151
|
Calderon MR, Verway M, An BS, DiFeo A, Bismar TA, Ann DK, Martignetti JA, Shalom-Barak T, White JH. Ligand-dependent corepressor (LCoR) recruitment by Kruppel-like factor 6 (KLF6) regulates expression of the cyclin-dependent kinase inhibitor CDKN1A gene. J Biol Chem 2012; 287:8662-74. [PMID: 22277651 DOI: 10.1074/jbc.m111.311605] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The widely expressed transcriptional coregulator, ligand-dependent corepressor (LCoR), initially characterized as a regulator of nuclear receptor-mediated transactivation, functions through recruitment of C-terminal binding proteins (CtBPs) and histone deacetylases (HDACs) to its N-terminal and central domains, respectively. We performed a yeast two-hybrid screen for novel cofactors, and identified an interaction between the C-terminal domain of LCoR and the transcription factor Krüppel-like factor 6 (KLF6), a putative tumor suppressor in prostate cancer. Subsequent experiments revealed LCoR regulation of several KLF6 target genes notably p21(WAF1/CIP1) (CDKN1A) and to a lesser extent E-cadherin (CDH1), indicating that LCoR regulates gene transcription through multiple classes of transcription factors. In multiple cancer cells, LCoR and KLF6 bind together on the promoters of the genes encoding CDKN1A and CDH1. LCoR contributes to KLF6-mediated transcriptional repression in a promoter- and cell type-dependent manner. Its inhibition of reporter constructs driven by the CDKN1A and CDH1 promoters in PC-3 prostate carcinoma cells is sensitive to treatment with the HDAC inhibitor trichostatin A. Additionally, the LCoR cofactor CtBP1 bound the same promoters and augmented the LCoR-dependent repression in PC-3 cells. Consistent with their inferred roles in transcriptional repression, siRNA-mediated knockdown of KLF6, LCoR, or CtBP1 in PC-3 cells induced expression of CDKN1A and CDH1 and additional KLF6 target genes. We propose a novel model of LCoR function in which promoter-bound KLF6 inhibits transcription of the CDKN1A gene and other genes as well by tethering a transcriptional corepressor complex containing LCoR, with specific contributions by CtBP1 and HDACs.
Collapse
Affiliation(s)
- Mario R Calderon
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
A small interfering RNA targeting the KLF6 splice variant, KLF6-SV1, as gene therapy for gastric cancer. Gastric Cancer 2011; 14:339-52. [PMID: 21538018 DOI: 10.1007/s10120-011-0049-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 03/28/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND Accumulating evidence suggests that the tumor suppressor gene Kruppel-like factor 6 (KLF6) and its dominant-negative splice form KLF6-SV1 play important roles in both the development and progression of cancer. However, the role of KLF6-SV1 in gastric cancer remains largely unknown. METHODS KLF6-SV1 expression was detected in various human gastric cancer cell lines and gastric cancer patient samples by reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting. Small interfering RNA (siRNA) was used to inhibit KLF6-SV1 expression in BGC-823 and SGC-7901 cell lines. The effects of downregulation of KLF6-SV1 by siRNA on cell proliferation, migration, invasion, and tumor growth were examined in vitro and in vivo. RESULTS Overexpression of KLF6-SV1 was detected in tumor samples from gastric cancer patients, and in various differentiated gastric cancer cell lines. In vitro downregulation of KLF6-SV1 by siRNA inhibited BGC-823 and SGC-7901 cell proliferation, anchorage-independent growth, migration, and invasion through the altered expression of Ki-67, vascular endothelial growth factor (VEGF), E-cadherin, and matrix metalloproteinase (MMP)-9. Also, KLF6-SV1 silencing promoted caspase-dependent apoptosis of BGC-823 and SGC-7901 cells via the regulation of phosphatidylinositol 3-OH kinase (PI3K)/Akt activity and Bcl-2-related protein expression. In vivo animal studies showed that KLF6-SV1 siRNA significantly inhibited the tumorigenicity of BGC-823 and SGC-7901 cells. Gene therapy with polyethylenimine/si-SV1 intratumoral injection also resulted in the suppression of tumor growth and prolonged animal survival in an established xenograft tumor model. CONCLUSION These data demonstrate that KLF6-SV1 is an important regulator of the growth, migration, invasion, and survival of gastric cancer cells, and downregulation of KLF6-SV1 by siRNA may offer a new potential gene therapy approach for gastric cancer.
Collapse
|
153
|
Fleischer M, Kessler R, Klammer A, Warnke JP, Eschrich K. LOH on 10p14-p15 targets the PFKFB3 gene locus in human glioblastomas. Genes Chromosomes Cancer 2011; 50:1010-20. [PMID: 21987444 DOI: 10.1002/gcc.20914] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 07/06/2011] [Indexed: 11/11/2022] Open
Abstract
Loss of heterozygosity (LOH) on chromosome arm 10p is very common in high-grade gliomas and is, among others, concentrated on the region 10p14-p15. Presence of multiple tumor suppressor genes is assumed, but until now only Krüpple-like transcription factor 6 (KLF6) has been suggested as possible target of LOH in this region. On the basis of the fact that the splice variant 4 (UBI2K4) of the PFKFB3 gene, located in 10p15.1, inhibits the anchorage-independent growth of U87 glioblastoma cells, we hypothesized that PFKFB3 is a target gene of LOH in glioblastomas. In this study, we analyzed 40 glioblastomas for LOH in 10p15, including the PFKFB3 and KLF6 loci, by PCR-based microsatellite analysis. We detected LOH of PFKFB3 in 55% (22/40) of glioblastomas. LOH of KLF6, mapped 2.5 cM telomerically to the PFKFB3 locus, was not stringently correlated to the PFKFB3 LOH. The allelic deletion of PFKFB3 resulted in a decrease of PFKFB3 mRNA level accompanied by a lower PFKFB3 protein level. The expression of growth-inhibiting splice variant UBI2K4 was effectively reduced in glioblastomas with PFKFB3 LOH and a positive correlation with overall PFKFFB3 expression was observed. The PFKFB3 LOH as well as the resulting low UBI2K4 expression level was associated with a poor prognosis of glioblastoma patients. We conclude that LOH on 10p14-p15 in glioblastomas targets PFKFB3 and in particular splice variant UBI2K4, a putative tumor suppressor protein in glioblastomas.
Collapse
Affiliation(s)
- Michael Fleischer
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | | | | | | | | |
Collapse
|
154
|
Mgbemena V, Segovia J, Chang T, Bose S. Krüppel-like factor 6 regulates transforming growth factor-β gene expression during human respiratory syncytial virus infection. Virol J 2011; 8:409. [PMID: 21849067 PMCID: PMC3170303 DOI: 10.1186/1743-422x-8-409] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/17/2011] [Indexed: 11/16/2022] Open
Abstract
Background Human respiratory syncytial virus (RSV) infection is associated with airway remodeling and subsequent asthma development. Transforming growth factor-beta (TGF) plays a crucial role in asthma development. The mechanism regulating TGF gene expression during RSV infection is not known. Kruppel-like factor family of transcription factors are critical regulators of cellular/tissue homeostasis. Previous studies have shown that Kruppel-like factor 6 (KLF6) could function as a trans-activator of TGF gene; however, whether KLF members play a role during infection is unknown. In the current study we have evaluated the role of KLF6 during TGF expression in RSV infected cells. Findings Silencing KLF6 expression by shRNA led to drastic inhibition in TGF production during RSV infection, as assessed by ELISA analysis of medium supernatants. RT-PCR analysis revealed loss of TGF expression in KLF6 silenced cells. Chromatin-immunoprecipitation assay conducted with RSV infected cells showed binding of KLF6 protein to the TGF promoter during RSV infection. We further observed reduced RSV infectivity in KLF6 silenced cells and in cells incubated with TGF neutralizing antibody. In contrast, enhanced RSV infection was noted in cells incubated with purified TGF. Conclusion We have identified KLF6 as a key transcription factor required for trans-activation of TGF gene during RSV infection. Moreover, TGF production is required for efficient RSV infection and thus, KLF6 is also required for efficient RSV infection by virtue of KLF6 dependent TGF production during infection.
Collapse
Affiliation(s)
- Victoria Mgbemena
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, USA
| | | | | | | |
Collapse
|
155
|
Saunders IW, Ross J, Macrae F, Young GP, Blanco I, Brohede J, Brown G, Brookes D, Lockett T, Molloy PL, Moreno V, Capella G, Hannan GN. Evidence of linkage to chromosomes 10p15.3-p15.1, 14q24.3-q31.1 and 9q33.3-q34.3 in non-syndromic colorectal cancer families. Eur J Hum Genet 2011; 20:91-6. [PMID: 21829229 DOI: 10.1038/ejhg.2011.149] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Up to 25% of colorectal cancer (CRC) may be caused by inherited genetic variants that have yet to be identified. Previous genome-wide linkage studies (GWLSs) have identified a new loci postulated to contain novel CRC risk genes amongst affected families carrying no identifiable mutations in any of the known susceptibility genes for familial CRC syndromes. To undertake a new GWLS, we recruited members from 54 non-syndromic families from Australia and Spain where at least two first-degree relatives were affected by CRC. We used single-nucleotide polymorphism arrays to genotype 98 concordant affected relative pairs that were informative for linkage analyses. We tested for genome-wide significance (GWS) for linkage to CRC using a quantile statistic method, and we found that GWS was achieved at the 5% level. Independently, using the PSEUDO gene-dropping algorithm, we also found that GWS for linkage to CRC was achieved (P=0.02). Merlin non-parametric linkage analysis revealed significant linkage to CRC for chromosomal region 10p15.3-p15.1 and suggestive linkage to CRC for regions on 14q and 9q. The 10p15.3-p15.1 has not been reported to be linked to hereditary CRC in previous linkage studies, but this region does harbour the Kruppel-like factor 6 (KLF6) gene that is known to be altered in common CRC. Further studies aimed at localising the responsible genes, and characterising their function will give insight into the factors responsible for susceptibility in such families, and perhaps shed further light on the mechanisms of CRC development.
