151
|
Wang Y, Liang X, Andrikopoulos N, Tang H, He F, Yin X, Li Y, Ding F, Peng G, Mortimer M, Ke PC. Remediation of Metal Oxide Nanotoxicity with a Functional Amyloid. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310314. [PMID: 38582521 PMCID: PMC11187920 DOI: 10.1002/advs.202310314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Understanding the environmental health and safety of nanomaterials (NanoEHS) is essential for the sustained development of nanotechnology. Although extensive research over the past two decades has elucidated the phenomena, mechanisms, and implications of nanomaterials in cellular and organismal models, the active remediation of the adverse biological and environmental effects of nanomaterials remains largely unexplored. Inspired by recent developments in functional amyloids for biomedical and environmental engineering, this work shows their new utility as metallothionein mimics in the strategically important area of NanoEHS. Specifically, metal ions released from CuO and ZnO nanoparticles are sequestered through cysteine coordination and electrostatic interactions with beta-lactoglobulin (bLg) amyloid, as revealed by inductively coupled plasma mass spectrometry and molecular dynamics simulations. The toxicity of the metal oxide nanoparticles is subsequently mitigated by functional amyloids, as validated by cell viability and apoptosis assays in vitro and murine survival and biomarker assays in vivo. As bLg amyloid fibrils can be readily produced from whey in large quantities at a low cost, the study offers a crucial strategy for remediating the biological and environmental footprints of transition metal oxide nanomaterials.
Collapse
Affiliation(s)
- Yue Wang
- School of Biomedical Sciences and EngineeringGuangzhou International CampusSouth China University of TechnologyGuangzhou510006China
- Nanomedicine CenterGreat Bay Area National Institute for Nanotechnology Innovation136 Kaiyuan AvenueGuangzhou510700China
| | - Xiufang Liang
- School of Biomedical Sciences and EngineeringGuangzhou International CampusSouth China University of TechnologyGuangzhou510006China
- Nanomedicine CenterGreat Bay Area National Institute for Nanotechnology Innovation136 Kaiyuan AvenueGuangzhou510700China
| | - Nicholas Andrikopoulos
- Nanomedicine CenterGreat Bay Area National Institute for Nanotechnology Innovation136 Kaiyuan AvenueGuangzhou510700China
- Drug DeliveryDisposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Huayuan Tang
- Department of Engineering MechanicsHohai UniversityNanjing211100China
- Department of Physics and AstronomyClemson UniversityClemsonSC29634USA
| | - Fei He
- College of Environmental Science and EngineeringKey Laboratory of Yangtze River Water EnvironmentTongji University1239 Siping RoadShanghai200092China
| | - Xiang Yin
- College of Environmental Science and EngineeringKey Laboratory of Yangtze River Water EnvironmentTongji University1239 Siping RoadShanghai200092China
| | - Yuhuan Li
- Drug DeliveryDisposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Liver Cancer InstituteZhongshan HospitalKey Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationFudan UniversityShanghai200032China
| | - Feng Ding
- Department of Physics and AstronomyClemson UniversityClemsonSC29634USA
| | - Guotao Peng
- College of Environmental Science and EngineeringKey Laboratory of Yangtze River Water EnvironmentTongji University1239 Siping RoadShanghai200092China
| | - Monika Mortimer
- Laboratory of Environmental ToxicologyNational Institute of Chemical Physics and BiophysicsAkadeemia tee 23Tallinn12618Estonia
| | - Pu Chun Ke
- Nanomedicine CenterGreat Bay Area National Institute for Nanotechnology Innovation136 Kaiyuan AvenueGuangzhou510700China
- Drug DeliveryDisposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| |
Collapse
|
152
|
Aye KTN, Ferreira JN, Chaweewannakorn C, Souza GR. Advances in the application of iron oxide nanoparticles (IONs and SPIONs) in three-dimensional cell culture systems. SLAS Technol 2024; 29:100132. [PMID: 38582355 DOI: 10.1016/j.slast.2024.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND The field of tissue engineering has remarkably progressed through the integration of nanotechnology and the widespread use of magnetic nanoparticles. These nanoparticles have resulted in innovative methods for three-dimensional (3D) cell culture platforms, including the generation of spheroids, organoids, and tissue-mimetic cultures, where they play a pivotal role. Notably, iron oxide nanoparticles and superparamagnetic iron oxide nanoparticles have emerged as indispensable tools for non-contact manipulation of cells within these 3D environments. The variety and modification of the physical and chemical properties of magnetic nanoparticles have profound impacts on cellular mechanisms, metabolic processes, and overall biological function. This review article focuses on the applications of magnetic nanoparticles, elucidating their advantages and potential pitfalls when integrated into 3D cell culture systems. This review aims to shed light on the transformative potential of magnetic nanoparticles in terms of tissue engineering and their capacity to improve the cultivation and manipulation of cells in 3D environments.
Collapse
Affiliation(s)
- Khin The Nu Aye
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chayanit Chaweewannakorn
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Occlusion, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| | - Glauco R Souza
- Greiner Bio-One North America, Inc., 4238 Capital Drive, Monroe, NC 28110, USA
| |
Collapse
|
153
|
Sun J, Dai L, Lv K, Wen Z, Li Y, Yang D, Yan H, Liu X, Liu C, Li MC. Recent advances in nanomaterial-stabilized pickering foam: Mechanism, classification, properties, and applications. Adv Colloid Interface Sci 2024; 328:103177. [PMID: 38759448 DOI: 10.1016/j.cis.2024.103177] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/07/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024]
Abstract
Pickering foam is a type of foam stabilized by solid particles known as Pickering stabilizers. These solid stabilizers adsorb at the liquid-gas interface, providing superior stability to the foam. Because of its high stability, controllability, versatility, and minimal environmental impact, nanomaterial-stabilized Pickering foam has opened up new possibilities and development prospects for foam applications. This review provides an overview of the current state of development of Pickering foam stabilized by a wide range of nanomaterials, including cellulose nanomaterials, chitin nanomaterials, silica nanoparticles, protein nanoparticles, clay mineral, carbon nanotubes, calcium carbonate nanoparticles, MXene, and graphene oxide nanosheets. Particularly, the preparation and surface modification methods of various nanoparticles, the fundamental properties of nanomaterial-stabilized Pickering foam, and the synergistic effects between nanoparticles and surfactants, functional polymers, and other additives are systematically introduced. In addition, the latest progress in the application of nanomaterial-stabilized Pickering foam in the oil industry, food industry, porous functional material, and foam flotation field is highlighted. Finally, the future prospects of nanomaterial-stabilized Pickering foam in different fields, along with directions for further research and development directions, are outlined.
Collapse
Affiliation(s)
- Jinsheng Sun
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Liyao Dai
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Kaihe Lv
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Zhibo Wen
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yecheng Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Dongqing Yang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Hao Yan
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xinyue Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chaozheng Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mei-Chun Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China.
| |
Collapse
|
154
|
Bellisario V, Garzaro G, Squillacioti G, Panizzolo M, Ghelli F, Mariella G, Bono R, Guseva Canu I, Bergamaschi E. Occupational Exposure to Metal-Based Nanomaterials: A Possible Relationship between Chemical Composition and Oxidative Stress Biomarkers. Antioxidants (Basel) 2024; 13:676. [PMID: 38929117 PMCID: PMC11201196 DOI: 10.3390/antiox13060676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Nanomaterials (NMs) are in high demand for a wide range of practical applications; however, comprehensively understanding the toxicity of these materials is a complex challenge, due to the limited availability of epidemiological evidence on the human health effects arising from workplace exposures. The aim of this work is to assess whether and how urinary metal concentrations could be reliable and useful in NM biomonitoring. In the framework of "NanoExplore Project" [EU LIFE17 Grant ENV/GR/000285], 43 not-exposed subjects and 40 exposed workers were recruited to measure exposure to NMs (PCN and LDSA) in the proximity of the workstations and biological biomarkers (urinary metal concentrations-Aluminum (Al), Silica (Si), Titanium (Ti), and Chromium (Cr); urinary OS biomarkers-TAP, Isop, and MDA). The results showed that Si and Ti were directly associated with NM exposure (both PCN and LDSA), as well as with OS biomarkers, especially in exposed workers. Moreover, the mediation analyses showed that Si could account for about 2.8% in the relationship between LDSA and OS biomarkers, possibly by decreasing OS antioxidant defenses in exposed people. In conclusion, our study provides evidence that occupational exposure to mixtures containing NMs can represent an underestimated hazard for exposed people, increasing the body burden and the oxidative balance.
Collapse
Affiliation(s)
- Valeria Bellisario
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy; (V.B.); (G.G.); (G.S.); (M.P.); (F.G.); (G.M.); (E.B.)
| | - Giacomo Garzaro
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy; (V.B.); (G.G.); (G.S.); (M.P.); (F.G.); (G.M.); (E.B.)
| | - Giulia Squillacioti
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy; (V.B.); (G.G.); (G.S.); (M.P.); (F.G.); (G.M.); (E.B.)
| | - Marco Panizzolo
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy; (V.B.); (G.G.); (G.S.); (M.P.); (F.G.); (G.M.); (E.B.)
| | - Federica Ghelli
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy; (V.B.); (G.G.); (G.S.); (M.P.); (F.G.); (G.M.); (E.B.)
| | - Giuseppe Mariella
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy; (V.B.); (G.G.); (G.S.); (M.P.); (F.G.); (G.M.); (E.B.)
| | - Roberto Bono
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy; (V.B.); (G.G.); (G.S.); (M.P.); (F.G.); (G.M.); (E.B.)
| | - Irina Guseva Canu
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1010 Lausanne, Switzerland;
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy; (V.B.); (G.G.); (G.S.); (M.P.); (F.G.); (G.M.); (E.B.)
| |
Collapse
|
155
|
Nawaz T, Gu L, Fahad S, Saud S, Bleakley B, Zhou R. Exploring Sustainable Agriculture with Nitrogen-Fixing Cyanobacteria and Nanotechnology. Molecules 2024; 29:2534. [PMID: 38893411 PMCID: PMC11173783 DOI: 10.3390/molecules29112534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/21/2024] Open
Abstract
The symbiotic relationship between nitrogen-fixing cyanobacteria and plants offers a promising avenue for sustainable agricultural practices and environmental remediation. This review paper explores the molecular interactions between nitrogen-fixing cyanobacteria and nanoparticles, shedding light on their potential synergies in agricultural nanotechnology. Delving into the evolutionary history and specialized adaptations of cyanobacteria, this paper highlights their pivotal role in fixing atmospheric nitrogen, which is crucial for ecosystem productivity. The review discusses the unique characteristics of metal nanoparticles and their emerging applications in agriculture, including improved nutrient delivery, stress tolerance, and disease resistance. It delves into the complex mechanisms of nanoparticle entry into plant cells, intracellular transport, and localization, uncovering the impact on root-shoot translocation and systemic distribution. Furthermore, the paper elucidates cellular responses to nanoparticle exposure, emphasizing oxidative stress, signaling pathways, and enhanced nutrient uptake. The potential of metal nanoparticles as carriers of essential nutrients and their implications for nutrient-use efficiency and crop yield are also explored. Insights into the modulation of plant stress responses, disease resistance, and phytoremediation strategies demonstrate the multifaceted benefits of nanoparticles in agriculture. Current trends, prospects, and challenges in agricultural nanotechnology are discussed, underscoring the need for responsible and safe nanoparticle utilization. By harnessing the power of nitrogen-fixing cyanobacteria and leveraging the unique attributes of nanoparticles, this review paves the way for innovative, sustainable, and efficient agricultural practices.
Collapse
Affiliation(s)
- Taufiq Nawaz
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Liping Gu
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Shah Fahad
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Shah Saud
- College of Life Science, Linyi University, Linyi 276000, China
| | - Bruce Bleakley
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Ruanbao Zhou
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
156
|
Menichetti A, Mordini D, Vicenzi S, Montalti M. Melanin for Photoprotection and Hair Coloration in the Emerging Era of Nanocosmetics. Int J Mol Sci 2024; 25:5862. [PMID: 38892049 PMCID: PMC11172709 DOI: 10.3390/ijms25115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Nanotechnology is revolutionizing fields of high social and economic impact. such as human health preservation, energy conversion and storage, environmental decontamination, and art restoration. However, the possible global-scale application of nanomaterials is raising increasing concerns, mostly related to the possible toxicity of materials at the nanoscale. The possibility of using nanomaterials in cosmetics, and hence in products aimed to be applied directly to the human body, even just externally, is strongly debated. Preoccupation arises especially from the consideration that nanomaterials are mostly of synthetic origin, and hence are often seen as "artificial" and their effects as unpredictable. Melanin, in this framework, is a unique material since in nature it plays important roles that specific cosmetics are aimed to cover, such as photoprotection and hair and skin coloration. Moreover, melanin is mostly present in nature in the form of nanoparticles, as is clearly observable in the ink of some animals, like cuttlefish. Moreover, artificial melanin nanoparticles share the same high biocompatibility of the natural ones and the same unique chemical and photochemical properties. Melanin is hence a natural nanocosmetic agent, but its actual application in cosmetics is still under development, also because of regulatory issues. Here, we critically discuss the most recent examples of the application of natural and biomimetic melanin to cosmetics and highlight the requirements and future steps that would improve melanin-based cosmetics in the view of future applications in the everyday market.
Collapse
Affiliation(s)
- Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.)
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, 47921 Rimini, Italy
| | - Dario Mordini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.)
| | - Silvia Vicenzi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.)
