151
|
Sangam S, Jindal S, Agarwal A, Banerjee BD, Prasad P, Mukherjee M. Graphene quantum dots-porphyrins/phthalocyanines multifunctional hybrid systems: from interfacial dialogue to applications. Biomater Sci 2022; 10:1647-1679. [DOI: 10.1039/d2bm00016d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Engineered well-ordered hybrid nanomaterials are at a symbolically pivotal point, just ahead of a long-anticipated human race transformation. Incorporating newer carbon nanomaterials like graphene quantum dots (GQDs) with tetrapyrrolic porphyrins...
Collapse
|
152
|
Broekgaarden M. Application of Monolayer Cell Cultures for Investigating Basic Mechanisms of Photodynamic Therapy. Methods Mol Biol 2022; 2451:3-20. [PMID: 35505006 DOI: 10.1007/978-1-0716-2099-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Conventional monolayer cell cultures continue to be an inexpensive and highly accessible model of human disease that can be easily harnessed to study the molecular and cellular mechanisms of photodynamic therapy (PDT). In this communication, a collection of informative assays for conventional cell cultures are provided to determine (1) the photosensitizer uptake kinetics and localization, (2) the efficacy of PDT using metabolism- or protein-based quantification methods, (3) the effects of PDT and combination treatments on the cell cycle, (4) the cell death pathways induced by PDT, and (5) the extent of mitochondrial membrane permeabilization of PDT and photochemotherapy combinations. For each type of assay, examples from the recent literature are provided in which novel photosensitizers, their nanocarriers, and various PDT-based combination therapies are investigated. Together, these assays are examples of approaches by which monolayer cell cultures can be used as a simple yet robust and versatile model to investigate PDT.
Collapse
Affiliation(s)
- Mans Broekgaarden
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université de Grenoble Alpes, Grenoble, France.
| |
Collapse
|
153
|
Yang C, Jiang W, Yu Y, Zhang H, Cai C, Shen Q. Anisotropic Plasmonic Pd-Tipped Au Nanorods for Near-Infrared Light-Activated Photoacoustic Imaging Guided Photothermal-Photodynamic Cancer Therapy. J Mater Chem B 2022; 10:2028-2037. [DOI: 10.1039/d2tb00002d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The integration of photothermal therapy (PTT) and photodynamic therapy (PDT) has become a promising cancer treatment method. Herein, anisotropic metal hetero-nanostructure Pd-tipped Au nanorods (PTA NRs) were fabricated, which exhibit...
Collapse
|
154
|
Jia S, Yuan H, Hu R. Design and Structural Regulation of AIE photosensitizers for imaging-guided photodynamic anti-tumor application. Biomater Sci 2022; 10:4443-4457. [DOI: 10.1039/d2bm00864e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, photodynamic therapy (PDT) has become one of the important therapeutic methods for treating cancer. Aggregation-induced emission (AIE) photosensitizers (PSs) overcome the aggregation-caused quenching (ACQ) effects of conventional...
Collapse
|
155
|
Sajjad F, Han Y, Bao L, Yan Y, O Shea D, Wang L, Chen Z. The improvement of biocompatibility by incorporating porphyrins into carbon dots with photodynamic effects and pH sensitivities. J Biomater Appl 2021; 36:1378-1389. [PMID: 34968148 DOI: 10.1177/08853282211050449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Photodynamic therapy (PDT) is a promising new treatment for cancer; however, the hydrophobic interactions and poor solubility in water of photosensitizers limit the use in clinic. Nanoparticles especially carbon dots have attracted the attention of the world's scientists because of their unique properties such as good solubility and biocompatibility. In this paper, we integrated carbon dots with different porphyrins to improve the properties of porphyrins and evaluated their efficacy as PDT drugs. The spectroscopic characteristics of porphyrins nano-conjugates were studied. Singlet oxygen generation rate and the light- and dark-induced toxicity of the conjugates were studied. Our results showed that the covalent interaction between CDs and porphyrins has improved the biocompatibility. The synthesized conjugates also inherit the pH sensitivity of the carbon dots, while the conjugation also decreases the hemolysis ratio making them a promising candidate for PDT. The incorporation of carbon dots into porphyrins improved their biocompatibility by reducing toxicity.
Collapse
Affiliation(s)
| | - Yiping Han
- Shanghai Changhai Hospital, Shanghai, China
| | - Leilei Bao
- Shanghai Changhai Hospital, Shanghai, China
| | - Yijia Yan
- Shanghai Xianhui Pharmaceutical Co., Ltd, Shanghai, China
| | - Donal O Shea
- Shanghai Xianhui Pharmaceutical Co., Ltd, Shanghai, China
| | | | | |
Collapse
|
156
|
Kitamura T, Nakata H, Takahashi D, Toshima K. Hypocrellin B-based activatable photosensitizers for specific photodynamic effects against high H 2O 2-expressing cancer cells. Chem Commun (Camb) 2021; 58:242-245. [PMID: 34850796 DOI: 10.1039/d1cc05823a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel tumor-related biomarker, a H2O2-activatable photosensitizer 4 based on the 1,3-dicarbonyl enol moieties of hypocrellin B (3), was designed and synthesized. The photosensitizer 4 showed a blue-shifted absorption band compared with 3, and showed negligible photosensitizing ability without H2O2. However, the release of 3 from 4 by the reaction with H2O2 regenerated the photosensitizing ability. Furthermore, 4 exhibited selective and effective photo-cytotoxicity against high H2O2-expressing cancer cells upon photo-irradiation with 660 nm light, which is inside the phototherapeutic window.
Collapse
Affiliation(s)
- Takashi Kitamura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Hirotaka Nakata
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Daisuke Takahashi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Kazunobu Toshima
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| |
Collapse
|
157
|
Cui Z, Zhang M, Geng S, Niu X, Wang X, Zhu Y, Ye F, Liu C. Antifungal Effect of Antimicrobial Photodynamic Therapy Mediated by Haematoporphyrin Monomethyl Ether and Aloe Emodin on Malassezia furfur. Front Microbiol 2021; 12:749106. [PMID: 34867868 PMCID: PMC8637056 DOI: 10.3389/fmicb.2021.749106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Infectious dermatological diseases caused by Malassezia furfur are often chronic, recurrent, and recalcitrant. Current therapeutic options are usually tedious, repetitive, and associated with adverse effects. Alternatives that broaden the treatment options and reduce side effects for patients are needed. Antimicrobial photodynamic therapy (aPDT) is an emerging approach that is quite suitable for superficial infections. The aim of this study is to investigate the antimicrobial efficacy and effect of aPDT mediated by haematoporphyrin monomethyl ether (HMME) and aloe emodin (AE) on clinical isolates of M. furfur in vitro. The photodynamic antimicrobial efficacy of HMME and AE against M. furfur was assessed by colony forming unit (CFU) assay. The uptake of HMME and AE by M. furfur cells was investigated by fluorescence microscopy. Reactive oxygen species (ROS) probe and flow cytometry were employed to evaluate the intracellular ROS level. The effect of HMME and AE-mediated aPDT on secreted protease and lipase activity of M. furfur was also investigated. The results showed that HMME and AE in the presence of light effectively inactivated M. furfur cells in a photosensitizer (PS) concentration and light energy dose-dependent manner. AE exhibited higher antimicrobial efficacy against M. furfur than HMME under the same irradiation condition. HMME and AE-mediated aPDT disturbed the fungal cell envelop, significantly increased the intracellular ROS level, and effectively inhibited the activity of secreted protease and lipase of M. furfur cells. The results suggest that HMME and AE have potential to serve as PSs in the photodynamic treatment of dermatological diseases caused by M. furfur, but further ex vivo or in vivo experiments are needed to verify that they can meet the requirements for clinical practice.
Collapse
Affiliation(s)
- Zixin Cui
- Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Miaomiao Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinwu Niu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaopeng Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanyan Zhu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feng Ye
- Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chengcheng Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
158
|
Chlorin e6-Biotin Conjugates for Tumor-Targeting Photodynamic Therapy. Molecules 2021; 26:molecules26237342. [PMID: 34885922 PMCID: PMC8658943 DOI: 10.3390/molecules26237342] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
To improve the tumor-targeting efficacy of photodynamic therapy, biotin was conjugated with chlorin e6 to develop a new tumor-targeting photosensitizer, Ce6-biotin. The Ce6-biotin had good water solubility and low aggregation. The singlet-oxygen generation rate of Ce6-biotin was slightly increased compared to Ce6. Flow cytometry and confocal laser scanning microscopy results confirmed Ce6-biotin had higher binding affinity toward biotin-receptor-positive HeLa human cervical carcinoma cells than its precursor, Ce6. Due to the BR-targeting ability of Ce6-biotin, it exhibited stronger cytotoxicity to HeLa cells upon laser irradiation. The IC50 against HeLa cells of Ce6-biotin and Ce6 were 1.28 µM and 2.31 µM, respectively. Furthermore, both Ce6-biotin and Ce6 showed minimal dark toxicity. The selectively enhanced therapeutic efficacy and low dark toxicity suggest that Ce6-biotin is a promising PS for BR-positive-tumor-targeting photodynamic therapy.