Collapse
Affiliation(s)
- Ian W Saunders
- CSIRO Preventative Health Flagship, North Ryde, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Tarocchi M, Hannivoort R, Hoshida Y, Lee UE, Vetter D, Narla G, Villanueva A, Oren M, Llovet JM, Friedman SL. Carcinogen-induced hepatic tumors in KLF6+/- mice recapitulate aggressive human hepatocellular carcinoma associated with p53 pathway deregulation. Hepatology 2011; 54:522-31. [PMID: 21563203 PMCID: PMC3144998 DOI: 10.1002/hep.24413] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 04/25/2011] [Indexed: 12/11/2022]
Abstract
UNLABELLED Inactivation of KLF6 is common in hepatocellular carcinoma (HCC) associated with hepatitis C virus (HCV) infection, thereby abrogating its normal antiproliferative activity in liver cells. The aim of the study was to evaluate the impact of KLF6 depletion on human HCC and experimental hepatocarcinogenesis in vivo. In patients with surgically resected HCC, reduced tumor expression of KLF6 was associated with decreased survival. Consistent with its role as a tumor suppressor, KLF6+/- mice developed significantly more tumors in response to the chemical carcinogen diethyl nitrosamine (DEN) than wild-type animals. Gene expression signatures in both surrounding tissue and tumors of KLF6+/- mice closely recapitulated those associated with aggressive human HCCs. Expression microarray profiling also revealed an increase in Mdm2 mRNA in tumors from KLF6+/- compared with KLF6+/+ mice, which was validated by way of quantitative real-time polymerase chain reaction and western blot analysis in both human HCC and DEN-induced murine tumors. Moreover, chromatin immunoprecipitation and cotransfection assays established the P2 intronic promoter of Mdm2 as a bona fide transcriptional target repressed by KLF6. Whereas KLF6 overexpression in HCC cell lines and primary hepatocytes led to reduced MDM2 levels and increased p53 protein and transcriptional activity, reduction in KLF6 by small interfering RNA led to increased MDM2 and reduced p53. CONCLUSION Our findings indicate that KLF6 deficiency contributes significantly to the carcinogenic milieu in human and murine HCC and uncover a novel tumor suppressor activity of KLF6 in HCC by linking its transcriptional repression of Mdm2 to stabilizing p53.
Collapse
Affiliation(s)
- Mirko Tarocchi
- Department of Medicine/Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
- Department of Clinical Pathophysiology/Gastroenterology Unit, University of Florence, Florence, Italy
| | - Rebekka Hannivoort
- Department of Medicine/Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
- Department of Gastroenterology and Hepatology, University of Groningen, Groningen, the Netherlands
| | - Yujin Hoshida
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge MA
| | - Ursula E. Lee
- Department of Medicine/Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
| | - Diana Vetter
- Department of Medicine/Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
| | - Goutham Narla
- Department of Medicine/Division of Hematology/Oncology, Mount Sinai School of Medicine, New York, NY
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY
| | - Augusto Villanueva
- HCC Translational Research Laboratory, Barcelona-Clinic Liver Cancer Group, Liver Unit. Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS); Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clinic, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
| | - Josep M. Llovet
- Department of Medicine/Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
- HCC Translational Research Laboratory, Barcelona-Clinic Liver Cancer Group, Liver Unit. Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS); Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clinic, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats
| | - Scott L. Friedman
- Department of Medicine/Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
| |
Collapse
|
157
|
Bureau C, Hanoun N, Torrisani J, Vinel JP, Buscail L, Cordelier P. Expression and Function of Kruppel Like-Factors (KLF) in Carcinogenesis. Curr Genomics 2011; 10:353-60. [PMID: 20119532 PMCID: PMC2729999 DOI: 10.2174/138920209788921010] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 06/15/2009] [Accepted: 06/18/2009] [Indexed: 11/22/2022] Open
Abstract
Krüppel-like factor (KLF) family members share a three C2H2 zinc finger DNA binding domain, and are involved in cell proliferation and differentiation control in normal as in pathological situations. Studies over the past several years support a significant role for this family of transcription factors in carcinogenesis. KLFs can both activate and repress genes that participate in cell-cycle regulation. Among them, many up-regulated genes are inhibitors of proliferation, whereas genes that promote cell proliferation are repressed. However, several studies do present KLFs as positive regulator of cell proliferation. KLFs can be deregulated in multiple cancers either by loss of heterozygosity (LOH), somatic mutation or transcriptional silencing by promoter hypermethylation. Accordingly, KLF expression was shown to mediate growth inhibition when ectopically expressed in multiple cancer-derived cell lines through the inhibition of a number of key oncogenic signaling pathways, and to revert the tumorogenic phenotype in vivo. Taken together, these observations suggest that KLFs act as tumor suppressor. However, in some occasion, KLFs could act as tumor promoters, depending on “cellular context”. Thus, this review will discuss the roles and the functions of KLF family members in carcinogenesis, with a special focus on cancers from epithelial origin.
Collapse
Affiliation(s)
- Christophe Bureau
- Institut National de la Santé et de la Recherche Médicale Unité 858-I2MR, Institut de Médecine Moléculaire de Rangueil, Département Cancers Epithéliaux, Angiogénèse et Signalisation, 31432 Toulouse Cedex 4 France
| | | | | | | | | | | |
Collapse
|
158
|
A Novel Mechanism of PPARgamma Regulation of TGFbeta1: Implication in Cancer Biology. PPAR Res 2011; 2008:762398. [PMID: 18615188 PMCID: PMC2443397 DOI: 10.1155/2008/762398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 04/28/2008] [Accepted: 06/09/2008] [Indexed: 02/08/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) and retinoic acid X-receptor (RXR) heterodimer, which regulates cell growth and differentiation, represses the TGFβ1 gene that encodes for the protein involved in cancer biology. This review will introduce the novel mechanism associated with the inhibition of the TGFβ1 gene by PPARγ activation, which regulates the dephosphorylation of Zf9 transcription factor. Pharmacological manipulation of TGFβ1 by PPARγ activators can be applied for treating TGFβ1-induced pathophysiologic disorders such as cancer metastasis and fibrosis. In this article, we will discuss the opposing effects of TGFβ on tumor growth and metastasis, and address the signaling pathways regulated by PPARγ for tumor progression and suppression.
Collapse
|
159
|
Zhang C, Elkahloun AG, Liao H, Delaney S, Saber B, Morrow B, Gills JJ, Hollander MC, Prendergast GC, Dennis PA. Expression signatures of the lipid-based Akt inhibitors phosphatidylinositol ether lipid analogues in NSCLC cells. Mol Cancer Ther 2011; 10:1137-48. [PMID: 21551261 PMCID: PMC3132820 DOI: 10.1158/1535-7163.mct-10-1028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of the serine/threonine kinase Akt contributes to the formation, maintenance, and therapeutic resistance of cancer, which is driving development of compounds that inhibit Akt. Phosphatidylinositol ether lipid analogues (PIA) are analogues of the products of phosphoinositide-3-kinase (PI3K) that inhibit Akt activation, translocation, and the proliferation of a broad spectrum of cancer cell types. To gain insight into the mechanism of PIAs, time-dependent transcriptional profiling of five active PIAs and the PI3K inhibitor LY294002 (LY) was conducted in non-small cell lung carcinoma cells using high-density oligonucleotide arrays. Gene ontology analysis revealed that genes involved in apoptosis, wounding response, and angiogenesis were upregulated by PIAs, whereas genes involved in DNA replication, repair, and mitosis were suppressed. Genes that exhibited early differential expression were partitioned into three groups; those induced by PIAs only (DUSP1, KLF6, CENTD2, BHLHB2, and PREX1), those commonly induced by PIAs and LY (TRIB1, KLF2, RHOB, and CDKN1A), and those commonly suppressed by PIAs and LY (IGFBP3, PCNA, PRIM1, MCM3, and HSPA1B). Increased expression of the tumor suppressors RHOB (RhoB), KLF6 (COPEB), and CDKN1A (p21Cip1/Waf1) was validated as an Akt-independent effect that contributed to PIA-induced cytotoxicity. Despite some overlap with LY, active PIAs have a distinct expression signature that contributes to their enhanced cytotoxicity.
Collapse
Affiliation(s)
- Chunyu Zhang
- Medical Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD 20892
| | | | - Hongling Liao
- Sequencing Facility, SAIC-Frederick, NCI at Frederick, Gaithersburg, MD 20877
| | - Shannon Delaney
- Medical Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD 20892
| | - Barbara Saber
- Medical Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD 20892
| | - Betsy Morrow
- Medical Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD 20892
| | - Joell J. Gills
- Medical Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD 20892
| | | | | | - Phillip A. Dennis
- Medical Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD 20892
| |
Collapse
|
160
|
Masica DL, Karchin R. Correlation of somatic mutation and expression identifies genes important in human glioblastoma progression and survival. Cancer Res 2011; 71:4550-61. [PMID: 21555372 PMCID: PMC3129415 DOI: 10.1158/0008-5472.can-11-0180] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cooperative dysregulation of gene sequence and expression may contribute to cancer formation and progression. The Cancer Genome Atlas (TCGA) Network recently catalogued gene sequence and expression data for a collection of glioblastoma multiforme (GBM) tumors. We developed an automated, model-free method to rapidly and exhaustively examine the correlation among somatic mutation and gene expression and interrogated 149 GBM tumor samples from the TCGA. The method identified 41 genes whose mutation status is highly correlated with drastic changes in the expression (z-score ± 2.0), across tumor samples, of other genes. Some of the 41 genes have been previously implicated in GBM pathogenesis (e.g., NF1, TP53, RB1, and IDH1) and others, while implicated in cancer, had not previously been highlighted in studies using TCGA data (e.g., SYNE1, KLF6, FGFR4, and EPHB4). The method also predicted that known oncogenes and tumor suppressors participate in GBM via drastic over- and underexpression, respectively. In addition, the method identified a known synthetic lethal interaction between TP53 and PLK1, other potential synthetic lethal interactions with TP53, and correlations between IDH1 mutation status and the overexpression of known GBM survival genes.
Collapse
Affiliation(s)
- David L. Masica
- Department of Biomedical Engineering and Institute for Computational Medicine, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rachel Karchin
- Department of Biomedical Engineering and Institute for Computational Medicine, The Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
161
|
Andreoli V, Gehrau RC, Bocco JL. Biology of Krüppel-like factor 6 transcriptional regulator in cell life and death. IUBMB Life 2011; 62:896-905. [PMID: 21154818 DOI: 10.1002/iub.396] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An essential role for the Krüppel-like transcription factor family has been determined in the regulation of remarkable processes including cell proliferation, differentiation, signal transduction, oncogenesis, and cell death. A member of this group, Krüppel-like factor 6 (KLF6), identified on the basis of its ability to regulate a group of genes belonging to the carcinoembryonic antigen gene family, has been involved in human carcinogenesis. Early studies proposed a tumor suppressor function for KLF6 because of its ability to reduce cell proliferation through several biochemical mechanisms including regulation of cell cycle components, oncogene products, and apoptosis. Mutations within the klf6 gene, decreased expression and/or loss-of-heterozygosity were associated with the development of different human malignancies, and, hence, further supporting the tumor suppressor function of KLF6. This view has been challenged by other studies in distinct types of human cancers describing infrequent genetic alterations of klf6 gene or even enhanced expression in some tumors. The scenario about KLF6 function became still more complex as the description of oncogenic KLF6 splice variant 1 (SV1) with dominant negative activity against the wild type KLF6 (wtKLF6) protein. Additionally, increased evidence is suggesting that KLF6 is a bonafide target of several signaling cascades, which ultimate regulatory effect on this protein could drive decisions of cell life and death, facing the dilemma about how wtKLF6 could be involved in both processes. These apparently conflicting situations, emerged by apparently opposite effects mediated by wtKLF6, may be related, at least in part, to the biological cross-talk with the c-Jun oncoprotein. Depending on the stimulus received by the cell, wtKLF6 interaction with c-Jun determines different cell outcomes such as proliferation control or apoptosis. Thus, KLF6 responsiveness represents a kind of cell warning signal on receiving different stimuli, including oncogenic activation and microbial infections, orchestrating the implementation of proliferation and apoptotic programs.