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.)
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, 47921 Rimini, Italy
| |
Collapse
|
157
|
Kuznetsova TV, Kudryavtseva VA, Kapranova LL. Increasing Risks to the Health of the Invertebrates-Balancing between Harm and Benefit. Animals (Basel) 2024; 14:1584. [PMID: 38891631 PMCID: PMC11170989 DOI: 10.3390/ani14111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The article discusses the issue of extensive use of detergents and sanitizers in the time of new challenges associated with the COVID-19 (SARS-CoV-2) pandemic. These agents could pose threats to the existence of free-living invertebrates as essential components of the ecosystem. The biological effects of the mentioned classes of substances, their metabolites, and combined effects in the mixture have not been studied enough. The main challenges in trying to balance the threats and benefits of using such substances are the lack of knowledge of the biological effects of these products, the gaps in testing invertebrates' responses, and changes in environment-related regulations to minimize risks to animals and humans. Numerous studies in this field still leave research gaps, particularly concerning the combined toxicity of well-known and widely used disinfectants, surfactants, and heavy metals, posing potential future challenges. Additionally, the review identified the need for additional testing of invertebrates for their sensitivity to disinfectants and surfactants of different compositions, including improved (non-invasive) methods, studies for early life stages, and comparative studies of species resilience.
Collapse
Affiliation(s)
- Tatiana V. Kuznetsova
- St. Petersburg Federal Research Center of the Russian Academy of Sciences, 199178 St. Petersburg, Russia;
| | - Valentina A. Kudryavtseva
- St. Petersburg Federal Research Center of the Russian Academy of Sciences, 199178 St. Petersburg, Russia;
| | - Larisa L. Kapranova
- A.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of Sciences, 299011 Sevastopol, Russia;
| |
Collapse
|
158
|
Ripley S, Maher BA, Hatzopoulou M, Weichenthal S. Within-city spatial variations in PM 2.5 magnetite nanoparticles and brain cancer incidence in Toronto and Montreal, Canada. Sci Rep 2024; 14:12136. [PMID: 38802386 PMCID: PMC11130222 DOI: 10.1038/s41598-024-58119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 03/25/2024] [Indexed: 05/29/2024] Open
Abstract
Magnetite nanoparticles are small, strongly magnetic iron oxide particles which are produced during high-temperature combustion and friction processes and form part of the outdoor air pollution mixture. These particles can translocate to the brain and have been found in human brain tissue. In this study, we estimated associations between within-city spatial variations in concentrations of magnetite nanoparticles in outdoor fine particulate matter (PM2.5) and brain cancer incidence. We performed a cohort study of 1.29 million participants in four cycles of the Canadian Census Health and Environment Cohort in Montreal and Toronto, Canada who were followed for malignant brain tumour (glioma) incidence. As a proxy for magnetite nanoparticle content, we measured the susceptibility of anhysteretic remanent magnetization (χARM) in PM2.5 samples (N = 124 in Montreal, N = 110 in Toronto), and values were assigned to residential locations. Stratified Cox proportional hazards models were used to estimate hazard ratios (per IQR change in volume-normalized χARM). ARM was not associated with brain tumour incidence (HR = 0.998, 95% CI 0.988, 1.009) after adjusting for relevant potential confounders. Although we found no evidence of an important relationship between within-city spatial variations in airborne magnetite nanoparticles and brain tumour incidence, further research is needed to evaluate this understudied exposure, and other measures of exposure to magnetite nanoparticles should be considered.
Collapse
Affiliation(s)
- Susannah Ripley
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, H3A 1G1, Canada.
| | - Barbara A Maher
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Marianne Hatzopoulou
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, M5S 1A4, Canada
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, H3A 1G1, Canada
| |
Collapse
|
159
|
Li M, Gao J, Yao L, Zhang L, Li D, Li Z, Wu Q, Wang S, Ding J, Liu Y, Wang M, Tang G, Qin H, Li J, Yang X, Liu R, Zeng L, Shi J, Qu G, Jiang G. Determining toxicity of europium oxide nanoparticles in immune cell components and hematopoiesis in dominant organs in mice: Role of lysosomal fluid interaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173482. [PMID: 38795982 DOI: 10.1016/j.scitotenv.2024.173482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Extensive application of rare earth element oxide nanoparticles (REE NPs) has raised a concern over the possible toxic health effects after human exposure. Once entering the body, REE NPs are primarily processed by phagocytes in particular macrophages and undergo biotic phosphate complexation in lysosomal compartment. Such biotransformation affects the target organs and in vivo fate of REE NPs after escaping the lysosomes. However, the immunomodulatory effects of intraphagolysosomal dissolved REE NPs remains insufficient. Here, europium oxide (Eu2O3) NPs were pre-incubated with phagolysosomal simulant fluid (PSF) to mimic the biotransformation of europium oxide (p-Eu2O3) NPs under acid phagolysosome conditions. We investigated the alteration in immune cell components and the hematopoiesis disturbance on adult mice after intravenous administration of Eu2O3 NPs and p-Eu2O3 NPs. Our results indicated that the liver and spleen were the main target organs for Eu2O3 NPs and p-Eu2O3 NPs. Eu2O3 NPs had a much higher accumulative potential in organs than p-Eu2O3 NPs. Eu2O3 NPs induced more alterations in immune cells in the spleen, while p-Eu2O3 NPs caused stronger response in the liver. Regarding hematopoietic disruption, Eu2O3 NPs reduced platelets (PLTs) in peripheral blood, which might be related to the inhibited erythrocyte differentiation in the spleen. By contrast, p-Eu2O3 NPs did not cause significant disturbance in peripheral PLTs. Our study demonstrated that the preincubation with PSF led to a distinct response in the immune system compared to the pristine REE NPs, suggesting that the potentially toxic effects induced by the release of NPs after phagocytosis should not be neglected, especially when evaluating the safety of NPs application in vivo.
Collapse
Affiliation(s)
- Min Li
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Liu Zhang
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Danyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zikang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ding
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Yaquan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Qin
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junya Li
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xinyue Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runzeng Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Li Zeng
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China.
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
160
|
Ghanem M, Alleman LY, Rousset D, Perdrix E, Coddeville P. Experimental factors influencing the bioaccessibility and the oxidative potential of transition metals from welding fumes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:843-857. [PMID: 38597352 DOI: 10.1039/d3em00546a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Inhalation of welding fumes (WFs) containing high levels of transition metals (Cr, Cu, Fe, Mn, Ni…) is associated with numerous health effects including oxidative stress. However, the measurements of the oxidative potential (OP) and bioaccessibility of WF transition metals depend on several physicochemical parameters and may be subject to several experimental artifacts. In this work, we investigated the influence of the experimental conditions that may affect the bioaccessibility of transition metals and their OP on stainless-steel WF extracts. WFs were produced using a generation bench and sampled on filters. The soluble fraction of the metals was analysed. Two different extraction fluids mimicking physiological pulmonary conditions were studied: phosphate buffer and Hatch's solution. Three extraction times were tested to determine the optimal time for a significant OPDTT using the dithiothreitol (DTT) method. The storage conditions of WFs after filter sampling such as duration, temperature and atmospheric conditions were investigated. The results indicate that experimental conditions can significantly affect the OPDTT and metal bioaccessibility analyses. Cr, Cu and Ni show higher solubility in Hatch's solution than in the phosphate buffer. Mn is highly sensitive to DTT and shows close solubility in the two fluids. An extraction time of 0.5 h in phosphate buffer allows a better sensitivity to OPDTT, probably by limiting complexations, interactions between metals and precipitation. Storage time and temperature can influence the physical or chemical evolution of the WFs, which can affect their OPDTT and Mn solubility. However, storage under N2(g) limits these changes. On-line measurements of OPDTT could provide an alternative to filter sampling to overcome these artifacts.
Collapse
Affiliation(s)
- Manuella Ghanem
- Department of Pollutants Metrology, Institut National de Recherche et de Sécurité (INRS), Vandoeuvre-lès-Nancy, 54500, France.
- Center for Energy and Environment, IMT Nord Europe, Institut Mines-Télécom, Université de Lille, 59000, Lille, France.
| | - Laurent Y Alleman
- Center for Energy and Environment, IMT Nord Europe, Institut Mines-Télécom, Université de Lille, 59000, Lille, France.
| | - Davy Rousset
- Department of Pollutants Metrology, Institut National de Recherche et de Sécurité (INRS), Vandoeuvre-lès-Nancy, 54500, France.
| | - Esperanza Perdrix
- Center for Energy and Environment, IMT Nord Europe, Institut Mines-Télécom, Université de Lille, 59000, Lille, France.
| | - Patrice Coddeville
- Center for Energy and Environment, IMT Nord Europe, Institut Mines-Télécom, Université de Lille, 59000, Lille, France.
| |
Collapse
|
161
|
Lyons-Darden T, Heim KE, Han L, Haines L, Sayes CM, Oller AR. Bioaccessibility of Metallic Nickel and Nickel Oxide Nanoparticles in Four Simulated Biological Fluids. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:877. [PMID: 38786832 PMCID: PMC11123708 DOI: 10.3390/nano14100877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Bioaccessibility of metals from substances and alloys is increasingly used as part of the assessment to predict potential toxicity. However, data are sparse on the metal bioaccessibility from nanoparticle (NP) size metal substances. This study examines nickel ion release from metallic nickel and nickel oxide micron particles (MPs) and NPs in simulated biological fluids at various timepoints including those relevant for specific routes of exposure. The results suggest that MPs of both metallic nickel and nickel oxide generally released more nickel ions in acidic simulated biological fluids (gastric and lysosomal) than NPs of the same substance, with the largest differences being for nickel oxide. In more neutral pH fluids (interstitial and perspiration), nickel metal NPs released more nickel ions than MPs, with nickel oxide results showing a higher release for MPs in interstitial fluid yet a lower release in perspiration fluid. Various experimental factors related to the particle, fluid, and extraction duration were identified that can have an impact on the particle dissolution and release of nickel ions. Overall, the results suggest that based on nickel release alone, nickel NPs are not inherently more hazardous than nickel MPs. Moreover, analyses should be performed on a case-by-case basis with consideration of various experimental factors and correlation with in vivo data.
Collapse
Affiliation(s)
- Tara Lyons-Darden
- NiPERA, Inc., 2525 Meridian Parkway, Suite 240, Durham, NC 27713, USA;
| | - Katherine E. Heim
- NiPERA, Inc., 2525 Meridian Parkway, Suite 240, Durham, NC 27713, USA;
| | - Li Han
- RTI International, 3040 E. Cornwallis Road, Research Triangle Park, NC 27709, USA; (L.H.); (L.H.)
| | - Laura Haines
- RTI International, 3040 E. Cornwallis Road, Research Triangle Park, NC 27709, USA; (L.H.); (L.H.)
| | - Christie M. Sayes
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA;
| | - Adriana R. Oller
- Oller Consulting, 722 Gaston Manor Drive, Durham, NC 27703, USA;
| |
Collapse
|
162
|
Wang M, Wu B, Zheng Q, Yang P, Hu J, Zheng S. Highly effective removal of 4-chloroaniline in water by nano zero-valent iron cooperated with microbial degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134235. [PMID: 38608585 DOI: 10.1016/j.jhazmat.2024.134235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
The misuse of aromatic amines like 4-chloroaniline (4-CA) has led to severe environmental and health issues. However, it's difficult to be utilized by microorganisms for degradation. Nano-zero-valent iron (nZVI) is a promising material for the remediation of chloroaniline pollution, however, the synergistic effect and mechanism of nZVI with microorganisms for the degradation of 4-CA are still unclear. This study investigated the potential of 4-CA removal by the synergistic system involving nZVI and 4-CA degrading microbial flora. The results indicate that the addition of nZVI significantly enhanced the bio-degradation rate of 4-CA from 43.13 % to 62.26 %. Under conditions involving 0.1 % nZVI addition at a 24-hour interval, pH maintained at 7, and glucose as an external carbon source, the microbial biomass, antioxidant enzymes, and dehydrogenase were significantly increased, and the optimal 4-CA degradation rate achieved 68.79 %. Additionally, gas chromatography-mass spectrometry (GC-MS) analysis of intermediates indicated that the addition of nZVI reduced compounds containing benzene rings and enhanced the dechlorination efficiency. The microbial community remained stable during the 4-CA degradation process. This study illustrates the potential of nZVI in co-microbial remediation of 4-CA compounds in the environment.