Collapse
|
159
|
Photodynamic therapy for squamous cell carcinoma of the head and neck: narrative review focusing on photosensitizers. Lasers Med Sci 2021; 37:1441-1470. [PMID: 34855034 DOI: 10.1007/s10103-021-03462-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
This narrative review aimed to evaluate the effectiveness of PDT in early or advanced squamous cell carcinoma of the head and neck (SCCHN). Scopus, MEDLINE/PubMed, and Embase were searched electronically following the PRISMA protocol. Quality assessment was performed according to JBI, NIH, and AMSTAR protocols. The main outcomes evaluated were treatment response, recurrence, survival, and adverse effects. A total of 49 articles met the search criteria: 43 case series, two cohort studies, two prospective before-after clinical trials, one systematic review, and one meta-analysis. Data from 2121 SCCHN patients were included. The response to PDT was variable according to the type of photosensitizer, tumor location, and tumor stage. In general, higher complete responses rated were observed in T1/T2 SCCHN, mainly with mTHPC-mediated PDT. With regard to T3/T4 or advanced SCCHN tumors, there is no compelling evidence suggesting the effectiveness of PDT. Any adverse effects reported were well tolerated by patients. The present review suggests that PDT is a promising treatment modality for early-stage SCCHN. Although there are limitations due to the low level of evidence of the included studies, we believe that the present review could help to design robust clinical trials to determine the efficacy of PDT in SCCHN.
Collapse
|
160
|
Gündüz EÖ, Gedik ME, Günaydın G, Okutan E. Amphiphilic Fullerene-BODIPY Photosensitizers for Targeted Photodynamic Therapy. ChemMedChem 2021; 17:e202100693. [PMID: 34859597 DOI: 10.1002/cmdc.202100693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 12/30/2022]
Abstract
Nanotheranostic tailor-made carriers are potent platforms for the treatment of cancer that propound a number of advantages over conventional agents for photodynamic therapy (PDT). Herein, four new heavy atom free amphiphilic glucose-BODIPY-fullerene dyads (14-17) endowed with carbohydrate units in the styryl units, which can also form nanomicelles (14-17NM) with Tween 80 for PDT are reported. Glucose-BODIPY-fullerene systems (14-17) and related nanomicelles (14-17NM) have been prepared to emcee efficient singlet oxygen generation upon light irradiation. In vitro anti-tumor effects of the compounds 14-17 and 14-17NM in the presence of light and in darkness have been investigated with K562 human chronic myelogenous leukemia suspension cells. Anti-tumor toxicity upon light irradiation was due to the formation of singlet oxygen and reactive oxygen species (ROS). This study may provide an accomplished example of efficient PDT applications based on nanovehicles fabricated with universal spin converter, fullerene, light harvesting unit, BODIPY dyes conjugated with targeting units to fight against cancer.
Collapse
Affiliation(s)
- Ezel Öztürk Gündüz
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
| | - M Emre Gedik
- Department of Basic Oncology, Cancer Institute, Hacettepe University Çankaya, Ankara, 06100, Turkey
| | - Gürcan Günaydın
- Department of Basic Oncology, Cancer Institute, Hacettepe University Çankaya, Ankara, 06100, Turkey
| | - Elif Okutan
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
| |
Collapse
|
161
|
Zha M, Yang G, Li Y, Zhang C, Li B, Li K. Recent Advances in AIEgen-Based Photodynamic Therapy and Immunotherapy. Adv Healthc Mater 2021; 10:e2101066. [PMID: 34519181 DOI: 10.1002/adhm.202101066] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Indexed: 12/13/2022]
Abstract
Cancer, one of the leading causes of death, has seriously threatened public health. However, there is still a lack of effective treatments. Nowadays, photodynamic therapy (PDT), relying on photosensitizers to trigger the generation of reactive oxygen species (ROS) for killing cancer cells, has been emerging as a noninvasive anti-cancer strategy. To enhance the overall anti-cancer efficacy of PDT, various approaches including molecular design and combination with other therapeutic techniques have been proposed and implemented. Especially, photodynamic immunotherapy that can effectively evoke the body's immune response has attracted much attention. Recently, a class of photosensitizers with aggregation-induced emission (AIE) character have shown unique promises, taking advantage of their profound fluorescence and ROS-generating ability in the aggregation state. Despite the promising results demonstrated by several groups, the associated studies are few and the mechanism of such AIEgen-based photodynamic immunotherapy has not been fully understood. This review discusses the recent advances in the AIEgen-based enhanced PDT with a special focus on the AIE photosensitizers for photodynamic immunotherapy, aiming to inspire more opportunities for in-depth investigation of the working principles in this emerging anti-cancer approach.
Collapse
Affiliation(s)
- Menglei Zha
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) No. 1088 Xueyuan Rd. Shenzhen Guangdong 518055 P. R. China
| | - Guang Yang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) No. 1088 Xueyuan Rd. Shenzhen Guangdong 518055 P. R. China
| | - Yaxi Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) No. 1088 Xueyuan Rd. Shenzhen Guangdong 518055 P. R. China
| | - Chen Zhang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) No. 1088 Xueyuan Rd. Shenzhen Guangdong 518055 P. R. China
| | - Bo Li
- Department of Cardiology Shandong University Central Hospital of Zibo NO.10 South Shanghai Road Zibo 255000 China
| | - Kai Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) No. 1088 Xueyuan Rd. Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
162
|
Jin T, Cheng D, Jiang G, Xing W, Liu P, Wang B, Zhu W, Sun H, Sun Z, Xu Y, Qian X. Engineering naphthalimide-cyanine integrated near-infrared dye into ROS-responsive nanohybrids for tumor PDT/PTT/chemotherapy. Bioact Mater 2021; 14:42-51. [PMID: 35310343 PMCID: PMC8892148 DOI: 10.1016/j.bioactmat.2021.12.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022] Open
Abstract
Photodynamic (PDT) and photothermal therapies (PTT) are emerging treatments for tumour ablation. Organic dyes such as porphyrin, chlorin, phthalocyanine, boron-dipyrromethene and cyanine are the clinically or preclinically used photosensitizer or photothermal agents. Development of structurally diverse near-infrared dyes with long absorption wavelength is of great significance for PDT and PTT. Herein, we report a novel near-infrared dye ML880 with naphthalimide modified cyanine skeleton. The introduction of naphthalimide moiety results in stronger electron delocalization and larger redshift in emission compared with IR820. Furthermore, ML880 is co-loaded with chemotherapeutic drug into ROS-responsive mesoporous organosilica (RMON) to construct nanomedicine NBD&ML@RMON, which exhibits remarkable tumor inhibition effects through PDT/PTT/chemotherapy in vivo. The structure of the near-infrared dye ML880 was first reported. ML880 showed potential to be an excellent phototherapy agent activated by NIR laser. ML880 and chemodrug were co-loaded into ROS-degradable mesoporous organosilica to prepare NBD&ML@RMON. NBD&ML@RMON showed ROS- and NIR-responsible drug release behaviors. The remarkably tumor inhibition was achieved by the combined PDT/PTT/chemotherapy under 880 nm laser.
Collapse
|
163
|
Didamson OC, Abrahamse H. Targeted Photodynamic Diagnosis and Therapy for Esophageal Cancer: Potential Role of Functionalized Nanomedicine. Pharmaceutics 2021; 13:1943. [PMID: 34834358 PMCID: PMC8625244 DOI: 10.3390/pharmaceutics13111943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/26/2021] [Accepted: 10/31/2021] [Indexed: 12/11/2022] Open
Abstract
Esophageal cancer is often diagnosed at the late stage when cancer has already spread and is characterized by a poor prognosis. Therefore, early diagnosis is vital for a better and efficient treatment outcome. Upper endoscopy with biopsy is the standard diagnostic tool for esophageal cancer but is challenging to diagnose at its premalignant stage, while conventional treatments such as surgery, chemotherapy, and irradiation therapy, are challenging to eliminate the tumor. Photodynamic diagnosis (PDD) and therapy (PDT) modalities that employ photosensitizers (PSs) are emerging diagnostic and therapeutic strategies for esophageal cancer. However, some flaws associated with the classic PSs have limited their clinical applications. Functionalized nanomedicine has emerged as a potential drug delivery system to enhance PS drug biodistribution and cellular internalization. The conjugation of PSs with functionalized nanomedicine enables increased localization within esophageal cancer cells due to improved solubility and stability in blood circulation. This review highlights PS drugs used for PDD and PDT for esophageal cancer. In addition, it focuses on the various functionalized nanomedicine explored for esophageal cancer and their role in targeted PDD and PDT for diagnosis and treatment.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
| |
Collapse
|
164
|
Chain-transfer-catalyst: strategy for construction of site-specific functional CO2-based polycarbonates. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1098-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
165
|
Jin ZY, Fatima H, Zhang Y, Shao Z, Chen XJ. Recent Advances in Bio‐Compatible Oxygen Singlet Generation and Its Tumor Treatment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng Yang Jin
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Hira Fatima
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
| | - Yue Zhang
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Zongping Shao
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing Jiangsu 211816 P. R. China
| | - Xiang Jian Chen
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| |
Collapse
|
166
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 774] [Impact Index Per Article: 193.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
167
|
Pathak P, Zarandi MA, Zhou X, Jayawickramarajah J. Synthesis and Applications of Porphyrin-Biomacromolecule Conjugates. Front Chem 2021; 9:764137. [PMID: 34820357 PMCID: PMC8606752 DOI: 10.3389/fchem.2021.764137] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023] Open
Abstract
With potential applications in materials and especially in light-responsive biomedicine that targets cancer tissue selectively, much research has focused on developing covalent conjugation techniques to tether porphyrinoid units to various biomacromolecules. This review details the key synthetic approaches that have been employed in the recent decades to conjugate porphyrinoids with oligonucleotides and peptides/proteins. In addition, we provide succinct discussions on the subsequent applications of such hybrid systems and also give a brief overview of the rapidly progressing field of porphyrin-antibody conjugates. Since nucleic acid and peptide systems vary in structure, connectivity, functional group availability and placement, as well as stability and solubility, tailored synthetic approaches are needed for conjugating to each of these biomacromolecule types. In terms of tethering to ONs, porphyrins are typically attached by employing bioorthogonal chemistry (e.g., using phosphoramidites) that drive solid-phase ON synthesis or by conducting post-synthesis modifications and subsequent reactions (such as amide couplings, hydrazide-carbonyl reactions, and click chemistry). In contrast, peptides and proteins are typically conjugated to porphyrinoids using their native functional groups, especially the thiol and amine side chains. However, bioorthogonal reactions (e.g., Staudinger ligations, and copper or strain promoted alkyne-azide cycloadditions) that utilize de novo introduced functional groups onto peptides/proteins have seen vigorous development, especially for site-specific peptide-porphyrin tethering. While the ON-porphyrin conjugates have largely been explored for programmed nanostructure self-assembly and artificial light-harvesting applications, there are some reports of ON-porphyrin systems targeting clinically translational applications (e.g., antimicrobial biomaterials and site-specific nucleic acid cleavage). Conjugates of porphyrins with proteinaceous moieties, on the other hand, have been predominantly used for therapeutic and diagnostic applications (especially in photodynamic therapy, photodynamic antimicrobial chemotherapy, and photothermal therapy). The advancement of the field of porphyrinoid-bioconjugation chemistry from basic academic research to more clinically targeted applications require continuous fine-tuning in terms of synthetic strategies and hence there will continue to be much exciting work on porphyrinoid-biomacromolecule conjugation.
