151
|
Focusing on symptoms rather than diagnoses in brain dysfunction: Conscious and nonconscious expression in impulsiveness and decision-making. Neurotox Res 2008; 14:1-20. [DOI: 10.1007/bf03033572] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
152
|
Hernandez PJ, Abel T. The role of protein synthesis in memory consolidation: progress amid decades of debate. Neurobiol Learn Mem 2008; 89:293-311. [PMID: 18053752 PMCID: PMC2745628 DOI: 10.1016/j.nlm.2007.09.010] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 09/30/2007] [Indexed: 12/30/2022]
Abstract
A major component of consolidation theory holds that protein synthesis is required to produce the synaptic modification needed for long-term memory storage. Protein synthesis inhibitors have played a pivotal role in the development of this theory. However, these commonly used drugs have unintended effects that have prompted some to reevaluate the role of protein synthesis in memory consolidation. Here we review the role of protein synthesis in memory formation as proposed by consolidation theory calling special attention to the controversy involving the non-specific effects of a group of protein synthesis inhibitors commonly used to study memory formation in vivo. We argue that molecular and genetic approaches that were subsequently applied to the problem of memory formation confirm the results of less selective pharmacological studies. Thus, to a certain extent, the debate over the role of protein synthesis in memory based on interpretational difficulties inherent to the use of protein synthesis inhibitors may be somewhat moot. We conclude by presenting avenues of research we believe will best provide answers to both long-standing and more recent questions facing field of learning and memory.
Collapse
Affiliation(s)
- Pepe J Hernandez
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
153
|
Activity-dependent suppression of miniature neurotransmission through the regulation of DNA methylation. J Neurosci 2008; 28:395-406. [PMID: 18184782 DOI: 10.1523/jneurosci.3796-07.2008] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
DNA methylation is an epigenetic mechanism that plays a critical role in the repression of gene expression. Here, we show that DNA methyltransferase (DNMT) inhibition in hippocampal neurons results in activity-dependent demethylation of genomic DNA and a parallel decrease in the frequency of miniature EPSCs (mEPSCs), which in turn impacts neuronal excitability and network activity. Treatment with DNMT inhibitors reveals an activity-driven demethylation of brain-derived neurotrophic factor promoter I, which is mediated by synaptic activation of NMDA receptors, because it is susceptible to AP-5, a blocker of NMDA receptors. The specific effect of DNMT inhibition on spontaneous excitatory neurotransmission requires gene transcription and is occluded in the absence of the transcriptional repressor methyl-CpG-binding protein 2 (MeCP2). Interestingly, enhancing excitatory activity, in the absence of DNMT inhibitors, also produces similar decreases in DNA methylation and mEPSC frequency, suggesting a role for DNA methylation in the control of homeostatic synaptic plasticity. Furthermore, adding excess substrate for DNA methylation (S-adenosyl-L-methionine) rescues the suppression of mEPSCs by DNMT inhibitors in wild-type neurons, as well as the defect seen in MeCP2-deficient neurons. These results uncover a means by which NMDA receptor-mediated synaptic activity drives DNA demethylation within mature neurons and suppresses basal synaptic function.
Collapse
|
154
|
Sharma G, Vijayaraghavan S. Nicotinic Receptors: Role in Addiction and Other Disorders of the Brain. SUBSTANCE ABUSE: RESEARCH AND TREATMENT 2008. [DOI: 10.1177/117822180800100005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Nicotine, the addictive component of cigarette smoke has profound effects on the brain. Activation of its receptors by nicotine has complex consequences for network activity throughout the brain, potentially contributing to the addictive property of the drug. Nicotinic receptors have been implicated in psychiatric illnesses like schizophrenia and are also neuroprotective, potentially beneficial for neurodegenerative diseases. These effects of nicotine serve to emphasize the multifarious roles the drug, acting through multiple nicotinic acetylcholine receptor subtypes. The findings also remind us of the complexity of signaling mechanisms and stress the risks of unintended consequences of drugs designed to combat nicotine addiction.
Collapse
Affiliation(s)
- Geeta Sharma
- Department of Physiology and Biophysics and the Neuroscience Program, University of Colorado, Denver, School of Medicine Aurora CO 80045
| | - Sukumar Vijayaraghavan
- Department of Physiology and Biophysics and the Neuroscience Program, University of Colorado, Denver, School of Medicine Aurora CO 80045
| |
Collapse
|
155
|
Lasiecka ZM, Yap CC, Vakulenko M, Winckler B. Chapter 7 Compartmentalizing the Neuronal Plasma Membrane. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:303-89. [DOI: 10.1016/s1937-6448(08)01607-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
156
|
Sutton MA, Taylor AM, Ito HT, Pham A, Schuman EM. Postsynaptic decoding of neural activity: eEF2 as a biochemical sensor coupling miniature synaptic transmission to local protein synthesis. Neuron 2007; 55:648-61. [PMID: 17698016 DOI: 10.1016/j.neuron.2007.07.030] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 06/19/2007] [Accepted: 07/25/2007] [Indexed: 11/17/2022]
Abstract
Activity-dependent regulation of dendritic protein synthesis is critical for enduring changes in synaptic function, but how the unique features of distinct activity patterns are decoded by the dendritic translation machinery remains poorly understood. Here, we identify eukaryotic elongation factor-2 (eEF2), which catalyzes ribosomal translocation during protein synthesis, as a biochemical sensor in dendrites that is specifically and locally tuned to the quality of neurotransmission. We show that intrinsic action potential (AP)-mediated network activity in cultured hippocampal neurons maintains eEF2 in a relatively dephosphorylated (active) state, whereas spontaneous neurotransmitter release (i.e., miniature neurotransmission) strongly promotes the phosphorylation (and inactivation) of eEF2. The regulation of eEF2 phosphorylation is responsive to bidirectional changes in miniature neurotransmission and is controlled locally in dendrites. Finally, direct spatially controlled inhibition of eEF2 phosphorylation induces local translational activation, suggesting that eEF2 is a biochemical sensor that couples miniature synaptic events to local translational suppression in neuronal dendrites.
Collapse
Affiliation(s)
- Michael A Sutton
- Division of Biology 114-96, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
157
|
Abstract
Many cellular functions require the synthesis of a specific protein or functional cohort of proteins at a specific time and place in the cell. Local protein synthesis in neuronal dendrites is essential for understanding how neural activity patterns are transduced into persistent changes in synaptic connectivity during cortical development, memory storage and other long-term adaptive brain responses. Regional and temporal changes in protein levels are commonly coordinated by an asymmetric distribution of mRNAs. This Review attempts to integrate current knowledge of dendritic mRNA transport, storage and translation, placing particular emphasis on the coordination of regulation and function during activity-dependent synaptic plasticity in the adult mammalian brain.
Collapse
Affiliation(s)
- Clive R Bramham
- Department of Biomedicine and Bergen Mental Health Research Center, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.
| | | |
Collapse
|
158
|
Huntwork S, Littleton JT. A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat Neurosci 2007; 10:1235-7. [PMID: 17873870 DOI: 10.1038/nn1980] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 08/17/2007] [Indexed: 01/08/2023]
Abstract
Neuronal signaling occurs through both action potential-triggered synaptic vesicle fusion and spontaneous release, although the fusion clamp machinery that prevents premature exocytosis of synaptic vesicles in the absence of calcium is unknown. Here we demonstrate that spontaneous release at synapses is regulated by complexin, a SNARE complex-binding protein. Analysis of Drosophila melanogaster complexin null mutants showed a marked increase in spontaneous fusion and a profound overgrowth of synapses, suggesting that complexin functions as the fusion clamp in vivo and may modulate structural remodeling of neuronal connections by controlling the rate of spontaneous release.
Collapse
Affiliation(s)
- Sarah Huntwork
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Building 46, Room 3243, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
159
|
Ehlers MD, Heine M, Groc L, Lee MC, Choquet D. Diffusional trapping of GluR1 AMPA receptors by input-specific synaptic activity. Neuron 2007; 54:447-60. [PMID: 17481397 PMCID: PMC1993808 DOI: 10.1016/j.neuron.2007.04.010] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 01/21/2007] [Accepted: 04/10/2007] [Indexed: 11/25/2022]
Abstract
Synaptic activity regulates the postsynaptic accumulation of AMPA receptors over timescales ranging from minutes to days. Indeed, the regulated trafficking and mobility of GluR1 AMPA receptors underlies many forms of synaptic potentiation at glutamatergic synapses throughout the brain. However, the basis for synapse-specific accumulation of GluR1 is unknown. Here we report that synaptic activity locally immobilizes GluR1 AMPA receptors at individual synapses. Using single-molecule tracking together with the silencing of individual presynaptic boutons, we demonstrate that local synaptic activity reduces diffusional exchange of GluR1 between synaptic and extraynaptic domains, resulting in postsynaptic accumulation of GluR1. At neighboring inactive synapses, GluR1 is highly mobile with individual receptors frequently escaping the synapse. Within the synapse, spontaneous activity confines the diffusional movement of GluR1 to restricted subregions of the postsynaptic membrane. Thus, local activity restricts GluR1 mobility on a submicron scale, defining an input-specific mechanism for regulating AMPA receptor composition and abundance.