Collapse
Affiliation(s)
- MeiQi Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Bin Wu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China.
| | - QingJuan Zheng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Peng Yang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - JunQi Hu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Shuai Zheng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| |
Collapse
|
163
|
Alijagic A, Suljević D, Fočak M, Sulejmanović J, Šehović E, Särndahl E, Engwall M. The triple exposure nexus of microplastic particles, plastic-associated chemicals, and environmental pollutants from a human health perspective. ENVIRONMENT INTERNATIONAL 2024; 188:108736. [PMID: 38759545 DOI: 10.1016/j.envint.2024.108736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
The presence of microplastics (MPs) is increasing at a dramatic rate globally, posing risks for exposure and subsequent potential adverse effects on human health. Apart from being physical objects, MP particles contain thousands of plastic-associated chemicals (i.e., monomers, chemical additives, and non-intentionally added substances) captured within the polymer matrix. These chemicals are often migrating from MPs and can be found in various environmental matrices and human food chains; increasing the risks for exposure and health effects. In addition to the physical and chemical attributes of MPs, plastic surfaces effectively bind exogenous chemicals, including environmental pollutants (e.g., heavy metals, persistent organic pollutants). Therefore, MPs can act as vectors of environmental pollution across air, drinking water, and food, further amplifying health risks posed by MP exposure. Critically, fragmentation of plastics in the environment increases the risk for interactions with cells, increases the presence of available surfaces to leach plastic-associated chemicals, and adsorb and transfer environmental pollutants. Hence, this review proposes the so-called triple exposure nexus approach to comprehensively map existing knowledge on interconnected health effects of MP particles, plastic-associated chemicals, and environmental pollutants. Based on the available data, there is a large knowledge gap in regard to the interactions and cumulative health effects of the triple exposure nexus. Each component of the triple nexus is known to induce genotoxicity, inflammation, and endocrine disruption, but knowledge about long-term and inter-individual health effects is lacking. Furthermore, MPs are not readily excreted from organisms after ingestion and they have been found accumulated in human blood, cardiac tissue, placenta, etc. Even though the number of studies on MPs-associated health impacts is increasing rapidly, this review underscores that there is a pressing necessity to achieve an integrated assessment of MPs' effects on human health in order to address existing and future knowledge gaps.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden.
| | - Damir Suljević
- Department of Biology, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Muhamed Fočak
- Department of Biology, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Jasmina Sulejmanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Elma Šehović
- Department of Chemistry, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
164
|
Yakubu J, Pandey AV. Innovative Delivery Systems for Curcumin: Exploring Nanosized and Conventional Formulations. Pharmaceutics 2024; 16:637. [PMID: 38794299 PMCID: PMC11125045 DOI: 10.3390/pharmaceutics16050637] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Curcumin, a polyphenol with a rich history spanning two centuries, has emerged as a promising therapeutic agent targeting multiple signaling pathways and exhibiting cellular-level activities that contribute to its diverse health benefits. Extensive preclinical and clinical studies have demonstrated its ability to enhance the therapeutic potential of various bioactive compounds. While its reported therapeutic advantages are manifold, predominantly attributed to its antioxidant and anti-inflammatory properties, its efficacy is hindered by poor bioavailability stemming from inadequate absorption, rapid metabolism, and elimination. To address this challenge, nanodelivery systems have emerged as a promising approach, offering enhanced solubility, biocompatibility, and therapeutic effects for curcumin. We have analyzed the knowledge on curcumin nanoencapsulation and its synergistic effects with other compounds, extracted from electronic databases. We discuss the pharmacokinetic profile of curcumin, current advancements in nanoencapsulation techniques, and the combined effects of curcumin with other agents across various disorders. By unifying existing knowledge, this analysis intends to provide insights into the potential of nanoencapsulation technologies to overcome constraints associated with curcumin treatments, emphasizing the importance of combinatorial approaches in improving therapeutic efficacy. Finally, this compilation of study data aims to inform and inspire future research into encapsulating drugs with poor pharmacokinetic characteristics and investigating innovative drug combinations to improve bioavailability and therapeutic outcomes.
Collapse
Affiliation(s)
- Jibira Yakubu
- Pediatric Endocrinology, Diabetology and Metabolism, University Children’s Hospital, Inselspital, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Amit V. Pandey
- Pediatric Endocrinology, Diabetology and Metabolism, University Children’s Hospital, Inselspital, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
165
|
Liu Y, Liang Y, Yuhong J, Xin P, Han JL, Du Y, Yu X, Zhu R, Zhang M, Chen W, Ma Y. Advances in Nanotechnology for Enhancing the Solubility and Bioavailability of Poorly Soluble Drugs. Drug Des Devel Ther 2024; 18:1469-1495. [PMID: 38707615 PMCID: PMC11070169 DOI: 10.2147/dddt.s447496] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
This manuscript offers a comprehensive overview of nanotechnology's impact on the solubility and bioavailability of poorly soluble drugs, with a focus on BCS Class II and IV drugs. We explore various nanoscale drug delivery systems (NDDSs), including lipid-based, polymer-based, nanoemulsions, nanogels, and inorganic carriers. These systems offer improved drug efficacy, targeting, and reduced side effects. Emphasizing the crucial role of nanoparticle size and surface modifications, the review discusses the advancements in NDDSs for enhanced therapeutic outcomes. Challenges such as production cost and safety are acknowledged, yet the potential of NDDSs in transforming drug delivery methods is highlighted. This contribution underscores the importance of nanotechnology in pharmaceutical engineering, suggesting it as a significant advancement for medical applications and patient care.
Collapse
Affiliation(s)
- Yifan Liu
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yushan Liang
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Jing Yuhong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Peng Xin
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Jia Li Han
- School of Health Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yongle Du
- School of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Xinru Yu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Runhe Zhu
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Mingxun Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Wen Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yingjie Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
166
|
Ghorbani B, Nasiri-Foomani N, Saedi A, Hasani-Baferani A, Samadi F. Effect of selenium nanoparticles-supplemented INRA96 extender on Turkmen stallion sperm quality and lipid peroxidation during storage at 5°C. J Equine Vet Sci 2024; 136:105073. [PMID: 38642814 DOI: 10.1016/j.jevs.2024.105073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/21/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Oxidative damage to sperm during cooled storage is a significant issue, and selenium with antioxidant potential could be a solution. Moreover, nano-sized selenium offers more advantages compared to its ionic forms. This research aimed to assess the impact of selenium nanoparticles (SeNPs) supplemented in the INRA96 extender on the quality of Turkmen stallion sperm and lipid peroxidation during 72 h of cooled storage. A total of 25 ejaculates were treated using different concentrations of SeNPs, including no SeNPs (Control), 0.5 μM SeNPs (SeNPs 0.5), 1.0 μM SeNPs (SeNPs 1.0), and 1.5 μM SeNPs (SeNPs 1.5). The samples were then evaluated for sperm quality characteristics and lipid peroxidation. The results indicated a significant decrease (P < 0.05) in total and progressive motility, viability, and plasma membrane functionality after 48 h of cooled storage, along with an increase (P < 0.05) in spermatozoa abnormality and malondialdehyde (MDA) levels as the cooled storage time increased. However, SeNPs demonstrated an improvement (P < 0.05) in sperm total motility after 24 h of cooled storage, progressive motility throughout the entire 72-hour period, functionality of the plasma membrane after 48 hours of cooled storage, spermatozoa abnormality after 48 h of cooled storage, and semen MDA levels throughout the cooled storage (P < 0.05). In conclusion, the enrichment of the INRA96 extender with nano-sized selenium can enhance the quality of Turkmen stallion sperm during storage at 5 °C by increasing total, progressive, and curvilinear motilities, improving plasma membrane functionality, and reducing sperm abnormalities and lipid peroxidation.
Collapse
Affiliation(s)
- B Ghorbani
- Department of Animal and Poultry Physiology, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Basij Square, Gorgan, Golestan, Iran
| | - N Nasiri-Foomani
- Department of Animal and Poultry Physiology, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Basij Square, Gorgan, Golestan, Iran
| | - A Saedi
- Department of Animal and Poultry Physiology, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Basij Square, Gorgan, Golestan, Iran
| | - A Hasani-Baferani
- Agricultural Research Education and Extension Organization, Tehran, Iran
| | - F Samadi
- Department of Animal and Poultry Physiology, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Basij Square, Gorgan, Golestan, Iran.
| |
Collapse
|
167
|
Chung CH, Wang GS, Chen YT, Chen JA, Hwang YH. Ti-containing NPs in raw water and their removal with conventional treatments in four water treatment plants in Taiwan. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:476. [PMID: 38662019 DOI: 10.1007/s10661-024-12642-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
The ingestion of Ti-containing nanoparticles from drinking water has emerged as a concern in recent years. This study therefore aimed to characterize Ti-containing nanoparticles in water samples collected from four water treatment plants in Taiwan and to explore the challenges associated with measuring them at low levels using single particle-inductively coupled plasma mass spectrometry. Additionally, the study sought to identify the most effective processes for the removal of Ti-containing nanoparticles. For each water treatment plant, two water samples were collected from raw water, sedimentation effluent, filtration effluent, and finished water, respectively. Results revealed that Ti-containing nanoparticles in raw water, with levels at 8.69 μg/L and 296.8 × 103 particles/L, were removed by approximately 35% and 98%, respectively, in terms of mass concentration and particle number concentration, primarily through flocculation and sedimentation processes. The largest most frequent nanoparticle size in raw water (112.0 ± 2.8 nm) was effectively reduced to 62.0 ± 0.7 nm in finished water, while nanoparticles in the size range of 50-70 nm showed limited changes. Anthracite was identified as a necessary component in the filter beds to further improve removal efficiency at the filtration unit. Moreover, the most frequent sizes of Ti-containing nanoparticles were found to be influenced by salinity. Insights into the challenges associated with measuring low-level Ti-containing nanoparticles in aqueous samples provide valuable information for future research and management of water treatment processes, thereby safeguarding human health.
Collapse
Affiliation(s)
- Chi-Huan Chung
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Gen-Shuh Wang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan, Republic of China
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yen-Tzu Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Jou-An Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yaw-Huei Hwang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan, Republic of China.
- Master of Public Health Program, College of Public Health, National Taiwan University, Taipei, Taiwan, Republic of China.
| |
Collapse
|
168
|
Rahman S, Sadaf S, Hoque ME, Mishra A, Mubarak NM, Malafaia G, Singh J. Unleashing the promise of emerging nanomaterials as a sustainable platform to mitigate antimicrobial resistance. RSC Adv 2024; 14:13862-13899. [PMID: 38694553 PMCID: PMC11062400 DOI: 10.1039/d3ra05816f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
The emergence and spread of antibiotic-resistant (AR) bacterial strains and biofilm-associated diseases have heightened concerns about exploring alternative bactericidal methods. The WHO estimates that at least 700 000 deaths yearly are attributable to antimicrobial resistance, and that number could increase to 10 million annual deaths by 2050 if appropriate measures are not taken. Therefore, the increasing threat of AR bacteria and biofilm-related infections has created an urgent demand for scientific research to identify novel antimicrobial therapies. Nanomaterials (NMs) have emerged as a promising alternative due to their unique physicochemical properties, and ongoing research holds great promise for developing effective NMs-based treatments for bacterial and viral infections. This review aims to provide an in-depth analysis of NMs based mechanisms combat bacterial infections, particularly those caused by acquired antibiotic resistance. Furthermore, this review examines NMs design features and attributes that can be optimized to enhance their efficacy as antimicrobial agents. In addition, plant-based NMs have emerged as promising alternatives to traditional antibiotics for treating multidrug-resistant bacterial infections due to their reduced toxicity compared to other NMs. The potential of plant mediated NMs for preventing AR is also discussed. Overall, this review emphasizes the importance of understanding the properties and mechanisms of NMs for the development of effective strategies against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Sazedur Rahman
- Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology Dhaka Bangladesh
| | - Somya Sadaf
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology Dhaka Bangladesh
| | - Akash Mishra
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei Bandar Seri Begawan BE1410 Brunei Darussalam
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University Jalandhar Punjab India
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute Urutaí GO Brazil
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University Mohali-140413 India
| |
Collapse
|
169
|
Zhao X, Ma R, Abulikemu A, Qi Y, Liu X, Wang J, Xu K, Guo C, Li Y. Proteomics revealed composition- and size-related regulators for hepatic impairments induced by silica nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:170584. [PMID: 38309355 DOI: 10.1016/j.scitotenv.2024.170584] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Along with the growing production and application of silica nanoparticles (SiNPs), increased human exposure and ensuing safety evaluation have progressively attracted concern. Accumulative data evidenced the hepatic injuries upon SiNPs inhalation. Still, the understanding of the hepatic outcomes resulting from SiNPs exposure, and underlying mechanisms are incompletely elucidated. Here, SiNPs of two sizes (60 nm and 300 nm) were applied to investigate their composition- and size-related impacts on livers of ApoE-/- mice via intratracheal instillation. Histopathological and biochemical analysis indicated SiNPs promoted inflammation, lipid deposition and fibrosis in the hepatic tissue, accompanied by increased ALT, AST, TC and TG. Oxidative stress was activated upon SiNPs stimuli, as evidenced by the increased hepatic ROS, MDA and declined GSH/GSSG. Of note, these alterations were more dramatic in SiNPs with a smaller size (SiNPs-60) but the same dosage. LC-MS/MS-based quantitative proteomics unveiled changes in mice liver protein profiles, and filtered out particle composition- or size-related molecules. Interestingly, altered lipid metabolism and oxidative damage served as two critical biological processes. In accordance with correlation analysis and liver disease-targeting prediction, a final of 10 differentially expressed proteins (DEPs) were selected as key potential targets attributable to composition- (4 molecules) and size-related (6 molecules) liver impairments upon SiNPs stimuli. Overall, our study provided strong laboratory evidence for a comprehensive understanding of the harmful biological effects of SiNPs, which was crucial for toxicological evaluation to ensure nanosafety.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ru Ma
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Alimire Abulikemu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yi Qi
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xiaoying Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ji Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Kun Xu
- School of Medicine, Hunan Normal University, Changsha, Hunan 410013, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
170
|
Pourbaba R, Abdulkhani A, Rashidi A, Ashori A. Lignin nanoparticles as a highly efficient adsorbent for the removal of methylene blue from aqueous media. Sci Rep 2024; 14:9039. [PMID: 38641667 PMCID: PMC11031593 DOI: 10.1038/s41598-024-59612-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024] Open
Abstract
This work demonstrated enhanced adsorption capabilities of lignin nanoparticles (LNPs) synthesized via a straightforward hydrotropic method compared to pristine lignin (PL) powder for removing methylene blue dye from aqueous solutions. Kraft lignin was used as a precursor and p-toluenesulfonic acid as the hydrotrope to produce spherical LNPs with ~ 200 nm diameter. Extensive characterization by SEM, AFM, DLS, zeta potential, and BET verified successful fabrication of microporous LNPs with fourfold higher specific surface area (14.9 m2/g) compared to PL (3.4 m2/g). Significantly reduced particle agglomeration and rearranged surface chemistry (zeta potential of -13.3 mV) arising from the self-assembly of lignin fractions under hydrotropic conditions enabled the application of LNPs and superior adsorbents compared to PL. Batch adsorption experiments exhibited up to 14 times higher methylene blue removal capacity, from 20.74 for PL to 127.91 mg/g for LNPs, and ultrafast equilibrium uptake within 3 min for LNPs compared to 10 min for PL. Kinetic modeling based on pseudo-first-order and pseudo-second-order equations revealed chemisorption as the predominant mechanism, with a rate constant of 0.032825 g/mg·h for LNPs-over an order of magnitude higher than PL (0.07125 g/mg·h). Isotherm modeling indicated Langmuir monolayer adsorption behavior on relatively uniform lignin surface functional groups. The substantially augmented adsorption performance of LNPs arose from the increased surface area and abundance of surface functional groups, providing greater accessibility of chemically active binding sites for rapid dye uptake. Overall, this work demonstrates that tailoring lignin nanoparticle structure and surface chemistry via scalable hydrotropic synthesis is a simple and sustainable approach for producing highly efficient lignin-based nano-adsorbents for organic dye removal from industrial wastewater.
