plants than control plants. Moreover, expression levels of Arabidopsis stress-related genes were significantly reduced in CaAIEF1-OX plants compared with control plants in drought stress condition. Our findings suggest that CaAIEF1 positively regulates the drought stress response and the ABA signaling.
Collapse
Affiliation(s)
- Eunji Hong
- Department of Life Science (BK21 Program), Chung-Ang UniversitySeoul, South Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 Program), Chung-Ang UniversitySeoul, South Korea
| | - Sang-Wook Han
- Department of Integrative Plant Science, Chung-Ang UniversityAnseong, South Korea
- *Correspondence: Sang-Wook Han, Sung Chul Lee,
| | - Sung Chul Lee
- Department of Life Science (BK21 Program), Chung-Ang UniversitySeoul, South Korea
- *Correspondence: Sang-Wook Han, Sung Chul Lee,
| |
Collapse
|
153
|
Ayyappan V, Saha MC, Thimmapuram J, Sripathi VR, Bhide KP, Fiedler E, Hayford RK, Kalavacharla VK. Comparative transcriptome profiling of upland (VS16) and lowland (AP13) ecotypes of switchgrass. PLANT CELL REPORTS 2017; 36:129-150. [PMID: 27812750 PMCID: PMC5206262 DOI: 10.1007/s00299-016-2065-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/18/2016] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE Transcriptomes of two switchgrass genotypes representing the upland and lowland ecotypes will be key tools in switchgrass genome annotation and biotic and abiotic stress functional genomics. Switchgrass (Panicum virgatum L.) is an important bioenergy feedstock for cellulosic ethanol production. We report genome-wide transcriptome profiling of two contrasting tetraploid switchgrass genotypes, VS16 and AP13, representing the upland and lowland ecotypes, respectively. A total of 268 million Illumina short reads (50 nt) were generated, of which, 133 million were obtained in AP13 and the rest 135 million in VS16. More than 90% of these reads were mapped to the switchgrass reference genome (V1.1). We identified 6619 and 5369 differentially expressed genes in VS16 and AP13, respectively. Gene ontology and KEGG pathway analysis identified key genes that regulate important pathways including C4 photosynthesis, photorespiration and phenylpropanoid metabolism. A series of genes (33) involved in photosynthetic pathway were up-regulated in AP13 but only two genes showed higher expression in VS16. We identified three dicarboxylate transporter homologs that were highly expressed in AP13. Additionally, genes that mediate drought, heat, and salinity tolerance were also identified. Vesicular transport proteins, syntaxin and signal recognition particles were seen to be up-regulated in VS16. Analyses of selected genes involved in biosynthesis of secondary metabolites, plant-pathogen interaction, membrane transporters, heat, drought and salinity stress responses confirmed significant variation in the relative expression reflected in RNA-Seq data between VS16 and AP13 genotypes. The phenylpropanoid pathway genes identified here are potential targets for biofuel conversion.
Collapse
Affiliation(s)
- Vasudevan Ayyappan
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture and Related Sciences, Delaware State University, Dover, DE, USA
| | - Malay C Saha
- Forage Improvement Division, The Samuel Roberts Noble Foundation, Ardmore, OK, USA
| | | | - Venkateswara R Sripathi
- Plant Molecular Biology and Bioinformatics Laboratory, College of Agricultural, Life and Natural Sciences, Alabama A&M University, Normal, AL, USA
| | - Ketaki P Bhide
- Bioinformatics Core, Purdue University, West Lafayette, IN, USA
| | - Elizabeth Fiedler
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture and Related Sciences, Delaware State University, Dover, DE, USA
| | - Rita K Hayford
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture and Related Sciences, Delaware State University, Dover, DE, USA
| | - Venu Kal Kalavacharla
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture and Related Sciences, Delaware State University, Dover, DE, USA.
- Center for Integrated Biological and Environmental Research, Delaware State University, Dover, DE, USA.
| |
Collapse
|
154
|
Sheshadri SA, Nishanth MJ, Simon B. Stress-Mediated cis-Element Transcription Factor Interactions Interconnecting Primary and Specialized Metabolism in planta. FRONTIERS IN PLANT SCIENCE 2016; 7:1725. [PMID: 27933071 PMCID: PMC5122738 DOI: 10.3389/fpls.2016.01725] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/02/2016] [Indexed: 05/07/2023]
Abstract
Plant specialized metabolites are being used worldwide as therapeutic agents against several diseases. Since the precursors for specialized metabolites come through primary metabolism, extensive investigations have been carried out to understand the detailed connection between primary and specialized metabolism at various levels. Stress regulates the expression of primary and specialized metabolism genes at the transcriptional level via transcription factors binding to specific cis-elements. The presence of varied cis-element signatures upstream to different stress-responsive genes and their transcription factor binding patterns provide a prospective molecular link among diverse metabolic pathways. The pattern of occurrence of these cis-elements (overrepresentation/common) decipher the mechanism of stress-responsive upregulation of downstream genes, simultaneously forming a molecular bridge between primary and specialized metabolisms. Though many studies have been conducted on the transcriptional regulation of stress-mediated primary or specialized metabolism genes, but not much data is available with regard to cis-element signatures and transcription factors that simultaneously modulate both pathway genes. Hence, our major focus would be to present a comprehensive analysis of the stress-mediated interconnection between primary and specialized metabolism genes via the interaction between different transcription factors and their corresponding cis-elements. In future, this study could be further utilized for the overexpression of the specific transcription factors that upregulate both primary and specialized metabolism, thereby simultaneously improving the yield and therapeutic content of plants.
Collapse
Affiliation(s)
| | | | - Bindu Simon
- School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| |
Collapse
|
155
|
Obaid AY, Sabir JSM, Atef A, Liu X, Edris S, El-Domyati FM, Mutwakil MZ, Gadalla NO, Hajrah NH, Al-Kordy MA, Hall N, Bahieldin A, Jansen RK. Analysis of transcriptional response to heat stress in Rhazya stricta. BMC PLANT BIOLOGY 2016; 16:252. [PMID: 27842501 PMCID: PMC5109689 DOI: 10.1186/s12870-016-0938-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/28/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Climate change is predicted to be a serious threat to agriculture due to the need for crops to be able to tolerate increased heat stress. Desert plants have already adapted to high levels of heat stress so they make excellent systems for identifying genes involved in thermotolerance. Rhazya stricta is an evergreen shrub that is native to extremely hot regions across Western and South Asia, making it an excellent system for examining plant responses to heat stress. Transcriptomes of apical and mature leaves of R. stricta were analyzed at different temperatures during several time points of the day to detect heat response mechanisms that might confer thermotolerance and protection of the plant photosynthetic apparatus. RESULTS Biological pathways that were crosstalking during the day involved the biosynthesis of several heat stress-related compounds, including soluble sugars, polyols, secondary metabolites, phenolics and methionine. Highly downregulated leaf transcripts at the hottest time of the day (40-42.4 °C) included genes encoding cyclin, cytochrome p450/secologanin synthase and U-box containing proteins, while upregulated, abundant transcripts included genes encoding heat shock proteins (HSPs), chaperones, UDP-glycosyltransferase, aquaporins and protein transparent testa 12. The upregulation of transcripts encoding HSPs, chaperones and UDP-glucosyltransferase and downregulation of transcripts encoding U-box containing proteins likely contributed to thermotolerance in R. stricta leaf by correcting protein folding and preventing protein degradation. Transcription factors that may regulate expression of genes encoding HSPs and chaperones under heat stress included HSFA2 to 4, AP2-EREBP and WRKY27. CONCLUSION This study contributed new insights into the regulatory mechanisms of thermotolerance in the wild plant species R. stricta, an arid land, perennial evergreen shrub common in the Arabian Peninsula and Indian subcontinent. Enzymes from several pathways are interacting in the biosynthesis of soluble sugars, polyols, secondary metabolites, phenolics and methionine and are the primary contributors to thermotolerance in this species.
Collapse
Affiliation(s)
- Abdullah Y. Obaid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Ahmed Atef
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Xuan Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| | - Sherif Edris
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), Faculty of Medicine, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Fotouh M. El-Domyati
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mohammed Z. Mutwakil
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Nour O. Gadalla
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Nahid H. Hajrah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Magdy A. Al-Kordy
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Neil Hall
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| | - Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Robert K. Jansen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
156
|
Zhuang J, Li MY, Wu B, Liu YJ, Xiong AS. Arg156 in the AP2-Domain Exhibits the Highest Binding Activity among the 20 Individuals to the GCC Box in BnaERF-B3-hy15, a Mutant ERF Transcription Factor from Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:1603. [PMID: 27833627 PMCID: PMC5081391 DOI: 10.3389/fpls.2016.01603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/11/2016] [Indexed: 05/29/2023]
Abstract
To develop mutants of the ERF factor with more binding activities to the GCC box, we performed in vitro directed evolution by using DNA shuffling and screened mutants through yeast one-hybrid assay. Here, a series of mutants were obtained and used to reveal key amino acids that induce changes in the DNA binding activity of the BnaERF-B3 protein. With the BnaERF-B3-hy15 as the template, we produced 12 mutants which host individual mutation of potential key residues. We found that amino acid 156 is the key site, and the other 18 mutants host the 18 corresponding individual amino acid residues at site 156. Among the 20 individuals comprising WT (Gly156), Mu3 (Arg156), and 18 mutants with other 18 amino acid residues, Arg156 in the AP2-domain is the amino acid residue with the highest binding activity to the GCC box. The structure of the α-helix in the AP2-domain affects the binding activity. Other residues within AP2-domain modulated binding activity of ERF protein, suggesting that these positions are important for binding activity. Comparison of the mutant and wild-type transcription factors revealed the relationship of protein function and sequence modification. Our result provides a potential useful resource for understanding the trans-activation of ERF proteins.
Collapse
|
157
|
Massange-Sánchez JA, Palmeros-Suárez PA, Espitia-Rangel E, Rodríguez-Arévalo I, Sánchez-Segura L, Martínez-Gallardo NA, Alatorre-Cobos F, Tiessen A, Délano-Frier JP. Overexpression of Grain Amaranth (Amaranthus hypochondriacus) AhERF or AhDOF Transcription Factors in Arabidopsis thaliana Increases Water Deficit- and Salt-Stress Tolerance, Respectively, via Contrasting Stress-Amelioration Mechanisms. PLoS One 2016; 11:e0164280. [PMID: 27749893 PMCID: PMC5066980 DOI: 10.1371/journal.pone.0164280] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/22/2016] [Indexed: 11/19/2022] Open
Abstract
Two grain amaranth transcription factor (TF) genes were overexpressed in Arabidopsis plants. The first, coding for a group VII ethylene response factor TF (i.e., AhERF-VII) conferred tolerance to water-deficit stress (WS) in transgenic Arabidopsis without affecting vegetative or reproductive growth. A significantly lower water-loss rate in detached leaves coupled to a reduced stomatal opening in leaves of plants subjected to WS was associated with this trait. WS tolerance was also associated with an increased antioxidant enzyme activity and the accumulation of putative stress-related secondary metabolites. However, microarray and GO data did not indicate an obvious correlation between WS tolerance, stomatal closure, and abscisic acid (ABA)-related signaling. This scenario suggested that stomatal closure during WS in these plants involved ABA-independent mechanisms, possibly involving reactive oxygen species (ROS). WS tolerance may have also involved other protective processes, such as those employed for methyl glyoxal detoxification. The second, coding for a class A and cluster I DNA binding with one finger TF (i.e., AhDof-AI) provided salt-stress (SS) tolerance with no evident fitness penalties. The lack of an obvious development-related phenotype contrasted with microarray and GO data showing an enrichment of categories and genes related to developmental processes, particularly flowering. SS tolerance also correlated with increased superoxide dismutase activity but not with augmented stomatal closure. Additionally, microarray and GO data indicated that, contrary to AhERF-VII, SS tolerance conferred by AhDof-AI in Arabidopsis involved ABA-dependent and ABA-independent stress amelioration mechanisms.
