151
|
Tian S, Zeng J, Jiao H, Zhang D, Zhang L, Lei CQ, Rossiter SJ, Zhao H. Comparative analyses of bat genomes identify distinct evolution of immunity in Old World fruit bats. SCIENCE ADVANCES 2023; 9:eadd0141. [PMID: 37146151 PMCID: PMC10162675 DOI: 10.1126/sciadv.add0141] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Bats have been identified as natural reservoir hosts of several zoonotic viruses, prompting suggestions that they have unique immunological adaptations. Among bats, Old World fruit bats (Pteropodidae) have been linked to multiple spillovers. To test for lineage-specific molecular adaptations in these bats, we developed a new assembly pipeline to generate a reference-quality genome of the fruit bat Cynopterus sphinx and used this in comparative analyses of 12 bat species, including six pteropodids. Our results reveal that immunity-related genes have higher evolutionary rates in pteropodids than in other bats. Several lineage-specific genetic changes were shared across pteropodids, including the loss of NLRP1, duplications of PGLYRP1 and C5AR2, and amino acid replacements in MyD88. We introduced MyD88 transgenes containing Pteropodidae-specific residues into bat and human cell lines and found evidence of dampened inflammatory responses. By uncovering distinct immune adaptations, our results could help explain why pteropodids are frequently identified as viral hosts.
Collapse
Affiliation(s)
- Shilin Tian
- College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Jiaming Zeng
- College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Hengwu Jiao
- College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Dejing Zhang
- Novogene Bioinformatics Institute, Beijing 100015, China
| | - Libiao Zhang
- Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Cao-Qi Lei
- College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Huabin Zhao
- College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| |
Collapse
|
152
|
Kim Y, Leopardi S, Scaravelli D, Zecchin B, Priori P, Festa F, Drzewnioková P, De Benedictis P, Nouvellet P. Transmission dynamics of lyssavirus in Myotis myotis: mechanistic modelling study based on longitudinal seroprevalence data. Proc Biol Sci 2023; 290:20230183. [PMID: 37072038 PMCID: PMC10113028 DOI: 10.1098/rspb.2023.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/13/2023] [Indexed: 04/20/2023] Open
Abstract
We investigated the transmission dynamics of lyssavirus in Myotis myotis and Myotis blythii, using serological, virological, demographic and ecological data collected between 2015 and 2022 from two maternity colonies in northern Italian churches. Despite no lyssavirus detection in 556 bats sampled over 11 events by reverse transcription-polymerase chain reaction (RT-PCR), 36.3% of 837 bats sampled over 27 events showed neutralizing antibodies to European bat lyssavirus 1, with a significant increase in summers. By fitting sets of mechanistic models to seroprevalence data, we investigated factors that influenced lyssavirus transmission within and between years. Five models were selected as a group of final models: in one model, a proportion of exposed bats (median model estimate: 5.8%) became infectious and died while the other exposed bats recovered with immunity without becoming infectious; in the other four models, all exposed bats became infectious and recovered with immunity. The final models supported that the two colonies experienced seasonal outbreaks driven by: (i) immunity loss particularly during hibernation, (ii) density-dependent transmission, and (iii) a high transmission rate after synchronous birthing. These findings highlight the importance of understanding ecological factors, including colony size and synchronous birthing timing, and potential infection heterogeneities to enable more robust assessments of lyssavirus spillover risk.
Collapse
Affiliation(s)
- Younjung Kim
- Department of Evolution, Behaviour, and Environment, School of Life Sciences, University of Sussex, BN1 9RH Brighton, UK
| | - Stefania Leopardi
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, 35020 Padua, Italy
| | - Dino Scaravelli
- S.T.E.R.N.A. and Museo Ornitologico ‘F. Foschi’, via Pedrali 12, 47121 Forlì, Italy
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Barbara Zecchin
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, 35020 Padua, Italy
| | - Pamela Priori
- S.T.E.R.N.A. and Museo Ornitologico ‘F. Foschi’, via Pedrali 12, 47121 Forlì, Italy
| | - Francesca Festa
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, 35020 Padua, Italy
| | - Petra Drzewnioková
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, 35020 Padua, Italy
| | - Paola De Benedictis
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, 35020 Padua, Italy
| | - Pierre Nouvellet
- Department of Evolution, Behaviour, and Environment, School of Life Sciences, University of Sussex, BN1 9RH Brighton, UK
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, SW7 2AZ London, UK
| |
Collapse
|
153
|
Adams LE, Leist SR, Dinnon KH, West A, Gully KL, Anderson EJ, Loome JF, Madden EA, Powers JM, Schäfer A, Sarkar S, Castillo IN, Maron JS, McNamara RP, Bertera HL, Zweigert MR, Higgins JS, Hampton BK, Premkumar L, Alter G, Montgomery SA, Baxter VK, Heise MT, Baric RS. Fc-mediated pan-sarbecovirus protection after alphavirus vector vaccination. Cell Rep 2023; 42:112326. [PMID: 37000623 PMCID: PMC10063157 DOI: 10.1016/j.celrep.2023.112326] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/21/2022] [Accepted: 03/17/2023] [Indexed: 04/01/2023] Open
Abstract
Group 2B β-coronaviruses (sarbecoviruses) have caused regional and global epidemics in modern history. Here, we evaluate the mechanisms of cross-sarbecovirus protective immunity, currently less clear yet important for pan-sarbecovirus vaccine development, using a panel of alphavirus-vectored vaccines covering bat to human strains. While vaccination does not prevent virus replication, it protects against lethal heterologous disease outcomes in both severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and clade 2 bat sarbecovirus challenge models. The spike vaccines tested primarily elicit a highly S1-specific homologous neutralizing antibody response with no detectable cross-virus neutralization. Rather, non-neutralizing antibody functions, mechanistically linked to FcgR4 and spike S2, mediate cross-protection in wild-type mice. Protection is lost in FcR knockout mice, further supporting a model for non-neutralizing, protective antibodies. These data highlight the importance of FcR-mediated cross-protective immune responses in universal pan-sarbecovirus vaccine designs.