Collapse
Affiliation(s)
- Verónica Andreoli
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | |
Collapse
|
162
|
Chen H, Chen L, Zhang QF. The Krüppel-like factor 6 genotype is associated with gastric cancer in a Chinese population. J Int Med Res 2011; 38:1801-7. [PMID: 21309496 DOI: 10.1177/147323001003800527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Association of the IVS1 -27G/A polymorphism of Krüppel-like factor 6 (KLF6) with gastric cancer was examined in a Chinese population comprising 300 gastric cancer patients and 300 healthy controls. Single-nucleotide polymorphism analysis was performed by amplifying intron 1 of KLF6 and sequencing the products. The KLF6 genotype IVS1 -27AA was significantly less frequent in gastric cancer patients than in controls and significantly less frequent in patients with advanced (stage III/IV) gastric cancer than in those with early (stage I/II) cancer. Stratification by location, Lauren's classification and histological differentiation revealed no significant differences in genotype distribution. Thus, in this Chinese population the KLF6 IVS1 -27AA genotype was associated with a decreased risk of gastric cancer and with cancer stage. Further study is required to clarify the mechanisms involved and, potentially, to facilitate the design of effective clinical trials.
Collapse
Affiliation(s)
- H Chen
- Department of Urology, Tumour Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | | | | |
Collapse
|
163
|
Wan XJ, Song RF, Chen YL, Xu K, Xu F. Significance of KLF6 and WWOX protein expression in colorectal carcinoma. Shijie Huaren Xiaohua Zazhi 2011; 19:602-607. [DOI: 10.11569/wcjd.v19.i6.602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of Kruppel-like factor 6 (KLF6) and WW domain-containing oxidoreductase (WWOX) proteins in colorectal carcinoma and to analyze their clinicopathological significance.
METHODS: The expression of KLF6 and WWOX proteins was detected by immunohistochemistry in 40 colorectal carcinoma specimens and 40 normal colorectal mucosa specimens.
RESULTS: The positive rates of KLF6 and WWOX protein expression differed significantly between colorectal carcinoma and normal colorectal mucosa (KLF6: 45.0% vs 82.5%, WWOX: 37.5% vs 90.0%, both P < 0.05). The expression of KLF6 and WWOX proteins was found to be associated with tumor differentiation, lymph node metastasis, and tumor invasion in colorectal carcinoma (all P < 0.05). A positive correlation was noted between the expression of KLF6 and that of WWOX in colorectal carcinoma (r = 0. 320, P < 0.05).
CONCLUSION: Reduced expression of KLF6 and WWOX proteins may be related with the development, progression, and prognosis of colorectal carcinoma. Combined detection of KLF6 and WWOX protein expression is helpful for diagnosis and evaluation of the prognosis of colorectal carcinoma.
Collapse
|
164
|
Chen CH, Huang PH, Chu PC, Chen MC, Chou CC, Wang D, Kulp SK, Teng CM, Wang Q, Chen CS. Energy restriction-mimetic agents induce apoptosis in prostate cancer cells in part through epigenetic activation of KLF6 tumor suppressor gene expression. J Biol Chem 2011; 286:9968-76. [PMID: 21282102 DOI: 10.1074/jbc.m110.203240] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although energy restriction has been recognized as an important target for cancer prevention, the mechanism by which energy restriction-mimetic agents (ERMAs) mediate apoptosis remains unclear. By using a novel thiazolidinedione-derived ERMA, CG-12 (Wei, S., Kulp, S. K., and Chen, C. S. (2010) J. Biol. Chem. 285, 9780-9791), vis-à-vis 2-deoxyglucose and glucose deprivation, we obtain evidence that epigenetic activation of the tumor suppressor gene Kruppel-like factor 6 (KLF6) plays a role in ERMA-induced apoptosis in LNCaP prostate cancer cells. KLF6 regulates the expression of many proapoptotic genes, and shRNA-mediated KLF6 knockdown abrogated the ability of ERMAs to induce apoptosis. Chromatin immunoprecipitation analysis indicates that this KLF6 transcriptional activation was associated with increased histone H3 acetylation and histone H3 lysine 4 trimethylation occupancy at the promoter region. Several lines of evidence demonstrate that the enhancing effect of ERMAs on these active histone marks was mediated through transcriptional repression of histone deacetylases and H3 lysine 4 demethylases by down-regulating Sp1 expression. First, putative Sp1-binding elements are present in the promoters of the affected histone-modifying enzymes, and luciferase reporter assays indicate that site-directed mutagenesis of these Sp1 binding sites significantly diminished the promoter activities. Second, shRNA-mediated knockdown of Sp1 mimicked the repressive effect of energy restriction on these histone-modifying enzymes. Third, ectopic Sp1 expression protected cells from the repressive effect of CG-12 on these histone-modifying enzymes, thereby abolishing the activation of KLF6 expression. Together, these findings underscore the intricate relationship between energy restriction and epigenetic regulation of tumor suppressor gene expression, which has therapeutic relevance to foster novel strategies for prostate cancer therapy.
Collapse
Affiliation(s)
- Chun-Han Chen
- Division of Medicinal Chemistry, College of Pharmacy, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Ying M, Sang Y, Li Y, Guerrero-Cazares H, Quinones-Hinojosa A, Vescovi AL, Eberhart CG, Xia S, Laterra J. Krüppel-like family of transcription factor 9, a differentiation-associated transcription factor, suppresses Notch1 signaling and inhibits glioblastoma-initiating stem cells. Stem Cells 2011; 29:20-31. [PMID: 21280156 PMCID: PMC3516843 DOI: 10.1002/stem.561] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tumor-initiating stem cells (alternatively called cancer stem cells, CSCs) are a subpopulation of tumor cells that plays unique roles in tumor propagation, therapeutic resistance, and tumor recurrence. It is becoming increasingly important to understand the molecular signaling that regulates the self-renewal and differentiation of CSCs. Transcription factors are critical for the regulation of normal and neopolastic stem cells. Here, we examined the expression and function of the Krüppel-like family of transcription factors (KLFs) in human glioblastoma (GBM)-derived neurosphere lines and low-passage primary GBM-derived neurospheres that are enriched for tumor-initiating stem cells. We identify KLF9 as a relatively unique differentiation-induced transcription factor in GBM-derived neurospheres. KLF9 is shown to induce neurosphere cell differentiation, inhibit neurosphere formation, and inhibit neurosphere-derived xenograft growth in vivo. We also show that KLF9 regulates GBM neurosphere cells by binding to the Notch1 promoter and suppressing Notch1 expression and downstream signaling. Our results show for the first time that KLF9 has differentiating and tumor-suppressing functions in tumor-initiating stem cells.
Collapse
Affiliation(s)
- Mingyao Ying
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21043, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21043, USA
| | - Yingying Sang
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21043, USA
| | - Yunqing Li
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21043, USA
| | - Hugo Guerrero-Cazares
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, 21043, USA
| | | | - Angelo L. Vescovi
- Department of Biotechnology and Biosciences, University of Milan Bicocca, Milan, Italy
| | - Charles G. Eberhart
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21043, USA
| | - Shuli Xia
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21043, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21043, USA
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21043, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21043, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21043, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, 21043, USA
| |
Collapse
|
166
|
Akavia UD, Litvin O, Kim J, Sanchez-Garcia F, Kotliar D, Causton HC, Pochanard P, Mozes E, Garraway LA, Pe'er D. An integrated approach to uncover drivers of cancer. Cell 2010; 143:1005-17. [PMID: 21129771 PMCID: PMC3013278 DOI: 10.1016/j.cell.2010.11.013] [Citation(s) in RCA: 364] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 08/31/2010] [Accepted: 10/22/2010] [Indexed: 11/23/2022]
Abstract
Systematic characterization of cancer genomes has revealed a staggering number of diverse aberrations that differ among individuals, such that the functional importance and physiological impact of most tumor genetic alterations remain poorly defined. We developed a computational framework that integrates chromosomal copy number and gene expression data for detecting aberrations that promote cancer progression. We demonstrate the utility of this framework using a melanoma data set. Our analysis correctly identified known drivers of melanoma and predicted multiple tumor dependencies. Two dependencies, TBC1D16 and RAB27A, confirmed empirically, suggest that abnormal regulation of protein trafficking contributes to proliferation in melanoma. Together, these results demonstrate the ability of integrative Bayesian approaches to identify candidate drivers with biological, and possibly therapeutic, importance in cancer.
Collapse
Affiliation(s)
- Uri David Akavia
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
- Center for Computational Biology and Bioinformatics, Columbia University, 1130 St Nicholas Avenue, New York, NY 10032, USA
| | - Oren Litvin
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
- Center for Computational Biology and Bioinformatics, Columbia University, 1130 St Nicholas Avenue, New York, NY 10032, USA
| | - Jessica Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Felix Sanchez-Garcia
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | - Dylan Kotliar
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | - Helen C. Causton
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | - Panisa Pochanard
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Eyal Mozes
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | - Levi A. Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Dana Pe'er
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
- Center for Computational Biology and Bioinformatics, Columbia University, 1130 St Nicholas Avenue, New York, NY 10032, USA
| |
Collapse
|
167
|
Abstract
The Krüppel-like factor (KLF) family of transcription factors regulates diverse biological processes that include proliferation, differentiation, growth, development, survival, and responses to external stress. Seventeen mammalian KLFs have been identified, and numerous studies have been published that describe their basic biology and contribution to human diseases. KLF proteins have received much attention because of their involvement in the development and homeostasis of numerous organ systems. KLFs are critical regulators of physiological systems that include the cardiovascular, digestive, respiratory, hematological, and immune systems and are involved in disorders such as obesity, cardiovascular disease, cancer, and inflammatory conditions. Furthermore, KLFs play an important role in reprogramming somatic cells into induced pluripotent stem (iPS) cells and maintaining the pluripotent state of embryonic stem cells. As research on KLF proteins progresses, additional KLF functions and associations with disease are likely to be discovered. Here, we review the current knowledge of KLF proteins and describe common attributes of their biochemical and physiological functions and their pathophysiological roles.