Collapse
Affiliation(s)
- Julio A. Massange-Sánchez
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - Paola A. Palmeros-Suárez
- Laboratorio de Biología Molecular, Instituto Tecnológico de Tlajomulco, Jalisco, km 10 Carretera a San Miguel Cuyutlán, CP 45640 Tlajomulco de Zúñiga, Jalisco, Mexico
| | - Eduardo Espitia-Rangel
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km 13.5 Carrretera Los Reyes-Texcoco, C.P. 56250, Coatlinchán Texcoco, Estado de México, México
| | - Isaac Rodríguez-Arévalo
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, CP 36821, Irapuato, Gto., Mexico
| | - Lino Sánchez-Segura
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - Norma A. Martínez-Gallardo
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - Fulgencio Alatorre-Cobos
- Conacyt Research Fellow-Colegio de Postgraduados, Campus Campeche. Carretera Haltunchen-Edzna Km 17.5, Sihochac, Champoton, 24450, Campeche, México
| | - Axel Tiessen
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - John P. Délano-Frier
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| |
Collapse
|
158
|
Yu Y, Liu A, Duan X, Wang S, Sun X, Duanmu H, Zhu D, Chen C, Cao L, Xiao J, Li Q, Nisa ZU, Zhu Y, Ding X. GsERF6, an ethylene-responsive factor from Glycine soja, mediates the regulation of plant bicarbonate tolerance in Arabidopsis. PLANTA 2016; 244:681-98. [PMID: 27125386 DOI: 10.1007/s00425-016-2532-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/12/2016] [Indexed: 05/07/2023]
Abstract
MAIN CONCLUSION This is an original study focus on ERF gene response to alkaline stress. GsERF6 functions as transcription factor and significantly enhanced plant tolerance to bicarbonate (HCO 3 (-) ) in transgenic Arabidopsis . Alkaline stress is one of the most harmful, but little studied environmental factors, which negatively affects plant growth, development and yield. The cause of alkaline stress is mainly due to the damaging consequence of high concentration of the bicarbonate ion, high-pH, and osmotic shock to plants. The AP2/ERF family genes encode plant-specific transcription factors involved in diverse environmental stresses. However, little is known about their physiological functions, especially in alkaline stress responses. In this study, we functionally characterized a novel ERF subfamily gene, GsERF6 from alkaline-tolerant wild soybean (Glycine soja). In wild soybean, GsERF6 was rapidly induced by NaHCO3 treatment, and its overexpression in Arabidopsis enhanced transgenic plant tolerance to NaHCO3 challenge. Interestingly, GsERF6 transgenic lines also displayed increased tolerance to KHCO3 treatment, but not to high pH stress, implicating that GsERF6 may participate specifically in bicarbonate stress responses. We also found that GsERF6 overexpression up-regulated the transcription levels of bicarbonate-stress-inducible genes such as NADP-ME, H (+)-Ppase and H (+)-ATPase, as well as downstream stress-tolerant genes such as RD29A, COR47 and KINI. GsERF6 overexpression and NaHCO3 stress also altered the expression patterns of plant hormone synthesis and hormone-responsive genes. Conjointly, our results suggested that GsERF6 is a positive regulator of plant alkaline stress by increasing bicarbonate ionic resistance specifically, providing a new insight into the regulation of gene expression under alkaline conditions.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Ailin Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xiangbo Duan
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Sunting Wang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoli Sun
- Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Huizi Duanmu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Dan Zhu
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Lei Cao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Jialei Xiao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Zaib Un Nisa
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
159
|
Cui L, Feng K, Wang M, Wang M, Deng P, Song W, Nie X. Genome-wide identification, phylogeny and expression analysis of AP2/ERF transcription factors family in Brachypodium distachyon. BMC Genomics 2016; 17:636. [PMID: 27527343 PMCID: PMC4986339 DOI: 10.1186/s12864-016-2968-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/26/2016] [Indexed: 11/20/2022] Open
Abstract
Background The AP2/ERF transcription factor is one of the most important gene families in plants, which plays the vital role in regulating plant growth and development as well as in response to diverse stresses. Although AP2/ERFs have been thoroughly characterized in many plant species, little is known about this family in the model plant Brachypodium distachyon, especially those involved in the regulatory network of stress processes. Results In this study, a comprehensive genome-wide search was performed to identify AP2/ERF gene family in Brachypodium and a total of 141 BdAP2/ERFs were obtained. Phylogenetic analysis classified them into four subfamilies, of which 112 belonged to ERF, four to RAV and 24 to AP2 as well as one to soloist subfamily respectively, which was in accordance with the number of AP2 domains and gene structure analysis. Chromosomal localization, gene structure, conserved protein motif and cis-regulatory elements as well as gene duplication events analysis were further performed to systematically investigate the evolutionary features of these BdAP2/ERF genes. Furthermore, the regulatory network between BdAP2/ERF and other genes were constructed using the orthology-based method, and 39 BdAP2/ERFs were found to be involved in the regulatory network and 517 network branches were identified. The expression profiles of BdAP2/ERF during development and under diverse stresses were investigated using the available RNA-seq and microarray data and ten tissue-specific and several stress-responsive BdAP2/ERF genes were identified. Finally, 11 AP2/ERF genes were selected to validate their expressions in different tissues and under different stress treatments using RT-PCR method and results verified that these AP2/ERFs were involved in various developmental and physiological processes. Conclusions This study for the first time reported the characteristics of the BdAP2/ERF family, which will provide the invaluable information for further evolutionary and functional studies of AP2/ERF in Brachypodium, and also contribute to better understanding the molecular basis for development and stresses tolerance in this model species and beyond. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2968-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Licao Cui
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kewei Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mengxing Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Meng Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Weining Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Australia-China Joint Research Centre for Abiotic and Biotic Stress Management in Agriculture, Horticulture and Forestry, Yangling, 712100, Shaanxi, China.
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
160
|
Kovalchuk N, Chew W, Sornaraj P, Borisjuk N, Yang N, Singh R, Bazanova N, Shavrukov Y, Guendel A, Munz E, Borisjuk L, Langridge P, Hrmova M, Lopato S. The homeodomain transcription factor TaHDZipI-2 from wheat regulates frost tolerance, flowering time and spike development in transgenic barley. THE NEW PHYTOLOGIST 2016; 211:671-87. [PMID: 26990681 DOI: 10.1111/nph.13919] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/02/2016] [Indexed: 05/20/2023]
Abstract
Homeodomain leucine zipper class I (HD-Zip I) transcription factors (TFs) play key roles in the regulation of plant growth and development under stresses. Functions of the TaHDZipI-2 gene isolated from the endosperm of developing wheat grain were revealed. Molecular characterization of TaHDZipI-2 protein included studies of its dimerisation, protein-DNA interactions and gene activation properties using pull-down assays, in-yeast methods and transient expression assays in wheat cells. The analysis of TaHDZipI-2 gene functions was performed using transgenic barley plants. It included comparison of developmental phenotypes, yield components, grain quality, frost tolerance and the levels of expression of potential target genes in transgenic and control plants. Transgenic TaHDZipI-2 lines showed characteristic phenotypic features that included reduced growth rates, reduced biomass, early flowering, light-coloured leaves and narrowly elongated spikes. Transgenic lines produced 25-40% more seeds per spike than control plants, but with 50-60% smaller grain size. In vivo lipid imaging exposed changes in the distribution of lipids between the embryo and endosperm in transgenic seeds. Transgenic lines were significantly more tolerant to frost than control plants. Our data suggest the role of TaHDZipI-2 in controlling several key processes underlying frost tolerance, transition to flowering and spike development.
Collapse
Affiliation(s)
- Nataliya Kovalchuk
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - William Chew
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Pradeep Sornaraj
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Nikolai Borisjuk
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Nannan Yang
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Rohan Singh
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Natalia Bazanova
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Yuri Shavrukov
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Andre Guendel
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466, Gatersleben, Germany
| | - Eberhard Munz
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466, Gatersleben, Germany
| | - Ljudmilla Borisjuk
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466, Gatersleben, Germany
| | - Peter Langridge
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Maria Hrmova
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Sergiy Lopato
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
161
|
Agarwal G, Garg V, Kudapa H, Doddamani D, Pazhamala LT, Khan AW, Thudi M, Lee SH, Varshney RK. Genome-wide dissection of AP2/ERF and HSP90 gene families in five legumes and expression profiles in chickpea and pigeonpea. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1563-77. [PMID: 26800652 PMCID: PMC5066796 DOI: 10.1111/pbi.12520] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/03/2015] [Accepted: 11/22/2015] [Indexed: 05/19/2023]
Abstract
APETALA2/ethylene response factor (AP2/ERF) and heat-shock protein 90 (HSP90) are two significant classes of transcription factor and molecular chaperone proteins which are known to be implicated under abiotic and biotic stresses. Comprehensive survey identified a total of 147 AP2/ERF genes in chickpea, 176 in pigeonpea, 131 in Medicago, 179 in common bean and 140 in Lotus, whereas the number of HSP90 genes ranged from 5 to 7 in five legumes. Sequence alignment and phylogenetic analyses distinguished AP2, ERF, DREB, RAV and soloist proteins, while HSP90 proteins segregated on the basis of their cellular localization. Deeper insights into the gene structure allowed ERF proteins to be classified into AP2s based on DNA-binding domains, intron arrangements and phylogenetic grouping. RNA-seq and quantitative real-time PCR (qRT-PCR) analyses in heat-stressed chickpea as well as Fusarium wilt (FW)- and sterility mosaic disease (SMD)-stressed pigeonpea provided insights into the modus operandi of AP2/ERF and HSP90 genes. This study identified potential candidate genes in response to heat stress in chickpea while for FW and SMD stresses in pigeonpea. For instance, two DREB genes (Ca_02170 and Ca_16631) and three HSP90 genes (Ca_23016, Ca_09743 and Ca_25602) in chickpea can be targeted as potential candidate genes. Similarly, in pigeonpea, a HSP90 gene, C.cajan_27949, was highly responsive to SMD in the resistant genotype ICPL 20096, can be recommended for further functional validation. Also, two DREB genes, C.cajan_41905 and C.cajan_41951, were identified as leads for further investigation in response to FW stress in pigeonpea.
Collapse
Affiliation(s)
- Gaurav Agarwal
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Vanika Garg
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Dadakhalandar Doddamani
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Lekha T Pazhamala
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Aamir W Khan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Mahendar Thudi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Suk-Ha Lee
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- School of Plant Biology, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
162
|
Xiu Y, Iqbal A, Zhu C, Wu G, Chang Y, Li N, Cao Y, Zhang W, Zeng H, Chen S, Wang H. Improvement and transcriptome analysis of root architecture by overexpression of Fraxinus pennsylvanica DREB2A transcription factor in Robinia pseudoacacia L. 'Idaho'. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1456-69. [PMID: 26806173 PMCID: PMC5066641 DOI: 10.1111/pbi.12509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 10/27/2015] [Accepted: 11/06/2015] [Indexed: 05/04/2023]
Abstract
Transcription factors play a key role to enable plants to cope with abiotic stresses. DREB2 regulates the expression of several stress-inducible genes and constitutes major hubs in the water stress signalling webs. We cloned and characterized a novel gene encoding the FpDREB2A transcription factor from Fraxinus pennsylvanica, and a yeast activity assay confirmed its DRE binding and transcription activation. Overexpression of FpDREB2A in R. pseudoacacia showed enhanced resistance to drought stress. The transgenic plant survival rate was significantly higher than that of WT in soil drying and re-watering treatments. Transgenic lines showed a dramatic change in root architecture, and horizontal and vertical roots were found in transgenic plants compared to WT. The vertical roots penetrated in the field soil to more than 60 cm deep, while horizontal roots expanded within the top 20-30 cm of the soil. A physiological test demonstrated that chlorophyll contents were more gradually reduced and that soluble sugars and proline levels elevated more sharply but malondialdehyde level stayed the same (P < 0.05). Plant hormone levels of abscisic acid and IAA were higher than that of WT, while gibberellins and zeatin riboside were found to be lower. The root transcriptomes were sequenced and annotated into 2011 differential expression genes (DEGs). The DEGs were categorized in 149 pathways and were found to be involved in plant hormone signalling, transcription factors, stimulus responses, phenylalanine, carbohydrate and other metabolic pathways. The modified pathways in plant hormone signalling are thought to be the main cause of greater horizontal and vertical root development, in particular.
Collapse
Affiliation(s)
- Yu Xiu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Arshad Iqbal
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Chen Zhu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Guodong Wu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Yanping Chang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Na Li
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Yu Cao
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | | | - Huiming Zeng
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Shouyi Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huafang Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| |
Collapse
|
163
|
Guo W, Jin L, Miao Y, He X, Hu Q, Guo K, Zhu L, Zhang X. An ethylene response-related factor, GbERF1-like, from Gossypium barbadense improves resistance to Verticillium dahliae via activating lignin synthesis. PLANT MOLECULAR BIOLOGY 2016; 91:305-18. [PMID: 26971283 DOI: 10.1007/s11103-016-0467-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 03/03/2016] [Indexed: 05/18/2023]
Abstract
An ethylene response-related factor, GbERF1-like, from Gossypium barbadense cv. '7124' involved in the defence response to Verticillium dahliae was characterized. GbERF1-like transcripts present ubiquitously in various tissues, with higher accumulation in flower organs. GbERF1-like was also responsive to defence-related phytohormones and V. dahliae infection. The downregulation of GbERF1-like increased the susceptibility of cotton plants to V. dahliae infection, while overexpression of this gene improved disease resistance in both cotton and Arabidopsis, coupled with activation of the pathogenesis-related proteins. Further analysis revealed that genes involved in lignin synthesis, such as PAL, C4H, C3H, HCT, CCoAOMT, CCR and F5H, showed higher expression levels in the overexpressing cotton and Arabidopsis lines and lower expression levels in the RNAi cotton lines. The expression levels of these genes increased obviously when the GbERF1-like-overexpressing plants were inoculated with V. dahliae. Meanwhile, significant differences in the content of whole lignin could be found in the stems of transgenic and wild-type plants after inoculation with V. dahliae, as revealed by metabolic and histochemical analysis. More lignin could be detected in GbERF1-like-overexpressing cotton and Arabidopsis but less in GbERF1-like-silencing cotton compared with wild-type plants. The ratio of S and G monomers in GbERF1-like-overexpressing cotton and Arabidopsis increased significantly after infection by V. dahliae. Moreover, our results showed that the promoters of GhHCT1 and AtPAL3 could be transactivated by GbERF1-like in vivo based on yeast one-hybrid assays and dual-luciferase reporter assays. Knockdown of GhHCT1 in GbERF1-like over-expressing cotton decreases resistance to V. dahliae. Collectively, our results suggest that GbERF1-like acts as a positive regulator in lignin synthesis and contributes substantially to resistance to V. dahliae in plants.