Collapse
Affiliation(s)
- Michael D Ehlers
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
160
|
Rao VR, Finkbeiner S. NMDA and AMPA receptors: old channels, new tricks. Trends Neurosci 2007; 30:284-91. [PMID: 17418904 DOI: 10.1016/j.tins.2007.03.012] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 03/14/2007] [Accepted: 03/30/2007] [Indexed: 12/21/2022]
Abstract
Learning and memory depend on persistent changes in synaptic strength that require neuronal gene expression. An unresolved question concerns the mechanisms by which activity at synapses is transduced into a nuclear transcriptional response. In the prevailing view, N-methyl-D-aspartate (NMDA)- and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors have distinct roles in controlling synaptic strength: AMPA receptors effect short-term changes in synaptic strength, whereas NMDA receptors regulate genes that are required for the long-term maintenance of these changes. Here, we review recent data on the roles of these two types of receptor in activity-dependent gene expression. We discuss evidence that signals from NMDA receptors and AMPA receptors are integrated to specify transcriptional responses for particular plasticity related genes.
Collapse
Affiliation(s)
- Vikram R Rao
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158, USA
| | | |
Collapse
|
161
|
Wu XS, Xue L, Mohan R, Paradiso K, Gillis KD, Wu LG. The origin of quantal size variation: vesicular glutamate concentration plays a significant role. J Neurosci 2007; 27:3046-56. [PMID: 17360928 PMCID: PMC6672571 DOI: 10.1523/jneurosci.4415-06.2007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fusion of a single vesicle induces a quantal response, which is critical in determining synaptic strength. Quantal size varies at most synapses. Its underlying mechanisms are not well understood. Here, we examined five sources of variation: vesicular glutamate concentration ([Glu]v), vesicle volume, ultrafast fusion pore closure, the postsynaptic receptor, and the location between release and the postsynaptic receptor cluster at glutamatergic, calyx of Held synapses. By averaging 2.66 million fusion events from 459 synapses, we resolved the capacitance jump evoked by single vesicle fusion. This capacitance jump, an indicator of vesicle volume, was independent of the amplitude of the miniature EPSC (mEPSC) recorded simultaneously at the same synapses. Thus, vesicle volume is not the main source of mEPSC variation. The capacitance jump was not followed by submillisecond endocytosis, excluding ultrafast endocytosis as a source of variation. Larger mEPSCs were increased to a lesser extent by presynaptic glutamate dialysis, and reduced to a lesser extent by gamma-DGG (gamma-D-glutamylglycine), a competitive AMPA receptor blocker, suggesting that a higher glutamate concentration in the synaptic cleft contributes to the large size of mEPSCs. Larger mEPSCs were not accompanied by briefer rise times, inconsistent with the prediction by, and thus arguing against, the scenario that larger mEPSCs are caused by a shorter distance between the release site and the postsynaptic receptor cluster. In summary, the different amplitudes of mEPSCs were mainly attributable to release of vesicles having similar volumes, but different glutamate amounts, suggesting that [Glu]v is a main source of quantal size variation.
Collapse
Affiliation(s)
- Xin-Sheng Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, and
| | - Lei Xue
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, and
| | - Raja Mohan
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, and
| | - Kenneth Paradiso
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, and
| | - Kevin D. Gillis
- Dalton Cardiovascular Research Center, University of Missouri–Columbia Research Park, Columbia, Missouri 65211
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, and
| |
Collapse
|
162
|
Glitsch MD. Spontaneous neurotransmitter release and Ca2+--how spontaneous is spontaneous neurotransmitter release? Cell Calcium 2007; 43:9-15. [PMID: 17382386 DOI: 10.1016/j.ceca.2007.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Indexed: 11/15/2022]
Abstract
Neurotransmitter release from neurons takes place at specialized structures called synapses. Action potential-evoked exocytosis requires Ca(2+) influx through voltage-gated Ca(2+) channels. Spontaneous vesicle fusion occurs both in the absence of action potentials and without any apparent stimulus and is hence thought to be Ca(2+)-independent. However, increasing evidence shows that this form of neurotransmitter discharge can be modulated by changes in intracellular Ca(2+) concentration, suggesting that it is not truly spontaneous. This idea is supported by the fact that spontaneous release can be modulated by interfering with proteins involved in the exocytotic process. Interestingly, modulation of spontaneous discharge at the level of the release machinery is not always accompanied by corresponding modulation of action potential-evoked release, suggesting that two independent processes may underlie spontaneous and action potential-evoked exocytosis, at least at some synapses. This provides an attractive model whereby cells can modulate the two forms of neurotransmitter liberation, which often serve different physiological roles, independently of each other.
Collapse
Affiliation(s)
- Maike D Glitsch
- University of Oxford, Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford OX1 3PT, United Kingdom.
| |
Collapse
|
163
|
Beaumont V, Thompson SA, Choudhry F, Nuthall H, Glantschnig H, Lipfert L, David GR, Swain CJ, McAllister G, Munoz-Sanjuan I. Evidence for an enhancement of excitatory transmission in adult CNS by Wnt signaling pathway modulation. Mol Cell Neurosci 2007; 35:513-24. [PMID: 17588772 DOI: 10.1016/j.mcn.2007.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Revised: 01/31/2007] [Accepted: 03/07/2007] [Indexed: 11/27/2022] Open
Abstract
The role for Wnt signaling modulation during synaptogenesis, neurogenesis and cell fate specification have been well characterized. In contrast, the roles for Wnt signaling pathways in the regulation of synaptic plasticity and adult physiology are only starting to be elucidated. Here, we have identified a novel series of Wnt pathway small molecule modulators, and report that these and other small molecules targeting the Wnt pathway acutely enhance excitatory transmission in adult hippocampal preparations. Our findings are consistent with a pre- and postsynaptic site of action, leading to both increased spontaneous and evoked neurotransmission that occurs in a transcription-independent fashion.
Collapse
Affiliation(s)
- Vahri Beaumont
- The Neuroscience Research Centre, Merck Sharp and Dohme, Terlings Park, Harlow Essex CM20 2QR, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Huang Y, Kang BN, Tian J, Liu Y, Luo HR, Hester L, Snyder SH. The cationic amino acid transporters CAT1 and CAT3 mediate NMDA receptor activation-dependent changes in elaboration of neuronal processes via the mammalian target of rapamycin mTOR pathway. J Neurosci 2007; 27:449-58. [PMID: 17234578 PMCID: PMC6672784 DOI: 10.1523/jneurosci.4489-06.2007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal activity influences protein synthesis and neuronal growth. Availability of nutrients, especially leucine and arginine, regulates the mammalian target of rapamycin (mTOR) pathway that controls cell growth. We show that NMDA receptor activation markedly reduces arginine transport by decreasing surface expression of the cationic amino acid transporters (CAT) 1 and 3. Depletion of CAT1 and CAT3 by RNA interference blocks influences of NMDA receptor activation on the mTOR pathway and neuronal process formation. Thus, the CATs mediate influences of NMDA receptor activation on the mTOR pathway that regulates neuronal processes.
Collapse
Affiliation(s)
- Yunfei Huang
- The Solomon H. Snyder Department of Neuroscience and
| | - Bingnan N. Kang
- The Solomon H. Snyder Department of Neuroscience and
- Departments of Pharmacology and Molecular Sciences and
| | - Jing Tian
- The Solomon H. Snyder Department of Neuroscience and
| | - Yi Liu
- The Solomon H. Snyder Department of Neuroscience and
| | - Hongbo R. Luo
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | - Lynda Hester
- The Solomon H. Snyder Department of Neuroscience and
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience and
- Departments of Pharmacology and Molecular Sciences and
- Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, and
| |
Collapse
|
165
|
Rabinowitch I, Segev I. The endurance and selectivity of spatial patterns of long-term potentiation/depression in dendrites under homeostatic synaptic plasticity. J Neurosci 2007; 26:13474-84. [PMID: 17192430 PMCID: PMC6674716 DOI: 10.1523/jneurosci.4333-06.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated analytically and numerically the interplay between two opposing forms of synaptic plasticity: positive-feedback, long-term potentiation/depression (LTP/LTD), and negative-feedback, homeostatic synaptic plasticity (HSP). A detailed model of a CA1 pyramidal neuron, with numerous HSP-modifiable dendritic synapses, demonstrates that HSP may have an important role in selecting which spatial patterns of LTP/LTD are to last. Several measures are developed for predicting the net residual potentiation/depression after HSP from the initial spatial pattern of LTP/LTD. Under a local dendritic HSP mechanism, sparse patterns of LTP/LTD, which we show, using information theoretical tools, to have a significant impact on the output of the postsynaptic neuron, will persist. In contrast, spatially clustered patterns with a smaller impact on the output will diminish. A global somatic HSP mechanism, conversely, will favor distally occurring LTP/LTDs over proximal ones. Despite the negative-feedback nature of HSP, under both local and global HSP, numerous synaptic potentiations/depressions can persist. These experimentally testable results imply that HSP could be significantly involved in shaping the spatial distribution of synaptic weights in the dendrites and not just normalizing it, as is currently believed.