Collapse
Affiliation(s)
- Reza Pourbaba
- Department of Wood and Paper Sciences and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Ali Abdulkhani
- Department of Wood and Paper Sciences and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Alimorad Rashidi
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran.
| | - Alireza Ashori
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| |
Collapse
|
171
|
Adel MM, Yoseif Salem N, Hussein HM. Enhance the physicochemical properties of the citronella oil -SLNPs to improve the insecticidal activity against Spodoptera littoralis (Boisd) (Lep. Nactuidae). Nat Prod Res 2024:1-17. [PMID: 38635374 DOI: 10.1080/14786419.2024.2342563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/06/2024] [Indexed: 04/20/2024]
Abstract
The Nano-formulation of citronella essential oil (Cymbopogon nardus (L.) and their mixtures of three adjuvants (Provecta®, Top film®, and PEG600-dioleate) were studied to enhance physico-chemical properties of the Nano-formulation and improve the insecticidal effect against Spodoptera littoralis (Boisd). Characterisation of physicochemical properties of Nano-formulation was studied by calculating droplet size, polydispersity index (PDI), and Zeta-potential parameters. The results showed that the Solid Lipid Nanoparticles (SLNs) mixtures of three adjuvant mixtures had more toxic activity and stability than the Nano-formulation alone. Before storage the acidity, alkalinity (pH), and viscosity exhibited an acidic pH value in the range (4.11-5.34), whereas after three months of storage was recorded high pH, a shift in the pH on storage can indicate the instability of active substances or product under semi field-laboratory conditions. Nano-formulation of the citronella oil mixed with the three adjuvants increased the mortality percentage of S. littoralis larvae.
Collapse
Affiliation(s)
- Manal Mohamed Adel
- Pests & Plant Protection Department, National Research Center, Cairo, Egypt
| | - Nagwa Yoseif Salem
- Pests & Plant Protection Department, National Research Center, Cairo, Egypt
| | | |
Collapse
|
172
|
Rani KGA, Al-Rawi AM, Al Qabbani A, AlKawas S, Mohammad MG, Samsudin AR. Response of human peripheral blood monocyte-derived macrophages (PBMM) to demineralized and decellularized bovine bone graft substitutes. PLoS One 2024; 19:e0300331. [PMID: 38635511 PMCID: PMC11025794 DOI: 10.1371/journal.pone.0300331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/26/2024] [Indexed: 04/20/2024] Open
Abstract
The performance of apparently biocompatible implanted bovine bone grafts may be compromised by unresolved chronic inflammation, and poor graft incorporation leading to implant failure. Monitoring the intensity and duration of the inflammatory response caused by implanted bone grafts is crucial. In this study, the ability of demineralized (DMB) and decellularized (DCC) bovine bone substitutes in initiating inflammatory responses to peripheral blood monocyte-derived macrophages (PBMMs) was investigated. The response of PBMMs to bone substitutes was evaluated by using both direct and indirect cell culture, reactive oxygen species (ROS) generation, apoptosis, immunophenotyping, and cytokine production. Analysis of DMB and DCC substitutes using scanning electron microscope (SEM) showed a roughened surface with a size ranging between 500 and 750 μm. PBMMs treated with DMB demonstrated cell aggregation and clumping mimicking lipopolysaccharide (LPS) treated PBMMs and a higher proliferation ability (166.93%) compared to control (100%) and DCC treatments (115.64%; p<0.001) at 24h. This was associated with a significantly increased production of intracellular ROS in PBMMs exposed to DMB substitutes than control (3158.5 vs 1715.5; p<0.001) and DCC treatment (2117.5). The bone substitute exposure also caused an increase in percentage apoptosis which was significantly (p<0.0001) higher in both DMB (27.85) and DCC (29.2) treatment than control (19.383). A significant increase in proinflammatory cytokine expression (TNF-α: 3.4 folds; p<0.05) was observed in DMB substitute-treated PBMMs compared to control. Notably, IL-1β mRNA was significantly higher in DMB (21.75 folds; p<0.0001) than control and DCC (5.01 folds). In contrast, DCC substitutes exhibited immunoregulatory effects on PBMMs, as indicated by the expression for CD86, CD206, and HLDR surface markers mimicking IL-4 treatments. In conclusion, DMB excites a higher immunological response compared to DCC suggesting decellularization process of tissues dampen down inflammatory reactions when exposed to PBMM.
Collapse
Affiliation(s)
- K. G. Aghila Rani
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmed M. Al-Rawi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ali Al Qabbani
- Oral and Craniofacial Health Sciences Department, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Sausan AlKawas
- Oral and Craniofacial Health Sciences Department, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad G. Mohammad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - A. R. Samsudin
- Oral and Craniofacial Health Sciences Department, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
173
|
Tsuchiya H, Nakamura N, Ohta S. Centrifugal Field-Flow Fractionation Enables Detection of Slight Aggregation of Nanoparticles That Impacts Their Biomedical Applications. Anal Chem 2024; 96:5976-5984. [PMID: 38587278 DOI: 10.1021/acs.analchem.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Nanoparticles (NPs) are anticipated to be used for various biomedical applications in which their aggregation has been an important issue. However, concerns regarding slightly aggregated but apparently monodispersed NPs have been difficult to address because of a lack of appropriate evaluation methods. Here, we report centrifugal field-flow fractionation (CF3) as a powerful method for analyzing the slight aggregation of NPs, using antibody-modified gold NPs (Ab-AuNPs) prepared by a conventional protocol with centrifugal purification as a model. While common evaluation methods such as dynamic light scattering cannot detect significant signs of aggregation, CF3 successfully detects distinct peaks of slightly aggregated NPs, including dimers and trimers. Their impact on biological interactions was also demonstrated by a cellular uptake study: slightly aggregated Ab-AuNPs exhibited 1.8 times higher cellular uptake than monodispersed Ab-AuNPs. These results suggest the importance of aggregate evaluation via CF3 as well as the need for careful attention to the bioconjugation procedures for NPs.
Collapse
Affiliation(s)
- Hiroki Tsuchiya
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Noriko Nakamura
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Seiichi Ohta
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
174
|
Malara A. Environmental concerns on the use of the electrospinning technique for the production of polymeric micro/nanofibers. Sci Rep 2024; 14:8293. [PMID: 38594337 PMCID: PMC11004186 DOI: 10.1038/s41598-024-58936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024] Open
Abstract
The production of micro and nanofibers through the electrospinning technique is a well assessed technology that finds application in a variety of fields. Indeed, the specific features of electrospun fibers, as well as the possibility to be modelled and functionalized, ensure their great versatility. In the last decades, the widespread use of electrospun fibers promoted studies related to the evaluation of both human health and environmental risks associated to their handling and exposure. However, to date, the environmental impact strictly related to the use of the manufacturing process has been barely considered. Therefore, the present work aims to assess the environmental impacts of the electrospinning technology used to produce micro and nanofibers. To this purpose, a model polymer was systematically electrospun, varying the main system, process and external parameters, that control the electrospinning technique. A simplified life cycle assessment analysis was finally used to evaluate how the fibrous morphology, closely linked to the choice of the technological parameters, intrinsically affected the environmental impacts.
Collapse
Affiliation(s)
- Angela Malara
- Department of Civil, Energy, Environment and Material Engineering, University Mediterranea of Reggio Calabria, Via Zehender, Loc. Feo di Vito, 89124, Reggio Calabria, Italy.
| |
Collapse
|
175
|
Li Y, Jiao H, Zhang H, Wang X, Fu Y, Wang Q, Liu H, Yong YC, Guo J, Liu J. Biosafety consideration of nanocellulose in biomedical applications: A review. Int J Biol Macromol 2024; 265:130900. [PMID: 38499126 DOI: 10.1016/j.ijbiomac.2024.130900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Nanocellulose-based biomaterials have gained significant attention in various fields, especially in medical and pharmaceutical areas, due to their unique properties, including non-toxicity, high specific surface area, biodegradability, biocompatibility, and abundant feasible and sophisticated strategies for functional modification. The biosafety of nanocellulose itself is a prerequisite to ensure the safe and effective application of biomaterials as they interact with living cells, tissues, and organs at the nanoscale. Potential residual endogenous impurities and exogenous contaminants could lead to the failure of the intended functionalities or even serious health complications if they are not adequately removed and assessed before use. This review summarizes the sources of impurities in nanocellulose that may pose potential hazards to their biosafety, including endogenous impurities that co-exist in the cellulosic raw materials themselves and exogenous contaminants caused by external exposure. Strategies to reduce or completely remove these impurities are outlined and classified as chemical, physical, biological, and combined methods. Additionally, key points that require careful consideration in the interpretation of the biosafety evaluation outcomes were discussed to ensure the safety and effectiveness of the nanocellulose-based biomaterials in medical applications.
Collapse
Affiliation(s)
- Yan Li
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Haixin Jiao
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Hongxing Zhang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyu Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Huan Liu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jun Liu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
176
|
Maryam H, Abbasi GH, Waseem M, Ahmed T, Rizwan M. Preparation and characterization of green silicon nanoparticles and their effects on growth and lead (Pb) accumulation in maize (Zea mays L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123691. [PMID: 38431245 DOI: 10.1016/j.envpol.2024.123691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
The excessive accumulation of heavy metals, particularly lead (Pb) in agricultural soils, is a growing problem worldwide and needs urgent attention. This study aimed to prepare green silicon (Si) NPs using extract of Chenopodium quinoa leaves and evaluated their effects on Pb uptake and growth of maize (Zea mays L.). The results indicated that Pb exposure negatively affected the growth and chlorophyll contents of maize varieties, while SiNPs positively affected these attributes. Pb alone increased the electrolyte-leakage (EL), hydrogen-peroxide (H2O2) and selected antioxidant enzyme activities in leaves, whereas SiNPs decreased EL and H2O2 concentrations and further enhanced the enzyme activities as compared to their respective treatments without SiNPs. Pb-only treatments led to an increase in Pb concentrations and total Pb uptake in both shoots and roots. In contrast, SiNPs resulted in reduced Pb concentrations, with a concurrent decrease in total Pb uptake in shoots compared to the control treatment. The findings demonstrated that foliar application of SiNPs can mitigate the toxic effects of Pb in maize plants by triggering the antioxidant enzyme system and reducing the oxidative stress. Taken together, SiNPs have the potential to enhance maize production in Pb-contaminated soils. However, future research and application efforts should prioritize key aspects such as optimizing NPs synthesis, understanding positive mechanisms of green-synthesized NPs, and conducting multiple crop tests and real-world field trials.
Collapse
Affiliation(s)
- Haseeba Maryam
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ghulam Hassan Abbasi
- Institute of Agro-Industry & Environment, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Muhammad Waseem
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China; Xianghu Laboratory, Hangzhou, 311231, China; MEU Research Unit, Middle East University, Amman, Jordan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| |
Collapse
|
177
|
Vienken J, Boccato C. Do medical devices contribute to sustainability? The role of innovative polymers and device design. Int J Artif Organs 2024; 47:240-250. [PMID: 38618975 DOI: 10.1177/03913988241245013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Sustainability of a medical device has not yet become a major issue in public discussions compared to other topics with impact to material performance, clinical application, production economy and environmental pollution. Due to their unique properties, polymers (plastics) allow for multiple, flexible applications in medical device technology. Polymers are part of the majority of disposable and single use medical device and contribute with 3% to the worldwide production of plastics. The global medical polymer market size was valued 19.9 billion US-$ in 2022 and its value projection for 2023 is expected to reach 43.03 billion US-$ Here, a wider concept of related sustainability is introduced for medical devices and their polymer components. A close look on medical device specification reveals that additional properties are required to provide sustainability, such as biodegradability, quality by device design (QbD), as well as an inbuild performance service for patients, healthcare professionals and healthcare providers. The increasing global numbers for chronic and non-communicable diseases require a huge demand for single use medical devices. A careful look at polymer specification and its performance properties is needed, including possible chemical modifications and degradation processes during waste disposal. Bioengineers in charge of design and production of medical devices will only be successful when they apply a holistic and interdisciplinary approach to medical device sustainability.