Collapse
Affiliation(s)
- Weifeng Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- College of Plant Science, Tarim University, Alar, 843300, Xinjiang, People's Republic of China
| | - Li Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yuhuan Miao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Xin He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Qin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Kai Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| |
Collapse
|
164
|
He GH, Xu JY, Wang YX, Liu JM, Li PS, Chen M, Ma YZ, Xu ZS. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC PLANT BIOLOGY 2016; 16:116. [PMID: 27215938 PMCID: PMC4877946 DOI: 10.1186/s12870-016-0806-4] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/17/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Drought stress is one of the major causes of crop loss. WRKY transcription factors, as one of the largest transcription factor families, play important roles in regulation of many plant processes, including drought stress response. However, far less information is available on drought-responsive WRKY genes in wheat (Triticum aestivum L.), one of the three staple food crops. RESULTS Forty eight putative drought-induced WRKY genes were identified from a comparison between de novo transcriptome sequencing data of wheat without or with drought treatment. TaWRKY1 and TaWRKY33 from WRKY Groups III and II, respectively, were selected for further investigation. Subcellular localization assays revealed that TaWRKY1 and TaWRKY33 were localized in the nuclei in wheat mesophyll protoplasts. Various abiotic stress-related cis-acting elements were observed in the promoters of TaWRKY1 and TaWRKY33. Quantitative real-time PCR (qRT-PCR) analysis showed that TaWRKY1 was slightly up-regulated by high-temperature and abscisic acid (ABA), and down-regulated by low-temperature. TaWRKY33 was involved in high responses to high-temperature, low-temperature, ABA and jasmonic acid methylester (MeJA). Overexpression of TaWRKY1 and TaWRKY33 activated several stress-related downstream genes, increased germination rates, and promoted root growth in Arabidopsis under various stresses. TaWRKY33 transgenic Arabidopsis lines showed lower rates of water loss than TaWRKY1 transgenic Arabidopsis lines and wild type plants during dehydration. Most importantly, TaWRKY33 transgenic lines exhibited enhanced tolerance to heat stress. CONCLUSIONS The functional roles highlight the importance of WRKYs in stress response.
Collapse
Affiliation(s)
- Guan-Hua He
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Ji-Yuan Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Yan-Xia Wang
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Research Center of Wheat Engineering Technology of Hebei, Shijiazhuang, Hebei, 050041, China
| | - Jia-Ming Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Pan-Song Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| |
Collapse
|
165
|
He X, Ma H, Zhao X, Nie S, Li Y, Zhang Z, Shen Y, Chen Q, Lu Y, Lan H, Zhou S, Gao S, Pan G, Lin H. Comparative RNA-Seq Analysis Reveals That Regulatory Network of Maize Root Development Controls the Expression of Genes in Response to N Stress. PLoS One 2016; 11:e0151697. [PMID: 26990640 PMCID: PMC4798287 DOI: 10.1371/journal.pone.0151697] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 03/02/2016] [Indexed: 11/18/2022] Open
Abstract
Nitrogen (N) is an essential nutrient for plants, and it directly affects grain yield and protein content in cereal crops. Plant root systems are not only critical for anchorage in the soil, but also for N acquisition. Therefore, genes controlling root development might also affect N uptake by plants. In this study, the responses of nitrogen on root architecture of mutant rtcs and wild-type of maize were investigated by morphological and physiological analysis. Subsequently, we performed a comparative RNA-Seq analysis to compare gene expression profiles between mutant rtcs roots and wild-type roots under different N conditions. We identified 786 co-modulated differentially expressed genes (DEGs) related to root development. These genes participated in various metabolic processes. A co-expression cluster analysis and a cis-regulatory motifs analysis revealed the importance of the AP2-EREBP transcription factor family in the rtcs-dependent regulatory network. Some genotype-specific DEGs contained at least one LBD motif in their promoter region. Further analyses of the differences in gene transcript levels between rtcs and wild-type under different N conditions revealed 403 co-modulated DEGs with distinct functions. A comparative analysis revealed that the regulatory network controlling root development also controlled gene expression in response to N-deficiency. Several AP2-EREBP family members involved in multiple hormone signaling pathways were among the DEGs. These transcription factors might play important roles in the rtcs-dependent regulatory network related to root development and the N-deficiency response. Genes encoding the nitrate transporters NRT2-1, NAR2.1, NAR2.2, and NAR2.3 showed much higher transcript levels in rtcs than in wild-type under normal-N conditions. This result indicated that the LBD gene family mainly functions as transcriptional repressors, as noted in other studies. In summary, using a comparative RNA-Seq-based approach, we identified DEGs related to root development that also participated in the N-deficiency response in maize. These findings will increase our understanding of the molecular regulatory networks controlling root development and N-stress responses.
Collapse
Affiliation(s)
- Xiujing He
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Haixia Ma
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Xiongwei Zhao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Shujun Nie
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Yuhua Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Zhiming Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Yaou Shen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Qi Chen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Yanli Lu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Hai Lan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Shufeng Zhou
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Shibin Gao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Guangtang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Haijian Lin
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
- * E-mail:
| |
Collapse
|
166
|
Hernandez-Garcia CM, Finer JJ. A novel cis-acting element in the GmERF3 promoter contributes to inducible gene expression in soybean and tobacco after wounding. PLANT CELL REPORTS 2016; 35:303-16. [PMID: 26518427 DOI: 10.1007/s00299-015-1885-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/29/2015] [Accepted: 10/13/2015] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE Using in silico and functional analyses, we cloned and validated the expression profile of an inducible soybean promoter (GmERF3) along with its novel wound-induced and delayed expression (WIDE) element. Promoters and their contributing promoter elements are the main regulators of gene expression at the transcriptional level. Although the Ethylene Response Factor (ERF) gene family is one of the most well-studied stress-responsive gene families in plants, their promoter regions have received little attention. In this study, we investigated the expression patterns driven by the soybean (Glycine max) GmERF3 promoter and its cis-acting elements in soybean and tobacco. Transcriptomic data revealed that the native GmERF3 gene was differentially expressed in organs and tissues of plants. In transgenic soybeans containing a 1.3 kb GmERF3 promoter fused to the green fluorescent protein (gfp) gene, organ- and tissue-specificity was observed in untreated plants while mechanical wounding led to induction of GFP expression. Further in silico and in planta analyses of the GmERF3 promoter sequence in soybean revealed different cis-acting elements, including a novel cis-acting element, which contributed to increased expression, 1-2 days after mechanical wounding. We have named this DNA motif the wound-induced and delayed expression element (GGATTCAAGTTTAACC). A synthetic promoter containing a tetrameric repeat of this element showed high but late wound-induced GFP expression in leaves of transgenic tobacco. Our study expands the toolbox of inducible promoters and promoter elements for potential use in basic and applied research.
Collapse
Affiliation(s)
- Carlos M Hernandez-Garcia
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Ave., Wooster, OH, 44691, USA
- Epicrop Technologies, Inc., 5701 N 58th St, Suite 1, Lincoln, NE, 68507, USA
| | - John J Finer
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Ave., Wooster, OH, 44691, USA.
| |
Collapse
|
167
|
Amalraj A, Luang S, Kumar MY, Sornaraj P, Eini O, Kovalchuk N, Bazanova N, Li Y, Yang N, Eliby S, Langridge P, Hrmova M, Lopato S. Change of function of the wheat stress-responsive transcriptional repressor TaRAP2.1L by repressor motif modification. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:820-32. [PMID: 26150199 PMCID: PMC11629789 DOI: 10.1111/pbi.12432] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 06/04/2015] [Accepted: 06/12/2015] [Indexed: 06/04/2023]
Abstract
Plants respond to abiotic stresses by changes in gene regulation, including stress-inducible expression of transcriptional activators and repressors. One of the best characterized families of drought-related transcription factors are dehydration-responsive element binding (DREB) proteins, known as C-repeat binding factors (CBF). The wheat DREB/CBF gene TaRAP2.1L was isolated from drought-affected tissues using a dehydration-responsive element (DRE) as bait in a yeast one-hybrid screen. TaRAP2.1L is induced by elevated abscisic acid, drought and cold. A C-terminal ethylene responsive factor-associated amphiphilic repression (EAR) motif, known to be responsible for active repression of target genes, was identified in the TaRAP2.1L protein. It was found that TaRAP2.1L has a unique selectivity of DNA-binding, which differs from that of DREB activators. This binding selectivity remains unchanged in a TaRAP2.1L variant with an inactivated EAR motif (TaRAP2.1Lmut). To study the role of the TaRAP2.1L repressor activity associated with the EAR motif in planta, transgenic wheat overexpressing native or mutated TaRAP2.1L was generated. Overexpression of TaRAP2.1L under constitutive and stress-inducible promoters in transgenic wheat and barley led to dwarfism and decreased frost tolerance. By contrast, constitutive overexpression of the TaRAP2.1Lmut gene had little or no negative influence on wheat development or grain yield. Transgenic lines with the TaRAP2.1Lmut transgene had an enhanced ability to survive frost and drought. The improved stress tolerance is attributed to up-regulation of several stress-related genes known to be downstream genes of DREB/CBF activators.
Collapse
Affiliation(s)
- Amritha Amalraj
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Sukanya Luang
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Manoj Yadav Kumar
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
- Present address:
Department of BiotechnologyCollege of AgricultureSardar Vallabhbhai Patel University of Agriculture & TechnologyMeerut250110India
| | - Pradeep Sornaraj
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Omid Eini
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
- Present address:
Department of Plant ProtectionSchool of AgricultureUniversity of ZanjanZanjan(313)Iran
| | - Nataliya Kovalchuk
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Natalia Bazanova
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Yuan Li
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Nannan Yang
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Serik Eliby
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Peter Langridge
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Maria Hrmova
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Sergiy Lopato
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| |
Collapse
|
168
|
Opitz N, Marcon C, Paschold A, Malik WA, Lithio A, Brandt R, Piepho HP, Nettleton D, Hochholdinger F. Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1095-107. [PMID: 26463995 PMCID: PMC4753846 DOI: 10.1093/jxb/erv453] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Water deficit is the most important environmental constraint severely limiting global crop growth and productivity. This study investigated early transcriptome changes in maize (Zea mays L.) primary root tissues in response to moderate water deficit conditions by RNA-Sequencing. Differential gene expression analyses revealed a high degree of plasticity of the water deficit response. The activity status of genes (active/inactive) was determined by a Bayesian hierarchical model. In total, 70% of expressed genes were constitutively active in all tissues. In contrast, <3% (50 genes) of water deficit-responsive genes (1915) were consistently regulated in all tissues, while >75% (1501 genes) were specifically regulated in a single root tissue. Water deficit-responsive genes were most numerous in the cortex of the mature root zone and in the elongation zone. The most prominent functional categories among differentially expressed genes in all tissues were 'transcriptional regulation' and 'hormone metabolism', indicating global reprogramming of cellular metabolism as an adaptation to water deficit. Additionally, the most significant transcriptomic changes in the root tip were associated with cell wall reorganization, leading to continued root growth despite water deficit conditions. This study provides insight into tissue-specific water deficit responses and will be a resource for future genetic analyses and breeding strategies to develop more drought-tolerant maize cultivars.