Collapse
Affiliation(s)
- Pravin Pathak
- Department of Chemistry, Tulane University, New Orleans, LA, United States
| | | | - Xiao Zhou
- Department of Chemistry, Tulane University, New Orleans, LA, United States
| | - Janarthanan Jayawickramarajah
- Department of Chemistry, Tulane University, New Orleans, LA, United States
- Department of Biochemistry and Molecular Biology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
168
|
Wasif Baig M, Pederzoli M, Kývala M, Cwiklik L, Pittner J. Theoretical Investigation of the Effect of Alkylation and Bromination on Intersystem Crossing in BODIPY-Based Photosensitizers. J Phys Chem B 2021; 125:11617-11627. [PMID: 34661408 DOI: 10.1021/acs.jpcb.1c05236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Halogenated and alkylated BODIPY derivatives are reported as suitable candidates for their use as photosensitizers in photodynamic therapy due to their efficient intersystem crossing (ISC) between states of different spin multiplicities. Spin-orbit couplings (SOCs) are evaluated using an effective one-electron spin-orbit Hamiltonian for brominated and alkylated BODIPY derivatives to investigate the quantitative effect of alkyl and bromine substituents on ISC. BODIPY derivatives containing bromine atoms have been found to have significantly stronger SOCs than alkylated BODIPY derivatives outside the Frank-Condon region while they are nearly the same at local minima. Based on calculated time-dependent density functional theory (TD-DFT) vertical excitation energies and SOCs, excited-state dynamics of three BODIPY derivatives were further explored with TD-DFT surface hopping molecular dynamics employing a simple accelerated approach. Derivatives containing bromine atoms have been found to have very similar lifetimes, which are much shorter than those of the derivatives possessing just the alkyl moieties. However, both bromine atoms and alkyl moieties reduce the HOMO/LUMO gap, thus assisting the derivatives to behave as efficient photosensitizers.
Collapse
Affiliation(s)
- Mirza Wasif Baig
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, Prague 18223, Czech Republic.,Faculty of Science, Department of Physical and Macromolecular Chemistry, Charles University in Prague, Hlavova 8, Prague 12840, Czech Republic
| | - Marek Pederzoli
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, Prague 18223, Czech Republic
| | - Mojmír Kývala
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovonám. 2, Prague 16610, Czech Republic
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, Prague 18223, Czech Republic.,Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovonám. 2, Prague 16610, Czech Republic
| | - Jiří Pittner
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, Prague 18223, Czech Republic
| |
Collapse
|
169
|
Gandioso A, Purkait K, Gasser G. Recent Approaches towards the Development of Ru(II) Polypyridyl Complexes for Anticancer Photodynamic Therapy. Chimia (Aarau) 2021; 75:845-855. [PMID: 34728011 DOI: 10.2533/chimia.2021.845] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Photodynamic therapy (PDT) is a remarkable alternative or complementary technique to chemotherapy, radiotherapy or immunotherapy to treat certain forms of cancer. The synergistic effect of light, photosensitizer (PS) and oxygen allows for the treatment of tumours with an extremely high spatio-tumoral control, therefore minimizing the severe side effects usually observed in chemotherapy. The currently employed PDT PSs based on porphyrins have, in some cases, some limitations, which include a low absorbance in the therapeutic window, a low body clearance, photobleaching, among others. In this context, Ru(ii) polypyridyl complexes are interesting alternatives. They have low lying excited energy states and the presence of a heavy metal increases the possibility of spin-orbit coupling. Moreover, their photophysical properties are relatively easy to tune and they have very low photobleaching rates. All of these make them attractive candidates for further development as therapeutically suitable PDT PSs. In this review, after having presented this field of research, we discuss the developments made by our group in this field of research since 2017. We notably describe how we tuned the photophysical properties of our complexes from the visible region to the therapeutically suitable red region. This was accompanied by the preparation of PSs with enhanced phototoxicity and high phototoxicity index. We also discuss the use of two-photon excitation to eradicate tumours in nude mice. Furthermore, we describe our approach for the selective delivery of our complexes using targeting agents. Lastly, we report on our very recent synergistic approach to treat cancer using bimetallic Ru(ii)-Pt(iv) prodrug candidates.
Collapse
Affiliation(s)
- Albert Gandioso
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| | - Kallol Purkait
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France;,
| |
Collapse
|
170
|
Styrene Maleic Acid Copolymer-Based Micellar Formation of Temoporfin (SMA@ mTHPC) Behaves as A Nanoprobe for Tumor-Targeted Photodynamic Therapy with A Superior Safety. Biomedicines 2021; 9:biomedicines9101493. [PMID: 34680610 PMCID: PMC8533298 DOI: 10.3390/biomedicines9101493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 12/22/2022] Open
Abstract
Tumor-targeted photodynamic therapy (PDT) using polymeric photosensitizers is a promising anticancer therapeutic strategy. Previously, we developed several polymeric nanoprobes for PDT using different polymers and PDT agents. In the study, we synthesized a styrene maleic acid copolymer (SMA) micelle encapsulating temoporfin (mTHPC) that is a clinically used PDT drug, SMA@mTHPC, with a hydrodynamic size of 98 nm, which showed high water solubility. SMA@mTHPC maintained stable micelle formation in physiological aqueous solutions including serum; however, the micelles could be disrupted in the presence of detergent (e.g., Tween 20) as well as lecithin, the major component of cell membrane, suggesting micelles will be destroyed and free mTHPC will be released during intracellular uptake. SMA@mTHPC showed a pH-dependent release profile, for which a constant release of ≈20% per day was found at pH 7.4, and much more release occurred at acidic pH (e.g., 6.5, 5.5), suggesting extensive release of free mTHPC could occur in the weak acidic environment of a tumor and further during internalization into tumor cells. In vitro cytotoxicity assay showed a lower cytotoxicity of SMA@mTHPC than free mTHPC; however, similar in vivo antitumor effects were observed by both SMA@mTHPC and free THPC. More importantly, severe side effects (e.g., body weight loss, death of the mice) were found during free mTHPC treatment, whereas no apparent side effects were observed for SMA@mTHPC. The superior safety profile of SMA@mTHPC was mostly due to its micelle formation and the enhanced permeability and retention (EPR) effect-based tumor accumulation, as well as the tumor environment-responsive release properties. These findings suggested SMA@mTHPC may become a good candidate drug for targeted PDT with high safety.
Collapse
|
171
|
Bindra AK, Wang D, Zheng Z, Jana D, Zhou W, Yan S, Wu H, Zheng Y, Zhao Y. Self-assembled semiconducting polymer based hybrid nanoagents for synergistic tumor treatment. Biomaterials 2021; 279:121188. [PMID: 34678649 DOI: 10.1016/j.biomaterials.2021.121188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
There is an impending need for the development of carrier-free nanosystems for single laser triggered activation of phototherapy, as such approach can overcome the drawbacks associated with irradiation by two distinct laser sources for avoiding prolonged treatment time and complex treatment protocols. Herein, we developed a self-assembled nanosystem (SCP-CS) consisting of a new semiconducting polymer (SCP) and encapsulated ultrasmall CuS (CS) nanoparticles. The SCP component displays remarkable near infrared (NIR) induced photothermal ability, enhanced reactive oxygen species (ROS) generation, and incredible photoacoustic (PA) signals upon activation by 808 nm laser for phototherapy mediated cancer ablation. The CuS component improves the PA imaging ability of SCP-CS, and also enhances photo-induced chemodynamic efficacy. Attributed to promoted single laser-triggered hyperthermia and enhanced ROS generation, the SCP-CS nanosystem shows effective intracellular uptake and intratumoral accumulation, enhanced tumor suppression with reduced treatment time, and devoid of any noticeable toxicity.