Collapse
|
178
|
Du XY, Yang JY. Biomimetic microfluidic chips for toxicity assessment of environmental pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170745. [PMID: 38340832 DOI: 10.1016/j.scitotenv.2024.170745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Various types of pollutants widely present in environmental media, including synthetic and natural chemicals, physical pollutants such as radioactive substances, ultraviolet rays, and noise, as well as biological organisms, pose a huge threat to public health. Therefore, it is crucial to accurately and effectively explore the human physiological responses and toxicity mechanisms of pollutants to prevent diseases caused by pollutants. The emerging toxicological testing method biomimetic microfluidic chips (BMCs) exhibit great potential in environmental pollutant toxicity assessment due to their superior biomimetic properties. The BMCs are divided into cell-on-chips and organ-on-chips based on the distinctions in bionic simulation levels. Herein, we first summarize the characteristics, emergence and development history, composition and structure, and application fields of BMCs. Then, with a focus on the toxicity mechanisms of pollutants, we review the applications and advances of the BMCs in the toxicity assessment of physical, chemical, and biological pollutants, respectively, highlighting its potential and development prospects in environmental toxicology testing. Finally, the opportunities and challenges for further use of BMCs are discussed.
Collapse
Affiliation(s)
- Xin-Yue Du
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China..
| |
Collapse
|
179
|
Azizi SMM, Dhar BR. Can low-temperature thermal hydrolysis mitigate the oxidative stress of polystyrene nanoplastics on anaerobic digestion? CHEMOSPHERE 2024; 353:141516. [PMID: 38387654 DOI: 10.1016/j.chemosphere.2024.141516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
The presence of micro/nanoplastics (MPs/NPs) in sewage sludge has sparked considerable apprehensions over their potential negative effects on anaerobic digestion (AD) performance. The occurrence of MPs/NPs can trigger oxidative stress on the anaerobic microbiome, leading to potential inhibition of the AD process. While the thermal hydrolysis process (THP) is an extensively utilized sludge pretreatment method for AD, its impact on stress induced by MPs/NPs during AD remains poorly understood. In this study, we assessed the impacts of low-temperature THP (90 °C, 90 min) on AD of sewage sludge in the presence of 150 μg/L of polystyrene nanoplastics (PsNPs) under different solid retention times (SRTs) of 20, 15, and 10 d. The presence of PsNPs resulted in a higher reactive oxygen species (ROS) production and a higher abundance of antibiotic resistance genes (ARGs). Additionally, their presence caused a significant inhibition of methane production by 28.2%, 29.3%, and 38.8% for SRTs of 20, 15, and 10 d, respectively. Introducing low-temperature THP prior to the AD could partially recover methane production by mitigating ROS-induced stress and curbing the propagation of ARGs during the AD process. These results shed light on the potential benefits of THP and further optimization opportunities in alleviating the adverse effects of MPs/NPs-induced stress during sewage sludge AD.
Collapse
Affiliation(s)
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
180
|
Barbosa JRM, Santos ASGG, Viana AT, Gonçalves AG, Nunes OC, Pereira MFR, Soares OSGP. Carbon-based materials for water disinfection and heavy metals removal. ENVIRONMENTAL TECHNOLOGY 2024; 45:1810-1828. [PMID: 36469607 DOI: 10.1080/09593330.2022.2154173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The presence of heavy metals and/or harmful bacteria in drinking water represents significant risks to human health. This study aimed to develop a low-cost water treatment technology using synthesized nanocomposites with metal nanoparticles supported on activated carbon (AC) for bacteria and heavy metal removal. In addition, the performance of the developed nanomaterials was compared with that of commercial materials - carbon fibers of three different typologies. The chemical and textural properties of all tested materials were characterized. To simulate a technology to be applied in a water outlet point, removal tests were carried out in a continuous system using suspensions of Escherichia coli and/or Staphylococcus aureus, wherein the contact time with the two phases was minimal (1 min). The obtained results revealed that iron and copper oxides supported on AC with a calcination treatment (CuFeO/AC-C) was the nanocomposite with the best performance, achieving a 6 log reduction for both bacteria in the same suspension up to 9 h operation. A mix of bacteria and heavy metals, simulating a real water, was treated with CuFeO/AC-C obtaining a 6 log reduction of bacteria, a Pb2+ removal >99.9% and Cd2+ removal between 97 and 98% over 180 passage times.
Collapse
Affiliation(s)
- José R M Barbosa
- Departamento de Engenharia Química, Faculdade de Engenharia, Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Universidade do Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - A Sofia G G Santos
- Departamento de Engenharia Química, Faculdade de Engenharia, Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Universidade do Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - A T Viana
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- Departamento de Engenharia Química, Faculdade de Engenharia, Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Universidade do Porto, Porto, Portugal
| | | | - Olga C Nunes
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- Departamento de Engenharia Química, Faculdade de Engenharia, Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Universidade do Porto, Porto, Portugal
| | - M Fernando R Pereira
- Departamento de Engenharia Química, Faculdade de Engenharia, Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Universidade do Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - O Salomé G P Soares
- Departamento de Engenharia Química, Faculdade de Engenharia, Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Universidade do Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
181
|
Lizonova D, Trivanovic U, Demokritou P, Kelesidis GA. Dispersion and Dosimetric Challenges of Hydrophobic Carbon-Based Nanoparticles in In Vitro Cellular Studies. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:589. [PMID: 38607123 PMCID: PMC11013865 DOI: 10.3390/nano14070589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
Methodologies across the dispersion preparation, characterization, and cellular dosimetry of hydrophilic nanoparticles (NPs) have been developed and used extensively in the field of nanotoxicology. However, hydrophobic NPs pose a challenge for dispersion in aqueous culture media using conventional methods that include sonication followed by mixing in the culture medium of interest and cellular dosimetry. In this study, a robust methodology for the preparation of stable dispersions of hydrophobic NPs for cellular studies is developed by introducing continuous energy over time via stirring in the culture medium followed by dispersion characterization and cellular dosimetry. The stirring energy and the presence of proteins in the culture medium result in the formation of a protein corona around the NPs, stabilizing their dispersion, which can be used for in vitro cellular studies. The identification of the optimal stirring time is crucial for achieving dispersion and stability. This is assessed through a comprehensive stability testing protocol employing dynamic light scattering to evaluate the particle size distribution stability and polydispersity. Additionally, the effective density of the NPs is obtained for the stable NP dispersions using the volumetric centrifugation method, while cellular dosimetry calculations are done using available cellular computational modeling, mirroring approaches used for hydrophilic NPs. The robustness of the proposed dispersion approach is showcased using a highly hydrophobic NP model (black carbon NPs) and two culture media, RPMI medium and SABM, that are widely used in cellular studies. The proposed approach for the dispersion of hydrophobic NPs results in stable dispersions in both culture media used here. The NP effective density of 1.03-1.07 g/cm3 measured here for black carbon NPs is close to the culture media density, resulting in slow deposition on the cells over time. So, the present methodology for dispersion and dosimetry of hydrophobic NPs is essential for the design of dose-response studies and overcoming the challenges imposed by slow particle deposition.
Collapse
Affiliation(s)
- Denisa Lizonova
- Nanoscience and Advanced Materials Center (NAMC), Environmental and Occupational Health Science Institute, School of Public Health, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Una Trivanovic
- Particle Technology Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Sonneggstrasse 3, CH-8092 Zürich, Switzerland
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center (NAMC), Environmental and Occupational Health Science Institute, School of Public Health, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Georgios A. Kelesidis
- Nanoscience and Advanced Materials Center (NAMC), Environmental and Occupational Health Science Institute, School of Public Health, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
- Particle Technology Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Sonneggstrasse 3, CH-8092 Zürich, Switzerland
| |
Collapse
|
182
|
Deng B, Maaloul R, Nowak S, Sivry Y, Yéprémian C, Ammar S, Mammeri F, Brayner R. Aquatic Fate and Ecotoxicology Effect of ZnS:Mn Quantum Dots on Chlorella vulgaris in Fresh Water. J Xenobiot 2024; 14:467-483. [PMID: 38651378 PMCID: PMC11036285 DOI: 10.3390/jox14020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
With the increasing integration of nanomaterials into daily life, the potential ecotoxicological impacts of nanoparticles (NPs) have attracted increased attention from the scientific community. This study assessed the ecotoxicity of ZnS quantum dots (QDs) doped with varying molar concentrations of Mn2+ on Chlorella vulgaris. The ZnS:Mn QDs were synthesized using the polyol method. The size of the ZnS:Mn QDs ranged from approximately 1.1 nm to 2 nm, while the aggregation size in Seine River water was 341 nm at pH 6 and 8. The presence of ZnS:Mn (10%) NPs exhibited profound toxicity to Chlorella vulgaris, with immediate reductions in viability (survival cells) from 71%, 60% to 51%, 52% in BG11 and Seine River water, respectively, at a concentration of 100 mg L-1 of ZnS:Mn (10%) NPs. Additionally, the ATP content in Chlorella vulgaris significantly decreased in Seine River water (by 20%) after 3 h of exposure to ZnS:Mn (10%) NPs. Concurrently, SOD activity significantly increased in Seine River water, indicating that the ZnS:Mn (10%) NPs induced ROS production and triggered an oxidative stress response in microalgae cells.
Collapse
Affiliation(s)
- Bingbing Deng
- ITODYS, Université Paris Cité, CNRS, F-75013 Paris, France (S.A.)
| | - Rania Maaloul
- ITODYS, Université Paris Cité, CNRS, F-75013 Paris, France (S.A.)
| | - Sophie Nowak
- ITODYS, Université Paris Cité, CNRS, F-75013 Paris, France (S.A.)
| | - Yann Sivry
- IPGP, Université Paris Cité, CNRS, F-75005 Paris, France
| | - Claude Yéprémian
- CNRS, Molécules de Communication & Adaptation des Microorganismes MCAM, Museum National d’Histoire Naturelle, F-75005 Paris, France;
| | - Souad Ammar
- ITODYS, Université Paris Cité, CNRS, F-75013 Paris, France (S.A.)
| | - Fayna Mammeri
- ITODYS, Université Paris Cité, CNRS, F-75013 Paris, France (S.A.)
| | - Roberta Brayner
- ITODYS, Université Paris Cité, CNRS, F-75013 Paris, France (S.A.)
| |
Collapse
|
183
|
Wu Z, Wang H, Yin Y, Shen L, Chen K, Chen J, Zhen Z, Cui Y, Ke Y, Liu S, Zhao T, Lin W. Impacts of the aerosol mixing state and new particle formation on CCN in summer at the summit of Mount Tai (1534m) in Central East China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170622. [PMID: 38325490 DOI: 10.1016/j.scitotenv.2024.170622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
In this study, the aerosol size distributions, cloud condensation nuclei (CCN) number concentration (NCCN), single-particle chemical composition and meteorological data were collected from May 12 to June 8, 2017, at the summit of Mt. Tai. The effects of new particle formation (NPF) events and aerosol chemical components on CCN at Mt. Tai were analyzed in detail. The results showed that, NPF events significantly enhanced the CCN population, and the enhancement effect increased with increasing supersaturation (SS) value at Mt.Tai. NCCN at SS ranging from 0.1 to 0.9 % on NPF days was 10.9 %, 36.5 %, 44.6 %, 53.5 % and 51.5 % higher than that on non-NPF days from 10:00-13:00 as NPF events progressed. The effect of chemical components on CCN activation under the influence of NPF events was greater than that in the absence of NPF events. The correlation coefficients of EC-Nitrate particles (EC-Sulfate particles) and CCN at all SS levels on NPF days were 1.31-1.59 times (1.17-1.35 times) higher than those on non-NPF days. Nitrate particles promoted CCN activation but sulfate particles inhibited activation at Mt. Tai. There are differences or even opposite effects of the same group of particles on CCN activation under the influence of NPF events in different air masses. EC-Sulfate particles inhibited CCN activation at all SS levels for type I but weakly promoted activation at lower SS ranging from 0.1 to 0.3 % and weakly inhibited it at higher 0.9 % SS for type II. OCEC particles significantly inhibited CCN activation for type II, and this effect decreased with increasing SS. OCEC particles only weakly inhibited activation at SS ranging from 0.5 to 0.7 % for type I. OCEC particles only weakly inhibited this process at 0.1 % SS, while they very weakly promoted activation for SS > 0.1 %. This reveals that the CCN activity is not only related to the chemical composition of the particles, but the mixing state also has an important effect on the CCN activity.