Collapse
Affiliation(s)
- Nina Opitz
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, D-53113 Bonn, Germany
| | - Caroline Marcon
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, D-53113 Bonn, Germany
| | - Anja Paschold
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, D-53113 Bonn, Germany
| | - Waqas Ahmed Malik
- Institute for Crop Science, Biostatistics Unit, University of Hohenheim, D-70599 Stuttgart, Germany
| | - Andrew Lithio
- Department of Statistics, Iowa State University, Ames, IA 50011-1210, USA
| | - Ronny Brandt
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Hans-Peter Piepho
- Institute for Crop Science, Biostatistics Unit, University of Hohenheim, D-70599 Stuttgart, Germany
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, IA 50011-1210, USA
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, D-53113 Bonn, Germany
| |
Collapse
|
169
|
Li B, Li Q, Mao X, Li A, Wang J, Chang X, Hao C, Zhang X, Jing R. Two Novel AP2/EREBP Transcription Factor Genes TaPARG Have Pleiotropic Functions on Plant Architecture and Yield-Related Traits in Common Wheat. FRONTIERS IN PLANT SCIENCE 2016; 7:1191. [PMID: 27555860 PMCID: PMC4977303 DOI: 10.3389/fpls.2016.01191] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 07/25/2016] [Indexed: 05/20/2023]
Abstract
AP2/EREBPs play significant roles in plant growth and development. A novel, pleiotropic TaPARG (PLANT ARCHITECTURE-RELATED GENE), a member of the AP2/EREBP transcription factor gene family, and its flanking sequences were isolated in wheat (Triticum aestivum L.). Two TaPARG genes were identified and named as TaPARG-2A and TaPARG-2D. Their amino acid sequences were highly similar especially in the functional domains. TaPARG-2A on chromosome 2A was flanked by markers Xwmc63 and Xgwm372. TaPARG-2D was mapped to chromosome 2D. Subcellular localization revealed that TaPARG-2D was localized in the nucleus. The results of tissue expression pattern, overexpression in rice, association analysis and distinct population verification jointly revealed that TaPARG functions during the entire growth cycle of wheat. Its functions include regulation of plant architecture-related and yield-related traits. Association analysis, geographic distribution and allelic frequencies suggested that favored haplotypes Hap-2A-2 and Hap-2A-3 were selected in Chinese wheat breeding programs. Both favored haplotypes might be caused by a single amino acid substitution (His/Tyr). These results suggest that TaPARG is a regulatory factor in plant growth and development, and that the favored alleles might be useful for improving plant architecture and grain yield of wheat.
Collapse
|
170
|
Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Pareek A, Singla-Pareek SL. Transcription Factors and Plants Response to Drought Stress: Current Understanding and Future Directions. FRONTIERS IN PLANT SCIENCE 2016; 7:1029. [PMID: 27471513 PMCID: PMC4943945 DOI: 10.3389/fpls.2016.01029] [Citation(s) in RCA: 377] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/30/2016] [Indexed: 05/18/2023]
Abstract
Increasing vulnerability of plants to a variety of stresses such as drought, salt and extreme temperatures poses a global threat to sustained growth and productivity of major crops. Of these stresses, drought represents a considerable threat to plant growth and development. In view of this, developing staple food cultivars with improved drought tolerance emerges as the most sustainable solution toward improving crop productivity in a scenario of climate change. In parallel, unraveling the genetic architecture and the targeted identification of molecular networks using modern "OMICS" analyses, that can underpin drought tolerance mechanisms, is urgently required. Importantly, integrated studies intending to elucidate complex mechanisms can bridge the gap existing in our current knowledge about drought stress tolerance in plants. It is now well established that drought tolerance is regulated by several genes, including transcription factors (TFs) that enable plants to withstand unfavorable conditions, and these remain potential genomic candidates for their wide application in crop breeding. These TFs represent the key molecular switches orchestrating the regulation of plant developmental processes in response to a variety of stresses. The current review aims to offer a deeper understanding of TFs engaged in regulating plant's response under drought stress and to devise potential strategies to improve plant tolerance against drought.
Collapse
Affiliation(s)
- Rohit Joshi
- Plant Stress Biology, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Shabir H. Wani
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of KashmirSrinagar, India
| | - Balwant Singh
- National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Abhishek Bohra
- Crop Improvement Division, Indian Institute of Pulses ResearchKanpur, India
| | - Zahoor A. Dar
- Dryland Agricultural Research Station, Sher-e-Kashmir University of Agricultural Sciences and Technology of KashmirBudgam, India
| | - Ajaz A. Lone
- Dryland Agricultural Research Station, Sher-e-Kashmir University of Agricultural Sciences and Technology of KashmirBudgam, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Sneh L. Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
- *Correspondence: Sneh L. Singla-Pareek,
| |
Collapse
|
171
|
Hichri I, Muhovski Y, Clippe A, Žižková E, Dobrev PI, Motyka V, Lutts S. SlDREB2, a tomato dehydration-responsive element-binding 2 transcription factor, mediates salt stress tolerance in tomato and Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:62-79. [PMID: 26082265 DOI: 10.1111/pce.12591] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 05/02/2023]
Abstract
To counter environmental cues, cultivated tomato (Solanum lycopersicum L.) has evolved adaptive mechanisms requiring regulation of downstream genes. The dehydration-responsive element-binding protein 2 (DREB2) transcription factors regulate abiotic stresses responses in plants. Herein, we isolated a novel DREB2-type regulator involved in salinity response, named SlDREB2. Spatio-temporal expression profile together with investigation of its promoter activity indicated that SlDREB2 is expressed during early stages of seedling establishment and in various vegetative and reproductive organs of adult plants. SlDREB2 is up-regulated in roots and young leaves following exposure to NaCl, but is also induced by KCl and drought. Its overexpression in WT Arabidopsis and atdreb2a mutants improved seed germination and plant growth in presence of different osmotica. In tomato, SlDREB2 affected vegetative and reproductive organs development and the intronic sequence present in the 5' UTR drives its expression. Physiological, biochemical and transcriptomic analyses showed that SlDREB2 enhanced plant tolerance to salinity by improvement of K(+) /Na(+) ratio, and proline and polyamines biosynthesis. Exogenous hormonal treatments (abscisic acid, auxin and cytokinins) and analysis of WT and 35S::SlDREB2 tomatoes hormonal contents highlighted SlDREB2 involvement in abscisic acid biosynthesis/signalling. Altogether, our results provide an overview of SlDREB2 mode of action during early salt stress response.
Collapse
Affiliation(s)
- Imène Hichri
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain (UCL), B-1348, Louvain-la-Neuve, Belgium
| | - Yordan Muhovski
- Département Sciences du vivant, Centre wallon de Recherches Agronomiques, B-5030, Gembloux, Belgium
| | - André Clippe
- Institut des Sciences de la Vie (ISV), Université catholique de Louvain (UCL), B-1348, Louvain-la-Neuve, Belgium
| | - Eva Žižková
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02, Prague 6, Czech Republic
| | - Petre I Dobrev
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02, Prague 6, Czech Republic
| | - Vaclav Motyka
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02, Prague 6, Czech Republic
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain (UCL), B-1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
172
|
Duan YB, Li J, Qin RY, Xu RF, Li H, Yang YC, Ma H, Li L, Wei PC, Yang JB. Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. PLANT MOLECULAR BIOLOGY 2016; 90:49-62. [PMID: 26482477 DOI: 10.1007/s11103-015-0393-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/14/2015] [Indexed: 05/21/2023]
Abstract
Salt is a major environmental stress factor that can affect rice growth and yields. Recent studies suggested that members of the AP2/ERF domain-containing RAV (related to ABI3/VP1) TF family are involved in abiotic stress adaptation. However, the transcriptional response of rice RAV genes (OsRAVs) to salt has not yet been fully characterized. In this study, the expression patterns of all five OsRAVs were examined under salt stress. Only one gene, OsRAV2, was stably induced by high-salinity treatment. Further expression profile analyses indicated that OsRAV2 is transcriptionally regulated by salt, but not KCl, osmotic stress, cold or ABA (abscisic acid) treatment. To elucidate the regulatory mechanism of the stress response at the transcriptional level, we isolated and characterized the promoter region of OsRAV2 (P OsRAV2 ). Transgenic analysis indicated that P OsRAV2 is induced by salt stress but not osmotic stress or ABA treatment. Serial 5' deletions and site-specific mutations in P OsRAV2 revealed that a GT-1 element located at position -664 relative to the putative translation start site is essential for the salt induction of P OsRAV2 . The regulatory function of the GT-1 element in the salt induction of OsRAV2 was verified in situ in plants with targeted mutations generated using the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) system. Taken together, our results indicate that the GT-1 element directly controls the salt response of OsRAV2. This study provides a better understanding of the putative functions of OsRAVs and the molecular regulatory mechanisms of plant genes under salt stress.
Collapse
Affiliation(s)
- Yong-Bo Duan
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Juan Li
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Rui-Ying Qin
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Rong-Fang Xu
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Hao Li
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Ya-Chun Yang
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Hui Ma
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Li Li
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Peng-Cheng Wei
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Jian-Bo Yang
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| |
Collapse
|
173
|
Li MY, Song X, Wang F, Xiong AS. Suitable Reference Genes for Accurate Gene Expression Analysis in Parsley ( Petroselinum crispum) for Abiotic Stresses and Hormone Stimuli. FRONTIERS IN PLANT SCIENCE 2016; 7:1481. [PMID: 27746803 PMCID: PMC5043067 DOI: 10.3389/fpls.2016.01481] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/20/2016] [Indexed: 05/23/2023]
Abstract
Parsley, one of the most important vegetables in the Apiaceae family, is widely used in the food, medicinal, and cosmetic industries. Recent studies on parsley mainly focus on its chemical composition, and further research involving the analysis of the plant's gene functions and expressions is required. qPCR is a powerful method for detecting very low quantities of target transcript levels and is widely used to study gene expression. To ensure the accuracy of results, a suitable reference gene is necessary for expression normalization. In this study, four software, namely geNorm, NormFinder, BestKeeper, and RefFinder were used to evaluate the expression stabilities of eight candidate reference genes of parsley (GAPDH, ACTIN, eIF-4α, SAND, UBC, TIP41, EF-1α, and TUB) under various conditions, including abiotic stresses (heat, cold, salt, and drought) and hormone stimuli treatments (GA, SA, MeJA, and ABA). Results showed that EF-1α and TUB were the most stable genes for abiotic stresses, whereas EF-1α, GAPDH, and TUB were the top three choices for hormone stimuli treatments. Moreover, EF-1α and TUB were the most stable reference genes among all tested samples, and UBC was the least stable one. Expression analysis of PcDREB1 and PcDREB2 further verified that the selected stable reference genes were suitable for gene expression normalization. This study can guide the selection of suitable reference genes in gene expression in parsley.
Collapse
|
174
|
Song X, Wang J, Ma X, Li Y, Lei T, Wang L, Ge W, Guo D, Wang Z, Li C, Zhao J, Wang X. Origination, Expansion, Evolutionary Trajectory, and Expression Bias of AP2/ERF Superfamily in Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:1186. [PMID: 27570529 PMCID: PMC4982375 DOI: 10.3389/fpls.2016.01186] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/22/2016] [Indexed: 05/03/2023]
Abstract
The AP2/ERF superfamily, one of the most important transcription factor families, plays crucial roles in response to biotic and abiotic stresses. So far, a comprehensive evolutionary inference of its origination and expansion has not been available. Here, we identified 515 AP2/ERF genes in B. napus, a neo-tetraploid forming ~7500 years ago, and found that 82.14% of them were duplicated in the tetraploidization. A prominent subgenome bias was revealed in gene expression, tissue-specific, and gene conversion. Moreover, a large-scale analysis across plants and alga suggested that this superfamily could have been originated from AP2 family, expanding to form other families (ERF, and RAV). This process was accompanied by duplicating and/or alternative deleting AP2 domain, intragenic domain sequence conversion, and/or by acquiring other domains, resulting in copy number variations, alternatively contributing to functional innovation. We found that significant positive selection occurred at certain critical nodes during the evolution of land plants, possibly responding to changing environment. In conclusion, the present research revealed origination, functional innovation, and evolutionary trajectory of the AP2/ERF superfamily, contributing to understanding their roles in plant stress tolerance.
Collapse
Affiliation(s)
- Xiaoming Song
- Department of Life Sciences, North China University of Science and TechnologyTangshan, China
| | - Jinpeng Wang
- Department of Life Sciences, North China University of Science and TechnologyTangshan, China
| | - Xiao Ma
- Library, North China University of Science and TechnologyTangshan, China
| | - Yuxian Li
- Department of Life Sciences, North China University of Science and TechnologyTangshan, China
| | - Tianyu Lei
- Department of Life Sciences, North China University of Science and TechnologyTangshan, China
| | - Li Wang
- Department of Life Sciences, North China University of Science and TechnologyTangshan, China
| | - Weina Ge
- Department of Life Sciences, North China University of Science and TechnologyTangshan, China
| | - Di Guo
- Department of Life Sciences, North China University of Science and TechnologyTangshan, China
| | - Zhenyi Wang
- Department of Life Sciences, North China University of Science and TechnologyTangshan, China
| | - Chunjin Li
- Department of Life Sciences, North China University of Science and TechnologyTangshan, China
| | - Jianjun Zhao
- Key Laboratory of Vegetable Germplasm and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Agricultural University of HebeiBaoding, China
- Jianjun Zhao
| | - Xiyin Wang
- Department of Life Sciences, North China University of Science and TechnologyTangshan, China
- *Correspondence: Xiyin Wang
| |
Collapse
|
175
|
Genome-wide analysis and expression profiling of the ERF transcription factor family in potato (Solanum tuberosum L.). Mol Biotechnol 2015; 57:348-58. [PMID: 25491236 DOI: 10.1007/s12033-014-9828-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ERF transcription factors belong to the AP2/ERF superfamily, one of the largest transcription factor families in plants. They play important roles in plant development processes, as well as in the response to biotic, abiotic, and hormone signaling. In the present study, 155 putative ERF transcription factor genes were identified from the potato (Solanum tuberosum) genome database, and compared with those from Arabidopsis thaliana. The StERF proteins are divided into ten phylogenetic groups. Expression analyses of five StERFs were carried out by semi-quantitative RT-PCR and compared with published RNA-seq data. These latter analyses were used to distinguish tissue-specific, biotic, and abiotic stress genes as well as hormone-responsive StERF genes. The results are of interest to better understand the role of the AP2/ERF genes in response to diverse types of stress in potatoes. A comprehensive analysis of the physiological functions and biological roles of the ERF family genes in S. tuberosum is required to understand crop stress tolerance mechanisms.