Collapse
Affiliation(s)
- Ithai Rabinowitch
- Interdisciplinary Center for Neural Computation and the Department of Neurobiology, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Idan Segev
- Interdisciplinary Center for Neural Computation and the Department of Neurobiology, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| |
Collapse
|
166
|
Thiagarajan TC, Lindskog M, Malgaroli A, Tsien RW. LTP and adaptation to inactivity: Overlapping mechanisms and implications for metaplasticity. Neuropharmacology 2007; 52:156-75. [PMID: 16949624 DOI: 10.1016/j.neuropharm.2006.07.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 07/20/2006] [Accepted: 07/21/2006] [Indexed: 11/16/2022]
Abstract
LTP and other rapidly induced forms of synaptic modification tune individual synaptic weights, whereas slower forms of plasticity such as adaptation to inactivity are thought to keep neurons within their firing limits and preserve their capability for information processing. Here we describe progress in understanding the relationship between LTP and adaptation to inactivity. A prevailing view is that adaptation to inactivity is purely postsynaptic, scales synaptic strength uniformly across all synapses, and thus preserves relative synaptic weights without interfering with signatures of prior LTP or the relative capacity for future LTP. However, recent evidence in hippocampal neurons indicates that, like LTP, adaptation to AMPA receptor blockade can draw upon a repertoire of synaptic expression mechanisms including enhancement of presynaptic vesicular turnover and increased quantal amplitude mediated by recruitment of homomeric GluR1 AMPA receptors. These pre- and postsynaptic changes appeared coordinated and preferentially expressed at subset of synapses, thereby increasing the variability of miniature EPSCs. In contrast to the NMDA receptor-, Ca2+ entry-dependent induction of LTP, adaptation to inactivity may be mediated by attenuation of voltage-sensitive L-type Ca2+ channel function. The associated intracellular signaling involves elevation of betaCaMKII, which in turn downregulates alphaCaMKII, a key player in LTP. Thus, adaptation to inactivity and LTP are not strictly independent with regard to mechanisms of signaling and expression. Indeed, we and others have found that responses to LTP-inducing stimuli can be sharply altered by prior inactivity, suggesting that the slow adaptation changes the rules of plasticity-an interesting example of "metaplasticity".
Collapse
Affiliation(s)
- Tara C Thiagarajan
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, B105 Beckman Center, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
167
|
Chen WS, Bear MF. Activity-dependent regulation of NR2B translation contributes to metaplasticity in mouse visual cortex. Neuropharmacology 2007; 52:200-14. [PMID: 16895734 DOI: 10.1016/j.neuropharm.2006.07.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 06/30/2006] [Accepted: 07/03/2006] [Indexed: 11/28/2022]
Abstract
Visual experience and deprivation bidirectionally modify the NR2A and NR2B subunit composition of NMDARs, and these changes in turn modify the properties of synaptic plasticity in the visual cortex. Deprivation-induced lowering of the NR2A/2B ratio can occur by altering either NR2A or NR2B protein levels, but how a reduction in synaptic activity regulates these changes in a subunit-specific manner is poorly understood. Here, we find that visual deprivation in juvenile mice by dark-rearing or monocular lid suture reduces the NR2A/2B ratio in the deprived cortex in temporally distinct phases--initially by increasing NR2B protein levels, and later by decreasing NR2A protein levels. Brief dark-exposure of juvenile rats likewise produces an increase in NR2B expression. Furthermore, we are able to model the early increase in NR2B by blocking NMDARs in vitro, and we find that translation of NR2B is likely a major point of regulation. Translation of NR2A is not regulated in this manner. Therefore, the differential translational regulation of NR2A and NR2B may contribute to experience-dependent modification of NMDAR subunit composition.
Collapse
Affiliation(s)
- Wendy S Chen
- Department of Neuroscience, Brown University, Box 1953, Providence, RI 02912, USA
| | | |
Collapse
|
168
|
Abstract
Neuronal motility is a fundamental feature that underlies the development, regeneration, and plasticity of the nervous system. Two major developmental events--directed migration of neuronal precursor cells to the proper positions and guided elongation of axons to their target cells--depend on large-scale neuronal motility. At a finer scale, motility is also manifested in many aspects of neuronal structures and functions, ranging from differentiation and refinement of axonal and dendritic morphology during development to synapse remodeling associated with learning and memory in the adult brain. As a primary second messenger that conveys the cytoplasmic actions of electrical activity and many neuroactive ligands, Ca(2+) plays a central role in the regulation of neuronal motility. Recent studies have revealed common Ca(2+)-dependent signaling pathways that are deployed for regulating cytoskeletal dynamics associated with neuronal migration, axon and dendrite development and regeneration, and synaptic plasticity.
Collapse
Affiliation(s)
- James Q Zheng
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
169
|
Frank CA, Kennedy MJ, Goold CP, Marek KW, Davis GW. Mechanisms underlying the rapid induction and sustained expression of synaptic homeostasis. Neuron 2006; 52:663-77. [PMID: 17114050 PMCID: PMC2673733 DOI: 10.1016/j.neuron.2006.09.029] [Citation(s) in RCA: 306] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/27/2006] [Accepted: 09/14/2006] [Indexed: 11/22/2022]
Abstract
Homeostatic signaling systems are thought to interface with the mechanisms of neural plasticity to achieve stable yet flexible neural circuitry. However, the time course, molecular design, and implementation of homeostatic signaling remain poorly defined. Here we demonstrate that a homeostatic increase in presynaptic neurotransmitter release can be induced within minutes following postsynaptic glutamate receptor blockade. The rapid induction of synaptic homeostasis is independent of new protein synthesis and does not require evoked neurotransmission, indicating that a change in the efficacy of spontaneous quantal release events is sufficient to trigger the induction of synaptic homeostasis. Finally, both the rapid induction and the sustained expression of synaptic homeostasis are blocked by mutations that disrupt the pore-forming subunit of the presynaptic Ca(V)2.1 calcium channel encoded by cacophony. These data confirm the presynaptic expression of synaptic homeostasis and implicate presynaptic Ca(V)2.1 in a homeostatic retrograde signaling system.
Collapse
Affiliation(s)
- C Andrew Frank
- Department of Biochemistry and Biophysics, Neuroscience Program, University of California, San Francisco, 1550 4th Street, Rock Hall 4th Floor North, San Francisco, California 94158, USA
| | | | | | | | | |
Collapse
|
170
|
Lu Y, Harris JA, Rubel EW. Development of spontaneous miniature EPSCs in mouse AVCN neurons during a critical period of afferent-dependent neuron survival. J Neurophysiol 2006; 97:635-46. [PMID: 17079338 PMCID: PMC1774585 DOI: 10.1152/jn.00915.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During a critical period prior to hearing onset, cochlea ablation leads to massive neuronal death in the mouse anteroventral cochlear nucleus (AVCN), where cell survival is believed to depend on glutamatergic input. We investigated the development of spontaneous miniature excitatory postsynaptic currents (mEPSCs) in AVCN neurons using whole cell patch-clamp techniques during [postnatal day 7 (P7)] and after (P14, P21) this critical period. We also examined the effects of unilateral cochlea ablation on mEPSC development. The two main AVCN neuron types, bushy and stellate cells, were distinguished electrophysiologically. Bushy cell mEPSCs became more frequent and faster between P7 and P14/P21 but with little change in amplitude. Dendritic filtering of mEPSCs was not detected as indicated by the lack of correlation between 10 and 90% rise times and decay time constants. Seven days after cochlea ablation at P7 or P14, mEPSCs in surviving bushy cells were similar to controls, except that rise and decay times were positively correlated (R = 0.31 and 0.14 for surgery at P7 and P14, respectively). Consistent with this evidence for a shift of synaptic activity from the somata to the dendrites, SV2 staining (a synaptic vesicle marker) forms a ring around somata of control but not experimental bushy cells. In contrast, mEPSCs of stellate cells showed few significant changes over these ages with or without cochlea ablation. Taken together, mEPSCs in mouse AVCN bushy cells show dramatic developmental changes across this critical period, and cochlea ablation may lead to the emergence of excitatory synaptic inputs impinging on bushy cell dendrites.