Collapse
Affiliation(s)
- Beth B McConnell
- Departments of Medicine and of Hematology and Medical Oncology, Emory University School of Medicine,Atlanta, Georgia 30322, USA
| | | |
Collapse
|
168
|
The SV2 variant of KLF6 is down-regulated in hepatocellular carcinoma and displays anti-proliferative and pro-apoptotic functions. J Hepatol 2010; 53:880-8. [PMID: 20801538 DOI: 10.1016/j.jhep.2010.04.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 04/06/2010] [Accepted: 04/29/2010] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS KLF6 protein is a transcription factor that plays important functions in hepatocellular carcinoma (HCC), which is one of the leading causes of death by cancer worldwide. Previous studies showed the existence of three splice variants of KLF6, termed SV1, SV2, and SV3. An increased SV1/KLF6 mRNA ratio in HCC was already described. In this study, we aimed to investigate the expression of the SV2 variant in HCC samples and its role in hepatic cells. METHODS We measured the expression of the SV2 variant in HCC and adjacent tissue samples by q-RT-PCR. We established IHH and HepG2 stable cell lines over-expressing the SV2 variant and measured cell growth and apoptotic rate. RESULTS We observed a reduced expression of the SV2 variant in HCC samples versus surrounding tissues and normal liver. Interestingly, our findings demonstrate that the over-expression of the SV2 variant in IHH and HepG2 cells leads to a significant reduction of proliferation associated with cell death by apoptosis. We further demonstrate that the SV2 expression leads to an induction of the cell-cycle-controlling p21(CIP/WAF1) and the pro-apoptotic Bax genes, mediated by the p53 protein. We show further that the SV2 expression in IHH and HepG2 cells induces their sensitivity to the anti-cancer drug, gemcitabine. CONCLUSION We reveal a reduced expression of the SV2 variant of KLF6 in HCC samples and describe anti-proliferative and pro-apoptotic functions for this variant in hepatic cells.
Collapse
|
169
|
Nucleo-cytoplasmic localization domains regulate Krüppel-like factor 6 (KLF6) protein stability and tumor suppressor function. PLoS One 2010; 5. [PMID: 20844588 PMCID: PMC2936564 DOI: 10.1371/journal.pone.0012639] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 08/17/2010] [Indexed: 11/19/2022] Open
Abstract
Background The tumor suppressor KLF6 and its oncogenic cytoplasmic splice variant KLF6-SV1 represent a paradigm in cancer biology in that their antagonistic cancer functions are encoded within the same gene. As a consequence of splicing, KLF6-SV1 loses both the C-terminus C2H2 three zinc finger (ZF) domain, which characterizes all KLF proteins, as well as the adjacent 5′ basic region (5BR), a putative nuclear localization signal (NLS). It has been hypothesized that this NLS is a functional domain critical to direct the distinct subcellular localization of the tumor suppressor and its splice variant. Methodology/Principal Findings In this study, we demonstrate using EGFP fusion constructs that KLF6/KLF6-SV1 nucleo-cytoplasmic transport is not regulated by the 5′ basic region but activated by a novel NLS encoded within the ZF domain, and a nuclear export signal (NES) located in the first 16 amino acids of the shared N-terminus sequence. We demonstrate KLF6 nuclear export to be Crm1-dependent. The dysregulation of nucleo-cytoplasmic transport when disrupting the KLF6 NLS using site-directed mutagenesis showed that its integrity is necessary for appropriate protein stability. Moreover, these mutations impaired transcriptional induction of two KLF6 well-characterized target genes, E-cadherin and p21, as shown by RT-PCR and luciferase promoter assays. The addition of the ZF domain to KLF6-SV1 results in its nuclear localization and a markedly decreased half-life similar to wild type KLF6. Conclusions/Significance We describe the domains that control KLF6 nucleo-cytoplasmic shuttling and how these domains play a role in KLF6 protein half-life and tumor suppressor function. The results begin to mechanistically explain, at least in part, the opposing functions of KLF6 and KLF6-SV1 in cancer.
Collapse
|
170
|
Wang S, Kang L, Chen X, Zhou H. Frequent down-regulation and deletion of KLF6 in primary hepatocellular carcinoma. ACTA ACUST UNITED AC 2010; 30:470-6. [PMID: 20714872 DOI: 10.1007/s11596-010-0451-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Indexed: 12/20/2022]
Abstract
Kruppel-like factor 6 (KLF6) was reported as tumor suppressor in multiple cancers. However, loss of chromosomal locus spanning KLF6 is relatively infrequent in previous published studies. To explore the role of KLF6 in hepatocellular carcinoma (HCC), we examined the gene for expression change, loss of heterozygosity (LOH) and mutation in 26 HCC samples. The expression levels of KLF6 were significantly down-regulated in HCCs, as detected by qRT-PCR. LOH occurred in 11 (52%) of 21 tumors, and all the samples with LOH showed KLF6 down-regulation. The mutational frequency was 24%, and sequence changes located in activation domain of KLF6. Furthermore, MTT assay showed a significant antiproliferative effect of the wt KLF6 transfected in HepG2 hepatoblastoma cells. Fluorescence-activated cell sorting analysis revealed that KLF6 could induce apoptosis. These findings indicate that deregulation of KLF6, together with genetic abnormalities of allelic imbalance and mutations, may play a role in HCC pathogenesis.
Collapse
Affiliation(s)
- Shaoping Wang
- Department of Hepatobiliary Surgery, Futian People's Hospital, Shenzhen, 518033, China.
| | | | | | | |
Collapse
|
171
|
Zhao X, Monson C, Gao C, Gouon-Evans V, Matsumoto N, Sadler KC, Friedman SL. Klf6/copeb is required for hepatic outgrowth in zebrafish and for hepatocyte specification in mouse ES cells. Dev Biol 2010; 344:79-93. [PMID: 20430021 PMCID: PMC2909330 DOI: 10.1016/j.ydbio.2010.04.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 04/02/2010] [Accepted: 04/19/2010] [Indexed: 01/05/2023]
Abstract
Krüppel-like factor 6 (Klf6; copeb in zebrafish) is a zinc-finger transcription factor and tumor suppressor gene. Klf6(-)(/)(-) mice have defects in hematopoiesis and angiogenesis and do not form a liver. However, the vascular abnormalities in Klf6(-/-) mice obfuscate its role in liver development since these two processes are linked in mammals. We utilized zebrafish and mouse ES cells to investigate the role of copeb in endoderm specification and hepatogenesis separate from its function in angiogenesis. During zebrafish development, copeb expression is enriched in digestive organs. Morpholino knockdown of copeb blocks expansion of the liver, pancreas and intestine, but does not affect their specification, differentiation or the vascularization of the liver. Decreased hepatocyte proliferation in copeb morphants is accompanied by upregulation of the cell cycle inhibitor, cdkn1a, a Copeb transcriptional target. A cell autonomous role for Klf6 in endoderm and hepatic development was investigated by manipulating Klf6 expression in mouse ES cells driven to differentiate along the hepatic lineage. Expression of the endoderm markers Hnf3beta, Gata4, Sox17, and CxCr4 is not induced in Klf6(-/-) cells but is upregulated in ES cells over-expressing Klf6. Collectively, these findings indicate that copeb/Klf6 is essential for the development of endoderm-derived organs.
Collapse
Affiliation(s)
- Xiao Zhao
- Division of Liver Diseases/Department of Medicine
| | - Christopher Monson
- Division of Liver Diseases/Department of Medicine
- Department of Developmental and Regenerative Biology
| | - Chuan Gao
- Division of Liver Diseases/Department of Medicine
- Department of Developmental and Regenerative Biology
| | - Valerie Gouon-Evans
- Department of Gene and Cell Medicine, Black Family Stem Cell Institute Mount Sinai School of Medicine, New York, NY 10029
| | | | - Kirsten C. Sadler
- Division of Liver Diseases/Department of Medicine
- Department of Developmental and Regenerative Biology
| | | |
Collapse
|
172
|
Huh SJ, Chen YL, Friedman SL, Liao J, Huang HJS, Cavenee WK, Robertson GP. KLF6 Gene and early melanoma development in a collagen I-rich extracellular environment. J Natl Cancer Inst 2010; 102:1131-47. [PMID: 20660366 DOI: 10.1093/jnci/djq218] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND A putative tumor suppressor gene at chromosome 10p15, which contains KLF6 and other genes, is predicted to be lost during melanoma development, and its identity is unknown. In this study, we investigated the biological roles and identity of this tumor suppressor gene. METHODS The human UACC 903 melanoma cell line containing introduced DNA fragments from the 10p15 region with (10E6/3, 10E6/11, and 10E6/18) and without (10ER4S.2/1) the tumor suppressor gene was used. Xenograft tumors were generated in a total of 40 mice with melanoma cell lines, and tumor size was measured. Cells were cultured on plastic or a gel of type I collagen. Viability, proliferation, and apoptosis were assessed. Expression of KLF6 protein was assessed by immunohistochemistry and immunoblot analysis. Expression of phosphorylated Erk1/2 and cyclin D1 was assessed by immunoblot analysis. Protein expression of KLF6 was inhibited with small interfering RNA (siRNA). KLF6 protein expression was assessed in 17 human nevi and human melanoma specimens from 29 patients. Statistical analyses were adjusted for multiple comparisons by use of Dunnett method. All statistical tests were two-sided. RESULTS Melanoma cells containing KLF6 generated smaller subcutaneous xenograft tumors with fewer proliferating cells than control cells. When grown on collagen 1, viability of cells with ectopic KLF6 expression (72%) was lower than that of control cells (100%) (group difference = -28%, 95% confidence interval = -31.3% to -25.2%, P < .001). Viability of melanoma cells with or without the KLF6 tumor suppressor gene on plastic dishes was similar. When KLF6 expression was inhibited with KLF6 siRNA, viability of cells with the tumor suppressor gene on collagen I gel increased compared with that of control cells carrying scrambled siRNA. KLF6 protein was detected in all nevi examined but not in human metastatic melanoma tissue examined. Ectopic expression of KLF6 protein in melanoma cells grown on collagen I decreased levels of phosphorylated Erk1/2 and cyclin D1 in the mitogen-activated protein kinase signaling pathway. CONCLUSIONS In melanoma cells, the tumor suppressor gene at 10p15 appears to be KLF6. Signaling from the collagen I-rich extracellular matrix appears to be involved in the tumor suppressive activity of KLF6 protein.
Collapse
Affiliation(s)
- Sung Jin Huh
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | | | |
Collapse
|
173
|
Abstract
The Krüppel-like transcription factor (KLF) family participates in diverse aspects of cellular growth, development, differentiation, and activation. Recently, several groups have identified new connections between the function of these factors and leukocyte responses in health and disease. Gene targeting of individual KLFs in mice has uncovered novel and unexpected physiologic roles among myeloid and lymphocyte cell lineage maturation, particularly in the bone marrow niche and blood. In addition, several KLF family members are downstream targets of stimuli and signaling pathways critical to T-cell trafficking, T regulatory cell differentiation or suppressor function, monocyte/macrophage activation or renewal, and B memory cell maturation or activation. Indeed, KLFs have been implicated in subtypes of leukemia, lymphoma, autoimmunity, and in acute and chronic inflammatory disease states, such as atherosclerosis, diabetes, and airway inflammation, raising the possibility that KLFs and their upstream signals are of therapeutic interest. This review focuses on the relevant literature of Krüppel-like factors in leukocyte biology and their implications in clinical settings.