Collapse
|
176
|
Djemal R, Khoudi H. Isolation and molecular characterization of a novel WIN1/SHN1 ethylene-responsive transcription factor TdSHN1 from durum wheat (Triticum turgidum. L. subsp. durum). PROTOPLASMA 2015; 252:1461-73. [PMID: 25687296 DOI: 10.1007/s00709-015-0775-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/29/2015] [Indexed: 05/27/2023]
Abstract
Over the last decade, APETALA2/Ethylene Responsive Factor (AP2/ERF) proteins have become the subject of intensive research activity due to their involvement in a variety of biological processes. This research led to the identification of AP2/ERF genes in many species; however, little is known about these genes in durum wheat, one of the most important cereal crops in the world. In this study, a new member of the AP2/ERF transcription factor family, designated TdSHN1, was isolated from durum wheat using thermal asymetric interlaced PCR (TAIL-PCR) method. Protein sequence analysis showed that TdSHN1 contained an AP2/ERF domain of 63 amino acids and a putative nuclear localization signal (NLS). Phylogenetic analysis showed that TdSHN1 belongs to a group Va protein in the ERF subfamily which contains the Arabidopsis ERF proteins (SHN1, SHN2, and SHN3). Expression of TdSHN1 was strongly induced by salt, drought, abscisic acid (ABA), and cold. In planta, TdSHN1 protein was able to activate the transcription of GUS reporter gene driven by the GCC box and DRE element sequences. In addition, TdSHN1 was targeted to the nucleus when transiently expressed in tobacco epidermal cells. In transgenic yeast, overexpression of TdSHN1 increased tolerance to multiple abiotic stresses. Taken together, the results showed that TdSHN1 encodes an abiotic stress-inducible, transcription factor which confers abiotic stress tolerance in yeast. TdSHN1 is therefore a promising candidate for improvement of biotic and abiotic stress tolerance in wheat as well as other crops.
Collapse
Affiliation(s)
- Rania Djemal
- Laboratory of Plant Protection and Improvement, Center of Biotechnology of Sfax, University of Sfax, B.P' 1177, Route Sidi Mansour Km 6, 3018, Sfax, Tunisia
| | - Habib Khoudi
- Laboratory of Plant Protection and Improvement, Center of Biotechnology of Sfax, University of Sfax, B.P' 1177, Route Sidi Mansour Km 6, 3018, Sfax, Tunisia.
| |
Collapse
|
177
|
Li S, Wang H, Li F, Chen Z, Li X, Zhu L, Wang G, Yu J, Huang D, Lang Z. The maize transcription factor EREB58 mediates the jasmonate-induced production of sesquiterpene volatiles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:296-308. [PMID: 26303437 DOI: 10.1111/tpj.12994] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 05/22/2023]
Abstract
Over the past two decades, Zea mays (maize) has been established as a model system for the study of indirect plant defense against herbivores. When attacked by lepidopteran larvae, maize leaves emit a complex blend of volatiles, mainly composed of sesquiterpenes, to attract the natural enemies of the herbivores. This is associated with a swift transcriptional induction of terpene synthases such as TPS10; however, the molecular components controlling the complex transcriptional reprogramming in this process are still obscure. Here, by exploiting the finding that the maize TPS10 promoter retained its full responsiveness to herbivory in Arabidopsis, we identified the region from -300 to -200 of the TPS10 promoter as both necessary and sufficient for its herbivore inducibility through 5' deletion mapping. A high-throughput screening of an Arabidopsis transcription factor library using this promoter region as the bait identified seven AP2/ERF family transcription factors. Among their close homologs in maize, EREB58 was the only gene responsive to herbivory, with a spatiotemporal expression pattern highly similar to that of TPS10. Meanwhile, EREB58 was also responsive to Jasmonate. In vivo and in vitro assays indicated that EREB58 promotes TPS10 expression by directly binding to the GCC-box within the region from -300 to -200 of the TPS10 promoter. Transgenic maize plants overexpressing EREB58 constitutively over-accumulate TPS10 transcript, and also (E)-β-farnesene and (E)-α-bergamotene, two major sesquiterpenes produced by TPS10. In contrast, jasmonate induction of TPS10 and its volatiles was abolished in EREB58-RNAi transgenic lines. In sum, these results demonstrate that EREB58 is a positive regulator of sesquiterpene production by directly promoting TPS10 expression.
Collapse
Affiliation(s)
- Shengyan Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fengqi Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhongliang Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuying Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jingjuan Yu
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dafang Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhihong Lang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
178
|
Wuddineh WA, Mazarei M, Turner GB, Sykes RW, Decker SR, Davis MF, Stewart CN. Identification and Molecular Characterization of the Switchgrass AP2/ERF Transcription Factor Superfamily, and Overexpression of PvERF001 for Improvement of Biomass Characteristics for Biofuel. Front Bioeng Biotechnol 2015; 3:101. [PMID: 26258121 PMCID: PMC4507462 DOI: 10.3389/fbioe.2015.00101] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/29/2015] [Indexed: 11/13/2022] Open
Abstract
The APETALA2/ethylene response factor (AP2/ERF) superfamily of transcription factors (TFs) plays essential roles in the regulation of various growth and developmental programs including stress responses. Members of these TFs in other plant species have been implicated to play a role in the regulation of cell wall biosynthesis. Here, we identified a total of 207 AP2/ERF TF genes in the switchgrass genome and grouped into four gene families comprised of 25 AP2-, 121 ERF-, 55 DREB (dehydration responsive element binding)-, and 5 RAV (related to API3/VP) genes, as well as a singleton gene not fitting any of the above families. The ERF and DREB subfamilies comprised seven and four distinct groups, respectively. Analysis of exon/intron structures of switchgrass AP2/ERF genes showed high diversity in the distribution of introns in AP2 genes versus a single or no intron in most genes in the ERF and RAV families. The majority of the subfamilies or groups within it were characterized by the presence of one or more specific conserved protein motifs. In silico functional analysis revealed that many genes in these families might be associated with the regulation of responses to environmental stimuli via transcriptional regulation of the response genes. Moreover, these genes had diverse endogenous expression patterns in switchgrass during seed germination, vegetative growth, flower development, and seed formation. Interestingly, several members of the ERF and DREB families were found to be highly expressed in plant tissues where active lignification occurs. These results provide vital resources to select candidate genes to potentially impart tolerance to environmental stress as well as reduced recalcitrance. Overexpression of one of the ERF genes (PvERF001) in switchgrass was associated with increased biomass yield and sugar release efficiency in transgenic lines, exemplifying the potential of these TFs in the development of lignocellulosic feedstocks with improved biomass characteristics for biofuels.
Collapse
Affiliation(s)
- Wegi A Wuddineh
- Department of Plant Sciences, University of Tennessee , Knoxville, TN , USA ; Bioenergy Science Center, Oak Ridge National Laboratory , Oak Ridge, TN , USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee , Knoxville, TN , USA ; Bioenergy Science Center, Oak Ridge National Laboratory , Oak Ridge, TN , USA
| | - Geoffrey B Turner
- Bioenergy Science Center, Oak Ridge National Laboratory , Oak Ridge, TN , USA ; National Renewable Energy Laboratory , Golden, CO , USA
| | - Robert W Sykes
- Bioenergy Science Center, Oak Ridge National Laboratory , Oak Ridge, TN , USA ; National Renewable Energy Laboratory , Golden, CO , USA
| | - Stephen R Decker
- Bioenergy Science Center, Oak Ridge National Laboratory , Oak Ridge, TN , USA ; National Renewable Energy Laboratory , Golden, CO , USA
| | - Mark F Davis
- Bioenergy Science Center, Oak Ridge National Laboratory , Oak Ridge, TN , USA ; National Renewable Energy Laboratory , Golden, CO , USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee , Knoxville, TN , USA ; Bioenergy Science Center, Oak Ridge National Laboratory , Oak Ridge, TN , USA
| |
Collapse
|
179
|
Liu Z, Xin M, Qin J, Peng H, Ni Z, Yao Y, Sun Q. Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2015; 15:152. [PMID: 26092253 PMCID: PMC4474349 DOI: 10.1186/s12870-015-0511-8] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/28/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Hexaploid wheat (Triticum aestivum) is a globally important crop. Heat, drought and their combination dramatically reduce wheat yield and quality, but the molecular mechanisms underlying wheat tolerance to extreme environments, especially stress combination, are largely unknown. As an allohexaploid, wheat consists of three closely related subgenomes (A, B, and D), and was reported to show improved tolerance to stress conditions compared to tetraploid. But so far very little is known about how wheat coordinates the expression of homeologous genes to cope with various environmental constraints on the whole-genome level. RESULTS To explore the transcriptional response of wheat to the individual and combined stress, we performed high-throughput transcriptome sequencing of seedlings under normal condition and subjected to drought stress (DS), heat stress (HS) and their combination (HD) for 1 h and 6 h, and presented global gene expression reprograms in response to these three stresses. Gene Ontology (GO) enrichment analysis of DS, HS and HD responsive genes revealed an overlap and complexity of functional pathways between each other. Moreover, 4,375 wheat transcription factors were identified on a whole-genome scale based on the released scaffold information by IWGSC, and 1,328 were responsive to stress treatments. Then, the regulatory network analysis of HSFs and DREBs implicated they were both involved in the regulation of DS, HS and HD response and indicated a cross-talk between heat and drought stress. Finally, approximately 68.4 % of homeologous genes were found to exhibit expression partitioning in response to DS, HS or HD, which was further confirmed by using quantitative RT-PCR and Nullisomic-Tetrasomic lines. CONCLUSIONS A large proportion of wheat homeologs exhibited expression partitioning under normal and abiotic stresses, which possibly contributes to the wide adaptability and distribution of hexaploid wheat in response to various environmental constraints.
Collapse
Affiliation(s)
- Zhenshan Liu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Beijing, Haidian District, 100193, China.
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Beijing, Haidian District, 100193, China.
| | - Jinxia Qin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Beijing, Haidian District, 100193, China.
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Beijing, Haidian District, 100193, China.
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Beijing, Haidian District, 100193, China.
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Beijing, Haidian District, 100193, China.
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Beijing, Haidian District, 100193, China.
| |
Collapse
|
180
|
Zhuang J, Wang F, Xu ZS, Xiong AS. Microarray analysis of different expression profiles between wild-type and transgenic rice seedlings overexpression OsDREB1BI gene. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
181
|
Genome-wide analysis of AP2/ERF transcription factors in carrot (Daucus carota L.) reveals evolution and expression profiles under abiotic stress. Mol Genet Genomics 2015; 290:2049-61. [PMID: 25971861 DOI: 10.1007/s00438-015-1061-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/02/2015] [Indexed: 12/14/2022]
Abstract
AP2/ERF is a large transcription factor family that regulates plant physiological processes, such as plant development and stress response. Carrot (Daucus carota L.) is an important economical crop with a genome size of 480 Mb; the draft genome sequencing of this crop has been completed by our group. However, little is known about the AP2/ERF factors in carrot. In this study, a total of 267 putative AP2/ERF factors were identified from the whole-genome sequence of carrot. These AP2/ERF proteins were phylogenetically clustered into five subfamilies based on their similarity to the amino acid sequences from Arabidopsis. The distribution and comparative genome analysis of the AP2/ERF factors among plants showed the AP2/ERF factors had expansion during the evolutionary process, and the AP2 domain was highly conserved during evolution. The number of AP2/ERF factors in land plants expanded during their evolution. A total of 60 orthologous and 145 coorthologous AP2/ERF gene pairs between carrot and Arabidopsis were identified, and the interaction network of orthologous genes was constructed. The expression patterns of eight AP2/ERF family genes from each subfamily (DREB, ERF, AP2, and RAV) were related to abiotic stresses. Yeast one-hybrid and β-galactosidase activity assays confirmed the DRE and GCC box-binding activities of DREB subfamily genes. This study is the first to identify and characterize the AP2/ERF transcription factors in carrot using whole-genome analysis, and the findings may serve as references for future functional research on the transcription factors in carrot.