Collapse
Affiliation(s)
| | | | - Edwin W Rubel
- *Correspondence to: EWR at the above address: Telephone: 206-543-8360, Facsimile: 206-221-5685, E-mail:
| |
Collapse
|
171
|
de Kock CPJ, Cornelisse LN, Burnashev N, Lodder JC, Timmerman AJ, Couey JJ, Mansvelder HD, Brussaard AB. NMDA receptors trigger neurosecretion of 5-HT within dorsal raphe nucleus of the rat in the absence of action potential firing. J Physiol 2006; 577:891-905. [PMID: 17053037 PMCID: PMC1890386 DOI: 10.1113/jphysiol.2006.115311] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Activity and calcium-dependent release of neurotransmitters from the somatodendritic compartment is an important signalling mechanism between neurones throughout the brain. NMDA receptors and vesicles filled with neurotransmitters occur in close proximity in many brain areas. It is unknown whether calcium influx through these receptors can trigger the release of somatodendritic vesicles directly, or whether postsynaptic action potential firing is necessary for release of these vesicles. Here we addressed this question by studying local release of serotonin (5-HT) from dorsal raphé nucleus (DRN) neurones. We performed capacitance measurements to monitor the secretion of vesicles in giant soma patches, in response to short depolarizations and action potential waveforms. Amperometric measurements confirmed that secreted vesicles contained 5-HT. Surprisingly, two-photon imaging of DRN neurones in slices revealed that dendritic calcium concentration changes in response to somatic firing were restricted to proximal dendritic areas. This implied that alternative calcium entry pathways may dominate the induction of vesicle secretion from distal dendrites. In line with this, transient NMDA receptor activation, in the absence of action potential firing, was sufficient to induce capacitance changes. By monitoring GABAergic transmission onto DRN 5-HT neurones in slices, we show that endogenous NMDA receptor activation, in the absence of postsynaptic firing, induced release of 5-HT, which in turn increased the frequency of GABAergic inputs through activation of 5-HT(2) receptors. We propose here that calcium influx through NMDA receptors can directly induce postsynaptic 5-HT release from DRN neurones, which in turn may facilitate GABAergic input onto these cells.
Collapse
Affiliation(s)
- C P J de Kock
- Department of Experimental Neurophysiology, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Abstract
Considerable evidence suggests that the formation of long-term memories requires a critical period of new protein synthesis. Recently, the notion that some of these newly synthesized proteins originate through local translation in neuronal dendrites has gained some traction. Here, we review the experimental support for this idea and highlight some of the key questions outstanding in this area.
Collapse
Affiliation(s)
- Michael A Sutton
- Division of Biology 114-96, California Institute of Technology, Howard Hughes Medical Institute, Pasadena, CA 91125, USA
| | | |
Collapse
|
173
|
|
174
|
Wang KH, Majewska A, Schummers J, Farley B, Hu C, Sur M, Tonegawa S. In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex. Cell 2006; 126:389-402. [PMID: 16873068 DOI: 10.1016/j.cell.2006.06.038] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 01/16/2006] [Accepted: 06/05/2006] [Indexed: 11/16/2022]
Abstract
Cortical representations of visual information are modified by an animal's visual experience. To investigate the mechanisms in mice, we replaced the coding part of the neural activity-regulated immediate early gene Arc with a GFP gene and repeatedly monitored visual experience-induced GFP expression in adult primary visual cortex by in vivo two-photon microscopy. In Arc-positive GFP heterozygous mice, the pattern of GFP-positive cells exhibited orientation specificity. Daily presentations of the same stimulus led to the reactivation of a progressively smaller population with greater reactivation reliability. This adaptation process was not affected by the lack of Arc in GFP homozygous mice. However, the number of GFP-positive cells with low orientation specificity was greater, and the average spike tuning curve was broader in the adult homozygous compared to heterozygous or wild-type mice. These results suggest a physiological function of Arc in enhancing the overall orientation specificity of visual cortical neurons during the post-eye-opening life of an animal.
Collapse
Affiliation(s)
- Kuan Hong Wang
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
175
|
Nelson ED, Kavalali ET, Monteggia LM. MeCP2-dependent transcriptional repression regulates excitatory neurotransmission. Curr Biol 2006; 16:710-6. [PMID: 16581518 DOI: 10.1016/j.cub.2006.02.062] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 01/30/2006] [Accepted: 02/16/2006] [Indexed: 11/18/2022]
Abstract
Mutations in the transcriptional repressor, methyl-CpG binding protein 2 (MeCP2), result in a neurodevelopmental disorder called Rett Syndrome (RTT) . Based on the neurological phenotypes observed in Rett patients, we examined the potential role of MeCP2 in synaptic function. We compared elementary properties of synaptic transmission between cultured hippocampal neurons from MeCP2 knockout and wild-type littermate control mice and found a decrease in the frequency of spontaneous excitatory synaptic transmission (mEPSCs) in neurons lacking MeCP2. We also detected a significant increase in the rate of short-term synaptic depression. To explore whether these functional effects can be attributed to MeCP2's role as a transcriptional silencer, we treated cultures with a drug that impairs histone deacetylation and examined spontaneous synaptic transmission. Treatment with this compound induced a similar decrease in mEPSC frequency in wild-type control cultures, but this decrease was occluded in MeCP2-deficient neurons. Interestingly, neither the loss of MeCP2 nor the drug treatment resulted in changes in mIPSC properties. Finally, by means of a lentivirus expressing Cre recombinase, we show that loss of MeCP2 function after neurodevelopment and synaptogenesis was sufficient to mimic the decrease in mEPSC frequency seen in constitutive MeCP2 KO neurons. Taken together, these results suggest a role for MeCP2 in control of excitatory presynaptic function through regulation of gene expression.
Collapse
Affiliation(s)
- Erika D Nelson
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | | | | |
Collapse
|
176
|
Abstract
It is now widely accepted that mRNAs localize to dendrites and that translation of these mRNAs is regulated in response to neuronal activity. Recent studies have begun to reveal the underpinnings of these processes and to underscore the importance of local protein synthesis to synaptic remodeling and plasticity. When Steward and Levy (1982) first reported their observation of polyribosomes at the base of spines, the prevailing view was that all proteins were synthesized in the cell body and then transported to distal compartments of neurons. Steward and Levy's discovery, however, raised the intriguing possibility that mRNAs could be transported to synapses and locally translated in response to synaptic stimulation. This provided an elegant mechanism for spatially restricting gene expression within the neuron, such that individual synapses could independently regulate their morphology and efficacy, in a persistent, protein synthesis-dependent manner, in response to specific stimuli. It is now widely accepted that mRNAs do localize to dendrites and that translation of these mRNAs contributes to synaptic plasticity. As is evident from the collection of Mini-Reviews on dendritic protein synthesis in this issue of The Journal of Neuroscience, the field has evolved to focus on a series of key questions, including the following: (1) what mRNAs are present in dendrites? (2) How are these mRNAs transported from the nucleus into the dendrite? (3) How is translation of these mRNAs regulated by neuronal activity? and (4) What is the function of local translation of specific transcripts? In this brief introductory overview, we will consider each of these questions in turn.
Collapse
|
177
|
Abstract
The selective localization of protein synthetic machinery at postsynaptic sites makes it possible for the synthesis of particular proteins to be regulated by synaptic signals. Here we consider how the structure of the machinery constrains synthetic capacity and the evidence that mRNA translation is locally controlled by synaptic signals. Since the discovery of protein synthetic machinery at synaptic sites on dendrites (Steward and Levy, 1982), substantial progress has been made in identifying dendritic mRNAs and in showing that dendritic protein synthesis is critical for persistent synaptic modifications like long-term potentiation (LTP) and long-term depression (LTD). Although many pieces of the puzzle have been identified, major questions remain. Here we focus on one of the unknowns: how translational activity at synapses is regulated and whether regulation involves upregulation or downregulation of overall translation or differential regulation of the translation of particular transcripts. It is useful to begin by considering constraints imposed by the nature of the protein synthetic machinery at synapses.