Collapse
|
174
|
DiFeo A, Narla G, Martignetti JA. Emerging roles of Kruppel-like factor 6 and Kruppel-like factor 6 splice variant 1 in ovarian cancer progression and treatment. ACTA ACUST UNITED AC 2010; 76:557-66. [PMID: 20014424 DOI: 10.1002/msj.20150] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epithelial ovarian cancer is one of the most lethal gynecologic cancers and the fifth most frequent cause of female cancer deaths in the United States. Despite dramatic treatment successes in other cancers through the use of molecular agents targeted against genetically defined events driving cancer development and progression, very few insights into epithelial ovarian cancer have been translated from the laboratory to the clinic. If advances are to be made in the early diagnosis, prevention, and treatment of this disease, it will be critical to characterize the common and private (personalized) genetic defects underlying the development and spread of epithelial ovarian cancer. The tumor suppressor Kruppel-like factor 6 and its alternatively spliced, oncogenic isoform, Kruppel-like factor 6 splice variant 1, are members of the Kruppel-like zinc finger transcription factor family of proteins, which have diverse roles in cellular differentiation, development, proliferation, growth-related signal transduction, and apoptosis. Inactivation of Kruppel-like factor 6 and overexpression of Kruppel-like factor 6 splice variant 1 have been associated with the progression of a number of human cancers and even with patient survival. This article summarizes our recent findings demonstrating that a majority of epithelial ovarian cancer tumors have Kruppel-like factor 6 allelic loss and decreased expression coupled with increased expression of Kruppel-like factor 6 splice variant 1. The targeted reduction of Kruppel-like factor 6 in ovarian cancer cell lines results in marked increases in cell proliferation, invasion, tumor growth, angiogenesis, and intraperitoneal dissemination in vivo. In contrast, the inhibition of Kruppel-like factor 6 splice variant 1 decreases cellular proliferation, invasion, angiogenesis, and tumorigenicity; this provides the rationale for its potential therapeutic application. These results and our recent demonstration that the inhibition of Kruppel-like factor 6 splice variant 1 can dramatically prolong survival in a preclinical mouse model of ovarian cancer are reviewed and discussed.
Collapse
|
175
|
EKLF directly activates the p21WAF1/CIP1 gene by proximal promoter and novel intronic regulatory regions during erythroid differentiation. Mol Cell Biol 2010; 30:2811-22. [PMID: 20368355 DOI: 10.1128/mcb.01016-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The switch from proliferation to differentiation during the terminal stages of erythropoiesis is a tightly controlled process that relies in part on transcription factor-mediated activation of cell cycle components. EKLF is a key transcription factor that is necessary for the initial establishment of the red cell phenotype. Here, we find that EKLF also plays a role during the subsequent differentiation process, as it induces p21(WAF1/CIP1) expression independent of p53 to regulate the changes in the cell cycle underlying erythroid maturation. EKLF activates p21 not only by directly binding to an EKLF site within a previously characterized GC-rich region in the p21 proximal promoter but also by occupancy at a novel, phylogenetically conserved region that contains consensus CACCC core motifs located downstream from the p21 TATA box. Our findings demonstrate that EKLF, likely in coordination with other transcription factors, directly contributes to the complex set of events that occur at the final erythroid cell divisions and accentuates terminal differentiation directly by activation of CDK inhibitors such as p21.
Collapse
|
176
|
Abstract
Ninety-four percent of human genes are discontinuous, such that segments expressed as mRNA are contained within exons and separated by intervening segments, called introns. Following transcription, genes are expressed as precursor mRNAs (pre-mRNAs), which are spliced co-transcriptionally, and the flanking exons are joined together to form a continuous mRNA. One advantage of this architecture is that it allows alternative splicing by differential use of exons to generate multiple mRNAs from individual genes. Regulatory elements located within introns and exons guide the splicing complex, the spliceosome, and auxiliary RNA binding proteins to the correct sites for intron removal and exon joining. Misregulation of splicing and alternative splicing can result from mutations in cis-regulatory elements within the affected gene or from mutations that affect the activities of trans-acting factors that are components of the splicing machinery. Mutations that affect splicing can cause disease directly or contribute to the susceptibility or severity of disease. An understanding of the role of splicing in disease expands potential opportunities for therapeutic intervention by either directly addressing the cause or by providing novel approaches to circumvent disease processes.
Collapse
Affiliation(s)
- Amanda J Ward
- Departments of Molecular and Cellular Biology and Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
177
|
Tuba1a gene expression is regulated by KLF6/7 and is necessary for CNS development and regeneration in zebrafish. Mol Cell Neurosci 2010; 43:370-83. [PMID: 20123021 DOI: 10.1016/j.mcn.2010.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 12/24/2009] [Accepted: 01/19/2010] [Indexed: 11/21/2022] Open
Abstract
We report that knockdown of the alpha1 tubulin isoform Tuba1a, but not the highly related Tuba1b, dramatically impedes nervous system formation during development and RGC axon regeneration following optic nerve injury in adults. Within the tuba1a promoter, a G/C-rich element was identified that is necessary for tuba1a induction during RGC differentiation and optic axon regeneration. KLF6a and 7a, which we previously reported are essential for optic axon regeneration (Veldman et al., 2007), bind this G/C-rich element and transactivate the tuba1a promoter. In vivo knockdown of KLF6a and 7a attenuate regeneration-dependent activation of the endogenous tuba1a and p27 genes. These results suggest tuba1a expression is necessary for CNS development and regeneration and that KLF6a and 7a mediate their effects, at least in part, via transcriptional control of tuba1a promoter activity.
Collapse
|
178
|
Lee UE, Ghiassi-Nejad Z, Paris AJ, Yea S, Narla G, Walsh M, Friedman SL. Tumor suppressor activity of KLF6 mediated by downregulation of the PTTG1 oncogene. FEBS Lett 2010; 584:1006-10. [PMID: 20116377 DOI: 10.1016/j.febslet.2010.01.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 01/25/2010] [Indexed: 12/12/2022]
Abstract
The tumor suppressor Kruppel-like factor 6 (KLF6) is frequently inactivated in hepatocellular carcinoma (HCC). To unearth downstream transcriptional targets of KLF6, cDNA microarray analysis of whole liver was compared between KLF6+/+ and KLF6+/- mice. Pituitary tumor transforming gene 1 (PTTG1), an oncogene, was the most up-regulated transcript in KLF6+/- liver. In human HCCs, KLF6 mRNA was significantly decreased, associated with increased PTTG1. In HepG2, KLF6 transcriptionally repressed PTTG1 by direct promoter interaction. Whereas KLF6 downregulation by siRNA increased HepG2 proliferation, siRNA to PTTG1 was anti-proliferative. PTTG1 downregulation represents a novel tumor suppressor pathway of KLF6.
Collapse
Affiliation(s)
- Ursula E Lee
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
179
|
Gehrau RC, D'Astolfo DS, Dumur CI, Bocco JL, Koritschoner NP. Nuclear expression of KLF6 tumor suppressor factor is highly associated with overexpression of ERBB2 oncoprotein in ductal breast carcinomas. PLoS One 2010; 5:e8929. [PMID: 20126619 PMCID: PMC2812494 DOI: 10.1371/journal.pone.0008929] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 01/08/2010] [Indexed: 11/19/2022] Open
Abstract
Background Krüppel-like factor 6 (KLF6) is an evolutionarily conserved and ubiquitously expressed protein that belongs to the mammalian Sp1/KLF family of transcriptional regulators. Though KLF6 is a transcription factor and harbors a nuclear localization signal it is not systematically located in the nucleus but it was detected in the cytoplasm of several tissues and cell lines. Hence, it is still not fully settled whether the tumor suppressor function of KLF6 is directly associated with its ability to regulate target genes. Methodology/Principal Findings In this study we analyzed KLF6 expression and sub-cellular distribution by immunohistochemistry in several normal and tumor tissues in a microarray format representing fifteen human organs. Results indicate that while both nuclear and cytoplasmic distribution of KLF6 is detected in normal breast tissues, breast carcinomas express KLF6 mainly detected in the cytoplasm. Expression of KLF6 was further analyzed in breast cancer tissues overexpressing ERBB2 oncoprotein, which is associated with poor disease prognosis and patient's survival. The analysis of 48 ductal carcinomas revealed a significant population expressing KLF6 predominantly in the nuclear compartment (X2p = 0.005; Fisher p = 0.003). Moreover, this expression pattern correlates directly with early stage and small ductal breast tumors and linked to metastatic events in lymph nodes. Conclusions/Significance Data are consistent with a preferential localization of KLF6 in the nuclear compartment of early stage and small HER2-ERBB2 overexpressing ductal breast tumor cells, also presenting lymph node metastatic events. Thus, KLF6 tumor suppressor could represent a new molecular marker candidate for tumor prognosis and/or a potential target for therapy strategies.
Collapse
Affiliation(s)
- Ricardo C. Gehrau
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Diego S. D'Astolfo
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Catherine I. Dumur
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - José L. Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| | - Nicolás P. Koritschoner
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
180
|
Mehta TS, Monzur F, Zhao J. Determination of nuclear localization signal sequences for Krüppel-like factor 8. Methods Mol Biol 2010; 647:171-86. [PMID: 20694667 DOI: 10.1007/978-1-60761-738-9_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcription factor proteins function in the nucleus to regulate gene expression. Many transcription factors are critical regulators of tumor progression. Conversely, many oncogenic and tumor suppressor proteins are transcription factors or other types of nuclear proteins. Because of their critical physiological and pathological roles, these tumor regulators are tightly regulated not only in the protein expression but also in their subcellular localization. This chapter is focused on experimental strategies and method details for the identification and characterization of nuclear localization signal sequences for nuclear proteins using the Krüppel-like transcription factor 8 as an example.
Collapse
Affiliation(s)
- Tina S Mehta
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | | | | |
Collapse
|
181
|
Bell DW. Our changing view of the genomic landscape of cancer. J Pathol 2010; 220:231-43. [PMID: 19918804 PMCID: PMC3195356 DOI: 10.1002/path.2645] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 10/05/2009] [Indexed: 12/24/2022]
Abstract
Sporadic tumours, which account for the majority of all human cancers, arise from the acquisition of somatic, genetic and epigenetic alterations leading to changes in gene sequence, structure, copy number and expression. Within the last decade, the availability of a complete sequence-based map of the human genome, coupled with significant technological advances, has revolutionized the search for somatic alterations in tumour genomes. Recent landmark studies, which resequenced all coding exons within breast, colorectal, brain and pancreatic cancers, have shed new light on the genomic landscape of cancer. Within a given tumour type there are many infrequently mutated genes and a few frequently mutated genes, resulting in incredible genetic heterogeneity. However, when the altered genes are placed into biological processes and biochemical pathways, this complexity is significantly reduced and shared pathways that are affected in significant numbers of tumours can be discerned. The advent of next-generation sequencing technologies has opened up the potential to resequence entire tumour genomes to interrogate protein-encoding genes, non-coding RNA genes, non-genic regions and the mitochondrial genome. During the next decade it is anticipated that the most common forms of human cancer will be systematically surveyed to identify the underlying somatic changes in gene copy number, sequence and expression. The resulting catalogues of somatic alterations will point to candidate cancer genes requiring further validation to determine whether they have a causal role in tumourigenesis. The hope is that this knowledge will fuel improvements in cancer diagnosis, prognosis and therapy, based on the specific molecular alterations that drive individual tumours. In this review, I will provide a historical perspective on the identification of somatic alterations in the pre- and post-genomic eras, with a particular emphasis on recent pioneering studies that have provided unprecedented insights into the genomic landscape of human cancer.