Collapse
|
182
|
Wang X, Han H, Yan J, Chen F, Wei W. A New AP2/ERF Transcription Factor from the Oil Plant Jatropha curcas Confers Salt and Drought Tolerance to Transgenic Tobacco. Appl Biochem Biotechnol 2015; 176:582-97. [PMID: 25935218 DOI: 10.1007/s12010-015-1597-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/26/2015] [Indexed: 10/23/2022]
Abstract
Jatropha curcas L. is a drought and salt-tolerant oil plant widely used for various purposes and has considerable potential as a diesel/kerosene substitute or extender. Understanding the molecular mechanisms underlie that the response to various biotic and abiotic stresses of this plant could be important to crop improvement efforts. Here, a new AP2/ERF-type transcription factor gene, named JcERF2, was isolated from the leaves of J. curcas. Sequence analysis showed that the JcERF2 gene contains a 759-bp open reading frame encoding a polypeptide of 252 amino acids. The predicted JcERF2 protein contained a conserved DNA-binding domain (the AP2/ERF domain) with 58 amino acids. The JcERF2 protein is highly homologous with other ERFs. JcERF2 was localized in the nucleus by analysis with a JcERF2-green fluorescent protein (GFP) fusion protein. Quantitative polymerase chain reaction (qPCR) analysis showed that JcERF2 was induced by drought, salt, abscisic acid, and ethylene. Overexpression of JcERF2 in transgenic tobacco plants enhanced the expression of biotic and abiotic stress-related genes, increased the accumulation of free proline and soluble carbohydrates, and conferred tolerance to drought and salt stresses compared to the wild type (WT). Taken together, the JcERF2 gene is a novel AP2/ERF transcription factor involved in plant response to environmental factors, which can be used as a potential candidate gene for genetic engineering of crops.
Collapse
Affiliation(s)
- Xuehua Wang
- School of Life Sciences and Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, China
| | | | | | | | | |
Collapse
|
183
|
Dong L, Cheng Y, Wu J, Cheng Q, Li W, Fan S, Jiang L, Xu Z, Kong F, Zhang D, Xu P, Zhang S. Overexpression of GmERF5, a new member of the soybean EAR motif-containing ERF transcription factor, enhances resistance to Phytophthora sojae in soybean. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2635-47. [PMID: 25779701 DOI: 10.1093/jxb/erv078] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phytophthora root and stem rot of soybean [Glycine max (L.) Merr.], caused by Phytophthora sojae Kaufmann and Gerdemann, is a destructive disease throughout the soybean planting regions in the world. Here, we report insights into the function and underlying mechanisms of a novel ethylene response factor (ERF) in soybean, namely GmERF5, in host responses to P. sojae. GmERF5-overexpressing transgenic soybean exhibited significantly enhanced resistance to P. sojae and positively regulated the expression of the PR10, PR1-1, and PR10-1 genes. Sequence analysis suggested that GmERF5 contains an AP2/ERF domain of 58 aa and a conserved ERF-associated amphiphilic repression (EAR) motif in its C-terminal region. Following stress treatments, GmERF5 was significantly induced by P. sojae, ethylene (ET), abscisic acid (ABA), and salicylic acid (SA). The activity of the GmERF5 promoter (GmERF5P) was upregulated in tobacco leaves with ET, ABA, Phytophthora nicotianae, salt, and drought treatments, suggesting that GmERF5 could be involved not only in the induced defence response but also in the ABA-mediated pathway of salt and drought tolerance. GmERF5 could bind to the GCC-box element and act as a repressor of gene transcription. It was targeted to the nucleus when transiently expressed in Arabidopsis protoplasts. GmERF5 interacted with a basic helix-loop-helix transcription factor (GmbHLH) and eukaryotic translation initiation factor (GmEIF) both in yeast cells and in planta. To the best of our knowledge, GmERF5 is the first soybean EAR motif-containing ERF transcription factor demonstrated to be involved in the response to pathogen infection.
Collapse
Affiliation(s)
- Lidong Dong
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Yingxin Cheng
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Junjiang Wu
- Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences; Collaborative Innovation Center of Grain Production Capacity Improvement in Heilongjiang Province, Harbin, Heilongjiang 150086, PR China
| | - Qun Cheng
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Wenbin Li
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Sujie Fan
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Liangyu Jiang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Zhaolong Xu
- Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, PR China
| | - Fanjiang Kong
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, PR China
| | - Dayong Zhang
- Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, PR China
| | - Pengfei Xu
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Shuzhen Zhang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| |
Collapse
|
184
|
Feng ZJ, Cui XY, Cui XY, Chen M, Yang GX, Ma YZ, He GY, Xu ZS. The soybean GmDi19-5 interacts with GmLEA3.1 and increases sensitivity of transgenic plants to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2015; 6:179. [PMID: 25852726 PMCID: PMC4371698 DOI: 10.3389/fpls.2015.00179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/05/2015] [Indexed: 05/29/2023]
Abstract
Drought-induced (Di19) proteins played important roles in plant growth, development, and abiotic stress responses. In the present study, a total of seven Di19 genes were identified in soybean. Each soybean Di19 gene showed specific responses to salt, drought, oxidative, and ABA stresses based on expression profiles. With a relatively higher transcript level among Di19 members under four stress treatments, GmDi19-5 was selected for detailed analysis. Inhibitor assays revealed that ABA inhibitor (Fluridone) or H2O2 inhibitor (DMTU) was involved in the drought- or salt-induced transcription of GmDi19-5. The GUS activity driven by the GmDi19-5 promoter was induced by salt, PEG, ABA, and MV treatments and tended to be accumulated in the vascular bundles and young leaves. A subcellular localization assay showed that GmDi19-5 protein localized in the nucleus. Further investigation showed that GmDi19-5 protein was involved in the interaction with GmLEA3.1. Overexpression of GmDi19-5 increased sensitivity of transgenic Arabidopsis plants to salt, drought, oxidative, and ABA stresses and regulated expression of several ABA/stress-associated genes. This present investigation showed that GmDi19-5 functioned as a negative factor under abiotic stresses and was involved in ABA and SOS signaling pathway by altering transcription of stress-associated genes.
Collapse
Affiliation(s)
- Zhi-Juan Feng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Xiao-Yu Cui
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Xi-Yan Cui
- College of Life Sciences, Jilin Agricultural UniversityChangchun, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Guang-Xiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Guang-Yuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| |
Collapse
|
185
|
Wang Z, Zhang N, Zhou X, Fan Q, Si H, Wang D. Isolation and characterization of StERF transcription factor genes from potato (Solanum tuberosum L.). C R Biol 2015; 338:219-26. [PMID: 25814424 DOI: 10.1016/j.crvi.2015.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/24/2015] [Accepted: 01/24/2015] [Indexed: 12/11/2022]
Abstract
Ethylene response factor (ERF) is a major subfamily of the AP2/ERF family and plays significant roles in the regulation of abiotic- and biotic-stress responses. ERF proteins can interact with the GCC-box cis-element and then initiate a transcriptional cascade activating downstream ethylene response and enhancing plant stress tolerance. In this research, we cloned five StERF genes from potato (Solanum tuberosum L.). The expressional analysis of StERF genes revealed that they showed tissue- or organ-specific expression patterns and the expression levels in leaf, stem, root, flower, and tuber were different. The assays of quantitative real-time polymerase chain reaction (qRT-PCR) and the reverse transcription-PCR (RT-PCR) showed that the expression of five StERF genes was regulated by ethephon, methyl jasmonate (MeJA), salt and drought stress. The result from the yeast one-hybrid experiment showed that five StERFs had trans-activation activity and could specifically bind to the GCC-box cis-elements. The StERFs responded to abiotic factors and hormones suggested that they possibly had diverse roles in stress and hormone regulation of potato.
Collapse
Affiliation(s)
- Zemin Wang
- Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China.
| | - Xiangyan Zhou
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Qiang Fan
- Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Huaijun Si
- Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Di Wang
- Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China.
| |
Collapse
|
186
|
Min JH, Chung JS, Lee KH, Kim CS. The CONSTANS-like 4 transcription factor, AtCOL4, positively regulates abiotic stress tolerance through an abscisic acid-dependent manner in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:313-24. [PMID: 25073793 DOI: 10.1111/jipb.12246] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 07/28/2014] [Indexed: 05/23/2023]
Abstract
The precise roles of the B-box zinc finger family of transcription factors in plant stress are poorly understood. Functional analysis was performed on AtCOL4, an Arabidopsis thaliana L. CONSTANS-like 4 protein that is a putative novel transcription factor, and which contains a predicted transcriptional activation domain. Analyses of an AtCOL4 promoter-β-glucuronidase (GUS) construct revealed substantial GUS activity in whole seedlings. The expression of AtCOL4 was strongly induced by abscisic acid (ABA), salt, and osmotic stress. Mutation in atcol4 resulted in increased sensitivity to ABA and salt stress during seed germination and the cotyledon greening process. In contrast, AtCOL4-overexpressing plants were less sensitive to ABA and salt stress compared to the wild type. Interestingly, in the presence of ABA or salt stress, the transcript levels of other ABA biosynthesis and stress-related genes were enhanced induction in AtCOL4-overexpressing and WT plants, rather than in the atcol4 mutant. Thus, AtCOL4 is involved in ABA and salt stress response through the ABA-dependent signaling pathway. Taken together, these findings provide compelling evidence that AtCOL4 is an important regulator for plant tolerance to abiotic stress.
Collapse
Affiliation(s)
- Ji-Hee Min
- Department of Plant Biotechnology, Chonnam National University, Gwangju 500-757, South Korea
| | | | | | | |
Collapse
|
187
|
Wu C, Avila CA, Goggin FL. The ethylene response factor Pti5 contributes to potato aphid resistance in tomato independent of ethylene signalling. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:559-70. [PMID: 25504643 PMCID: PMC4286409 DOI: 10.1093/jxb/eru472] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ethylene response factors (ERFs) comprise a large family of transcription factors that regulate numerous biological processes including growth, development, and response to environmental stresses. Here, we report that Pti5, an ERF in tomato [Solanum lycopersicum (Linnaeus)] was transcriptionally upregulated in response to the potato aphid Macrosiphum euphorbiae (Thomas), and contributed to plant defences that limited the population growth of this phloem-feeding insect. Virus-induced gene silencing of Pti5 enhanced aphid population growth on tomato, both on an aphid-susceptible cultivar and on a near-isogenic genotype that carried the Mi-1.2 resistance (R) gene. These results indicate that Pti5 contributes to basal resistance in susceptible plants and also can synergize with other R gene-mediated defences to limit aphid survival and reproduction. Although Pti5 contains the ERF motif, induction of this gene by aphids was independent of ethylene, since the ACC deaminase (ACD) transgene, which inhibits ethylene synthesis, did not diminish the responsiveness of Pti5 to aphid infestation. Furthermore, experiments with inhibitors of ethylene synthesis revealed that Pti5 and ethylene have distinctly different roles in plant responses to aphids. Whereas Pti5 contributed to antibiotic plant defences that limited aphid survival and reproduction on both resistant (Mi-1.2+) and susceptible (Mi-1.2-) genotypes, ethylene signalling promoted aphid infestation on susceptible plants but contributed to antixenotic defences that deterred the early stages of aphid host selection on resistant plants. These findings suggest that the antixenotic defences that inhibit aphid settling and the antibiotic defences that depress fecundity and promote mortality are regulated through different signalling pathways.
Collapse
Affiliation(s)
- Chengjun Wu
- Department of Entomology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Carlos A Avila
- Department of Entomology, University of Arkansas, Fayetteville, AR 72701, USA Department of Horticultural Sciences, Texas A&M AgriLife Research, Weslaco, TX 78596, USA
| | - Fiona L Goggin
- Department of Entomology, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
188
|
Zeng X, Long H, Wang Z, Zhao S, Tang Y, Huang Z, Wang Y, Xu Q, Mao L, Deng G, Yao X, Li X, Bai L, Yuan H, Pan Z, Liu R, Chen X, WangMu Q, Chen M, Yu L, Liang J, DunZhu D, Zheng Y, Yu S, LuoBu Z, Guang X, Li J, Deng C, Hu W, Chen C, TaBa X, Gao L, Lv X, Abu YB, Fang X, Nevo E, Yu M, Wang J, Tashi N. The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau. Proc Natl Acad Sci U S A 2015; 112:1095-100. [PMID: 25583503 PMCID: PMC4313863 DOI: 10.1073/pnas.1423628112] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Tibetan hulless barley (Hordeum vulgare L. var. nudum), also called "Qingke" in Chinese and "Ne" in Tibetan, is the staple food for Tibetans and an important livestock feed in the Tibetan Plateau. The diploid nature and adaptation to diverse environments of the highland give it unique resources for genetic research and crop improvement. Here we produced a 3.89-Gb draft assembly of Tibetan hulless barley with 36,151 predicted protein-coding genes. Comparative analyses revealed the divergence times and synteny between barley and other representative Poaceae genomes. The expansion of the gene family related to stress responses was found in Tibetan hulless barley. Resequencing of 10 barley accessions uncovered high levels of genetic variation in Tibetan wild barley and genetic divergence between Tibetan and non-Tibetan barley genomes. Selective sweep analyses demonstrate adaptive correlations of genes under selection with extensive environmental variables. Our results not only construct a genomic framework for crop improvement but also provide evolutionary insights of highland adaptation of Tibetan hulless barley.