Collapse
Affiliation(s)
- Zihao Wu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Honglei Wang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China; Fujian Key Laboratory of Severe Weather and Key Laboratory of Straits Severe Weather, China Meteorological Administration, Fuzhou 350001, China.
| | - Yan Yin
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Lijuan Shen
- School of Atmosphere and Remote Sensing, Wuxi University, Wuxi 214105, China
| | - Kui Chen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jinghua Chen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhongxiu Zhen
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yi Cui
- Weather Modification Center of Hebei Province, Shijiazhuang 050022, China
| | - Yue Ke
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Sihan Liu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Tianliang Zhao
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Wen Lin
- Fujian Key Laboratory of Severe Weather and Key Laboratory of Straits Severe Weather, China Meteorological Administration, Fuzhou 350001, China
| |
Collapse
|
184
|
Lee M, Lee S, Park J, Yoon C. Effect of spraying air freshener on particulate and volatile organic compounds in vehicles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170192. [PMID: 38278246 DOI: 10.1016/j.scitotenv.2024.170192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
People in these days spend approximately 6 % of their time in a means of transport. Air fresheners are frequently used in vehicles to mask odors; however, they can cause adverse health effects such as cardiovascular disease, systemic inflammation and autonomic dysfunction. This study aimed to identify the effects of air fresheners on the concentrations of particulate and volatile organic compounds (VOCs) in different vehicle cabins. Scanning mobility and optical particle sizers were used for the particle measurements. VOCs (e.g., BTEX and d-limonene) were collected using a Tenax TA. The products were sprayed for less than a minute. The study assessed three spray products (all trigger types), vehicle size (small, medium, and large), cabin temperature (10 °C, 20 °C, and 25 °C), and in-vehicle ventilation mode (all-off, recirculation, and external inflow modes). The particle concentration increased rapidly during the 1-min spraying of the products. The proportion of nanoparticles in the front seat (67.2 % ± 2.2 %) was 11.1 % ± 2.2 % lower than that in the rear seat (75.6 % ± 2.1 %). The spray product and vehicle size did not significantly affect the particle or VOC concentrations. With an increase in the temperature of the front seat, the proportion of nanoparticles increased by 25.3 % ± 3.2 %. Moreover, the maximum total VOC concentrations (front seat: 364.3 μg/m3; back seat: 241.3 μg/m3) were observed at 20 °C. Under in-vehicle ventilation, recirculation effectively reduced the overall particle concentration within the cabin; however, the generated VOCs circulated. The external inflow proved effective in cabin air purification by reducing the total VOC concentration to 56.0-57.2 % compared with other ventilation modes. These findings provide substantial insight into the persistence of particles and the dynamics of their dispersion, thereby enabling informed decision-making for particle-related risk management.
Collapse
Affiliation(s)
- Myoungho Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Republic of Korea.
| | - Soyeon Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Republic of Korea.
| | - Jongmin Park
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Republic of Korea.
| | - Chungsik Yoon
- Institute of Health and Environment, Seoul National University, Republic of Korea.
| |
Collapse
|
185
|
Zhai S, Zhang X, Jiang M, Liu Y, Qu G, Cui X, Hirschbiegel CM, Liu Y, Alves C, Lee YW, Jiang G, Yan B, Rotello VM. Nanoparticles with intermediate hydrophobicity polarize macrophages to plaque-specific Mox phenotype via Nrf2 and HO-1 activation. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133590. [PMID: 38280324 DOI: 10.1016/j.jhazmat.2024.133590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Mox macrophages were identified recently and are closely associated with atherosclerosis. Considering the potential health risks and the impact on macrophage modulation, this study investigated the Mox polarization of macrophages induced by nanoparticles (NPs) with tunable hydrophobicity. One nanoparticle (C4NP) with intermediate hydrophobicity efficiently upregulated the mRNA expression of Mox-related genes including HO-1, Srxn1, Txnrd1, Gsr, Vegf and Cox-2 through increased accumulation of Nrf2 at a nontoxic concentration in both resting and LPS-challenged macrophages. Additionally, C4NP impaired phagocytic capacity by 20% and significantly increased the secretion of cytokines, including TNFα, IL-6 and IL-10. Mechanistic studies indicated that intracellular reactive oxygen species (ROS) were elevated by 1.5-fold and 2.6-fold in resting and LPS-challenged macrophages respectively. Phosphorylated p62 was increased by 2.5-fold in resting macrophages and maintained a high level in LPS-challenged ones, both of which partially accounted for the significant accumulation of Nrf2 and HO-1. Notably, C4NP depolarized mitochondrial membrane potential by more than 50% and switched macrophages from oxidative phosphorylation-based aerobic metabolism to glycolysis for energy supply. Overall, this study reveals a novel molecular mechanism potentially involving ROS-Nrf2-p62 signaling in mediating macrophage Mox polarization, holding promise in ensuring safer and more efficient use of nanomaterials.
Collapse
Affiliation(s)
- Shumei Zhai
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China; Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Yujia Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaomiao Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | | | - Yuanchang Liu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Colby Alves
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Yi-Wei Lee
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| |
Collapse
|
186
|
Zhan Y, Lou H, Shou R, Li A, Shang J, Jin Y, Li L, Zhu L, Lu X, Fan X. Maternal exposure to E 551 during pregnancy leads to genome-wide DNA methylation changes and metabolic disorders in the livers of pregnant mice and their fetuses. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133233. [PMID: 38118196 DOI: 10.1016/j.jhazmat.2023.133233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/09/2023] [Accepted: 12/10/2023] [Indexed: 12/22/2023]
Abstract
The widespread use of nanoparticles in the food industry has raised concerns regarding their potential adverse effects on human health, particularly in vulnerable populations, including pregnant mothers and fetuses. However, studies evaluating the reproductive and developmental toxicity of food-grade nanomaterials are limited. This study investigated the potential risks of prenatal dietary exposure to food-grade silica nanoparticles (E 551) on maternal health and fetal growth using conventional toxicological and epigenetic methods. The results showed that prenatal exposure to a high-dose of E 551 induces fetal resorption. Moreover, E 551 significantly accumulates in maternal and fetal livers, triggering a hepatic inflammatory response. At the epigenetic level, global DNA methylation is markedly altered in the maternal and fetal livers. Genome-wide DNA methylation sequencing revealed affected mCG, mCHG, and mCHH methylation landscapes. Subsequent bioinformatic analysis of the differentially methylated genes suggests that E 551 poses a risk of inducing metabolic disorders in maternal and fetal livers. This is further evidenced by impaired glucose tolerance in pregnant mice and altered expression of key metabolism-related genes and proteins in maternal and fetal livers. Collectively, the results of this study highlighted the importance of epigenetics in characterizing the potential toxicity of maternal exposure to food-grade nanomaterials during pregnancy.
Collapse
Affiliation(s)
- Yingqi Zhan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - He Lou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rongshang Shou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Anyao Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiaxin Shang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanyan Jin
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lu Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Lidan Zhu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321016, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321016, China.
| |
Collapse
|
187
|
Sánchez-Cano F, Hernández-Kelly LC, Ortega A. Silica Nanoparticles Decrease Glutamate Uptake in Blood-Brain Barrier Components. Neurotox Res 2024; 42:20. [PMID: 38436780 PMCID: PMC10912144 DOI: 10.1007/s12640-024-00696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
Glutamate is the major excitatory amino acid in the vertebrate brain, playing an important role in most brain functions. It exerts its activity through plasma membrane receptors and transporters, expressed both in neurons and glia cells. Overstimulation of neuronal glutamate receptors is linked to cell death in a process known as excitotoxicity, that is prevented by the efficient removal of the neurotransmitter through glutamate transporters enriched in the glia plasma membrane and in the components of the blood-brain barrier (BBB). Silica nanoparticles (SiO2-NPs) have been widely used in biomedical applications and directed to enter the circulatory system; however, little is known about the potential adverse effects of SiO2-NPs exposure on the BBB transport systems that support the critical isolation function between the central nervous system (CNS) and the peripheral circulation. In this contribution, we investigated the plausible SiO2-NPs-mediated disruption of the glutamate transport system expressed by BBB cell components. First, we evaluated the cytotoxic effect of SiO2-NPs on human brain endothelial (HBEC) and Uppsala 87 Malignant glioma (U-87MG) cell lines. Transport kinetics were evaluated, and the exposure effect of SiO2-NPs on glutamate transport activity was determined in both cell lines. Exposure of the cells to different SiO2-NP concentrations (0.4, 4.8, 10, and 20 µg/ml) and time periods (3 and 6 h) did not affect cell viability. We found that the radio-labeled D-aspartate ([3H]-D-Asp) uptake is mostly sodium-dependent, and downregulated by its own substrate (glutamate). Furthermore, SiO2-NPs exposure on endothelial and astrocytes decreases [3H]-D-Asp uptake in a dose-dependent manner. Interestingly, a decrease in the transporter catalytic efficiency, probably linked to a diminution in the affinity of the transporter, was detected upon SiO2-NPs. These results favor the notion that exposure to SiO2-NPs could disrupt BBB function and by these means shed some light into our understanding of the deleterious effects of air pollution on the CNS.
Collapse
Affiliation(s)
- Fredy Sánchez-Cano
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México
| | - Luisa C Hernández-Kelly
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México.
| |
Collapse
|
188
|
Ghonimi WAM, Abdelrahman FAAF, Salem GA, Dahran N, El sayed SA. The Apoptotic, Oxidative and Histological Changes Induced by Different Diameters of Sphere Gold Nanoparticles (GNPs) with Special Emphasis on the Hepatoprotective Role of Quercetin. Adv Pharm Bull 2024; 14:208-223. [PMID: 38585460 PMCID: PMC10997927 DOI: 10.34172/apb.2024.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
Purpose Gold nanoparticles (GNPs) as pharmaceutical and drug delivery tools exhibited harmful effects on human health and other living species. Quercetin (Qur) reveals various pharmacological effects specially antioxidant, anti-inflammatory and antiapoptotic. This study is directed to investigate hepatotoxicity of GNPs, in addition, to assess the impact of Qur in mitigating the toxicological effects of GNPs. Methods Groups of rats were treated with or without sphere GNPs (10, 20 and 50 nm) and Qur (200 mg/kg b.wt.). Blood and liver samples from euthanized rats were subjected to biochemical, hematological, histopathological, and immunohistochemical investigations. Results In comparison with 20 and 50 nm treated groups, the 10 nm GNPs significantly increased serum hepatic enzymes, aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP) and bilirubin. These 10 nm GNPs were associated with oxidative stress and markedly decreased antioxidant enzymes: catalase (CAT), glutathione peroxidase (GPX) and superoxide dismutase (SOD). Immunohistochemically, 10 nm GNPs expressed intense positive signals in nuclei of hepatocytes when stained with anti-caspase-3 antibody confirming extensive apoptosis. Pre-cotreatment with Qur decreased all tested hepatic enzymes and increased serum level of antioxidant enzymes compared to 10 nm GNPs. Qur treatment strongly exhibited anti-Ki67 antibody (proliferative marker) indicating high proliferation of hepatic parenchyma. Histopathologically, 10 nm GNPs revealed diffuse hydropic degenerations, severe sinusoidal congestion, coagulative necrosis, sever steatosis and diffuse hemosiderosis within the hepatic parenchyma. Qur treatment ameliorated most of these pathological effects. Conclusion The smaller diameters of GNPs induce potential oxidative stress, cytotoxic, and apoptotic effects in hepatic tissues rather than larger ones. In addition, Qur demonstrated a significant prophylactic role against hepatotoxicity of GNPs.
Collapse
Affiliation(s)
- Wael A. M. Ghonimi
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | | | - Gamal A. Salem
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Shafika A. El sayed
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| |
Collapse
|
189
|
Ahmad M, Chen J, Panyametheekul S, Yu Q, Nawab A, Khan MT, Zhang Y, Ali SW, Phairuang W. Fine particulate matter from brick kilns site and roadside in Lahore, Pakistan: Insight into chemical composition, oxidative potential, and health risk assessment. Heliyon 2024; 10:e25884. [PMID: 38390149 PMCID: PMC10881335 DOI: 10.1016/j.heliyon.2024.e25884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Background Human health is seriously threatened by particulate matter (PM) pollution, which is a major environmental problem. A better indicator of biological responses to PM exposure than its mass alone is the PM "oxidative potential (OP)," or ability to oxidize target molecules. When reactive oxygen species (ROS) are generated in the OP in excess of the antioxidant capacity of body due to PM components such metals and organic species, it causes inflammation, deoxyribonucleic acid (DNA), proteins, and lipids damage. Method The samples of fine particulate matter (PM2.5) are collected from the brick kiln site and the roadside in Lahore, Pakistan. The organic carbon (OC) and elemental carbon (EC) were estimated by carbon analyzer (DRI 2001A) using the thermal/optical transmittance (TOT) protocol. The water-soluble organic carbon (WSOC) concentration was determined using a total organic carbon analyzer (Shimadzu TOC-L CPN). Ion chromatography (Dionex ICS-900) with a conductivity detector was used to analyze the water-soluble anions (Cl-, NO3-, and SO42-) and cations (NH4+, Na+, K+, Mg2+, and Ca2+). Inductively coupled plasma-mass spectrometry (iCAP TQ ICP-MS, Thermo Scientific) was used to determine the concentrations of metals in the solution. The dithiothreitol (DTT) consumption rate was calculated using a spectrophotometer at a wavelength of 412 nm. Results The mean concentrations of PM2.5 at the brick kiln site and roadside reported are 509.3 ± 32.3 μg/m3 and 467.5 ± 24.9 μg/m3, and the average OC/EC ratio is 1.9 ± 0.4 and 2.1 ± 0.1. primary organic carbon (POC) contributed more to OC than secondary organic carbon (SOC), which indicated the dominance of primary combustion sources. The anion equivalent (AE) to cation equivalent (CE) ratio indicated that PM2.5 is acidic at both sites due to the dominance of NO3- and SO42-. The DTT consumption rate normalized by PM2.5 mass (DTTm) and DTT consumption rate normalized by air volume (DTTv) of PM2.5 at the roadside samples are higher than at the brick kiln site due to the higher contribution of ionic species to the mass of PM2.5. Carbonaceous species of PM2.5 at both sampling sites are significantly correlated with DTTv of PM2.5, while metallic species behaved differently. The incremental lifetime cancer risk (ILCR) values (lung cancer) of As and Cr at both sampling sites, while the ILCR value of Cd at the roadside samples is exceeding the permissible limits for adults and children. The lifetime average daily dose (LADD) value for adults is higher than that for children, indicating that children are less vulnerable to metals. Conclusion The concentration of PM2.5 at both sampling sites were exceeding the permissible limits of Pakistan' National Environmental Quality Standard (NEQS) and posing risk to the health of the local population. The POC and SOC contribution to OC at the brick kiln site and roadside in Lahore were 84.6%, 15.4% and 84.4%, 15.6%. POC at both sampling sites were the dominant carbon species indicating the dominance of primary combustion sources. The residence of Lahore poses the lung cancer risk due to Cr, As, and Cd at both sampling sites. The results of this study provide important data and evidence for further evaluation of the potential health risks of PM2.5 from brick kiln site and road side in Pakistan and formulation of efficient air-pollution control measures.