Collapse
Affiliation(s)
- Anivind Kaur Bindra
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Dongdong Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Zesheng Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Deblin Jana
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Weiqiang Zhou
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Suxia Yan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Hongwei Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| | - Yuanjin Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| |
Collapse
|
172
|
Takano Y, Hirata E, Ushijima N, Harashima H, Yamada Y. An effective in vivo mitochondria-targeting nanocarrier combined with a π-extended porphyrin-type photosensitizer. NANOSCALE ADVANCES 2021; 3:5919-5927. [PMID: 36132667 PMCID: PMC9419188 DOI: 10.1039/d1na00427a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/20/2021] [Indexed: 05/15/2023]
Abstract
A photochemical reaction mediated by light-activated molecules (photosensitizers) in photodynamic therapy (PDT) causes molecular oxygen to be converted into highly reactive oxygen species (ROS) that are beneficial for cancer therapy. As the active oxygen consumer and the primary regulator of apoptosis, mitochondria are known as an important target for optimizing PDT outcomes. However, most of the clinically used photosensitizers exhibited a poor tumor accumulation profile as well as lack of mitochondria targeting ability. Therefore, by applying a nanocarrier platform, mitochondria-specific delivery of photosensitizers can be materialized. The present research develops an effective mitochondria-targeting liposome-based nanocarrier system (MITO-Porter) encapsulating a π-extended porphyrin-type photosensitizer (rTPA), which results in a significant in vivo antitumor activity. A single PDT treatment of the rTPA-MITO-Porter resulted in a dramatic tumor inhibition against both human and murine tumors that had been xenografted in a mouse model. Furthermore, depolarization of the mitochondrial membrane was observed, implying the damage of the mitochondrial membrane due to the photochemical reaction that occurred specifically in the mitochondria of tumor cells. The findings presented herein serve to verify the significance of the mitochondria-targeted nanocarrier system for advancing the in vivo PDT effectivity in cancer therapy regardless of tumor type.
Collapse
Affiliation(s)
- Yuta Takano
- Research Institute for Electronic Science, Hokkaido University Kita-20 Nishi-10, Kita-ku Sapporo 001-0020 Japan
- Graduate School of Environmental Science, Hokkaido University Sapporo 060-0810 Japan
| | - Eri Hirata
- Faculty of Dental Medicine, Hokkaido University Sapporo 060-8586 Japan
| | - Natsumi Ushijima
- Faculty of Dental Medicine, Hokkaido University Sapporo 060-8586 Japan
| | - Hideyoshi Harashima
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University Kita-12 Nishi-6, Kita-ku Sapporo 060-0812 Japan
| | - Yuma Yamada
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University Kita-12 Nishi-6, Kita-ku Sapporo 060-0812 Japan
| |
Collapse
|
173
|
Kim D, Han W, Chang JH, Lee HJ. PMP(Porphyrin-Micelle-PSMA) Nanoparticles for Photoacoustic and Ultrasound Signal Amplification in Mouse Prostate Cancer Xenografts. Pharmaceutics 2021; 13:1636. [PMID: 34683929 PMCID: PMC8537944 DOI: 10.3390/pharmaceutics13101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Photoacoustic (PA) imaging is used widely in cancer diagnosis. However, the availability of PA agents has not made great progress due to the limitations of the one currently in use, porphyrin. Porphyrin-Micelle (PM), developed by synthesizing porphyrin and PEG-3.5k, confirmed the amplification of the PA agent signal, and added binding affinity in an LNCaP model by attaching prostate-specific membrane antigen PSMA. Compared to the previously used porphyrin, a superior signal was confirmed, and the potential of PMP was confirmed when it showed a signal superior to that of hemoglobin at the same concentration. In addition, in the in vivo mouse experiment, it was confirmed that the signal in the LNCaP xenograft model was stronger than that in the PC-3 xenograft model, and the PMP signal was about three times higher than that of PM and porphyrin.
Collapse
Affiliation(s)
- Daehyun Kim
- Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea;
- Department of Radiology, Seoul National University Bundang Hospital, 82 Gumi-ro 173, Bundang-gu, Seongnam 13620, Korea
- IMGT Co., Ltd., Seongnam 13605, Korea
| | - Wonkook Han
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
| | - Jin Ho Chang
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
| | - Hak Jong Lee
- Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea;
- Department of Radiology, Seoul National University Bundang Hospital, 82 Gumi-ro 173, Bundang-gu, Seongnam 13620, Korea
- IMGT Co., Ltd., Seongnam 13605, Korea
- Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
174
|
Li D, Yang Y, Li D, Pan J, Chu C, Liu G. Organic Sonosensitizers for Sonodynamic Therapy: From Small Molecules and Nanoparticles toward Clinical Development. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101976. [PMID: 34350690 DOI: 10.1002/smll.202101976] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Sonodynamic therapy (SDT) is a novel noninvasive therapeutic modality that combines low-intensity ultrasound and sonosensitizers. Versus photo-mediated therapy, SDT has the advantages of deeper tissue penetration, high accuracy, and less side effects. Sonosensitizers are critical for therapeutic efficacy during SDT and organic sonosensitizers are important because of their clear structure, easy monitoring, evaluation of drug metabolism, and clinical transformation. Notably, nanotechnology can be used in the field of sonosensitizers and SDT to overcome the inherent obstacles and achieve sustainable innovation. This review introduces organic small molecule sonosensitizers, nano organic sonosensitizers, and their clinical translation by providing ideas and references for the design of sonosensitizers and SDT so as to promote its transformation to clinical applications in the future.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yang Yang
- Department of Cardiovascular, Xiang'an Hospital of Xiamen University, Xiamen, 361102, China
| | - Dengfeng Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jie Pan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Engineering Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
175
|
Guo X, Yang N, Ji W, Zhang H, Dong X, Zhou Z, Li L, Shen HM, Yao SQ, Huang W. Mito-Bomb: Targeting Mitochondria for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007778. [PMID: 34510563 DOI: 10.1002/adma.202007778] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/12/2021] [Indexed: 05/22/2023]
Abstract
Cancer has been one of the most common life-threatening diseases for a long time. Traditional cancer therapies such as surgery, chemotherapy (CT), and radiotherapy (RT) have limited effects due to drug resistance, unsatisfactory treatment efficiency, and side effects. In recent years, photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) have been utilized for cancer treatment owing to their high selectivity, minor resistance, and minimal toxicity. Accumulating evidence has demonstrated that selective delivery of drugs to specific subcellular organelles can significantly enhance the efficiency of cancer therapy. Mitochondria-targeting therapeutic strategies are promising for cancer therapy, which is attributed to the essential role of mitochondria in the regulation of cancer cell apoptosis, metabolism, and more vulnerable to hyperthermia and oxidative damage. Herein, the rational design, functionalization, and applications of diverse mitochondria-targeting units, involving organic phosphine/sulfur salts, quaternary ammonium (QA) salts, peptides, transition-metal complexes, guanidinium or bisguanidinium, as well as mitochondria-targeting cancer therapies including PDT, PTT, CDT, and others are summarized. This review aims to furnish researchers with deep insights and hints in the design and applications of novel mitochondria-targeting agents for cancer therapy.
Collapse
Affiliation(s)
- Xiaolu Guo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Hang Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Xiao Dong
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Zhiqiang Zhou
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
176
|
Das D, Noor A, Raza MK, Goswami TK. Co(II) complexes of curcumin and a ferrocene-based curcuminoid: a study on photo-induced antitumor activity. J Biol Inorg Chem 2021; 26:881-893. [PMID: 34550450 DOI: 10.1007/s00775-021-01899-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/29/2021] [Indexed: 02/08/2023]
Abstract
Co(II) complexes having a ferrocene-based curcuminoid (Fc-curH) ligand viz. [Co(L)2(Fc-cur)]ClO4 (1, 2), where L is phenanthroline base, namely, 1,10-phenanthroline (phen in 1) and dipyrido[3,2-a:2',3'-c]phenazine (dppz in 2) have been synthesized, characterized and evaluated as photochemotherapeutic agents in vitro. The corresponding Co(II) complexes of the naturally occurring polyphenol curcumin (curH), namely, [Co(L)2(cur)]ClO4 (3, 4), where L is phen (in 3) and dppz (in 4) were synthesized and their photo-induced anticancer activities compared with their ferrocene containing counterparts 1 and 2. The Co(II) acetylacetonato complex viz. [Co(phen)2(acac)]ClO4 (5) was structurally characterized through X-ray crystallography and used as control for cellular experiments. The Co(II) complexes having ferrocene-based curcuminoid are remarkably stable at physiological condition with higher lipophilicity compared to their curcumin analogues. The complexes display significant binding propensity to calf thymus (ct) DNA and human serum albumin (HSA). The complexes 1-4 display remarkable visible light induced cytotoxicity with the ferrocenyl analogues showing more phototoxic index (PI). The Co(II) curcumin complexes localize in the nucleus and mitochondria of A549 cells. The primary cell death mechanism is believed to be apoptotic in nature induced by light assisted generation of reactive oxygen species (ROS).Graphic abstract.