Collapse
|
178
|
Sutton MA, Ito HT, Cressy P, Kempf C, Woo JC, Schuman EM. Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell 2006; 125:785-99. [PMID: 16713568 DOI: 10.1016/j.cell.2006.03.040] [Citation(s) in RCA: 501] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2005] [Revised: 01/06/2006] [Accepted: 03/13/2006] [Indexed: 10/24/2022]
Abstract
Activity deprivation in neurons induces a slow compensatory scaling up of synaptic strength, reflecting a homeostatic mechanism for stabilizing neuronal activity. Prior studies have focused on the loss of action potential (AP) driven neurotransmission in synaptic homeostasis. Here, we show that the miniature synaptic transmission that persists during AP blockade profoundly shapes the time course and mechanism of homeostatic scaling. A brief blockade of NMDA receptor (NMDAR) mediated miniature synaptic events ("minis") rapidly scales up synaptic strength, over an order of magnitude faster than with AP blockade alone. The rapid scaling induced by NMDAR mini blockade is mediated by increased synaptic expression of surface GluR1 and the transient incorporation of Ca2+-permeable AMPA receptors at synapses; both of these changes are implemented locally within dendrites and require dendritic protein synthesis. These results indicate that NMDAR signaling during miniature synaptic transmission serves to stabilize synaptic function through active suppression of dendritic protein synthesis.
Collapse
Affiliation(s)
- Michael A Sutton
- Division of Biology 114-96, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | |
Collapse
|
179
|
Fishbein I, Segal M. Miniature synaptic currents become neurotoxic to chronically silenced neurons. Cereb Cortex 2006; 17:1292-306. [PMID: 16835294 DOI: 10.1093/cercor/bhl037] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
When deprived of spontaneous ongoing network activity by chronic exposure to tetrodotoxin (TTX), cultured cortical neurons retract their dendrites, lose dendritic spines, and degenerate over a period of 1-2 weeks. Electrophysiological properties of these slowly degenerating neurons prior to their death are normal, but they express very large miniature excitatory postsynaptic currents (mEPSCs). Chronic blockade of these mEPSCs by the alpha-amino-5-hydroxy-3-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist 6,7-Dinitroquinoxaline-2,3-dione (DNQX) had no effect of its own on cell survival, yet, paradoxically, it protected the TTX-silenced neurons from degenerating. TTX-treated neurons also exhibited deficient Ca(2+) clearance mechanisms. Thus, upscaled mEPSCs are sufficient to trigger apoptotic processes in otherwise chronically silenced neurons.
Collapse
Affiliation(s)
- Ianai Fishbein
- Department of Neurobiology, The Weizmann Institute, Rehovot 76100, Israel
| | | |
Collapse
|
180
|
Abstract
All cells must make ribosomes, in which rRNA transcription is the rate-limiting step; however, some cells may require more ribosomes than others. Cell-type specific regulation of rRNA synthesis has been largely ignored in the past, because of the inability to measure rRNA transcription rate in situ. Here we map rRNA transcription activity in individual cells in mouse ocular tissues detected by a novel in situ hybridization technique, which detects the full-length transcripts (47S pre-rRNA) as well as various rRNA processing intermediates. In the adult mouse eye, the corneal and lens epithelia and some retinal neurons contain a higher level of 47S pre-rRNA and rRNA processing intermediates, which are regulated developmentally in neonates prior to eye opening. In the cornea and lens epithelia, the higher rRNA level of 47S rRNA correlates with cell proliferation, which is consistent with the notion that dividing cells require more protein synthesis. Interestingly, in some retinal neurons, the high level of 47S pre-rRNA does not correlate with mature rRNA accumulation or protein synthesis, suggesting the existence of unappreciated biochemical needs of these cells.
Collapse
Affiliation(s)
- Jiangchao Qian
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
181
|
Rabinowitch I, Segev I. The Interplay Between Homeostatic Synaptic Plasticity and Functional Dendritic Compartments. J Neurophysiol 2006; 96:276-83. [PMID: 16554518 DOI: 10.1152/jn.00074.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Homeostatic synaptic plasticity (HSP) is an important mechanism attributed with the slow regulation of the neuron's activity. Whenever activity is chronically enhanced, HSP weakens the weights of the synapses in the dendrites and vice versa. Because dendritic morphology and its electrical properties partition the dendritic tree into functional compartments, we set out to explore the interplay between HSP and dendritic compartmentalization. For this purpose, we used a detailed model of a CA1 pyramidal neuron receiving a large number of activity-dependent plastic synapses and developed a novel approach for specifying functional dendritic subunits. We found that the degree of dendritic compartmentalization and the location-specificity of HSP are strongly tied. A local HSP mechanism, operating at the level of the individual synapse, will regard the neuron as a multiunit distributed system, each unit consisting of many synapses, and will thus support dendritic compartmentalization, whereas a global HSP mechanism, modifying all synapses in unison, will treat the neuron as a single centralized unit. Both local and global HSP can successfully counterbalance persistent, cell-wide perturbations of dendritic activity. The spatial distribution of synaptic weights throughout the dendrites will markedly differ under the local versus global HSP mechanisms. We suggest an experimental paradigm to unravel which type of HSP mechanism operates in the dendritic tree. The answer to this question will have important implications to our understanding of the functional organization of the neuron.
Collapse
Affiliation(s)
- Ithai Rabinowitch
- Interdisciplinary Center for Neural Computation and Department of Neurobiology, Institute for Life Sciences, Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
182
|
Glitsch M. Selective Inhibition of Spontaneous But Not Ca2+-Dependent Release Machinery by Presynaptic Group II mGluRs in Rat Cerebellar Slices. J Neurophysiol 2006; 96:86-96. [PMID: 16611839 DOI: 10.1152/jn.01282.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two main forms of neurotransmitter release are known: action potential-evoked and spontaneous release. Action potential-evoked release depends on Ca2+entry through voltage-gated Ca2+channels, whereas spontaneous release is thought to be Ca2+-independent. Generally, spontaneous and action potential-evoked release are believed to use the same release machinery to release neurotransmitter. This study shows, using the whole cell patch-clamp technique in rat cerebellar slices, that at the interneuron- Purkinje cell synapse activation of presynaptic group II metabotropic glutamate receptors suppresses spontaneous GABA release through a mechanism independent of voltage-gated Ca2+channels, store-operated Ca2+channels, and Ca2+release from intracellular Ca2+stores, suggesting that the metabotropic receptors target the release machinery directly. Voltage gated Ca2+channel-independent release following increased presynaptic cAMP production is similarly inhibited by these metabotropic receptors. In contrast, both voltage-gated Ca2+channel-dependent and presynaptic N-methyl-d-aspartate receptor-dependent GABA release were unaffected by activation of group II metabotropic glutamate receptors. Hence, the mechanisms underlying spontaneous and Ca2+-dependent GABA release are distinct in that only the former is blocked by group II metabotropic glutamate receptors. Thus the same neurotransmitter, glutamate, can activate or inhibit neurotransmitter release by selecting different receptors that target different release machineries.
Collapse
Affiliation(s)
- Maike Glitsch
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford OX1 3PT, UK.
| |
Collapse
|
183
|
Bassell GJ, Twiss JL. RNA exodus to Israel: RNA controlling function in the far reaches of the neuron. Workshop on RNA control on neuronal function. EMBO Rep 2006; 7:31-5. [PMID: 16391534 PMCID: PMC1369243 DOI: 10.1038/sj.embor.7400616] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 11/28/2005] [Indexed: 01/19/2023] Open
Affiliation(s)
- Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
184
|
Bausch SB, He S, Petrova Y, Wang XM, McNamara JO. Plasticity of both excitatory and inhibitory synapses is associated with seizures induced by removal of chronic blockade of activity in cultured hippocampus. J Neurophysiol 2006; 96:2151-67. [PMID: 16790597 DOI: 10.1152/jn.00355.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One factor common to many neurological insults that can lead to acquired epilepsy is a loss of afferent neuronal input. Neuronal activity is one cellular mechanism implicated in transducing deafferentation into epileptogenesis. Therefore the effects of chronic activity blockade on seizure susceptibility and its underlying mechanisms were examined in organotypic hippocampal slice cultures treated chronically with the sodium channel blocker, tetrodotoxin (TTX), or the N-methyl-D-aspartate receptor (NMDAR) antagonist, D-2-amino-5-phosphonovaleric acid (D-APV). Granule cell field potential recordings in physiological buffer revealed spontaneous electrographic seizures in 83% of TTX-, 9% of D-APV-, but 0% of vehicle-treated cultures. TTX-induced seizures were not associated with membrane property alterations that would elicit granule cell hyperexcitability. Seizures were blocked by glutamate receptor antagonists, suggesting that plasticity in excitatory synaptic circuits contributed to seizures. The morphology of granule cells and their mossy fiber axons remained largely unchanged, and the number of synapses onto granule cells measured immunohistochemically was not increased in TTX- or D-APV-treated cultures. However, voltage-clamp recordings revealed that miniature excitatory postsynaptic current frequency and kinetics were increased and miniature inhibitory postsynaptic current kinetics were decreased in D-APV- and TTX-treated cultures compared with vehicle. Changes were more profound and qualitatively different in TTX- compared with D-APV-treated cultures, consistent with the dramatic effects of TTX treatment on seizure expression. We propose that chronic blockade of action potentials by TTX induces homeostatic responses including plasticity of both excitatory and inhibitory synapses. Removal of TTX unmasks the impact of these synaptic plasticities on local circuit excitability, resulting in spontaneous seizures.