Collapse
Affiliation(s)
- Mushtaq Ahmad
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University Bangkok, 10330, Thailand
| | - Jing Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Sirima Panyametheekul
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University Bangkok, 10330, Thailand
- Thailand network centre on Air Quality Management: TAQM and Research Unit: HAUS IAQ, Bangkok, Thailand
| | - Qing Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Asim Nawab
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Muhammad Tariq Khan
- Department of Science and Environmental Studies, The Education University of Hong Kong, Taipo, New Territories, Hong Kong, China
| | - Yuepeng Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Syed Weqas Ali
- Department of Environmental Sciences, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Worradorn Phairuang
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, 920-1192, Ishikawa, Japan
| |
Collapse
|
190
|
Bai Y, Li Y, Li Y, Tian L. Advanced Biological Applications of Cerium Oxide Nanozymes in Disease Related to Oxidative Damage. ACS OMEGA 2024; 9:8601-8614. [PMID: 38434816 PMCID: PMC10905716 DOI: 10.1021/acsomega.3c03661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/12/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Due to their excellent catalytic activities, cerium oxide nanoparticles have promise as biological nanoenzymes. A redox reaction occurs between Ce3+ ions and Ce4+ ions during which they undergo conversion by acquiring or losing electrons as well as forming oxygen vacancies (or defects) in the lattice structure, which can act as antioxidant enzymes and simulate various enzyme activities. A number of cerium oxide nanoparticles have been engineered with multienzyme activities, including catalase, superoxide oxidase, peroxidase, and oxidase mimetic properties. Cerium oxide nanoparticles have nitric oxide radical clearing and radical scavenging properties and have been widely used in a number of fields of biology, including biomedicine, disease diagnosis, and treatment. This review provides a comprehensive introduction to the catalytic mechanisms and multiple enzyme activities of cerium oxide nanoparticles, along with their potential applications in the treatment of diseases of the brain, bones, nerves, and blood vessels.
Collapse
Affiliation(s)
- Yandong Bai
- Tianjin
Union Medical Center, No. 190 Jieyuan Road, Hongqiao District, Tianjin 300121, China
| | - Yongmei Li
- NHC
Key Laboratory of Hormones and Development, Tianjin Key Laboratory
of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin
Institute of Endocrinology, Tianjin Medical
University, No. 6 Huanrui North Road, Ruijing Street, Beichen District, Tianjin 300134, China
| | - Yuemei Li
- Xiamen
Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital
of Xiamen University, School of Medicine, Xiamen University, Xiamen 361012, China
| | - Lijie Tian
- NHC
Key Laboratory of Hormones and Development, Tianjin Key Laboratory
of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin
Institute of Endocrinology, Tianjin Medical
University, No. 6 Huanrui North Road, Ruijing Street, Beichen District, Tianjin 300134, China
| |
Collapse
|
191
|
Gatou MA, Skylla E, Dourou P, Pippa N, Gazouli M, Lagopati N, Pavlatou EA. Magnesium Oxide (MgO) Nanoparticles: Synthetic Strategies and Biomedical Applications. CRYSTALS 2024; 14:215. [DOI: 10.3390/cryst14030215] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
In recent times, there has been considerable interest among researchers in magnesium oxide (MgO) nanoparticles, due to their excellent biocompatibility, stability, and diverse biomedical uses, such as antimicrobial, antioxidant, anticancer, and antidiabetic properties, as well as tissue engineering, bioimaging, and drug delivery applications. Consequently, the escalating utilization of magnesium oxide nanoparticles in medical contexts necessitates the in-depth exploration of these nanoparticles. Notably, existing literature lacks a comprehensive review of magnesium oxide nanoparticles’ synthesis methods, detailed biomedical applications with mechanisms, and toxicity assessments. Thus, this review aims to bridge this gap by furnishing a comprehensive insight into various synthetic approaches for the development of MgO nanoparticles. Additionally, it elucidates their noteworthy biomedical applications as well as their potential mechanisms of action, alongside summarizing their toxicity profiles. This article also highlights challenges and future prospects for further exploring MgO nanoparticles in the biomedical field. Existing literature indicates that synthesized magnesium oxide nanoparticles demonstrate substantial biocompatibility and display significant antibacterial, antifungal, anticancer, and antioxidant properties. Consequently, this review intends to enhance readers’ comprehension regarding recent advancements in synthesizing MgO nanoparticles through diverse approaches and their promising applications in biomedicine.
Collapse
Affiliation(s)
- Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Eirini Skylla
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Panagiota Dourou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| |
Collapse
|
192
|
Tran TK, Nguyen MK, Lin C, Hoang TD, Nguyen TC, Lone AM, Khedulkar AP, Gaballah MS, Singh J, Chung WJ, Nguyen DD. Review on fate, transport, toxicity and health risk of nanoparticles in natural ecosystems: Emerging challenges in the modern age and solutions toward a sustainable environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169331. [PMID: 38103619 DOI: 10.1016/j.scitotenv.2023.169331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
In today's era, nanoparticles (NPs) have become an integral part of human life, finding extensive applications in various fields of science, pharmacy, medicine, industry, electronics, and communication. The increasing popularity of NP usage worldwide is a testament to their tremendous potential. However, the widespread deployment of NPs unavoidably leads to their release into the environmental matrices, resulting in persistence in ecosystems and bioaccumulation in organisms. Understanding the environmental behavior of NPs poses a significant challenge due to their nanoscale size. Given the current environmental releases of NPs, known negative consequences, and the limited knowledge available for risk management, comprehending the toxicity of NPs in ecosystems is both awaiting and crucial. The present review aims to unravel the potential environmental influences of nano-scaled materials, and provides in-depth inferences of the current knowledge and understanding in this field. The review comprehensively summarizes the sources, fate, transport, toxicity, health risks, and remediation solutions associated with NP pollution in aquatic and soil ecosystems. Furthermore, it addresses the knowledge gaps and outlines further investigation priorities for the sustainable control of NP pollution in these environments. By gaining a holistic understanding of these aspects, we can work toward ensuring the responsible and sustainable use of NPs in today's fast-growing world.
Collapse
Affiliation(s)
- Thien-Khanh Tran
- Advanced Applied Sciences Research Group, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam; Faculty of Technology, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Tuan-Dung Hoang
- School of Chemistry and Life Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi 100000, Viet Nam; Vietnam National University, Hanoi, VNU Town, Hoa Lac, Thach That District, Hanoi 155500, Viet Nam
| | - Thanh-Cong Nguyen
- Faculty of Technology, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam
| | - Aasif Mohmad Lone
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Akhil Pradiprao Khedulkar
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Mohamed S Gaballah
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, India
| | - W Jin Chung
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
193
|
Zhu L, Feng S, Li Y, Sun X, Sui Q, Chen B, Qu K, Xia B. Physiological and transcriptomic analysis reveals the toxic and protective mechanisms of marine microalga Chlorella pyrenoidosa in response to TiO 2 nanoparticles and UV-B radiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169174. [PMID: 38072255 DOI: 10.1016/j.scitotenv.2023.169174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Concerns have been raised regarding the adverse effects of nanoparticles (NPs) on marine organisms, as an increasing number of NPs inevitably enter the marine environment with the development of nanotechnology. Owing to the photocatalytic properties, TiO2 NPs' toxicity may be aggravated by enhanced UV-B resulting from stratospheric ozone depletion. However, the molecular mechanisms of phytoplankton in response to TiO2 NPs under UV-B remains poorly understood. In this study, we integrated whole transcriptome analysis with physiological data to provide understanding on the toxic and protective mechanisms of marine Chlorella pyrenoidosa in response to TiO2 NPs under UV-B. The results indicated that the changes in gene expression could be related to the growth inhibition and TiO2 NP internalization in C. pyrenoidosa, and several molecular mechanisms were identified as toxicity response to TiO2 NPs and UV-B. Differential expression of genes involved in glycerophospholipids metabolism indicated that cell membrane disruption allowed TiO2 NPs to enter the algal cell under UV-B exposure, although the up-regulation of genes involved in the general secretory dependent pathway and the ATP-binding cassette transporter family drove cellular secretion of extracellular polymeric substances, acting as a barrier that prevent TiO2 NP internalization. The absence of changes in gene expression related to the antioxidant system may be responsible for the severe oxidative stress observed in algal cells following exposure to TiO2 NPs under UV-B irradiation. Moreover, differential expression of genes involved in pathways such as photosynthesis and energy metabolism were up-regulated, including the light-harvesting, photosynthetic electron transport coupled to photophosphorylation, carbon fixation, glycolysis, pentose phosphate pathway, tricarboxylic acid cycle, and oxidative phosphorylation, indicating that more energy and metabolites were supplied to cope with the toxicity of TiO2 NPs and UV-B. The obtained results provide valuable information on the molecular mechanisms of response of marine phytoplankton exposed to TiO2 NPs and UV-B.
Collapse
Affiliation(s)
- Lin Zhu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - Sulan Feng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; School of Marine Technology and Geomatics, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yu Li
- School of Marine Technology and Geomatics, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Xuemei Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - Qi Sui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - Bijuan Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - Keming Qu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Bin Xia
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
194
|
Singh AV, Shelar A, Rai M, Laux P, Thakur M, Dosnkyi I, Santomauro G, Singh AK, Luch A, Patil R, Bill J. Harmonization Risks and Rewards: Nano-QSAR for Agricultural Nanomaterials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2835-2852. [PMID: 38315814 DOI: 10.1021/acs.jafc.3c06466] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
This comprehensive review explores the emerging landscape of Nano-QSAR (quantitative structure-activity relationship) for assessing the risk and potency of nanomaterials in agricultural settings. The paper begins with an introduction to Nano-QSAR, providing background and rationale, and explicitly states the hypotheses guiding the review. The study navigates through various dimensions of nanomaterial applications in agriculture, encompassing their diverse properties, types, and associated challenges. Delving into the principles of QSAR in nanotoxicology, this article elucidates its application in evaluating the safety of nanomaterials, while addressing the unique limitations posed by these materials. The narrative then transitions to the progression of Nano-QSAR in the context of agricultural nanomaterials, exemplified by insightful case studies that highlight both the strengths and the limitations inherent in this methodology. Emerging prospects and hurdles tied to Nano-QSAR in agriculture are rigorously examined, casting light on important pathways forward, existing constraints, and avenues for research enhancement. Culminating in a synthesis of key insights, the review underscores the significance of Nano-QSAR in shaping the future of nanoenabled agriculture. It provides strategic guidance to steer forthcoming research endeavors in this dynamic field.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune 411007, India
| | - Mansi Rai
- Department of Microbiology, Central University of Rajasthan NH-8, Bandar Sindri, Dist-Ajmer-305817, Rajasthan, India
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Manali Thakur
- Uniklinik Köln, Kerpener Strasse 62, 50937 Köln Germany
| | - Ievgen Dosnkyi
- Institute of Chemistry and Biochemistry Department of Organic ChemistryFreie Universität Berlin Takustr. 3 14195 Berlin, Germany
| | - Giulia Santomauro
- Institute for Materials Science, Department of Bioinspired Materials, University of Stuttgart, 70569, Stuttgart, Germany
| | - Alok Kumar Singh
- Department of Plant Molecular Biology & Genetic Engineering, ANDUA&T, Ayodhya 224229, Uttar Pradesh, India
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Rajendra Patil
- Department of Technology, Savitribai Phule Pune University, Pune 411007, India
| | - Joachim Bill
- Institute for Materials Science, Department of Bioinspired Materials, University of Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|
195
|
Sieprawska A, Rudolphi-Szydło E, Skórka M, Telk A, Filek M. Assessment of the oxidative stress intensity and the integrity of cell membranes under the manganese nanoparticles toxicity in wheat seedlings. Sci Rep 2024; 14:3121. [PMID: 38326390 PMCID: PMC10850514 DOI: 10.1038/s41598-024-53697-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
A response to manganese nanoparticles was studied in seedlings of two wheat cultivars and a model system of plant cell membranes. Nanoparticles at concentrations of 125 and 250 mg/ml were applied foliar. The application of NPs enhanced the content of Mn in plant cells, indicating its penetration through the leaf surface. The stressful effect in the plant cells was estimated based on changes in the activity of antioxidant enzymes, content of chlorophylls and starch. MnNPs evoked no significant changes in the leaf morphology, however, an increase in enzyme activity, starch accumulation, and a decrease in chlorophyll synthesis indicated the stress occurrence. Moreover, a rise in the electrokinetic potential of the chloroplast membrane surface and the reconstruction of their hydrophobic parts toward an increase in fatty acid saturation was found.