Collapse
Affiliation(s)
- Xingquan Zeng
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Barley Improvement and Yak Breeding Key Laboratory of Tibet Autonomous Region, Lhasa 850002, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Zhuo Wang
- BGI-Tech, BGI-Shenzhen, Shenzhen 518083, China
| | | | - Yawei Tang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Barley Improvement and Yak Breeding Key Laboratory of Tibet Autonomous Region, Lhasa 850002, China
| | | | - Yulin Wang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Barley Improvement and Yak Breeding Key Laboratory of Tibet Autonomous Region, Lhasa 850002, China
| | - Qijun Xu
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Barley Improvement and Yak Breeding Key Laboratory of Tibet Autonomous Region, Lhasa 850002, China
| | - Likai Mao
- BGI-Tech, BGI-Shenzhen, Shenzhen 518083, China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | | | - Xiangfeng Li
- BGI-Tech, BGI-Shenzhen, Shenzhen 518083, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijun Bai
- BGI-Tech, BGI-Shenzhen, Shenzhen 518083, China
| | - Hongjun Yuan
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Barley Improvement and Yak Breeding Key Laboratory of Tibet Autonomous Region, Lhasa 850002, China
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Renjian Liu
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Barley Improvement and Yak Breeding Key Laboratory of Tibet Autonomous Region, Lhasa 850002, China
| | - Xin Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - QiMei WangMu
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Barley Improvement and Yak Breeding Key Laboratory of Tibet Autonomous Region, Lhasa 850002, China
| | - Ming Chen
- BGI-Tech, BGI-Shenzhen, Shenzhen 518083, China
| | - Lili Yu
- BGI-Tech, BGI-Shenzhen, Shenzhen 518083, China
| | - Junjun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - DaWa DunZhu
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Barley Improvement and Yak Breeding Key Laboratory of Tibet Autonomous Region, Lhasa 850002, China
| | - Yuan Zheng
- BGI-Tech, BGI-Shenzhen, Shenzhen 518083, China
| | - Shuiyang Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - ZhaXi LuoBu
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Barley Improvement and Yak Breeding Key Laboratory of Tibet Autonomous Region, Lhasa 850002, China
| | | | - Jiang Li
- BGI-Tech, BGI-Shenzhen, Shenzhen 518083, China
| | - Cao Deng
- BGI-Tech, BGI-Shenzhen, Shenzhen 518083, China
| | - Wushu Hu
- BGI-Tech, BGI-Shenzhen, Shenzhen 518083, China
| | | | - XiongNu TaBa
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Barley Improvement and Yak Breeding Key Laboratory of Tibet Autonomous Region, Lhasa 850002, China
| | - Liyun Gao
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Barley Improvement and Yak Breeding Key Laboratory of Tibet Autonomous Region, Lhasa 850002, China
| | - Xiaodan Lv
- BGI-Tech, BGI-Shenzhen, Shenzhen 518083, China
| | - Yuval Ben Abu
- Projects and Physics Section, Sapir Academic College, D.N. Hof Ashkelon 79165, Israel
| | | | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel;
| | - Maoqun Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China;
| | - Jun Wang
- BGI-Shenzhen, Shenzhen 518083, China; Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark; and Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21441, Saudi Arabia
| | - Nyima Tashi
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Barley Improvement and Yak Breeding Key Laboratory of Tibet Autonomous Region, Lhasa 850002, China;
| |
Collapse
|
189
|
Wang X, Liu S, Tian H, Wang S, Chen JG. The Small Ethylene Response Factor ERF96 is Involved in the Regulation of the Abscisic Acid Response in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:1064. [PMID: 26635862 PMCID: PMC4659910 DOI: 10.3389/fpls.2015.01064] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 11/16/2015] [Indexed: 05/22/2023]
Abstract
Ethylene regulates many aspects of plant growth and development including seed germination, leaf senescence, and fruit ripening, and of plant responses to environmental stimuli including both biotic and abiotic stresses. Ethylene response factors (ERFs) are plant-specific transcription factors and are a subfamily of the AP2 (APETALA2)/ERF transcription factor family. The function of many members in this large gene family remains largely unknown. ERF96, a member of the Group IX ERF family transcription factors, has recently been shown to be a transcriptional activator that is involved in plant defense response in Arabidopsis. Here we provide evidence that ERF96 is a positive regulator of abscisic acid (ABA) responses. Bioinformatics analysis indicated that there are a total four small ERFs in Arabidopsis including ERF95, ERF96, ERF97, and ERF98, and that ERF96 forms a cluster with ERF95 and ERF97. By using quantitative RT-PCR, we found that ERF96 is expressed in all tissues and organs examined except roots, with relatively high expression in flowers and seeds. Results from the protoplast transfection assay indicated that the EDLL motif-containing C-terminal domain is responsible for ERF96's transcriptional activity. Although loss-of-function mutant of ERF96 was morphologically similar to wild type plants, transgenic plants overexpressing ERF96 had smaller rosette size and were delayed in flowering time. In ABA sensitivity assays, we found that ERF96 overexpression plants were hypersensitive to ABA in terms of ABA inhibition of seed germination, early seedling development and root elongation. Consistent with these observations, elevated transcript levels of some ABA-responsive genes including RD29A, ABI5, ABF3, ABF4, P5CS, and COR15A were observed in the transgenic plants in the presence of ABA. However, in the absence of ABA treatment, the transcript levels of these ABA-responsive genes remained largely unchanged. Our experiments also showed that water loss in ERF96 overexpression plants was slower than that in Col wild type plants. Stomatal closure assays indicated that ERF96 overexpression plants had reduced stomatal aperture in the presence of ABA. Taken together, our results suggest that ERF96 positively regulates ABA responses in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoping Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Shanda Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- *Correspondence: Shucai Wang,
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
190
|
Smita S, Katiyar A, Chinnusamy V, Pandey DM, Bansal KC. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice. FRONTIERS IN PLANT SCIENCE 2015; 6:1157. [PMID: 26734052 PMCID: PMC4689866 DOI: 10.3389/fpls.2015.01157] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/07/2015] [Indexed: 05/18/2023]
Abstract
MYB transcription factor (TF) is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by "top-down" and "guide-gene" approaches. More than 50% of OsMYBs were strongly correlated under 50 experimental conditions with 51 hub genes via "top-down" approach. Further, clusters were identified using Markov Clustering (MCL). To maximize the clustering performance, parameter evaluation of the MCL inflation score (I) was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by "guide-gene" approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought response in rice. Thus, the co-regulatory network analysis facilitated the identification of complex OsMYB regulatory networks, and candidate target regulon genes of selected guide MYB genes. The results contribute to the candidate gene screening, and experimentally testable hypotheses for potential regulatory MYB TFs, and their targets under stress conditions.
Collapse
Affiliation(s)
- Shuchi Smita
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research InstituteNew Delhi, India
- Department of Biotechnology, Birla Institute of TechnologyMesra, Ranchi, India
| | - Amit Katiyar
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research InstituteNew Delhi, India
- Department of Biotechnology, Birla Institute of TechnologyMesra, Ranchi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | - Dev M. Pandey
- Department of Biotechnology, Birla Institute of TechnologyMesra, Ranchi, India
| | - Kailash C. Bansal
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research InstituteNew Delhi, India
- *Correspondence: Kailash C. Bansal
| |
Collapse
|
191
|
Shu Y, Liu Y, Zhang J, Song L, Guo C. Genome-Wide Analysis of the AP2/ERF Superfamily Genes and their Responses to Abiotic Stress in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2015; 6:1247. [PMID: 26834762 PMCID: PMC4717309 DOI: 10.3389/fpls.2015.01247] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 12/21/2015] [Indexed: 05/07/2023]
Abstract
The AP2/ERF superfamily is a large, plant-specific transcription factor family that is involved in many important processes, including plant growth, development, and stress responses. Using Medicago truncatula genome information, we identified and characterized 123 putative AP2/ERF genes, which were named as MtERF1-123. These genes were classified into four families based on phylogenetic analysis, which is consistent with the results of other plant species. MtERF genes are distributed throughout all chromosomes but are clustered on various chromosomes due to genomic tandem and segmental duplication. Using transcriptome, high-throughput sequencing data, and qRT-PCR analysis, we assessed the expression patterns of the MtERF genes in tissues during development and under abiotic stresses. In total, 87 MtERF genes were expressed in plant tissues, most of which were expressed in specific tissues during development or under specific abiotic stress treatments. These results support the notion that MtERF genes are involved in developmental regulation and environmental responses in M. truncatula. Furthermore, a cluster of DREB subfamily members on chromosome 6 was induced by both cold and freezing stress, representing a positive gene regulatory response under low temperature stress, which suggests that these genes might contribute to freezing tolerance to M. truncatula. In summary, our genome-wide characterization, evolutionary analysis, and expression pattern analysis of MtERF genes in M. truncatula provides valuable information for characterizing the molecular functions of these genes and utilizing them to improve stress tolerance in plants.
Collapse
|
192
|
Feng ZJ, He GH, Zheng WJ, Lu PP, Chen M, Gong YM, Ma YZ, Xu ZS. Foxtail Millet NF-Y Families: Genome-Wide Survey and Evolution Analyses Identified Two Functional Genes Important in Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2015; 6:1142. [PMID: 26734043 PMCID: PMC4687410 DOI: 10.3389/fpls.2015.01142] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/01/2015] [Indexed: 05/19/2023]
Abstract
It was reported that Nuclear Factor Y (NF-Y) genes were involved in abiotic stress in plants. Foxtail millet (Setaria italica), an elite stress tolerant crop, provided an impetus for the investigation of the NF-Y families in abiotic responses. In the present study, a total of 39 NF-Y genes were identified in foxtail millet. Synteny analyses suggested that foxtail millet NF-Y genes had experienced rapid expansion and strong purifying selection during the process of plant evolution. De novo transcriptome assembly of foxtail millet revealed 11 drought up-regulated NF-Y genes. SiNF-YA1 and SiNF-YB8 were highly activated in leaves and/or roots by drought and salt stresses. Abscisic acid (ABA) and H2O2 played positive roles in the induction of SiNF-YA1 and SiNF-YB8 under stress treatments. Transient luciferase (LUC) expression assays revealed that SiNF-YA1 and SiNF-YB8 could activate the LUC gene driven by the tobacco (Nicotiana tobacam) NtERD10, NtLEA5, NtCAT, NtSOD, or NtPOD promoter under normal or stress conditions. Overexpression of SiNF-YA1 enhanced drought and salt tolerance by activating stress-related genes NtERD10 and NtCAT1 and by maintaining relatively stable relative water content (RWC) and contents of chlorophyll, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and malondialdehyde (MDA) in transgenic lines under stresses. SiNF-YB8 regulated expression of NtSOD, NtPOD, NtLEA5, and NtERD10 and conferred relatively high RWC and chlorophyll contents and low MDA content, resulting in drought and osmotic tolerance in transgenic lines under stresses. Therefore, SiNF-YA1 and SiNF-YB8 could activate stress-related genes and improve physiological traits, resulting in tolerance to abiotic stresses in plants. All these results will facilitate functional characterization of foxtail millet NF-Ys in future studies.
Collapse
Affiliation(s)
- Zhi-Juan Feng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
- Institute of Vegetables, Zhejiang Academy of AgricultureHangzhou, Zhejiang, China
| | - Guan-Hua He
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Wei-Jun Zheng
- College of Agronomy, Northwest A&F UniversityYangling, Shaanxi, China
| | - Pan-Pan Lu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Ya-Ming Gong
- Institute of Vegetables, Zhejiang Academy of AgricultureHangzhou, Zhejiang, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
- *Correspondence: You-Zhi Ma
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
- Zhao-Shi Xu
| |
Collapse
|
193
|
del Pozo JC, Ramirez-Parra E. Deciphering the molecular bases for drought tolerance in Arabidopsis autotetraploids. PLANT, CELL & ENVIRONMENT 2014; 37:2722-37. [PMID: 24716850 DOI: 10.1111/pce.12344] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/29/2014] [Indexed: 05/21/2023]
Abstract
Whole genome duplication (autopolyploidy) is common in many plant species and often leads to better adaptation to adverse environmental conditions. However, little is known about the physiological and molecular mechanisms underlying these adaptations. Drought is one of the major environmental conditions limiting plant growth and development. Here, we report that, in Arabidopsis thaliana, tetraploidy promotes alterations in cell proliferation and organ size in a tissue-dependent manner. Furthermore, it potentiates plant tolerance to salt and drought stresses and decreases transpiration rate, likely through controlling stomata density and closure, abscisic acid (ABA) signalling and reactive oxygen species (ROS) homeostasis. Our transcriptomic analyses revealed that tetraploidy mainly regulates the expression of genes involved in redox homeostasis and ABA and stress response. Taken together, our data have shed light on the molecular basis associated with stress tolerance in autopolyploid plants.