Collapse
Affiliation(s)
- Dhananjay Das
- Department of Chemistry, Gauhati University, Guwahati, 781014, Assam, India
| | - Aisha Noor
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - Tridib K Goswami
- Department of Chemistry, Gauhati University, Guwahati, 781014, Assam, India.
| |
Collapse
|
177
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
178
|
Bistaffa MJ, Camacho SA, Melo CFOR, Catharino RR, Toledo KA, Aoki PHB. Plasma membrane permeabilization to explain erythrosine B phototoxicity on in vitro breast cancer cell models. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 223:112297. [PMID: 34482154 DOI: 10.1016/j.jphotobiol.2021.112297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 02/02/2023]
Abstract
Lipid oxidation is ubiquitous in cell life under oxygen and essential for photodynamic therapy (PDT) of carcinomas. However, the mechanisms underlying lipid oxidation in rather complex systems such as plasma membranes remain elusive. Herein, Langmuir monolayers were assembled with the lipid extract of glandular breast cancer (MCF7) cells and used to probe the molecular interactions allowing adsorption of the photosensitizer (PS) erythrosine B and subsequent photooxidation outcomes. Surface pressure (π) versus area (cm2/mL) isotherms of MCF7 lipid extract shifted to larger areas upon erythrosine incorporation, driven by secondary interactions that affected the orientation of the carbonyl groups and lipid chain organization. Light-irradiation increased the surface area of the MCF7 lipid extract monolayer containing erythrosine owing to the lipid hydroperoxidation, which may further undergo decomposition, resulting in the chain cleavage of phospholipids and membrane permeabilization. Incorporation of erythrosine by MCF7 cells induced slight toxic effects on in vitro assays, differently of the severe phototoxicity caused by light-irradiation, which significantly decreased cell viability by more than 75% at 2.5 × 10-6 mol/L of erythrosine incubated for 3 and 24 h, reaching nearly 90% at 48 h of incubation. The origin of the phototoxic effects is in the rupture of the plasma membrane shown by the frontal (FSC) and side (SSC) light scattering of flow cytometry. Consistent with hydroperoxide decomposition, membrane permeabilization was also confirmed by cleaved lipids detected in mass spectrometry and subsidizes the necrotic pathway of cell death.
Collapse
Affiliation(s)
- Maria J Bistaffa
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Sabrina A Camacho
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil.; IFSC, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil
| | - Carlos F O R Melo
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Rodrigo R Catharino
- INNOVARE Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Karina A Toledo
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil.; São Paulo State University (UNESP), Institute of Biosciences, Letters and Exact Sciences, São José do Rio Preto, SP 15054-000, Brazil
| | - Pedro H B Aoki
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil..
| |
Collapse
|
179
|
Vargas-Zúñiga GI, Kim HS, Li M, Sessler JL, Kim JS. Pyrrole-based photosensitizers for photodynamic therapy — a Thomas Dougherty award paper. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621300044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Photodynamic therapy (PDT) is a therapeutic modality that uses light to treat malignant or benign diseases. A photosensitizer, light, and oxygen are the three main components needed to generate a cytotoxic effect. Pyrrole-based photosensitizers have been widely used for PDT. Many of the photosensitizers within this class are macrocyclic. This is particularly true for systems that have received regulatory approval or been the subject of clinical trials. However, in recent years, a number of boron dipyrromethanes (BODIPY) have been studied as photosensitizers. Herein, we review examples of some of the most relevant pyrrole-based photosensitizers.
Collapse
Affiliation(s)
- Gabriela I. Vargas-Zúñiga
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street-A5300, Austin, TX 78712-1224, USA
| | - Hyeong Seok Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Mingle Li
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street-A5300, Austin, TX 78712-1224, USA
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
180
|
Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Photodynamic Therapy: A Compendium of Latest Reviews. Cancers (Basel) 2021; 13:4447. [PMID: 34503255 PMCID: PMC8430498 DOI: 10.3390/cancers13174447] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising therapy against cancer. Even though it has been investigated for more than 100 years, scientific publications have grown exponentially in the last two decades. For this reason, we present a brief compendium of reviews of the last two decades classified under different topics, namely, overviews, reviews about specific cancers, and meta-analyses of photosensitisers, PDT mechanisms, dosimetry, and light sources. The key issues and main conclusions are summarized, including ways and means to improve therapy and outcomes. Due to the broad scope of this work and it being the first time that a compendium of the latest reviews has been performed for PDT, it may be of interest to a wide audience.
Collapse
Affiliation(s)
- José Francisco Algorri
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Mario Ochoa
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Pablo Roldán-Varona
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | | | - José Miguel López-Higuera
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
181
|
Karimnia V, Slack FJ, Celli JP. Photodynamic Therapy for Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13174354. [PMID: 34503165 PMCID: PMC8431269 DOI: 10.3390/cancers13174354] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal of human cancers. Numerous clinical trials evaluating various combinations of chemotherapy and targeted agents and radiotherapy have failed to provide meaningful improvements in survival. A growing number of studies however have indicated that photodynamic therapy (PDT) may be a viable approach for treatment of some pancreatic tumors. PDT, which uses light to activate a photosensitizing agent in target tissue, has seen widespread adoption primarily for dermatological and other applications where superficial light delivery is relatively straightforward. Advances in fiber optic light delivery and dosimetry however have been leveraged to enable PDT even for challenging internal sites, including the pancreas. The aim of this article is to help inform future directions by reviewing relevant literature on the basic science, current clinical status, and potential challenges in the development of PDT as a treatment for PDAC. Abstract Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal of human cancers. Clinical trials of various chemotherapy, radiotherapy, targeted agents and combination strategies have generally failed to provide meaningful improvement in survival for patients with unresectable disease. Photodynamic therapy (PDT) is a photochemistry-based approach that enables selective cell killing using tumor-localizing agents activated by visible or near-infrared light. In recent years, clinical studies have demonstrated the technical feasibility of PDT for patients with locally advanced PDAC while a growing body of preclinical literature has shown that PDT can overcome drug resistance and target problematic and aggressive disease. Emerging evidence also suggests the ability of PDT to target PDAC stroma, which is known to act as both a barrier to drug delivery and a tumor-promoting signaling partner. Here, we review the literature which indicates an emergent role of PDT in clinical management of PDAC, including the potential for combination with other targeted agents and RNA medicine.
Collapse
Affiliation(s)
- Vida Karimnia
- Department of Physics, University of Massachusetts at Boston, Boston, MA 02125, USA;
| | - Frank J. Slack
- Department of Pathology, BIDMC Cancer Center/Harvard Medical School, Boston, MA 02215, USA;
| | - Jonathan P. Celli
- Department of Physics, University of Massachusetts at Boston, Boston, MA 02125, USA;
- Correspondence:
| |
Collapse
|
182
|
Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics 2021; 13:pharmaceutics13091332. [PMID: 34575408 PMCID: PMC8470722 DOI: 10.3390/pharmaceutics13091332] [Citation(s) in RCA: 447] [Impact Index Per Article: 111.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy (PDT) is a minimally invasive therapeutic modality that has gained great attention in the past years as a new therapy for cancer treatment. PDT uses photosensitizers that, after being excited by light at a specific wavelength, react with the molecular oxygen to create reactive oxygen species in the target tissue, resulting in cell death. Compared to conventional therapeutic modalities, PDT presents greater selectivity against tumor cells, due to the use of photosensitizers that are preferably localized in tumor lesions, and the precise light irradiation of these lesions. This paper presents a review of the principles, mechanisms, photosensitizers, and current applications of PDT. Moreover, the future path on the research of new photosensitizers with enhanced tumor selectivity, featuring the improvement of PDT effectiveness, has also been addressed. Finally, new applications of PDT have been covered.
Collapse
|
183
|
Mo J, Mai Le NP, Priefer R. Evaluating the mechanisms of action and subcellular localization of ruthenium(II)-based photosensitizers. Eur J Med Chem 2021; 225:113770. [PMID: 34403979 DOI: 10.1016/j.ejmech.2021.113770] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/23/2021] [Accepted: 08/09/2021] [Indexed: 01/16/2023]
Abstract
The identification of ruthenium(II) polypyridyl complexes as photosensitizers in photodynamic therapy (PDT) for the treatment of cancer is progressing rapidly. Due to their favorable photophysical and photochemical properties, Ru(II)-based photosensitizers have absorption in the visible spectrum, can be irradiated via one- and two-photon excitation within the PDT window, and yield potent oxygen-dependent and/or oxygen-independent photobiological activities. Herein, we present a current overview of the mechanisms of action and subcellular localization of Ru(II)-based photosensitizers in the treatment of cancer. These photosensitizers are highlighted from a medicinal chemistry and chemical biology perspective. However, although this field is burgeoning, challenges and limitations remain in the photosensitization strategies and clinical translation.
Collapse
Affiliation(s)
- Jiancheng Mo
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA
| | - Ngoc Phuong Mai Le
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA.
| |
Collapse
|
184
|
Gunaydin G, Gedik ME, Ayan S. Photodynamic Therapy for the Treatment and Diagnosis of Cancer-A Review of the Current Clinical Status. Front Chem 2021; 9:686303. [PMID: 34409014 PMCID: PMC8365093 DOI: 10.3389/fchem.2021.686303] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Photodynamic therapy (PDT) has been used as an anti-tumor treatment method for a long time and photosensitizers (PS) can be used in various types of tumors. Originally, light is an effective tool that has been used in the treatment of diseases for ages. The effects of combination of specific dyes with light illumination was demonstrated at the beginning of 20th century and novel PDT approaches have been developed ever since. Main strategies of current studies are to reduce off-target effects and improve pharmacokinetic properties. Given the high interest and vast literature about the topic, approval of PDT as the first drug/device combination by the FDA should come as no surprise. PDT consists of two stages of treatment, combining light energy with a PS in order to destruct tumor cells after activation by light. In general, PDT has fewer side effects and toxicity than chemotherapy and/or radiotherapy. In addition to the purpose of treatment, several types of PSs can be used for diagnostic purposes for tumors. Such approaches are called photodynamic diagnosis (PDD). In this Review, we provide a general overview of the clinical applications of PDT in cancer, including the diagnostic and therapeutic approaches. Assessment of PDT therapeutic efficacy in the clinic will be discussed, since identifying predictors to determine the response to treatment is crucial. In addition, examples of PDT in various types of tumors will be discussed. Furthermore, combination of PDT with other therapy modalities such as chemotherapy, radiotherapy, surgery and immunotherapy will be emphasized, since such approaches seem to be promising in terms of enhancing effectiveness against tumor. The combination of PDT with other treatments may yield better results than by single treatments. Moreover, the utilization of lower doses in a combination therapy setting may cause less side effects and better results than single therapy. A better understanding of the effectiveness of PDT in a combination setting in the clinic as well as the optimization of such complex multimodal treatments may expand the clinical applications of PDT.