Collapse
Affiliation(s)
- Apolonia Sieprawska
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorążych 2, 30-084, Krakow, Poland.
| | - Elżbieta Rudolphi-Szydło
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorążych 2, 30-084, Krakow, Poland
| | - Magdalena Skórka
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorążych 2, 30-084, Krakow, Poland
| | - Anna Telk
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Maria Filek
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorążych 2, 30-084, Krakow, Poland
| |
Collapse
|
196
|
Al-Ragi MJ, Karieb SS, Fathallah N, Zaïri A. Effect of Zinc Oxide Nanoparticles on Liver Functions in Albino Mice. Cureus 2024; 16:e54822. [PMID: 38529423 PMCID: PMC10962696 DOI: 10.7759/cureus.54822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/23/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND An alarming number of zinc oxide nanoparticles (ZnO-NPs) have leaked into the environment, endangering the tissues of many living creatures, due to the recent surge in their use in several items. Through intra-peritoneal injection, this research intends to examine the impact of ZnO-NPs on the hepatic and gastrointestinal structures of male albino mice. METHOD For seven and 14 days, animals were given 0.1 ml of 100 and 200 mg kg-1 of 50 nm-size ZnO-NPs, respectively. In contrast, those in the control group were given only water and food. RESULT The results demonstrated that the treated mice's livers underwent functional changes and histological damage. After seven and 14 days, there was a notable rise in the average levels of the glutamate-oxaloacetate transaminase and glutamate-pyruvate transaminase enzymes in comparison to the control group (p≤0.05). Concentration time determines the magnitude of this impact. When enzyme levels vary, it means the liver isn't working properly. Histological changes in the liver, such as necrosis, destruction of hepatocyte membranes, widening of sinusoidal spaces and vacuolation of their cytoplasm, vascular congestion, and an increased number of Kupffer cells, were induced in mice treated with ZnO-NPs at two studied concentrations (100 and 200 mg/kg) for seven and 14 days, respectively. These effects were time-dose-dependent, according to the results of hematoxylin-eosin staining of liver tissue images.
Collapse
Affiliation(s)
| | - Sahar S Karieb
- Department of Biology, College of Education for Pure Science (Ibn Al-Haitham) University of Baghdad, Baghdad, IRQ
| | - Neila Fathallah
- Department of Health Sciences, Faculty of Medicine (Ibn El Gazzar) University of Sousse, Sousse, TUN
| | - Amira Zaïri
- Department of Health Sciences, Faculty of Medicine (Ibn El Gazzar) University of Sousse, Sousse, TUN
| |
Collapse
|
197
|
Krishna R, Nagar V, Kaur A, Rai AR, Awasthi KK, Awasthi G, Sankhla MS. Toxicological Effects of Metal Nanoparticles Employed in Biomedicine: Biocompatibility, Clinical Trials, and Future Perspective. MACROMOLECULAR SYMPOSIA 2024; 413. [DOI: 10.1002/masy.202300057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 01/06/2025]
Abstract
AbstractMetal nanoparticles play a crucial role in the medical industry due to its desirable properties such as antimicrobial activity, anti‐cancer property, and its application in disease diagnostics. These properties enable the nanoparticles to be used as efficient medical devices for various treatments as well as drug delivery systems. Despite all the positives, metal nanoparticles are known for causing toxicity in the living system. The toxicological effects of metal nanoparticles are due to their size, surface*e coating, and the dose administered. Therefore, it is important to study the toxic effects of these nanoparticles before they are used as medical devices for various treatments. This review focuses on the five major metal nanoparticles used in the medical field, namely; silver, gold, iron oxide, zinc oxide, and titanium dioxide nanoparticles. The non‐exhaustive review consists of an introduction to the toxicological effects of these nanoparticles, the biocompatibility, and the current and future clinical perspective on metal nanoparticles.
Collapse
Affiliation(s)
- Rohith Krishna
- Department of Forensic Science Jain University Bangalore Karnataka India
| | - Varad Nagar
- Department of Forensic Science Vivekananda Global University Jaipur Rajasthan India
| | - Anureet Kaur
- Department of Forensic Science Jain University Bangalore Karnataka India
| | - Abhishek R. Rai
- Department of Forensic Science Jain University Bangalore Karnataka India
| | - Kumud Kant Awasthi
- Department of Forensic Science Vivekananda Global University Jaipur Rajasthan India
| | - Garima Awasthi
- Department of Life Sciences Vivekananda Global University Jaipur Rajasthan India
| | - Mahipal Singh Sankhla
- Department of Forensic Science Chandigarh University Mohali Punjab India
- University Centre for Research and Development (UCRD) Chandigarh University Mohali Punjab India
| |
Collapse
|
198
|
Abbas G, Saluja TS, Kumar D, Agrawal H, Gupta A, Panday G, Singh SK. Antitumor efficacy of synthesized Ag-Au nanocomposite loaded with PEG and ascorbic acid in human lung cancer stem cells. Exp Cell Res 2024; 435:113904. [PMID: 38163564 DOI: 10.1016/j.yexcr.2023.113904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Lung cancer is the leading cause of mortality worldwide of which non-small cell lung carcinoma constitutes majority of the cases. High mortality is attributed to early metastasis, late diagnosis, ineffective treatment and tumor relapse. Chemotherapy and radiotherapy form the mainstay of its treatment. However, their associated side effects involving kidneys, nervous system, gastrointestinal tract, and liver further adds to dismal outcome. These disadvantages of conventional treatment can be circumvented by use of engineered nanoparticles for improved effectiveness with minimal side effects. In this study we have synthesized silver gold nanocomposite (Ag-Au NC) using polyethylene glycol and l-ascorbic acid as surfactant and reducing agent respectively. Synthesized nanocomposite was characterized by ultraviolet-visible absorption, dynamic light scattering, scanning and transmission electron microscopy. Compositional analysis was carried out by energy dispersive X-ray analysis and average pore diameter was estimated using Barrett-Joyner-Halenda method. In-silico molecular docking analysis of the synthesized NC against active regions of epidermal growth factor receptor revealed good binding energy. Subsequently, we investigated the effect of NC on growth and stem cell attributes of A549 lung cancer cells. Results showed that NC was effective in inhibiting A549 cell proliferation, induced DNA damage, G2/M phase arrest and apoptosis. Further, tumor cell migration and spheroid formation were also negatively affected. NC also enhanced reactive oxygen species generation and mitochondrial depolarization. In addition, the effect of NC on putative cancer stem cells in A549 cells was evaluated. We found that Ag-Au NC at IC50 targeted CD44, CD24, CD166, CD133 and CD326 positive cancer stem cells and induced apoptosis. CD166 positive cells were relatively resistance to apoptosis. Together our results demonstrate the anticancer efficacy of Ag-Au NC mediated by a mechanism involving cell cycle arrest and mitochondrial derangement.
Collapse
Affiliation(s)
- Gulam Abbas
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Tajindra Singh Saluja
- Baba Jaswant Singh Dental College, Hospital and Research Institute, Ludhiana, Punjab, India; Department of Center for Advance Research, Stem Cell/Cell Culture Lab, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Dharmendra Kumar
- Department of Center for Advance Research, Stem Cell/Cell Culture Lab, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Hemant Agrawal
- FlowSols Pvt. Ltd. Royal Greens, Sirsi Road, Jaipur, India
| | - Anurag Gupta
- Department of Center for Advance Research, Stem Cell/Cell Culture Lab, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Gajanan Panday
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India.
| | - Satyendra Kumar Singh
- Department of Center for Advance Research, Stem Cell/Cell Culture Lab, King George's Medical University, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
199
|
Alsaleh NB, Aljarbou AM, Assal ME, Assiri MA, Almutairi MM, As Sobeai HM, Alshamrani AA, Almudimeegh S, Hatshan MR, Adil SF. Synthesis, Characterization, and Toxicity Assessment of Zinc Oxide-Doped Manganese Oxide Nanoparticles in a Macrophage Model. Pharmaceuticals (Basel) 2024; 17:168. [PMID: 38399383 PMCID: PMC10892842 DOI: 10.3390/ph17020168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The doping of engineered nanomaterials (ENMs) is a key tool for manipulating the properties of ENMs (e.g., electromagnetic, optical, etc.) for different therapeutic applications. However, adverse health outcomes and the cellular biointeraction of doped ENMs, compared to undoped counterparts, are not fully understood. Previously, we have shown that doping manganese oxide nanoparticles with ZnO (ZnO-MnO2 NPs) improved their catalytic properties. In this study, we assessed the toxicity of ZnO-MnO2 NPs in Raw 264.7 cells. NPs were prepared via an eco-friendly, co-precipitation method and characterized by several techniques, including transmission and scanning electron microscopy, X-ray diffraction, and Fourier transform infrared. The physicochemical properties of ZnO-MnO2 NPs, including size, morphology, and crystalline structure, were almost identical to MnO2 NPs. However, ZnO-MnO2 NPs showed slightly larger particle aggregates and negative charge in cell culture media. Exposure to ZnO-MnO2 NPs resulted in lower toxicity based on the cell viability and functional assay (phagocytosis) data. Exposure to both NPs resulted in the activation of the cell inflammatory response and the generation of reactive oxygen species (ROS). Despite this, exposure to ZnO-MnO2 NPs was associated with a lower toxicity profile, and it resulted in a higher ROS burst and the activation of the cell antioxidant system, hence indicating that MnO2 NP-induced toxicity is potentially mediated via other ROS-independent pathways. Furthermore, the cellular internalization of ZnO-MnO2 NPs was lower compared to MnO2 NPs, and this could explain the lower extent of toxicity of ZnO-MnO2 NPs and suggests Zn-driven ROS generation. Together, the findings of this report suggest that ZnO (1%) doping impacts cellular biointeraction and the consequent toxicological outcomes of MnO2 NPs in Raw 264.7 cells.
Collapse
Affiliation(s)
- Nasser B. Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.M.A.); (M.A.A.); (M.M.A.); (H.M.A.S.); (A.A.A.); (S.A.)
| | - Anas M. Aljarbou
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.M.A.); (M.A.A.); (M.M.A.); (H.M.A.S.); (A.A.A.); (S.A.)
| | - Mohamed E. Assal
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.E.A.); (M.R.H.)
| | - Mohammed A. Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.M.A.); (M.A.A.); (M.M.A.); (H.M.A.S.); (A.A.A.); (S.A.)
| | - Mohammed M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.M.A.); (M.A.A.); (M.M.A.); (H.M.A.S.); (A.A.A.); (S.A.)
| | - Homood M. As Sobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.M.A.); (M.A.A.); (M.M.A.); (H.M.A.S.); (A.A.A.); (S.A.)
| | - Ali A. Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.M.A.); (M.A.A.); (M.M.A.); (H.M.A.S.); (A.A.A.); (S.A.)
| | - Sultan Almudimeegh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.M.A.); (M.A.A.); (M.M.A.); (H.M.A.S.); (A.A.A.); (S.A.)
| | - Mohammad R. Hatshan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.E.A.); (M.R.H.)
| | - Syed F. Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.E.A.); (M.R.H.)
| |
Collapse
|
200
|
Gržeta Krpan N, Harej Hrkać A, Janković T, Dolenec P, Bekyarova E, Parpura V, Pilipović K. Chemically Functionalized Single-Walled Carbon Nanotubes Prevent the Reduction in Plasmalemmal Glutamate Transporter EAAT1 Expression in, and Increase the Release of Selected Cytokines from, Stretch-Injured Astrocytes in Vitro. Cells 2024; 13:225. [PMID: 38334617 PMCID: PMC10854924 DOI: 10.3390/cells13030225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
We tested the effects of water-soluble single-walled carbon nanotubes, chemically functionalized with polyethylene glycol (SWCNT-PEG), on primary mouse astrocytes exposed to a severe in vitro simulated traumatic brain injury (TBI). The application of SWCNT-PEG in the culture media of injured astrocytes did not affect cell damage levels, when compared to those obtained from injured, functionalization agent (PEG)-treated cells. Furthermore, SWCNT-PEG did not change the levels of oxidatively damaged proteins in astrocytes. However, this nanomaterial prevented the reduction in plasmalemmal glutamate transporter EAAT1 expression caused by the injury, rendering the level of EAAT1 on par with that of control, uninjured PEG-treated astrocytes; in parallel, there was no significant change in the levels of GFAP. Additionally, SWCNT-PEG increased the release of selected cytokines that are generally considered to be involved in recovery processes following injuries. As a loss of EAATs has been implicated as a culprit in the suffering of human patients from TBI, the application of SWCNT-PEG could have valuable effects at the injury site, by preventing the loss of astrocytic EAAT1 and consequently allowing for a much-needed uptake of glutamate from the extracellular space, the accumulation of which leads to unwanted excitotoxicity. Additional potential therapeutic benefits could be reaped from the fact that SWCNT-PEG stimulated the release of selected cytokines from injured astrocytes, which would promote recovery after injury and thus counteract the excess of proinflammatory cytokines present in TBI.
Collapse
Affiliation(s)
- Nika Gržeta Krpan
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Anja Harej Hrkać
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Tamara Janković
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Petra Dolenec
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Elena Bekyarova
- Department of Chemistry, University of California, Riverside, CA 92521, USA;
| | - Vladimir Parpura
- International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| |
Collapse
|