Collapse
Affiliation(s)
- Suzanne B Bausch
- Department of Pharmacology, Uniformed Services University, Bethesda, MD 20814-4799, USA.
| | | | | | | | | |
Collapse
|
185
|
Rao VR, Pintchovski SA, Chin J, Peebles CL, Mitra S, Finkbeiner S. AMPA receptors regulate transcription of the plasticity-related immediate-early gene Arc. Nat Neurosci 2006; 9:887-95. [PMID: 16732277 DOI: 10.1038/nn1708] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 04/26/2006] [Indexed: 12/23/2022]
Abstract
Learning and memory depend critically on long-term synaptic plasticity, which requires neuronal gene expression. In the prevailing view, AMPA receptors mediate fast excitatory synaptic transmission and effect short-term plasticity, but they do not directly regulate neuronal gene expression. By studying regulation of Arc, a gene required for long-term plasticity, we uncovered a new role for AMPA receptors in neuronal gene expression. Spontaneous synaptic activity or activity induced by brain-derived neurotrophic factor (BDNF) elicited Arc expression in cultures of rat cortical neurons and in organotypic brain slices. Notably, inhibiting AMPA receptors strongly potentiated activity-dependent Arc expression. We found that AMPA receptors negatively regulate Arc transcription, but not translation or stability, through a mechanism involving a pertussis toxin-sensitive G protein. These results provide insights into the activity-dependent mechanisms of Arc expression and suggest that, in addition to effecting short-term plasticity, AMPA receptors regulate genes involved in long-term plasticity.
Collapse
Affiliation(s)
- Vikram R Rao
- Gladstone Institute of Neurological Disease, University of California, San Francisco, California 94158, USA
| | | | | | | | | | | |
Collapse
|
186
|
Sons MS, Plomp JJ. Rab3A deletion selectively reduces spontaneous neurotransmitter release at the mouse neuromuscular synapse. Brain Res 2006; 1089:126-34. [PMID: 16631140 DOI: 10.1016/j.brainres.2006.03.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/15/2006] [Accepted: 03/16/2006] [Indexed: 11/15/2022]
Abstract
Rab3A is a synaptic vesicle-associated GTP-binding protein thought to be involved in modulation of presynaptic transmitter release through regulation of vesicle trafficking and membrane fusion. Electrophysiological studies at central nervous system synapses of Rab3A null-mutant mice have indicated that nerve stimulation-evoked transmitter release and its short- and long-term modulation are partly dependent on Rab3A, whereas spontaneous uniquantal release is completely independent of it. Here, we studied the acetylcholine (ACh) release at the neuromuscular junction (NMJ) of diaphragm and soleus muscles from Rab3A-deficient mice with intracellular microelectrode methods. Surprisingly, we found 20-40% reduction of spontaneous ACh release but completely intact nerve action potential-evoked release at both high- and low-rate stimulation and during recovery from intense release. The ACh release induced by hypertonic medium was also unchanged, indicating that the pool of vesicles for immediate release is unaltered at the Rab3A-deficient NMJ. These results indicate a selective role of Rab3A in spontaneous transmitter release at the NMJ which cannot or only partly be taken over by the closely related Rab3B, Rab3C, or Rab3D isoforms when Rab3A is deleted. It has been hypothesized that Rab3A mutation underlies human presynaptic myasthenic syndromes, in which severely reduced nerve action potential-evoked ACh release at the NMJ causes paralysis. Our observation that Rab3A deletion does not reduce evoked ACh release at any stimulation rate at the mouse NMJ, argues against this hypothesis.
Collapse
Affiliation(s)
- Michèle S Sons
- Department of Neurology-Group Neurophysiology, Leiden University Medical Centre, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | | |
Collapse
|
187
|
Gong R, Park CS, Abbassi NR, Tang SJ. Roles of glutamate receptors and the mammalian target of rapamycin (mTOR) signaling pathway in activity-dependent dendritic protein synthesis in hippocampal neurons. J Biol Chem 2006; 281:18802-15. [PMID: 16651266 DOI: 10.1074/jbc.m512524200] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Local protein synthesis in neuronal dendrites is critical for synaptic plasticity. However, the signaling cascades that couple synaptic activation to dendritic protein synthesis remain elusive. The purpose of this study is to determine the role of glutamate receptors and the mammalian target of rapamycin (mTOR) signaling in regulating dendritic protein synthesis in live neurons. We first characterized the involvement of various subtypes of glutamate receptors and the mTOR kinase in regulating dendritic synthesis of a green fluorescent protein (GFP) reporter controlled by alphaCaMKII 5' and 3' untranslated regions in cultured hippocampal neurons. Specific antagonists of N-methyl-d-aspartic acid (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and metabotropic glutamate receptors abolished glutamate-induced dendritic GFP synthesis, whereas agonists of NMDA and metabotropic but not AMPA glutamate receptors activated GFP synthesis in dendrites. Inhibitions of the mTOR signaling, as well as its upstream activators, phosphatidylinositol 3-kinase and AKT, blocked NMDA receptor-dependent dendritic GFP synthesis. Conversely, activation of mTOR signaling stimulated dendritic GFP synthesis. In addition, we also found that inhibition of the mTOR kinase blocked dendritic synthesis of the endogenous alphaCaMKII and MAP2 proteins induced by tetanic stimulations in hippocampal slices. These results identify critical roles of NMDA receptors and the mTOR signaling pathway for control of synaptic activity-induced dendritic protein synthesis in hippocampal neurons.
Collapse
Affiliation(s)
- Ruomu Gong
- Department of Neurobiology and Behavior, Center for Neurobiology of Learning and Memory, University of California, Irvine, California 92697-3800, USA
| | | | | | | |
Collapse
|
188
|
Fonseca R, Nägerl UV, Bonhoeffer T. Neuronal activity determines the protein synthesis dependence of long-term potentiation. Nat Neurosci 2006; 9:478-80. [PMID: 16531998 DOI: 10.1038/nn1667] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 02/17/2006] [Indexed: 11/09/2022]
Abstract
Long-term potentiation (LTP) is generally divided into two phases, early (E-) and late (L-) LTP, of which only L-LTP is thought to depend on protein synthesis. Here we report that E-LTP can also be dependent on protein synthesis at higher levels of synaptic activation. Moreover, we show that the requirement for protein synthesis during L-LTP extends beyond the early induction phase and that it depends on synaptic stimulation. This suggests that the level of neuronal activity is a crucial determinant for the role of protein synthesis in E- and L-LTP.
Collapse
Affiliation(s)
- Rosalina Fonseca
- Department of Cellular and Systems Neurobiology, Max Planck Institute of Neurobiology, Am Klopferspitz 18, D-82152 München-Martinsried, Germany
| | | | | |
Collapse
|
189
|
Liu Q, Chen B, Yankova M, Morest DK, Maryon E, Hand AR, Nonet ML, Wang ZW. Presynaptic ryanodine receptors are required for normal quantal size at the Caenorhabditis elegans neuromuscular junction. J Neurosci 2006; 25:6745-54. [PMID: 16033884 PMCID: PMC6725355 DOI: 10.1523/jneurosci.1730-05.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Analyses of the effect of ryanodine in vertebrate brain slices have led to the conclusion that presynaptic ryanodine receptors (RYRs) may have several functions in synaptic release, including causing large-amplitude miniature postsynaptic currents (mPSCs) by promoting concerted multivesicular release. However, the role of RYRs in synaptic release is controversial. To better understand the role of RYRs in synaptic release, we analyzed the effect of RYR mutation on mPSCs and evoked postsynaptic currents (ePSCs) at the Caenorhabditis elegans neuromuscular junction (NMJ). Amplitudes of mPSCs varied greatly at the C. elegans NMJ. Loss-of-function mutations of the RYR gene unc-68 (uncoordinated 68) essentially abolished large-amplitude mPSCs. The amplitude of ePSCs was also greatly suppressed. These defects were completely rescued by expressing wild-type UNC-68 specifically in neurons but not in muscle cells, suggesting that RYRs acted presynaptically. A combination of removing extracellular Ca2+ and UNC-68 function eliminated mPSCs, suggesting that influx and RYR-mediated release are likely the exclusive sources of Ca2+ for synaptic release. Large-amplitude mPSCs did not appear to be caused by multivesicular release, as has been suggested to occur at vertebrate central synapses, because the rise time of mPSCs was constant regardless of the amplitude but distinctive from that of ePSCs, and because large-amplitude mPSCs persisted under conditions that inhibit synchronized synaptic release, including elimination of extracellular Ca2+, and mutations of syntaxin and SNAP25 (soluble N-ethylmaleimide-sensitive factor attachment protein 25). These observations suggest that RYRs are essential to normal quantal size and are potential regulators of quantal size.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Abstract
A workshop entitled "RNA Control of Neuronal Function" was recently held in Kfar Blum, Israel. The main topics discussed at the meeting included neuronal RNA targeting mechanisms and the contributing codes and components, translational control mechanisms in dendrites and axons, and the relevance of these mechanisms for neuronal development, plasticity, and dysfunction.