Collapse
Affiliation(s)
- Daphne W Bell
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
182
|
Humbert L, Chevrette M. Somatic Molecular Genetics of Prostate Cancer. MALE REPRODUCTIVE CANCERS 2010:143-180. [DOI: 10.1007/978-1-4419-0449-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
183
|
Zhang Q, Tan XP, Yuan YS, Hu CM, He CH, Wang WZ, Li JC, Zhao Q, Liu NZ. Decreased expression of KLF6 and its significance in gastric carcinoma. Med Oncol 2009; 27:1295-302. [PMID: 19967571 DOI: 10.1007/s12032-009-9377-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 11/23/2009] [Indexed: 10/20/2022]
Abstract
To study the expression of the Krüppel-like transcription factor 6 (KLF6) in human gastric carcinoma and normal gastric mucosa tissues, and to explore the role of KLF6 in the carcinogenesis and tumor progression and its clinical significance. Expression of KLF6, P21WAF1 and PCNA was investigated by immunohistochemistry for 69 surgically resected gastric carcinoma tissues and corresponding normal gastric mucosa tissues, respectively. The correlations of KLF6 expression with clinicopathological characteristics, P21WAF1 and PCNA were examined. Positive-expression of KLF6 was 64 out of 69 cases (92.8%) in normal gastric mucosa and only 23 cases (33.3%) in gastric carcinoma. Expression of KLF6 in the gastric carcinoma was remarkably lower than normal gastric mucosa. Decreased expression of KLF6 in gastric carcinoma was significantly associated with histological differentiation (P<0.01), TNM stage (P<0.05), lymph node metastasis (P<0.01) and distant metastasis (P<0.05). There was no significant correlation between KLF6 expression and sex, age. Meanwhile, expression of KLF6 was associated with expression of P21WAF1 in both normal gastric mucosa and gastric carcinoma (P<0.05). In addition, decreased expression of KLF6 in gastric carcinoma was positively associated with PCNA level (r=0.719, P<0.01) by association analysis. Down-regulation of KLF6 might play an important role in the carcinogenesis and development of human gastric carcinoma and have significant clinical value.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Internal Medicine, Clinical Medical College of Yangtze University, and Department of Gastroenterology, No. 1 Hospital Affiliated to Yangtze University, 434000, Jingzhou, Hubei Province, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Sangodkar J, DiFeo A, Feld L, Bromberg R, Huang F, Terzo EA, Choudhri A, Narla G. Targeted reduction of KLF6-SV1 restores chemotherapy sensitivity in resistant lung adenocarcinoma. Lung Cancer 2009; 66:292-7. [PMID: 19328586 PMCID: PMC2831196 DOI: 10.1016/j.lungcan.2009.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 02/12/2009] [Accepted: 02/19/2009] [Indexed: 11/28/2022]
Abstract
Kruppel-like factor 6 splice variant 1 (KLF6-SV1) is an oncogenic splice variant of the KLF6 tumor suppressor gene that is specifically overexpressed in a number of human cancers. Previously, we have demonstrated that increased expression of KLF6-SV1 is associated with decreased survival in lung adenocarcinoma patient samples and that targeted reduction of KLF6-SV1 using siRNA induced apoptosis both alone and in combination with the chemotherapeutic drug cisplatin. Here, we demonstrate that chemoresistant lung cancer cells express increased levels of KLF6-SV1. Furthermore, targeted reduction of KLF6-SV1 using RNA interference restores chemotherapy sensitivity to lung cancer cells both in culture and in vivo through induction of apoptosis. Conversely, overexpression of KLF6-SV1 resulted in a marked reduction in chemotherapy sensitivity in a tumor xenograft model. Combined, these findings highlight a functional role for the KLF6-SV1 splice variant in the regulation of chemotherapy response in lung cancer and could provide novel insight into lung cancer therapy.
Collapse
Affiliation(s)
- Jaya Sangodkar
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, N.Y
| | - Analisa DiFeo
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, N.Y
| | - Lauren Feld
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, N.Y
| | - Romina Bromberg
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, N.Y
| | - Fei Huang
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, N.Y
| | - Esteban A. Terzo
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, N.Y
| | - Aisha Choudhri
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, N.Y
| | - Goutham Narla
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, N.Y
- Department of Medicine, Mount Sinai School of Medicine, New York, N.Y
| |
Collapse
|
185
|
Liu X, Cheng JC, Turner LS, Elojeimy S, Beckham TH, Bielawska A, Keane TE, Hannun YA, Norris JS. Acid ceramidase upregulation in prostate cancer: role in tumor development and implications for therapy. Expert Opin Ther Targets 2009; 13:1449-58. [PMID: 19874262 PMCID: PMC2796572 DOI: 10.1517/14728220903357512] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bioactive sphingolipids, such as ceramide, sphingosine and sphingosine-1-phosphate are known bio-effector molecules which play important roles in various aspects of cancer biology including cell proliferation, growth arrest, apoptosis, metastasis, senescence and inflammation. Therefore, enzymes involved in ceramide metabolism are gaining recognition as being critical regulators of cancer cell growth and/or survival. We previously observed that the ceramide metabolizing enzyme, acid ceramidase (AC) is upregulated in tumor tissues. Studies have now concluded that this creates a dysfunctional ceramide pathway, which is responsible for tumor progression and resistance to chemotherapy and radiation. This suggests that development of small-molecule drugs that inhibit AC enzyme activity is a promising approach for improving standard cancer therapy and patient's clinical outcomes.
Collapse
Affiliation(s)
- Xiang Liu
- Assistant Professor, Division of Basic Sciences, Departments of: Biochemistry & Molecular Biology, Cell and Molecular Pharmacology & Experimental Therapeutics, Microbiology & Immunology, MUSC, 173 Ashley Avenue, MSC 504, Charleston, South Carolina 29425-5040, FAX: 843.792.4882, Phone: 843.792.7412
| | - Joseph C. Cheng
- MD/PhD Student, Division of Basic Sciences, Departments of: Biochemistry & Molecular Biology, Cell and Molecular Pharmacology & Experimental Therapeutics, Microbiology & Immunology, MUSC, 173 Ashley Avenue, MSC 504, Charleston, South Carolina 29425-5040, FAX: 843.792.4882, Phone: 843.792.8499
| | - Lorianne S. Turner
- Postdoctoral Fellow, Division of Basic Sciences, Departments of: Biochemistry & Molecular Biology, Cell and Molecular Pharmacology & Experimental Therapeutics, Microbiology & Immunology, MUSC, 173 Ashley Avenue, MSC 504, Charleston, South Carolina 29425-5040, FAX: 843.792.4882, Phone: 843.792.8499
| | - Saeed Elojeimy
- Division of Basic Sciences, Departments of: Biochemistry & Molecular Biology, Cell and Molecular Pharmacology & Experimental Therapeutics, Microbiology & Immunology, MUSC, 173 Ashley Avenue, MSC 504, Charleston, South Carolina 29425-5040, FAX: 843.792.4882, Phone: 843.814.7010
| | - Thomas H. Beckham
- MD/PhD Student, Departments of: Biochemistry & Molecular Biology, Cell and Molecular Pharmacology & Experimental Therapeutics, Microbiology & Immunology, MUSC, 173 Ashley Avenue, MSC 504, Charleston, South Carolina 29425-5040, FAX: 843.792.4882, Phone: 843.792.8499
| | - Alicja Bielawska
- Professor, Departments of: Biochemistry & Molecular Biology, Cell and Molecular Pharmacology & Experimental Therapeutics, Microbiology & Immunology, MUSC, 173 Ashley Avenue, MSC 504, Charleston, South Carolina 29425-5040, FAX: 843.792.1627, Phone: 843.792.0273
| | - Thomas E. Keane
- Professor and Chair, Department of Urology, MUSC, 96 Jonathan Lucas Street, Room 644, Clinical Science Building, Phone: 843.792.1666
| | - Yusuf A. Hannun
- Senior Associate Dean for Basic Sciences, Director, Division of Basic Sciences, Distinguished University Professor, Chair, Department of Biochemistry & Molecular Biology, Cell and Molecular Pharmacology & Experimental Therapeutics, Microbiology & Immunology, MUSC, 173 Ashley Avenue, MSC 509, Charleston, South Carolina 29425-5090, FAX: 843.792.4322, Phone: 843.792.9318
| | - James S. Norris
- Professor and Chair, Department of Microbiology & Immunology, MUSC, 173 Ashley Avenue, MSC 504, Charleston, South Carolina 29425-5040, FAX: 843.792.4882, Phone: 843.792.7915
| |
Collapse
|
186
|
Abstract
The Polycomb group (PcG) proteins are transcriptional repressors that regulate lineage choices during development and differentiation. Recent studies have advanced our understanding of how the PcG proteins regulate cell fate decisions and how their deregulation potentially contributes to cancer. In this Review we discuss the emerging roles of long non-coding RNAs (ncRNAs) and a subset of transcription factors, which we call cell fate transcription factors, in the regulation of PcG association with target genes. We also speculate about how their deregulation contributes to tumorigenesis.
Collapse
Affiliation(s)
- Adrian P Bracken
- The Smurfit Institute of Genetics, Trinity College Dublin and The Adelaide & Meath Hospital, including the National Children's Hospital, Dublin, Ireland.
| | | |
Collapse
|
187
|
Wang L, Liu R, Li W, Chen C, Katoh H, Chen GY, McNally B, Lin L, Zhou P, Zuo T, Cooney KA, Liu Y, Zheng P. Somatic single hits inactivate the X-linked tumor suppressor FOXP3 in the prostate. Cancer Cell 2009; 16:336-46. [PMID: 19800578 PMCID: PMC2758294 DOI: 10.1016/j.ccr.2009.08.016] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 05/08/2009] [Accepted: 08/17/2009] [Indexed: 11/23/2022]
Abstract
Despite clear epidemiological and genetic evidence for X-linked prostate cancer risk, all prostate cancer genes identified are autosomal. Here, we report somatic inactivating mutations and deletion of the X-linked FOXP3 gene residing at Xp11.23 in human prostate cancer. Lineage-specific ablation of FoxP3 in the mouse prostate epithelial cells leads to prostate hyperplasia and prostate intraepithelial neoplasia. In both normal and malignant prostate tissues, FOXP3 is both necessary and sufficient to transcriptionally repress cMYC, the most commonly overexpressed oncogene in prostate cancer as well as among the aggregates of other cancers. FOXP3 is an X-linked prostate tumor suppressor in the male. Because the male has only one X chromosome, our data represent a paradigm of "single genetic hit" inactivation-mediated carcinogenesis.