Collapse
Affiliation(s)
- Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - M. Emre Gedik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Seylan Ayan
- Department of Chemistry, Bilkent University, Ankara, Turkey
| |
Collapse
|
185
|
Zheng Y, Ye J, Li Z, Chen H, Gao Y. Recent progress in sono-photodynamic cancer therapy: From developed new sensitizers to nanotechnology-based efficacy-enhancing strategies. Acta Pharm Sin B 2021; 11:2197-2219. [PMID: 34522584 PMCID: PMC8424231 DOI: 10.1016/j.apsb.2020.12.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/27/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Many sensitizers have not only photodynamic effects, but also sonodynamic effects. Therefore, the combination of sonodynamic therapy (SDT) and photodynamic therapy (PDT) using sensitizers for sono-photodynamic therapy (SPDT) provides alternative opportunities for clinical cancer therapy. Although significant advances have been made in synthesizing new sensitizers for SPDT, few of them are successfully applied in clinical settings. The anti-tumor effects of the sensitizers are restricted by the lack of tumor-targeting specificity, incapability in deep intratumoral delivery, and the deteriorating tumor microenvironment. The application of nanotechnology-based drug delivery systems (NDDSs) can solve the above shortcomings, thereby improving the SPDT efficacy. This review summarizes various sensitizers as sono/photosensitizers that can be further used in SPDT, and describes different strategies for enhancing tumor treatment by NDDSs, such as overcoming biological barriers, improving tumor-targeted delivery and intratumoral delivery, providing stimuli-responsive controlled-release characteristics, stimulating anti-tumor immunity, increasing oxygen supply, employing different therapeutic modalities, and combining diagnosis and treatment. The challenges and prospects for further development of intelligent sensitizers and translational NDDSs for SPDT are also discussed.
Collapse
Affiliation(s)
- Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jinxiang Ye
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Haijun Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
186
|
Guo W, Wang Z, Wang X, Wu Y. General Design Concept for Single-Atom Catalysts toward Heterogeneous Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004287. [PMID: 34235782 DOI: 10.1002/adma.202004287] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/28/2020] [Indexed: 06/13/2023]
Abstract
As a new and popular material, single-atom catalysts (SACs) exhibit excellent activity, selectivity, and stability for numerous important reactions, and show great potential in heterogeneous catalysis due to their high atom utilization efficiency and the controllable characteristics of the active sites. The composition and coordination would determine the geometric and electronic structures of SACs, and thus greatly influence the catalytic performance. Based on atom economy, rational design and controllable synthesis of SACs have become central tasks in the fields of low-cost and green catalysis. Herein, an introduction to the recent progress in the precise synthesis of SACs including the regulation of the coordination structure and the choice of different systems is presented. Thereafter, the potentials of SACs in different applications are comprehensively summarized and discussed. Furthermore, a detailed discussion of the recent developments regarding the large-scale preparation of SACs is provided, including the major issues and prospects for industrialization. Finally, the main challenges and opportunities of rapid large-scale industrialization of SACs are briefly discussed.
Collapse
Affiliation(s)
- Wenxin Guo
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
- Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Zhiyuan Wang
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
- Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Xiaoqian Wang
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
- Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Yuen Wu
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
- Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| |
Collapse
|
187
|
Bellucci N, Donzello MP, Viola E, Ercolani C. Homo/Heteropentanuclear Porphyrazine Mg II, Zn II, and Pd II Macrocycles with Externally Pending PdCl 2 and Pd(CBT) 2 Units: Synthesis, Physicochemical Characterization, and Photoactivity Studies. Inorg Chem 2021; 60:12029-12038. [PMID: 34324342 DOI: 10.1021/acs.inorgchem.1c01195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent work has been developed on two new classes of neutral porphyrazine complexes of formulas [(PdCl2)4Py8PzM]·xH2O (Py8Pz = octakis(2-pyridyl)porphyrazinato anion; M = MgII(H2O), ZnII, PdII) and [{Pd(CBT)2}4Py8PzM]·xH2O (M = MgII(H2O), ZnII; CBT = m-carborane-1-thiolate anion). Characterization of all the species has been conducted by IR and UV-visible spectral measurements in a systematic comparison with the corresponding already known mononuclear species [Py8PzM] (M = MgII(H2O), ZnII) and the mono-PdII analogue isolated and presented here for the first time. Comparison includes also the two parent classes of pentanuclear tetrapyrazinoporphyrazines having the more extended π-electron delocalized macrocyclic core Py8TPyzPz. The reported new classes of pentanuclear complexes behave as active photosensitizers in photodynamic therapy (PDT), and due to the high boron content of the CBT derivatives, perspectives for them are open of application in the field of bimodal PDT/BNCT (boron neutron capture therapy) anticancer treatments.
Collapse
Affiliation(s)
- Noemi Bellucci
- Dipartimento di Chimica, Università degli Studi di Roma Sapienza, P. le A. Moro 5, I-00185 Rome, Italy
| | - Maria Pia Donzello
- Dipartimento di Chimica, Università degli Studi di Roma Sapienza, P. le A. Moro 5, I-00185 Rome, Italy
| | - Elisa Viola
- Dipartimento di Chimica, Università degli Studi di Roma Sapienza, P. le A. Moro 5, I-00185 Rome, Italy
| | - Claudio Ercolani
- Dipartimento di Chimica, Università degli Studi di Roma Sapienza, P. le A. Moro 5, I-00185 Rome, Italy
| |
Collapse
|
188
|
Chen B, Cao J, Zhang K, Zhang YN, Lu J, Zubair Iqbal M, Zhang Q, Kong X. Synergistic photodynamic and photothermal therapy of BODIPY-conjugated hyaluronic acid nanoparticles. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2028-2045. [PMID: 34251996 DOI: 10.1080/09205063.2021.1954138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The combination of photodynamic therapy (PDT) and photothermal therapy (PTT) has emerged as a promising strategy for complete tumor ablation therapy. Herein, a boron dipyrromethene (BODIPY)-conjugated hyaluronic acid polymer that can self-assemble to form the nanoparticles (BODIPY-HA NPs) was prepared for combined cancer PDT and PTT. The fluorescence emission and reactive oxygen species (ROS) generation of BODIPY-HA NPs were inhibited because of the π-π stacking behavior of BODIPY, resulting in photothermal effect under 808 nm light irradiation. Upon the internalization by cancer cells, the BODIPY-HA NPs could disassemble into BODIPY-HA molecules, with the recovery of the fluorescence and ROS generation for PDT. Importantly, in vitro results confirmed that combined PTT and PDT have exhibited better anticancer effect than PTT alone upon 808 nm laser irradiation. These results showed that the self-assembled BODIPY-HA NPs may be a promising nanomedicine for synergistic cancer PDT and PTT.
Collapse
Affiliation(s)
- Bowen Chen
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jie Cao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Kebiao Zhang
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuan-Ning Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiaju Lu
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Muhammad Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Quan Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
189
|
Lee HW, Lee DJ, Lim CS. Recent Research Trends of Two‐Photon Photosensitizer for Simultaneous Imaging and Photodynamic Therapy. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Hyo Won Lee
- Department of Chemistry and Department of Energy Systems Research Ajou University Suwon 16499 Republic of Korea
| | - Dong Joon Lee
- Department of Chemistry and Department of Energy Systems Research Ajou University Suwon 16499 Republic of Korea
| | - Chang Su Lim
- Department of Chemistry and Department of Energy Systems Research Ajou University Suwon 16499 Republic of Korea
| |
Collapse
|
190
|
Qin X, Zhang M, Hu X, Du Q, Zhao Z, Jiang Y, Luan Y. Nanoengineering of a newly designed chlorin e6 derivative for amplified photodynamic therapy via regulating lactate metabolism. NANOSCALE 2021; 13:11953-11962. [PMID: 34212166 DOI: 10.1039/d1nr01083b] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chlorin e6 (Ce6) is a widely utilized photosensitizer in photodynamic therapy (PDT) against tumor growth, but its hydrophobic feature and the hypoxia in the tumor microenvironment greatly compromise its therapeutic efficacy. To address the issues, here we designed a new Ce6 derivative (TCe6) by coupling Ce6 with amphiphilic d-α-tocopherol polyethylene glycol 1000 succinate (TPGS), endowing Ce6 with an excellent amphiphilic feature. In particular, the overall reactive oxygen species (ROS) generation by TCe6 was significantly enhanced because TPGS could interact with mitochondrial complex II to induce extra ROS production, amplifying the total ROS production under PDT. Inspired by the unique property of α-cyano-4-hydroxycinnamate (CHC) in regulating lactate metabolism to spare more intracellular oxygen for PDT, TCe6 was further co-assembled with CHC to construct TCe6/CHC nanoparticles (NPs) for addressing the insufficient oxygen issue in PDT. The as-prepared TCe6/CHC NPs not only increased the efficiency of cell internalization but also improved the solubility and stability of Ce6 and CHC. Thanks to the extra ROS production by the TPGS unit, the amphiphilic feature of TCe6 and the CHC-mediated hypoxia microenvironment, the TCe6/CHC NPs demonstrated excellent PDT against tumor growth. This work provided a versatile strategy to solve the current bottleneck in photosensitizer-based PDT, holding great promise for the design of advanced photodynamic nanoplatforms.