Collapse
Affiliation(s)
- Juan C del Pozo
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, 28223, Spain
| | | |
Collapse
|
194
|
Molecular cloning and characterization of two novel DREB genes encoding dehydration-responsive element binding proteins in halophyte Suaeda salsa. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0238-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
195
|
Heo JY, Feng D, Niu X, Mitchell-Olds T, van Tienderen PH, Tomes D, Schranz ME. Identification of quantitative trait loci and a candidate locus for freezing tolerance in controlled and outdoor environments in the overwintering crucifer Boechera stricta. PLANT, CELL & ENVIRONMENT 2014; 37:2459-69. [PMID: 24811132 PMCID: PMC4416058 DOI: 10.1111/pce.12365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 05/29/2023]
Abstract
Development of chilling and freezing tolerance is complex and can be affected by photoperiod, temperature and photosynthetic performance; however, there has been limited research on the interaction of these three factors. We evaluated 108 recombinant inbred lines of Boechera stricta, derived from a cross between lines originating from Montana and Colorado, under controlled long day (LD), short-day (SD) and in an outdoor environment (OE). We measured maximum quantum yield of photosystem II, lethal temperature for 50% survival and electrolyte leakage of leaves. Our results revealed significant variation for chilling and freezing tolerance and photosynthetic performance in different environments. Using both single- and multi-trait analyses, three main-effect quantitative trait loci (QTL) were identified. QTL on linkage group (LG)3 were SD specific, whereas QTL on LG4 were found under both LD and SD. Under all conditions, QTL on LG7 were identified, but were particularly predictive for the outdoor experiment. The co-localization of photosynthetic performance and freezing tolerance effects supports these traits being co-regulated. Finally, the major QTL on LG7 is syntenic to the Arabidopsis C-repeat binding factor locus, known regulators of chilling and freezing responses in Arabidopsis thaliana and other species.
Collapse
Affiliation(s)
- Jae-Yun Heo
- Biosystematics Group, Wageningen University & Research Center, Wageningen, the Netherlands
| | - Dongsheng Feng
- Pioneer Hi-Bred International, Inc., a DuPont Business, Johnston, USA
| | - Xiaomu Niu
- Pioneer Hi-Bred International, Inc., a DuPont Business, Johnston, USA
| | | | - Peter H. van Tienderen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Dwight Tomes
- Pioneer Hi-Bred International, Inc., a DuPont Business, Johnston, USA
| | - M. Eric Schranz
- Biosystematics Group, Wageningen University & Research Center, Wageningen, the Netherlands
| |
Collapse
|
196
|
Doğramacı M, Horvath DP, Anderson JV. Dehydration-induced endodormancy in crown buds of leafy spurge highlights involvement of MAF3- and RVE1-like homologs, and hormone signaling cross-talk. PLANT MOLECULAR BIOLOGY 2014; 86:409-424. [PMID: 25150409 DOI: 10.1007/s11103-014-0237-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 08/12/2014] [Indexed: 06/03/2023]
Abstract
Vegetative shoot growth from underground adventitious buds of leafy spurge is critical for survival of this invasive perennial weed after episodes of severe abiotic stress. To determine the impact that dehydration-stress has on molecular mechanisms associated with vegetative reproduction of leafy spurge, greenhouse plants were exposed to mild- (3-day), intermediate- (7-day), severe- (14-day) and extended- (21-day) dehydration treatments. Aerial tissues of treated plants were then decapitated and soil was rehydrated to determine the growth potential of underground adventitious buds. Compared to well-watered plants, mild-dehydration accelerated new vegetative shoot growth, whereas intermediate- through extended-dehydration treatments both delayed and reduced shoot growth. Results of vegetative regrowth further confirmed that 14 days of dehydration induced a full-state of endodormancy in crown buds, which was correlated with a significant (P < 0.05) change in abundance of 2,124 transcripts. Sub-network enrichment analyses of transcriptome data obtained from the various levels of dehydration treatment also identified central hubs of over-represented genes involved in processes such as hormone signaling (i.e., ABA, auxin, ethylene, GA, and JA), response to abiotic stress (DREB1A/2A, RD22) and light (PIF3), phosphorylation (MPK4/6), circadian regulation (CRY2, PHYA), and flowering (AGL20, AP2, FLC). Further, results from this and previous studies highlight homologs most similar to Arabidopsis HY5, MAF3, RVE1 and RD22 as potential molecular markers for endodormancy in crown buds of leafy spurge. Early response to mild dehydration also highlighted involvement of upstream ethylene and JA-signaling, whereas severe dehydration impacted ABA-signaling. The identification of conserved ABRE- and MYC-consensus, cis-acting elements in the promoter of leafy spurge genomic clones similar to Arabidopsis RVE1 (AT5G17300) implicates a potential role for ABA-signaling in its dehydration-induced expression. Response of these molecular mechanisms to dehydration-stress provides insights on the ability of invasive perennial weeds to adapt and survive under harsh environments, which will be beneficial for addressing future management practices.
Collapse
Affiliation(s)
- Münevver Doğramacı
- Biosciences Research Laboratory, USDA-ARS, 1605 Albrecht Blvd. N, Fargo, ND, 58102-2765, USA
| | | | | |
Collapse
|
197
|
Zhang F, Wang Z, Dong W, Sun C, Wang H, Song A, He L, Fang W, Chen F, Teng N. Transcriptomic and proteomic analysis reveals mechanisms of embryo abortion during chrysanthemum cross breeding. Sci Rep 2014; 4:6536. [PMID: 25288482 PMCID: PMC4187010 DOI: 10.1038/srep06536] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/26/2014] [Indexed: 12/25/2022] Open
Abstract
Embryo abortion is the main cause of failure in chrysanthemum cross breeding, and the genes and proteins associated with embryo abortion are poorly understood. Here, we applied RNA sequencing and isobaric tags for relative and absolute quantitation (iTRAQ) to analyse transcriptomic and proteomic profiles of normal and abortive embryos. More than 68,000 annotated unigenes and 700 proteins were obtained from normal and abortive embryos. Functional analysis showed that 140 differentially expressed genes (DEGs) and 41 differentially expressed proteins (DEPs) were involved in embryo abortion. Most DEGs and DEPs associated with cell death, protein degradation, reactive oxygen species scavenging, and stress-response transcriptional factors were significantly up-regulated in abortive embryos relative to normal embryos. In contrast, most genes and proteins related to cell division and expansion, the cytoskeleton, protein synthesis and energy metabolism were significantly down-regulated in abortive embryos. Furthermore, abortive embryos had the highest activity of three executioner caspase-like enzymes. These results indicate that embryo abortion may be related to programmed cell death and the senescence- or death-associated genes or proteins contribute to embryo abortion. This adds to our understanding of embryo abortion and will aid in the cross breeding of chrysanthemum and other crops in the future.
Collapse
Affiliation(s)
- Fengjiao Zhang
- 1] College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China [2] Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology &Equipment, Nanjing 210095, China
| | - Zhiquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Dong
- China Rural Technology Development Center, Beijing 100045, China
| | - Chunqing Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Haibin Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lizhong He
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- 1] College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China [2] Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology &Equipment, Nanjing 210095, China
| | - Nianjun Teng
- 1] College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China [2] Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology &Equipment, Nanjing 210095, China
| |
Collapse
|
198
|
Yu GH, Jiang LL, Ma XF, Xu ZS, Liu MM, Shan SG, Cheng XG. A soybean C2H2-type zinc finger gene GmZF1 enhanced cold tolerance in transgenic Arabidopsis. PLoS One 2014; 9:e109399. [PMID: 25286048 PMCID: PMC4186855 DOI: 10.1371/journal.pone.0109399] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/17/2014] [Indexed: 11/18/2022] Open
Abstract
Zinc finger proteins were involved in response to different environmental stresses in plant species. A typical Cys2/His2-type (C2H2-type) zinc finger gene GmZF1 from soybean was isolated and was composed of 172 amino acids containing two conserved C2H2-type zinc finger domains. Phylogenetic analysis showed that GmZF1 was clustered on the same branch with six C2H2-type ZFPs from dicotyledonous plants excepting for GsZFP1, and distinguished those from monocotyledon species. The GmZF1 protein was localized at the nucleus, and has specific binding activity with EP1S core sequence, and nucleotide mutation in the core sequence of EPSPS promoter changed the binding ability between GmZF1 protein and core DNA element, implying that two amino acid residues, G and C boxed in core sequence TGACAGTGTCA possibly play positive regulation role in recognizing DNA-binding sites in GmZF1 proteins. High accumulation of GmZF1 mRNA induced by exogenous ABA suggested that GmZF1 was involved in an ABA-dependent signal transduction pathway. Over-expression of GmZF1 significantly improved the contents of proline and soluble sugar and decreased the MDA contents in the transgenic lines exposed to cold stress, indicating that transgenic Arabidopsis carrying GmZF1 gene have adaptive mechanisms to cold stress. Over-expression of GmZF1 also increased the expression of cold-regulated cor6.6 gene by probably recognizing protein-DNA binding sites, suggesting that GmZF1 from soybean could enhance the tolerance of Arabidopsis to cold stress by regulating expression of cold-regulation gene in the transgenic Arabidopsis.
Collapse
Affiliation(s)
- Guo-Hong Yu
- Key Lab. of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin-Lin Jiang
- Key Lab. of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue-Feng Ma
- Key Lab. of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Meng-Meng Liu
- Key Lab. of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-Guang Shan
- Key Lab. of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xian-Guo Cheng
- Key Lab. of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
199
|
Li MY, Tan HW, Wang F, Jiang Q, Xu ZS, Tian C, Xiong AS. De novo transcriptome sequence assembly and identification of AP2/ERF transcription factor related to abiotic stress in parsley (Petroselinum crispum). PLoS One 2014; 9:e108977. [PMID: 25268141 PMCID: PMC4182582 DOI: 10.1371/journal.pone.0108977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/27/2014] [Indexed: 01/14/2023] Open
Abstract
Parsley is an important biennial Apiaceae species that is widely cultivated as herb, spice, and vegetable. Previous studies on parsley principally focused on its physiological and biochemical properties, including phenolic compound and volatile oil contents. However, little is known about the molecular and genetic properties of parsley. In this study, 23,686,707 high-quality reads were obtained and assembled into 81,852 transcripts and 50,161 unigenes for the first time. Functional annotation showed that 30,516 unigenes had sequence similarity to known genes. In addition, 3,244 putative simple sequence repeats were detected in curly parsley. Finally, 1,569 of the identified unigenes belonged to 58 transcription factor families. Various abiotic stresses have a strong detrimental effect on the yield and quality of parsley. AP2/ERF transcription factors have important functions in plant development, hormonal regulation, and abiotic response. A total of 88 putative AP2/ERF factors were identified from the transcriptome sequence of parsley. Seven AP2/ERF transcription factors were selected in this study to analyze the expression profiles of parsley under different abiotic stresses. Our data provide a potentially valuable resource that can be used for intensive parsley research.
Collapse
Affiliation(s)
- Meng-Yao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Hua-Wei Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Qian Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Chang Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
200
|
Han HJ, Peng RH, Zhu B, Fu XY, Zhao W, Shi B, Yao QH. Gene expression profiles of Arabidopsis under the stress of methyl viologen: a microarray analysis. Mol Biol Rep 2014; 41:7089-102. [PMID: 25253097 DOI: 10.1007/s11033-014-3396-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 05/02/2014] [Indexed: 01/01/2023]
Abstract
Methyl viologen (MV) is the main ingredient of Paraquat. It is little known about how plants respond to this compound. To understand the mode of MV action and molecular mechanism of plant response, we performed experiments of microarray on Arabidopsis. In MV treated seedling, approximately 6% genes were altered at mRNA levels, including 818 genes increased, whereas 1,440 genes decreased. Studies of these genes expression patterns provided some new information on the reaction process of plant after the treatment with MV. These included signaling molecules for MV response and reactive oxygen species formation, enzymes required for secondary metabolism and, cell wall maintenance and strategy of photostasis balance. The expression kinetics of the genes induced by MV will provides useful information for the abiotic stress defense mechanism in plants.
Collapse
Affiliation(s)
- Hong-Juan Han
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|