Collapse
Affiliation(s)
- Lizhong Wang
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
| | - Runhua Liu
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
| | - Weiquan Li
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
| | - Chong Chen
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
| | - Hiroto Katoh
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
| | - Guo-Yun Chen
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
| | - Beth McNally
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
| | - Lin Lin
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
| | - Penghui Zhou
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
| | - Tao Zuo
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, OH
| | - Kathleen A. Cooney
- Department of Internal Medicine, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
| | - Yang Liu
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
- Department of Internal Medicine, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
| | - Pan Zheng
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
| |
Collapse
|
188
|
KLF17 is a negative regulator of epithelial-mesenchymal transition and metastasis in breast cancer. Nat Cell Biol 2009; 11:1297-304. [PMID: 19801974 DOI: 10.1038/ncb1974] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 07/28/2009] [Indexed: 12/15/2022]
Abstract
Metastasis is a complex multistep process, which requires the concerted action of many genes and is the primary cause of cancer death. Both pathways that regulate metastasis enhancement and those that regulate its suppression contribute to the tumour dissemination process. To identify new metastasis suppressors, we set up a forward genetic screen in a mouse model. We transduced a genome-wide RNA interference (RNAi) library into the non-metastatic 168FARN breast cancer cell line and orthotopically transplanted the cells into mouse mammary fat pads. We then selected cells that could metastasize to the lung and identified an RNAi for the KLF17 gene. Conversely, we demonstrate that ectopic expression of KLF17 in a highly metastatic 4T1 breast cancer cell line inhibits the ability of cells to metastasize from the mammary fat pad to the lung. We also show that suppression of KLF17 expression promotes breast cancer cell invasion and epithelial-mesenchymal transition (EMT), and that KLF17 protein functions by directly binding to the promoter region of Id1 (which encodes a key metastasis regulator in breast cancer) to inhibit its transcription. Finally, we demonstrate that KLF17 expression is significantly downregulated in primary human breast cancer samples and that the combined expression pattern of KLF17 and Id1 can serve as a potential biomarker for lymph node metastasis in breast cancer.
Collapse
|
189
|
Hiroi T, Deming CB, Zhao H, Hansen BS, Arkenbout EK, Myers TJ, McDevitt MA, Rade JJ. Proteasome inhibitors enhance endothelial thrombomodulin expression via induction of Krüppel-like transcription factors. Arterioscler Thromb Vasc Biol 2009; 29:1587-93. [PMID: 19661484 PMCID: PMC2752639 DOI: 10.1161/atvbaha.109.191957] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Impairment of the thrombomodulin-protein C anticoagulant pathway has been implicated in pathological thrombosis associated with malignancy. Patients who receive proteasome inhibitors as part of their chemotherapeutic regimen appear to be at decreased risk for thromboembolic events. We investigated the effects of proteasome inhibitors on endothelial thrombomodulin expression and function. METHODS AND RESULTS Proteasome inhibitors as a class markedly induced the expression of thrombomodulin and enhanced the protein C activating capacity of endothelial cells. Thrombomodulin upregulation was independent of NF-kappaB signaling, a principal target of proteasome inhibitors, but was instead a direct consequence of increased expression of the Krüppel-like transcription factors, KLF2 and KLF4. These effects were confirmed in vivo, where systemic administration of a proteasome inhibitor enhanced thrombomodulin expression that was paralleled by changes in the expression of KLF2 and KLF4. CONCLUSIONS These findings identify a novel mechanism of action of proteasome inhibitors that may help to explain their clinically observed thromboprotective effects.
Collapse
Affiliation(s)
- Toyoko Hiroi
- Department of Medicine, Johns Hopkins School of Medicine, Ross 1165, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Hu W, Hofstetter WL, Li H, Zhou Y, He Y, Pataer A, Wang L, Xie K, Swisher SG, Fang B. Putative tumor-suppressive function of Kruppel-like factor 4 in primary lung carcinoma. Clin Cancer Res 2009; 15:5688-95. [PMID: 19737957 DOI: 10.1158/1078-0432.ccr-09-0310] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Krüppel-like factor 4 (KLF4) is a zinc-finger protein that plays important roles in stem cells and the development of gastric cancers. However, the role of KLF4 in primary lung cancer is unknown. The purpose of this study is to determine possible roles of KLF4 in lung cancer. EXPERIMENTAL DESIGN The KLF4 expression in primary lung cancer tissues and case-matched normal lung tissues were determined by protein and mRNA analyses. The effects of KLF4 on cell proliferation, clonogenic formation, and cell cycle progression were determined in cultured lung cancer cells or bronchial epithelial cells after enforced KLF4 overexpression or small interfering RNA knockdown. The in vivo antitumor activity of KLF4 was evaluated by using stably transfected lung cancer cells and by adenovector-mediated gene delivery. The effect of KLF4 in regulating p21 and cyclin D1 was also evaluated. RESULTS KLF4 protein and mRNA levels were dramatically decreased in most primary lung tumors compared with in case-matched normal lung tissues. Enforced expression of KLF4 resulted in marked inhibition of cell growth and clonogenic formation. The tumor-suppressive effect of KLF4 was associated with its role in up-regulating p21 and down-regulating cyclin D1, leading to cell cycle arrest at the G(1)-S checkpoint. Knockdown of KLF4 promoted cell growth in immortalized human bronchial epithelial cells. The enforced expression of KLF4 gene to lung cancer cells by ex vivo transfection or adenovector-mediated gene transfer suppressed tumor growth in vivo. CONCLUSIONS Our results suggest that KLF4 plays an important role in suppressing the growth of lung carcinoma.
Collapse
Affiliation(s)
- Wenxian Hu
- Sir Run Run Shaw Hospital, Zhejiang University, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Bennett LB, Schnabel JL, Kelchen JM, Taylor KH, Guo J, Arthur GL, Papageorgio CN, Shi H, Caldwell CW. DNA hypermethylation accompanied by transcriptional repression in follicular lymphoma. Genes Chromosomes Cancer 2009; 48:828-41. [PMID: 19530241 PMCID: PMC2738630 DOI: 10.1002/gcc.20687] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
High-throughput microarray technologies were used to study DNA methylation accompanied by transcriptional changes in follicular lymphoma (FL). Using Methylated CpG Island Amplification with Microarrays to study CpG Island DNA methylation in FL, we discovered widespread hypermethylation of homeobox genes and previously identified targets of polycomb repressive complex 2 (PRC2) in cell lines and primary tumors, but not in benign follicular hyperplasia (BFH). DNA methylation for HOXA11, HOXD10, HOXB7, HOXC12, PAX6, LHX9, SFMBT2, EN2, and PAX7 was independently validated in the RL cell line and HOXA11, HOXD10, PAX6, and EN2 in primary tumors. Combined Bisulfite Restriction Analysis (COBRA) also established DNA methylation for the previously identified PRC2 targets DCC, DES, GAD2, AQP5, GPR61, GRIA4, GJD2, and AMPH in FL but not in BFH. Gene expression analyses revealed 411 genes that were hypermethylated and transcriptionally repressed in RL, 74% of which were reactivated by the demethylating agent 5-aza-2'-deoxycytidine (5-azaD) plus or minus the histone deacetylase inhibitor trichostatin A (TSA). Forty genes were also downregulated in primary FL. Our results suggest that extensive hypermethylation in promoters of polycomb target genes is a characteristic of FL and that loss of expression of certain SUZ12 target genes could be functionally relevant for lymphomagenesis.
Collapse
Affiliation(s)
- Lynda B Bennett
- Department of Pathology and Anatomical Sciences, University of Missouri-Columbia School of Medicine, Columbia, MO 65212, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Liu J, Du T, Yuan Y, He Y, Tan Z, Liu Z. KLF6 inhibits estrogen receptor-mediated cell growth in breast cancer via a c-Src-mediated pathway. Mol Cell Biochem 2009; 335:29-35. [PMID: 19707857 DOI: 10.1007/s11010-009-0237-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Accepted: 08/13/2009] [Indexed: 11/25/2022]
Abstract
Estrogen receptors play a key role in breast cancer development and progression. Kruppel-like factor 6 (KLF6) is a tumour-suppressing protein. The aim of this study was to identify the role of KLF6 inhibition in estrogen receptor(alpha) (ERalpha)-elicited breast cancer development. Protein expression levels were examined by western blot analysis and immunoprecipitation was used to analyse interactions between proteins. An MTT assay was used to study cell proliferation. We found that KLF6 mediates cell growth in ERalpha-positive breast cancer cells through interaction with the c-Src protein. This interaction causes inactivation of the Erk and Akt proteins. These pathways are critical for the proliferation and survival of breast cancer cells. We also established that KLF6 could not mediate cell growth in ERalpha-negative cells. We conclude that KLF6 can modulate ERalpha-mediated cell growth in breast cancer cells. The unique role of KLF6 in mediating cell growth in breast cancer cells opens up the possibility of a new therapeutic strategy for treating breast cancer.
Collapse
Affiliation(s)
- Jun Liu
- Department of General Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | | | | | | | | | | |
Collapse
|
193
|
Dong JT, Chen C. Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases. Cell Mol Life Sci 2009; 66:2691-706. [PMID: 19448973 PMCID: PMC11115749 DOI: 10.1007/s00018-009-0045-z] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 04/22/2009] [Accepted: 04/24/2009] [Indexed: 02/08/2023]
Abstract
KLF5 (Kruppel-like factor 5) is a basic transcription factor binding to GC boxes at a number of gene promoters and regulating their transcription. KLF5 is expressed during development and, in adults, with higher levels in proliferating epithelial cells. The expression and activity of KLF5 are regulated by multiple signaling pathways, including Ras/MAPK, PKC, and TGFbeta, and various posttranslational modifications, including phosphorylation, acetylation, ubiquitination, and sumoylation. Consistently, KLF5 mediates the signaling functions in cell proliferation, cell cycle, apoptosis, migration, differentiation, and stemness by regulating gene expression in response to environment stimuli. The expression of KLF5 is frequently abnormal in human cancers and in cardiovascular disease-associated vascular smooth muscle cells (VSMCs). Due to its significant functions in cell proliferation, survival, and differentiation, KLF5 could be a potential diagnostic biomarker and therapeutic target for cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Jin-Tang Dong
- Department of Hematology and Medical Oncology, Department of Urology and Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA 30322, USA.
| | | |
Collapse
|
194
|
Ishkanian AS, Mallof CA, Ho J, Meng A, Albert M, Syed A, van der Kwast T, Milosevic M, Yoshimoto M, Squire JA, Lam WL, Bristow RG. High-resolution array CGH identifies novel regions of genomic alteration in intermediate-risk prostate cancer. Prostate 2009; 69:1091-100. [PMID: 19350549 DOI: 10.1002/pros.20959] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Approximately one-third of prostate cancer patients present with intermediate risk disease. Interestingly, while this risk group is clinically well defined, it demonstrates the most significant heterogeneity in PSA-based biochemical outcome. Further, the majority of candidate genes associated with prostate cancer progression have been identified using cell lines, xenograft models, and high-risk androgen-independent or metastatic patient samples. We used a global high-resolution array comparative genomic hybridization (CGH) assay to characterize copy number alterations (CNAs) in intermediate risk prostate cancer. Herein, we show this risk group contains a number of alterations previously associated with high-risk disease: (1) deletions at 21q22.2 (TMPRSS2:ERG), 16q22-24 (containing CDH1), 13q14.2 (RB1), 10q23.31 (PTEN), 8p21 (NKX3.1); and, (2) amplification at 8q21.3-24.3 (containing c-MYC). In addition, we identified six novel microdeletions at high frequency: 1q42.12-q42.3 (33.3%), 5q12.3-13.3 (21%), 20q13.32-13.33 (29.2%), 22q11.21 (25%), 22q12.1 (29.2%), and 22q13.31 (33.3%). Further, we show there is little concordance between CNAs from these clinical samples and those found in commonly used prostate cancer cell models. These unexpected findings suggest that the intermediate-risk category is a crucial cohort warranting further study to determine if a unique molecular fingerprint can predict aggressive versus indolent phenotypes.