Collapse
Affiliation(s)
- Henri Tiedge
- SUNY Health Science Center Brooklyn, Department of Physiology and Pharmacology, Department of Neurology, 450 Clarkson Avenue, Brooklyn, New York 11203, USA.
| |
Collapse
|
191
|
Ghatpande AS, Sivaraaman K, Vijayaraghavan S. Store calcium mediates cholinergic effects on mIPSCs in the rat main olfactory bulb. J Neurophysiol 2005; 95:1345-55. [PMID: 16319214 DOI: 10.1152/jn.00757.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The significance of endoplasmic reticulum (ER) store calcium in modulating transmitter release is slowly gaining recognition. One transmitter system that might play an important role in store calcium modulation of transmitter release in the CNS is acetylcholine (ACh). The main olfactory bulb (OB) receives rich cholinergic innervation from the horizontal limb of the diagonal band of Broca and blocking cholinergic signaling in the bulb inhibits the ability of animals to discriminate between closely related odors. Here we show that exposing OB slices to carbamylcholine (CCh), a hydrolysis-resistant analog of Ach, increases gamma-aminobutyric acid (GABA) release at dendrodendritic synapses onto the mitral cells. This increase in transmitter release is mediated by the activation of the M1 class of muscarinic receptors and requires the mobilization of calcium from the ER. The site of action of CCh for this effect is developmentally regulated. In animals younger than postnatal day 10, the major action of CCh appears to be on mitral cells, enhancing GABA release by reciprocal signaling resulting from increased glutamate release from mitral cells. In animals older than postnatal day 10, CCh appears to modulate transmitter release from dendrites of the interneurons themselves. Our results point to modulation of inhibition as an important role for cholinergic signaling in the OB. Our data also strengthen the emerging idea of a role for store calcium in modulating transmitter release at CNS synapses.
Collapse
Affiliation(s)
- Ambarish S Ghatpande
- Department of Physiology and Biophysics, UCHSC at Fitzsimons, Mail Stop 8307, PO Box 6511, Aurora CO 80045, USA
| | | | | |
Collapse
|
192
|
Redmond L, Ghosh A. Regulation of dendritic development by calcium signaling. Cell Calcium 2005; 37:411-6. [PMID: 15820388 DOI: 10.1016/j.ceca.2005.01.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Accepted: 01/06/2005] [Indexed: 01/19/2023]
Abstract
Neuronal activity can have profound effects on dendrite morphology in the developing brain. The effects of neuronal activity on dendritic morphology are mediated by calcium signaling. While many effects of calcium on dendrite structure occur locally at the site of calcium entry into the cytoplasmic milieu, elevation of cytoplasmic calcium is also translated into changes in gene transcription. Decoding the calcium signal into specific changes in gene transcription involve coordinating the action of a number of kinases, phosphatases, transcription factors and transcriptional coactivators. This review focuses on the contribution of calcium-dependent transcription on the control of dendritic morphology.
Collapse
Affiliation(s)
- Lori Redmond
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912, USA.
| | | |
Collapse
|
193
|
Thiagarajan TC, Lindskog M, Tsien RW. Adaptation to synaptic inactivity in hippocampal neurons. Neuron 2005; 47:725-37. [PMID: 16129401 DOI: 10.1016/j.neuron.2005.06.037] [Citation(s) in RCA: 392] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 06/17/2005] [Accepted: 06/28/2005] [Indexed: 11/16/2022]
Abstract
In response to activity deprivation, CNS neurons undergo slow adaptive modification of unitary synaptic transmission. The changes are comparable in degree to those induced by brief intense stimulation, but their molecular basis is largely unknown. Our data indicate that prolonged AMPAR blockade acts through loss of Ca2+ entry through L-type Ca2+ channels to bring about an increase in both vesicle pool size and turnover rate, as well as a postsynaptic enhancement of the contribution of GluR1 homomers, concentrated at the largest synapses. The changes were consistent with a morphological scaling of overall synapse size, but also featured a dramatic shift toward synaptic drive contributed by the Ca2+-permeable homomeric GluR1 receptors. These results extend beyond "synaptic homeostasis" to involve more profound changes that can be better described as "metaplasticity".
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/physiology
- Animals
- Blotting, Western
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cells, Cultured
- Electrophysiology
- Excitatory Postsynaptic Potentials/physiology
- Hippocampus/cytology
- Hippocampus/drug effects
- Hippocampus/physiology
- Homeostasis/drug effects
- Homeostasis/physiology
- Immunohistochemistry
- Neuronal Plasticity/physiology
- Neurons/drug effects
- Neurons/physiology
- Patch-Clamp Techniques
- Polyamines/pharmacology
- Pyramidal Cells/drug effects
- Pyramidal Cells/physiology
- Rats
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/metabolism
- Receptors, Presynaptic/drug effects
- Receptors, Presynaptic/physiology
- Synapses/drug effects
- Synapses/physiology
- Transfection
Collapse
Affiliation(s)
- Tara C Thiagarajan
- Department of Molecular and Cellular Physiology, Beckman Center, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
194
|
Costantin L, Bozzi Y, Richichi C, Viegi A, Antonucci F, Funicello M, Gobbi M, Mennini T, Rossetto O, Montecucco C, Maffei L, Vezzani A, Caleo M. Antiepileptic effects of botulinum neurotoxin E. J Neurosci 2005; 25:1943-51. [PMID: 15728834 PMCID: PMC6726074 DOI: 10.1523/jneurosci.4402-04.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Experimental studies suggest that the delivery of antiepileptic agents into the seizure focus might be of potential utility for the treatment of focal-onset epilepsies. Botulinum neurotoxin E (BoNT/E) causes a prolonged inhibition of neurotransmitter release after its specific cleavage of the synaptic protein synaptosomal-associated protein of 25 kDa (SNAP-25). Here, we show that BoNT/E injected into the rat hippocampus inhibits glutamate release and blocks spike activity of pyramidal neurons. BoNT/E effects persist for at least 3 weeks, as determined by immunodetection of cleaved SNAP-25 and loss of intact SNAP-25. The delivery of BoNT/E to the rat hippocampus dramatically reduces both focal and generalized kainic acid-induced seizures as documented by behavioral and electrographic analysis. BoNT/E treatment also prevents neuronal loss and long-term cognitive deficits associated with kainic acid seizures. Moreover, BoNT/E-injected rats require 50% more electrical stimulations to reach stage 5 of kindling, thus indicating a delayed epileptogenesis. We conclude that BoNT/E delivery to the hippocampus is both antiictal and antiepileptogenic in experimental models of epilepsy.