Collapse
Affiliation(s)
- Xiaohan Qin
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | | | | | | | | | | | | |
Collapse
|
191
|
Conway-Kenny R, Ferrer-Ugalde A, Careta O, Cui X, Zhao J, Nogués C, Núñez R, Cabrera-González J, Draper SM. Ru(ii) and Ir(iii) phenanthroline-based photosensitisers bearing o-carborane: PDT agents with boron carriers for potential BNCT. Biomater Sci 2021; 9:5691-5702. [PMID: 34264257 DOI: 10.1039/d1bm00730k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Four novel transition metal-carborane photosensitisers were prepared by Sonogashira cross-coupling of 1-(4-ethynylbenzyl)-2-methyl-o-carborane (A-CB) with halogenated Ru(ii)- or Ir(iii)-phenanthroline complexes. The resulting boron-rich complexes with one (RuCB and IrCB) or two carborane cages (RuCB2 and IrCB2) were spectroscopically characterised, and their photophysical properties investigated. RuCB displayed the most attractive photophysical properties in solution (λem 635 nm, τT 2.53 μs, and φp 20.4%). Nanosecond time-resolved transient absorption studies were used to explore the 3MLCT nature of the triplet excited states, and the highest singlet oxygen quantum yields (ΦΔ) were obtained for the mono-carborane-phenanthroline complexes (RuCB: 52% and IrCB: 25%). None of the complexes produce dark toxicity in SKBR-3 cells after incubation under photodynamic therapy (PDT) conditions. Remarkably, mono-carboranes RuCB and IrCB were the best internalised by the SKBR-3 cells, demonstrating the first examples of tris-bidentate transition metal-carborane complexes acting as triplet photosensitisers for PDT with a high photoactivity; RuCB or IrCB killed ∼50% of SKBR-3 cells at 10 μM after irradiation. Therefore, the high-boron content and the photoactive properties of these photosensitisers make them potential candidates as dual anti-cancer agents for PDT and Boron Neutron Capture Therapy (BNCT).
Collapse
Affiliation(s)
- Robert Conway-Kenny
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - Albert Ferrer-Ugalde
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193-Bellatera, Barcelona, Spain
| | - Oriol Careta
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, E-08193-Bellaterra, Barcelona, Spain.
| | - Xiaoneng Cui
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland. and State Key Laboratory of Fine Chemicals, Dalian University of Technology, E208 Western Campus, 2 Ling-Gong Road, Dalian 116012, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, E208 Western Campus, 2 Ling-Gong Road, Dalian 116012, P. R. China
| | - Carme Nogués
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, E-08193-Bellaterra, Barcelona, Spain.
| | - Rosario Núñez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193-Bellatera, Barcelona, Spain
| | | | - Sylvia M Draper
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland.
| |
Collapse
|
192
|
Treekoon J, Pewklang T, Chansaenpak K, Gorantla JN, Pengthaisong S, Lai RY, Ketudat-Cairns JR, Kamkaew A. Glucose conjugated aza-BODIPY for enhanced photodynamic cancer therapy. Org Biomol Chem 2021; 19:5867-5875. [PMID: 34124730 DOI: 10.1039/d1ob00400j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Compared with normal cells, cancer cells usually exhibit an increase in glucose uptake as part of the Warburg effect. To take advantage of this hallmark of cancer, glucose transporters could be a good candidate for cancer targeting. Herein, we report novel glycoconjugate aza-BODIPY dyes (AZB-Glc and AZB-Glc-I) that contain two glucose moieties conjugated to near-infrared dyes via the azide-alkyne cycloaddition reaction. As anticipated, a higher level of AZB-Glc uptake was observed in breast cancer cells that overexpressed glucose transporters (GLUTs), especially GLUT-1, including the triple-negative breast cancer cell line (MDA-MB-231) and human breast adenocarcinoma cell line (MCF-7), compared to that of normal cells (human fetal lung fibroblasts, HFL1). The cellular uptake of AZB-Glc was in a dose- and time-dependent manner and also depended on GLUT, as evidenced by the decreased uptake of AZB-Glc in the presence of d-glucose or a glucose metabolism suppressor, combretastatin. In addition, light triggered cell death was also investigated through photodynamic therapy (PDT), since near-infrared (NIR) light is known to penetrate deeper tissue than light of shorter wavelengths. AZB-Glc-I, the analog of AZB-Glc containing iodine for enhanced singlet oxygen production upon NIR irradiation, was used for all treatment assays. AZB-Glc-I showed significant NIR light-induced cytotoxicity in cancer cells (IC50 = 1.4-1.6 μM under 1 min irradiation), which was about 20-times lower than that in normal cells (IC50 = 32 μM) under the same conditions, with negligible dark toxicity (IC50 > 100 μM) in all cell lines. Moreover, the singlet oxygen was detected inside the cancer cells after exposure to light in the presence of AZB-Glc-I. Therefore, our glucose conjugated systems proved to efficiently target cancer cells for enhanced photodynamic cancer therapy.
Collapse
Affiliation(s)
- Jongjit Treekoon
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Thitima Pewklang
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Kantapat Chansaenpak
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Jaggaiah N Gorantla
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand. and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Salila Pengthaisong
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand. and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Rung-Yi Lai
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand. and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - James R Ketudat-Cairns
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand. and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
193
|
Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Light Technology for Efficient and Effective Photodynamic Therapy: A Critical Review. Cancers (Basel) 2021; 13:3484. [PMID: 34298707 PMCID: PMC8307713 DOI: 10.3390/cancers13143484] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Photodynamic therapy (PDT) is a cancer treatment with strong potential over well-established standard therapies in certain cases. Non-ionising radiation, localisation, possible repeated treatments, and stimulation of immunological response are some of the main beneficial features of PDT. Despite the great potential, its application remains challenging. Limited light penetration depth, non-ideal photosensitisers, complex dosimetry, and complicated implementations in the clinic are some limiting factors hindering the extended use of PDT. To surpass actual technological paradigms, radically new sources, light-based devices, advanced photosensitisers, measurement devices, and innovative application strategies are under extensive investigation. The main aim of this review is to highlight the advantages/pitfalls, technical challenges and opportunities of PDT, with a focus on technologies for light activation of photosensitisers, such as light sources, delivery devices, and systems. In this vein, a broad overview of the current status of superficial, interstitial, and deep PDT modalities-and a critical review of light sources and their effects on the PDT process-are presented. Insight into the technical advancements and remaining challenges of optical sources and light devices is provided from a physical and bioengineering perspective.
Collapse
Affiliation(s)
- José Francisco Algorri
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Mario Ochoa
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Pablo Roldán-Varona
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
| | | | - José Miguel López-Higuera
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
194
|
Buglak AA, Charisiadis A, Sheehan A, Kingsbury CJ, Senge MO, Filatov MA. Quantitative Structure-Property Relationship Modelling for the Prediction of Singlet Oxygen Generation by Heavy-Atom-Free BODIPY Photosensitizers*. Chemistry 2021; 27:9934-9947. [PMID: 33876842 PMCID: PMC8362084 DOI: 10.1002/chem.202100922] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Indexed: 12/30/2022]
Abstract
Heavy-atom-free sensitizers forming long-living triplet excited states via the spin-orbit charge transfer intersystem crossing (SOCT-ISC) process have recently attracted attention due to their potential to replace costly transition metal complexes in photonic applications. The efficiency of SOCT-ISC in BODIPY donor-acceptor dyads, so far the most thoroughly investigated class of such sensitizers, can be finely tuned by structural modification. However, predicting the triplet state yields and reactive oxygen species (ROS) generation quantum yields for such compounds in a particular solvent is still very challenging due to a lack of established quantitative structure-property relationship (QSPR) models. In this work, the available data on singlet oxygen generation quantum yields (ΦΔ ) for a dataset containing >70 heavy-atom-free BODIPY in three different solvents (toluene, acetonitrile, and tetrahydrofuran) were analyzed. In order to build reliable QSPR model, a series of new BODIPYs were synthesized that bear different electron donating aryl groups in the meso position, their optical and structural properties were studied along with the solvent dependence of singlet oxygen generation, which confirmed the formation of triplet states via the SOCT-ISC mechanism. For the combined dataset of BODIPY structures, a total of more than 5000 quantum-chemical descriptors was calculated including quantum-chemical descriptors using density functional theory (DFT), namely M06-2X functional. QSPR models predicting ΦΔ values were developed using multiple linear regression (MLR), which perform significantly better than other machine learning methods and show sufficient statistical parameters (R=0.88-0.91 and q2 =0.62-0.69) for all three solvents. A small root mean squared error of 8.2 % was obtained for ΦΔ values predicted using MLR model in toluene. As a result, we proved that QSPR and machine learning techniques can be useful for predicting ΦΔ values in different media and virtual screening of new heavy-atom-free BODIPYs with improved photosensitizing ability.