Collapse
Affiliation(s)
- Adrian S Ishkanian
- Department of Radiation Oncology, University of Toronto and Radiation Medicine Program, Princess Margaret Hospital-University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Leow CC, Wang BE, Ross J, Chan SM, Zha J, Carano RAD, Frantz G, Shen MM, de Sauvage FJ, Gao WQ. Prostate-specific Klf6 inactivation impairs anterior prostate branching morphogenesis through increased activation of the Shh pathway. J Biol Chem 2009; 284:21057-65. [PMID: 19494112 DOI: 10.1074/jbc.m109.001776] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Krüppel-like factor 6 (Klf6) belongs to a family of zinc finger transcription factors known to play a role in development and tumor suppression. Although Klf6 is highly mutated in prostate cancer, its function in prostate development is unknown. We have generated a prostate-specific Klf6-deficient mouse model and report here a novel role for Klf6 in the regulation of prostate branching morphogenesis. Importantly, our study reveals a novel relationship between Klf6 and the Shh pathway. Klf6-deficiency leads to elevated levels of hedgehog pathway components (Shh, Ptc, and Gli) and loss of their localized expression, which in turn causes impaired lateral branching.
Collapse
Affiliation(s)
- Ching Ching Leow
- Departments of Molecular Biology, Genentech Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
DiFeo A, Huang F, Sangodkar J, Terzo EA, Leake D, Narla G, Martignetti JA. KLF6-SV1 is a novel antiapoptotic protein that targets the BH3-only protein NOXA for degradation and whose inhibition extends survival in an ovarian cancer model. Cancer Res 2009; 69:4733-41. [PMID: 19435908 PMCID: PMC2834948 DOI: 10.1158/0008-5472.can-08-4282] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Defects in apoptosis are not only a hallmark of cancer initiation and progression but can also underlie the development of chemoresistance. How the tightly regulated cascade of protein-protein interactions between members of three competing protein families regulating the apoptotic cascade is subverted in tumor cells is incompletely understood. Here, we show that KLF6-SV1, whose overexpression is associated with poor survival in several different cancers and is an alternatively spliced isoform of the Krüppel-like tumor suppressor KLF6, is a critical prosurvival/antiapoptotic protein. KLF6-SV1 binds the proapoptotic BH3-only protein NOXA, which results in their mutual HDM2-dependent degradation. In turn, this increases the intracellular concentration of the prosurvival binding partner of NOXA, Mcl-1, and effectively blocks apoptosis. In an ovarian cancer model, systemically delivered small interfering RNA against KLF6-SV1 induces spontaneous apoptosis of tumor cells, decreases tumor burden, and restores cisplatin sensitivity in vivo. Moreover, i.p. delivery of siKLF6-SV1 RNA halts ovarian tumor progression and improves median and overall survival (progression-free for >15 months; P < 0.0002) in mice in a dose-dependent manner. Thus, KLF6-SV1 represents a novel regulator of protein interactions in the apoptotic cascade and a therapeutically targetable control point.
Collapse
Affiliation(s)
- Analisa DiFeo
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York
| | - Fei Huang
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York
| | - Jaya Sangodkar
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York
| | - Esteban A. Terzo
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York
| | - Devin Leake
- Thermo Fisher Scientific, Lafayette, Colorado
| | - Goutham Narla
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York
- Department of Medicine, Mount Sinai School of Medicine, New York, New York
| | - John A. Martignetti
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York
| |
Collapse
|
197
|
Abstract
One of the main engines that drives cellular transformation is the loss of proper control of the mammalian cell cycle. The cyclin-dependent kinase inhibitor p21 (also known as p21WAF1/Cip1) promotes cell cycle arrest in response to many stimuli. It is well positioned to function as both a sensor and an effector of multiple anti-proliferative signals. This Review focuses on recent advances in our understanding of the regulation of p21 and its biological functions with emphasis on its p53-independent tumour suppressor activities and paradoxical tumour-promoting activities, and their implications in cancer.
Collapse
Affiliation(s)
- Tarek Abbas
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, USA. e-mails: ;
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, USA. e-mails: ;
| |
Collapse
|
198
|
Frigo DE, Sherk AB, Wittmann BM, Norris JD, Wang Q, Joseph JD, Toner AP, Brown M, McDonnell DP. Induction of Kruppel-like factor 5 expression by androgens results in increased CXCR4-dependent migration of prostate cancer cells in vitro. Mol Endocrinol 2009; 23:1385-96. [PMID: 19460858 DOI: 10.1210/me.2009-0010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Advanced prostate cancers preferentially metastasize to bone, suggesting that this tissue produces factors that provide a suitable microenvironment for prostate cancer cells. Recently, it has become clear that even in antiandrogen-resistant cancers, the androgen receptor (AR)-signaling axis is required for prostate cancer progression. Therefore, we hypothesized that AR may be involved in the regulation of pathways that are responsible for the homing of prostate cancer cells to select microenvironments. In support of this hypothesis, we have determined that chemokine (C-X-C motif) receptor 4 (CXCR4), the receptor for the chemokine CXCL12, is up-regulated in prostate cancer cells in response to androgens. Given that the levels of CXCL12 are elevated at sites of known prostate cancer metastases such as bone, these results suggest that androgens may influence prostate cancer metastasis. Specifically, we demonstrate that androgens increase the levels of both CXCR4 mRNA and functional protein in LNCaP prostate cancer cells. Importantly, androgens enhanced the migration of LNCaP cells toward a CXCL12 gradient, an effect that could be blocked by the specific CXCR4 antagonist AMD3100. Interestingly, CXCR4 is not directly regulated by androgens but rather is positively up-regulated by Krüppel-like factor 5 (KLF5), a transcription factor that we have shown to be an early, direct target of AR. Further, KLF5 is both required and sufficient for androgen-mediated CXCR4 expression and migration toward CXCL12. Taken together, these findings demonstrate that AR can utilize the CXCL12/CXCR4 axis through induction of KLF5 expression to promote prostate cancer progression and highlight the potential utility of CXCR4 antagonists as prostate cancer therapeutics.
Collapse
Affiliation(s)
- Daniel E Frigo
- Duke University Medical Center, Department of Pharmacology, Box 3813, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Role of transglutaminase 2 in liver injury via cross-linking and silencing of transcription factor Sp1. Gastroenterology 2009; 136:1783-95.e10. [PMID: 19208340 PMCID: PMC4960455 DOI: 10.1053/j.gastro.2009.01.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/25/2008] [Accepted: 01/08/2009] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Despite high morbidity and mortality of alcoholic liver disease worldwide, the molecular mechanisms underlying alcohol-induced liver cell death are not fully understood. Transglutaminase 2 (TG2) is a cross-linking enzyme implicated in apoptosis. TG2 levels and activity are increased in association with various types of liver injury. However, how TG2 induces hepatic apoptosis is not known. METHODS Human hepatic cells or primary hepatocytes from rats or TG2+/+ and TG2-/- mice were treated with ethanol. Mice were administered anti-Fas antibody or alcohol. Liver sections were prepared from patients with alcoholic steatohepatitis. Changes in TG2 levels, Sp1 cross-linking and its activities, expression of hepatocyte growth factor receptor, c-Met, and hepatic apoptosis were measured. RESULTS Ethanol induced apoptosis in hepatic cells, enhanced activity and nuclear accumulation of TG2 as well as accumulation of cross-linked and inactivated Sp1, and reduced expression of the Sp1-responsive gene, c-Met. These effects were rescued by TG2 knockdown, restoration of functional Sp1, or addition of hepatocyte growth factor, whereas apoptosis was reproduced by Sp1 knockdown or TG2 overexpression. Compared with TG2+/+ mice, TG2-/- mice showed markedly reduced hepatocyte apoptosis and Sp1 cross-linking following ethanol or anti-Fas treatment. Treatment of TG2+/+ mice with the TG2 inhibitors putrescine or cystamine blocked anti-Fas-induced hepatic apoptosis and Sp1 silencing. Moreover, enhanced expression of cross-linked Sp1 and TG2 was evident in hepatocyte nuclei of patients with alcoholic steatohepatitis. CONCLUSIONS TG2 induces hepatocyte apoptosis via Sp1 cross-linking and inactivation, with resultant inhibition of the expression of c-Met required for hepatic cell viability.
Collapse
|
200
|
Botella LM, Sanz-Rodriguez F, Komi Y, Fernandez-L A, Varela E, Garrido-Martin EM, Narla G, Friedman SL, Kojima S. TGF-beta regulates the expression of transcription factor KLF6 and its splice variants and promotes co-operative transactivation of common target genes through a Smad3-Sp1-KLF6 interaction. Biochem J 2009; 419:485-95. [PMID: 19076057 PMCID: PMC2882110 DOI: 10.1042/bj20081434] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
KLF6 (Krüppel-like factor 6) is a transcription factor and tumour suppressor with a growing range of biological activities and transcriptional targets. Among these, KLF6 suppresses growth through transactivation of TGF-beta1 (transforming growth factor-beta1). KLF6 can be alternatively spliced, generating lower-molecular-mass isoforms that antagonize the full-length WT (wild-type) protein and promote growth. A key target gene of full-length KLF6 is endoglin, which is induced in vascular injury. Endoglin, a homodimeric cell membrane glycoprotein and TGF-beta auxiliary receptor, has a pro-angiogenic role in endothelial cells and is also involved in malignant progression. The aim of the present work was to explore the effect of TGF-beta on KLF6 expression and splicing, and to define the contribution of TGF-beta on promoters regulated by co-operation between KLF6 and Sp1 (specificity protein 1). Using co-transfection, co-immunoprecipitation and fluorescence resonance energy transfer, our data demonstrate that KLF6 co-operates with Sp1 in transcriptionally regulating KLF6-responsive genes and that this co-operation is further enhanced by TGF-beta1 through at least two mechanisms. First, in specific cell types, TGF-beta1 may decrease KLF6 alternative splicing, resulting in a net increase in full-length, growth-suppressive KLF6 activity. Secondly, KLF6-Sp1 co-operation is further enhanced by the TGF-beta-Smad (similar to mothers against decapentaplegic) pathway via the likely formation of a tripartite KLF6-Sp1-Smad3 complex in which KLF6 interacts indirectly with Smad3 through Sp1, which may serve as a bridging molecule to co-ordinate this interaction. These findings unveil a finely tuned network of interactions between KLF6, Sp1 and TGF-beta to regulate target genes.
Collapse
Affiliation(s)
- Luisa M Botella
- Centro de Investigaciones Biológicas, CSIC (Consejo Superior de Investigaciones Científicas), 28040 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|