Collapse
MESH Headings
- Animals
- Anticonvulsants/administration & dosage
- Anticonvulsants/therapeutic use
- Botulinum Toxins/administration & dosage
- Botulinum Toxins/therapeutic use
- Cell Death/drug effects
- Cognition Disorders/etiology
- Cognition Disorders/prevention & control
- Convulsants/toxicity
- Drug Evaluation, Preclinical
- Electric Stimulation
- Electroencephalography
- Epilepsies, Partial/drug therapy
- Epilepsies, Partial/physiopathology
- Epilepsy, Generalized/chemically induced
- Epilepsy, Generalized/complications
- Epilepsy, Generalized/drug therapy
- Epilepsy, Generalized/physiopathology
- Glutamic Acid/metabolism
- Hippocampus/drug effects
- Hippocampus/physiopathology
- Injections, Intralesional
- Kainic Acid/toxicity
- Kindling, Neurologic/drug effects
- Maze Learning/drug effects
- Membrane Proteins/metabolism
- Nerve Tissue Proteins/metabolism
- Pyramidal Cells/drug effects
- Pyramidal Cells/pathology
- Pyramidal Cells/physiology
- Random Allocation
- Rats
- Rats, Long-Evans
- Stereotaxic Techniques
- Synaptosomal-Associated Protein 25
Collapse
Affiliation(s)
- Laura Costantin
- Scuola Normale Superiore, Consiglio Nazionale delle Ricerche, 56100 Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Chang WC, Keller CG, Sretavan DW. Isolation of neuronal substructures and precise neural microdissection using a nanocutting device. J Neurosci Methods 2005; 152:83-90. [PMID: 16253341 DOI: 10.1016/j.jneumeth.2005.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 08/18/2005] [Indexed: 11/25/2022]
Abstract
We describe a set of microfabricated nanocutting devices with a cutting edge of less than 20 nm radius of curvature that enables high precision microdissection and subcellular isolation of neuronal structures. With these devices, it is possible to isolate functional substructures from neurons in culture such as segments of axons and dendrites, dendritic spines and Nodes of Ranvier. By fine-tuning the mechanical compliance of these devices, they can also act as alternatives to costly laser capture microdissection workstations for harvesting specific neuronal populations from tissue sections for analysis. The small size of the device (1 mm2x100 microm) allows convenient insertion into researcher specific experimental set-ups. Its ease of use and possibility for batch fabrication makes this a highly effective and versatile tool for tissue microdissection and the microanalysis of neuronal function.
Collapse
Affiliation(s)
- Wesley C Chang
- Department of Ophthalmology, Program in Neuroscience, Bioengineering Graduate Program, University of California, 10 Koret Way, K110, Box 0730, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
196
|
Sutton MA, Schuman EM. Local translational control in dendrites and its role in long-term synaptic plasticity. ACTA ACUST UNITED AC 2005; 64:116-31. [PMID: 15883999 DOI: 10.1002/neu.20152] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Local protein synthesis in dendrites has emerged as a key mechanism contributing to enduring forms of synaptic plasticity. Although the translational capability of dendrites has been appreciated for over 20 years, it is only recently that significant progress has been made in elucidating mechanisms that contribute to its regulation. It is clear from work over the last few years that the control of translation in dendrites is complex, involving a host of unique (and often surprising) mechanisms that can operate together or in parallel to tightly control gene expression in time and space. Here, we discuss the strategies used by neurons to regulate translation in dendrites and how these are implemented in the service of long-term information storage.
Collapse
Affiliation(s)
- Michael A Sutton
- Division of Biology 114-96, California Institute of Technology, Pasadena, 91125, USA
| | | |
Collapse
|
197
|
Abstract
The study of pain development has come into its own. Reaping the rewards of years of developmental and molecular biology, it has now become possible to translate fundamental knowledge of signalling pathways and synaptic physiology into a better understanding of infant pain. Research has cast new light on the physiological and pharmacological processes that shape the newborn pain response, which will help us to understand early pain behaviour and to design better treatments. Furthermore, it has shown how developing pain circuitry depends on non-noxious sensory activity in the healthy newborn, and how early injury can permanently alter pain processing.
Collapse
Affiliation(s)
- Maria Fitzgerald
- Department of Anatomy and Developmental Biology, Wellcome Pain Consortium; University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
198
|
Magee JC, Johnston D. Plasticity of dendritic function. Curr Opin Neurobiol 2005; 15:334-42. [PMID: 15922583 DOI: 10.1016/j.conb.2005.05.013] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Accepted: 05/05/2005] [Indexed: 10/25/2022]
Abstract
The various properties of neuronal dendrites--their morphology, active membrane and synaptic properties--all play important roles in determining the functional capabilities of central nervous system neurons. Because of their fundamental involvement in both synaptic integration and synaptic plasticity, the active dendritic properties are important for both neuronal information processing and storage. The active properties of dendrites are determined by the densities of voltage-gated ion channels located within the dendrites in addition to the biophysical characteristics of those channels. The real power of this system resides in the level of plasticity that is provided by the many forms of channel modulation known to exist in neurons. Indeed, voltage gated ion channel modulation shapes the active properties of neuronal dendrites to specific conditions, thus tailoring the functional role of the single neuron within its circuit.
Collapse
Affiliation(s)
- Jeffrey C Magee
- Neuroscience Center, Louisiana State University Health Science Center, 2020 Gravier Street, New Orleans, Louisiana 70112, USA.
| | | |
Collapse
|
199
|
Cristobal R, Wackym PA, Cioffi JA, Erbe CB, Roche JP, Popper P. Assessment of differential gene expression in vestibular epithelial cell types using microarray analysis. ACTA ACUST UNITED AC 2005; 133:19-36. [PMID: 15661362 DOI: 10.1016/j.molbrainres.2004.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2004] [Indexed: 10/26/2022]
Abstract
Current global gene expression techniques allow the evaluation and comparison of the expression of thousands of genes in a single experiment, providing a tremendous amount of information. However, the data generated by these techniques are context-dependent, and minor differences in the individual biological samples, methodologies for RNA acquisition, amplification, hybridization protocol and gene chip preparation, as well as hardware and analysis software, lead to poor correlation between the results. One of the significant difficulties presently faced is the standardization of the protocols for the meaningful comparison of results. In the inner ear, the acquisition of RNA from individual cell populations remains a challenge due to the high density of the different cell types and the paucity of tissue. Consequently, laser capture microdissection was used to selectively collect individual cells and regions of cells from cristae ampullares followed by extraction of total RNA and amplification to amounts sufficient for high throughput analysis. To demonstrate hair cell-specific gene expression, myosin VIIA, calmodulin and alpha9 nicotinic acetylcholine receptor subunit mRNAs were amplified using reverse transcription-polymerase chain reaction (RT-PCR). To demonstrate supporting cell-specific gene expression, cyclin-dependent kinase inhibitor p27kip1 mRNA was amplified using RT-PCR. Subsequent experiments with alpha9 RT-PCR demonstrated phenotypic differences between type I and type II hair cells, with expression only in type II hair cells. Using the laser capture microdissection technique, microarray expression profiling demonstrated 408 genes with more than a five-fold difference in expression between the hair cells and supporting cells, of these 175 were well annotated. There were 97 annotated genes with greater than a five-fold expression difference in the hair cells relative to the supporting cells, and 78 annotated genes with greater than a five-fold expression difference in the supporting cells relative to the hair cells.
Collapse
Affiliation(s)
- Ricardo Cristobal
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, 9200 W Wisconsin Avenue, Milwaukee, WI 53226-3596, USA
| | | | | | | | | | | |
Collapse
|
200
|
Lee CC, Huang CC, Wu MY, Hsu KS. Insulin Stimulates Postsynaptic Density-95 Protein Translation via the Phosphoinositide 3-Kinase-Akt-Mammalian Target of Rapamycin Signaling Pathway. J Biol Chem 2005; 280:18543-50. [PMID: 15755733 DOI: 10.1074/jbc.m414112200] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin receptors are highly enriched at neuronal synapses, but whose function remains unclear. Here we present evidence that brief incubations of rat hippocampal slices with insulin resulted in an increased protein expression of dendritic scaffolding protein postsynaptic density-95 (PSD-95) in area CA1. This insulin-induced increase in the PSD-95 protein expression was inhibited by the tyrosine kinase inhibitor, AG1024, phosphatidylinositol 3-kinase (PI3K) inhibitors, LY294002 and wortmannin, translational inhibitors, anisomycin and rapamycin, but not by LY303511 (an inactive analogue of LY294002), and transcriptional inhibitor, actinomycin D, suggesting that insulin regulates the translation of PSD-95 by activating the receptor tyrosine kinase-PI3K-mammalian target of rapamycin (mTOR) signaling pathway. A similar insulin-induced increase in the PSD-95 protein expression was detected after stimulation of the synaptic fractions isolated from the hippocampal neurons. Furthermore, insulin treatment did not affect the PSD-95 mRNA levels. In agreement, insulin rapidly induced the phosphorylation of 3-phosphoinositide-dependent protein kinase-1 (PDK1), protein kinase B (Akt), and mTOR, effects that were prevented by the AG1024 and LY294002. We also show that insulin stimulated the phosphorylation of 4E-binding protein 1 (4E-BP1) and p70S6 kinase (p70S6K) in a mTOR-dependent manner. Finally, we demonstrate the constitutive expression of PSD-95 mRNA in the synaptic fractions isolated from hippocampal neurons. Taken together, these findings suggest that activation of the PI3K-Akt-mTOR signaling pathway is essential for the insulin-induced up-regulation of local PSD-95 protein synthesis in neuronal dendrites and indicate a new molecular mechanism that may contribute to the modulation of synaptic function by insulin in hippocampal area CA1.
Collapse
Affiliation(s)
- Cheng-Che Lee
- Department of Pharmacology and Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | |
Collapse
|