Collapse
Affiliation(s)
- Andrey A. Buglak
- Faculty of PhysicsSaint-Petersburg State UniversityUniversiteteskaya Emb. 7–9199034St. PetersburgRussia
| | - Asterios Charisiadis
- Chair of Organic Chemistry School of Chemistry Trinity Biomedical Sciences InstituteTrinity College Dublin The University of Dublin152-160Pearse StreetDublin 2Ireland
| | - Aimee Sheehan
- School of Chemical and Pharmaceutical SciencesTechnological University DublinCity Campus, Kevin StreetDublin 8Ireland
| | - Christopher J. Kingsbury
- Chair of Organic Chemistry School of Chemistry Trinity Biomedical Sciences InstituteTrinity College Dublin The University of Dublin152-160Pearse StreetDublin 2Ireland
| | - Mathias O. Senge
- Institute for Advanced Study (TUM-IAS)Technical University of MunichLichtenberg-Str. 2a85748GarchingGermany
| | - Mikhail A. Filatov
- School of Chemical and Pharmaceutical SciencesTechnological University DublinCity Campus, Kevin StreetDublin 8Ireland
| |
Collapse
|
195
|
Xie J, Wang Y, Choi W, Jangili P, Ge Y, Xu Y, Kang J, Liu L, Zhang B, Xie Z, He J, Xie N, Nie G, Zhang H, Kim JS. Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies. Chem Soc Rev 2021; 50:9152-9201. [PMID: 34223847 DOI: 10.1039/d0cs01370f] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT) has been extensively investigated for decades for tumor treatment because of its non-invasiveness, spatiotemporal selectivity, lower side-effects, and immune activation ability. It can be a promising treatment modality in several medical fields, including oncology, immunology, urology, dermatology, ophthalmology, cardiology, pneumology, and dentistry. Nevertheless, the clinical application of PDT is largely restricted by the drawbacks of traditional photosensitizers, limited tissue penetrability of light, inefficient induction of tumor cell death, tumor resistance to the therapy, and the severe pain induced by the therapy. Recently, various photosensitizer formulations and therapy strategies have been developed to overcome these barriers. Significantly, the introduction of nanomaterials in PDT, as carriers or photosensitizers, may overcome the drawbacks of traditional photosensitizers. Based on this, nanocomposites excited by various light sources are applied in the PDT of deep-seated tumors. Modulation of cell death pathways with co-delivered reagents promotes PDT induced tumor cell death. Relief of tumor resistance to PDT with combined therapy strategies further promotes tumor inhibition. Also, the optimization of photosensitizer formulations and therapy procedures reduces pain in PDT. Here, a systematic summary of recent advances in the fabrication of photosensitizers and the design of therapy strategies to overcome barriers in PDT is presented. Several aspects important for the clinical application of PDT in cancer treatment are also discussed.
Collapse
Affiliation(s)
- Jianlei Xie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Fradi T, Noureddine O, Taheur FB, Guergueb M, Nasri S, Amiri N, Almahri A, Roisnel T, Guerineau V, Issoui N, Nasri H. New DMAP meso-arylporphyrin Magnesium(II) complex. Spectroscopic, Cyclic voltammetry and X-ray molecular structure characterization. DFT, DOS and MEP calculations and Antioxidant and Antifungal activities. J Mol Struct 2021; 1236:130299. [DOI: 10.1016/j.molstruc.2021.130299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
197
|
Nkune NW, Kruger CA, Abrahamse H. Possible Enhancement of Photodynamic Therapy (PDT) Colorectal Cancer Treatment when Combined with Cannabidiol. Anticancer Agents Med Chem 2021; 21:137-148. [PMID: 32294046 DOI: 10.2174/1871520620666200415102321] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/23/2019] [Accepted: 02/04/2020] [Indexed: 11/22/2022]
Abstract
Colorectal Cancer (CRC) has a high mortality rate and is one of the most difficult diseases to manage due to tumour resistance and metastasis. The treatment of choice for CRC is reliant on the phase and time of diagnosis. Despite several conventional treatments available to treat CRC (surgical excision, chemo-, radiationand immune-therapy), resistance is a major challenge, especially if it has metastasized. Additionally, these treatments often cause unwanted adverse side effects and so it remains imperative to investigate alternative combination therapies. Photodynamic Therapy (PDT) is a promising treatment modality for the primary treatment of CRC, since it is non-invasive, has few side effects and selectively damages only cancerous tissues, leaving adjacent healthy structures intact. PDT involves three fundamentals: a Photosensitizer (PS) drug localized in tumour tissues, oxygen, and light. Upon PS excitation using a specific wavelength of light, an energy transfer cascade occurs, that ultimately yields cytotoxic species, which in turn induces cell death. Cannabidiol (CBD) is a cannabinoid compound derived from the Cannabis sativa plant, which has shown to exert anticancer effects on CRC through different pathways, inducing apoptosis and so inhibiting tumour metastasis and secondary spread. This review paper highlights current conventional treatment modalities for CRC and their limitations, as well as discusses the necessitation for further investigation into unconventional active nanoparticle targeting PDT treatments for enhanced primary CRC treatment. This can be administered in combination with CBD, to prevent CRC secondary spread and enhance the synergistic efficacy of CRC treatment outcomes, with less side effects.
Collapse
Affiliation(s)
- Nkune W Nkune
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Cherie A Kruger
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
198
|
Vitamin D and Vitamin D Analogs as Adjuncts to Field Therapy Treatments for Actinic Keratoses: Current Research and Future Approaches. J Skin Cancer 2021; 2021:9920558. [PMID: 34306760 PMCID: PMC8249223 DOI: 10.1155/2021/9920558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022] Open
Abstract
Actinic keratoses (AK), also known as solar keratoses, are precancerous hyperkeratotic papules caused by long-term exposure to ultraviolet radiation. Management of AK prior to progression to cutaneous malignancy represents an important window of intervention. This is important on a population level, given the high incidence, morbidity, financial costs, and the low but measurable risk of mortality from cutaneous neoplasia. Treatments for AK have been refined for many years with significant progress over the past decade. Those recent advancements lead to questions about current treatment paradigms and the role of harnessing the immune system in field therapies. Recent studies suggest a key interplay between vitamin D and cancer immunity; in particular, the systemic and/or topical vitamin D analogs can augment field therapies used for severe actinic damage. In this review, we will examine the literature supporting the use of vitamin D-directed therapies to improve field therapy approaches. An enhanced understanding of these recent concepts with a focus on mechanisms is important in the optimized management of AK. These mechanisms will be critical in guiding whether selected populations, including those with immunosuppression, heritable cancer syndromes, and other risk factors for skin cancer, can benefit from these new concepts with vitamin D analogs and whether the approaches will be as effective in these populations as in immunocompetent patients.
Collapse
|
199
|
Furger C. Live Cell Assays for the Assessment of Antioxidant Activities of Plant Extracts. Antioxidants (Basel) 2021; 10:antiox10060944. [PMID: 34208019 PMCID: PMC8230623 DOI: 10.3390/antiox10060944] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022] Open
Abstract
Plant extracts and pharmacopoeias represent an exceptional breeding ground for the discovery of new antioxidants. Until recently, the antioxidant activity was only measured by chemical hydrogen atom transfer (HAT) and single-electron transfer (SET) cell-free assays that do not inform about the actual effect of antioxidants in living systems. By providing information about the mode of action of antioxidants at the subcellular level, recently developed live cell assays are now changing the game. The idea of this review is to present the different cell-based approaches allowing a quantitative measurement of antioxidant effects of plant extracts. Up to date, only four different approaches have reached a certain degree of standardization: (1) the catalase-like assay using H2O2 as a stressor, (2) the cell antioxidant assay (CAA) using AAPH as a stressor and DCFH-DA as a readout, (3) the AOP1 assay which uses photoinduction to monitor and control cell ROS production, and (4) the Nrf2/ARE gene reporter system. The molecular aspects of these assays are presented in detail along with their features, drawbacks, and benefits. The Nrf2/ARE gene reporter system dedicated to indirect antioxidant effect measurement currently represents the most standardized approach with high-throughput applications. AOP1, the first technology linking a fine-tuning of cell ROS production with a quantitative signal, appears to be the most promising tool for the assessment of direct cellular ROS-scavenging effects at an industrial scale.
Collapse
Affiliation(s)
- Christophe Furger
- Anti Oxidant Power AOP/MH2F-LAAS/CNRS, 7 Avenue du Colonel Roche, BP 54200, 31031 Toulouse, France
| |
Collapse
|
200
|
Rodrigues CV, Johnson KR, Lombardi VC, Rodrigues MO, Sobrinho JA, de Bettencourt-Dias A. Photocytotoxicity of Thiophene- and Bithiophene-Dipicolinato Luminescent Lanthanide Complexes. J Med Chem 2021; 64:7724-7734. [PMID: 34018753 DOI: 10.1021/acs.jmedchem.0c01805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New thiophene-dipicolinato-based compounds, K2nTdpa (n = 1, 2), were isolated. Their anions are sensitizers of lanthanide ion (LnIII) luminescence and singlet oxygen generation (1O2). Emission in the visible and near-infrared regions was observed for the LnIII complexes with efficiencies (ϕLn) ϕEu = 33% and ϕYb = 0.31% for 1Tdpa2- and ϕYb = 0.07% for 2Tdpa2-. The latter does not sensitize EuIII emission. Fluorescence imaging of HeLa live cells incubated with K3[Eu(1Tdpa)3] indicates that the complex permeates the cell membrane and localizes in the mitochondria. All complexes generate 1O2 in solution with efficiencies (ϕO12) as high as 13 and 23% for the GdIII complexes of 1Tdpa2- and 2Tdpa2-, respectively. [Ln(nTdpa)3]3- (n = 1, 2) are phototoxic to HeLa cells when irradiated with UV light with IC50 values as low as 4.2 μM for [Gd(2Tdpa)3]3- and 91.8 μM for [Eu(1Tdpa)3]3-. Flow cytometric analyses indicate both apoptotic and necrotic cell death pathways.
Collapse
Affiliation(s)
- Carime V Rodrigues
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89557, United States.,Laboratório de Inorgânica e Materiais, Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasilia 70910-900 DF, Brazil
| | - Katherine R Johnson
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Vincent C Lombardi
- Department of Microbiology and Immunology, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Marcelo O Rodrigues
- Laboratório de Inorgânica e Materiais, Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasilia 70910-900 DF, Brazil
| | - Josiane A Sobrinho
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89557, United States
| | | |
Collapse
|