Collapse
Affiliation(s)
- Lily E Adams
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H Dinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kendra L Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth J Anderson
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer F Loome
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily A Madden
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sanjay Sarkar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Izabella N Castillo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jenny S Maron
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, USA
| | - Ryan P McNamara
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, USA
| | - Harry L Bertera
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, USA
| | - Mark R Zweigert
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jaclyn S Higgins
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brea K Hampton
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, USA
| | - Stephanie A Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Dallas Tissue Research, Dallas, TX, USA
| | - Victoria K Baxter
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark T Heise
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Ralph S Baric
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
154
|
Alwine JC, Casadevall A, Enquist LW, Goodrum FD, Imperiale MJ. A Critical Analysis of the Evidence for the SARS-CoV-2 Origin Hypotheses. mSphere 2023; 8:e0011923. [PMID: 36897078 PMCID: PMC10117112 DOI: 10.1128/msphere.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
When humans experience a new, devastating viral infection such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), significant challenges arise. How should individuals as well as societies respond to the situation? One of the primary questions concerns the origin of the SARS-CoV-2 virus that infected and was transmitted efficiently among humans, resulting in a pandemic. At first glance, the question appears straightforward to answer. However, the origin of SARS-CoV-2 has been the topic of substantial debate primarily because we do not have access to some relevant data. At least two major hypotheses have been suggested: a natural origin through zoonosis followed by sustained human-to-human spread or the introduction of a natural virus into humans from a laboratory source. Here, we summarize the scientific evidence that informs this debate to provide our fellow scientists and the public with the tools to join the discussion in a constructive and informed manner. Our goal is to dissect the evidence to make it more accessible to those interested in this important problem. The engagement of a broad representation of scientists is critical to ensure that the public and policy-makers can draw on relevant expertise in navigating this controversy.
Collapse
Affiliation(s)
- James C. Alwine
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| | - Arturo Casadevall
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lynn W. Enquist
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Felicia D. Goodrum
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Michael J. Imperiale
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
155
|
Mahboob T, Ismail AA, Shah MR, Rahmatullah M, Paul AK, Pereira MDL, Wiart C, Wilairatana P, Rajagopal M, Dolma KG, Nissapatorn V. Development of SARS-CoV-2 Vaccine: Challenges and Prospects. Diseases 2023; 11:64. [PMID: 37092446 PMCID: PMC10123684 DOI: 10.3390/diseases11020064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/19/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
The WHO declared coronavirus disease 2019 (COVID-19) a pandemic in March 2020, which was caused by novel coronavirus severe acute respiratory coronavirus 2 (SARS-CoV-2). SARS-CoV-2 made its first entry into the world in November 2019, and the first case was detected in Wuhan, China. Mutations in the SARS-CoV-2 genome distressed life in almost every discipline by the extended production of novel viral variants. In this article, authorized SARS-CoV-2 vaccines including mRNA vaccines, DNA vaccines, subunit vaccines, inactivated virus vaccines, viral vector vaccine, live attenuated virus vaccines and mix and match vaccines will be discussed based on their mechanism, administration, storage, stability, safety and efficacy. The information was collected from various journals via electronic searches including PubMed, Science Direct, Google Scholar and the WHO platform. This review article includes a brief summary on the pathophysiology, epidemiology, mutant variants and management strategies related to COVID-19. Due to the continuous production and unsatisfactory understanding of novel variants of SARS-CoV-2, it is important to design an effective vaccine along with long-lasting protection against variant strains by eliminating the gaps through practical and theoretical knowledge. Consequently, it is mandatory to update the literature through previous and ongoing trials of vaccines tested among various ethnicities and age groups to gain a better insight into management strategies and combat complications associated with upcoming novel variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Tooba Mahboob
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Amni Adilah Ismail
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1209, Bangladesh
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia
| | - Maria de Lourdes Pereira
- CICECO—Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, University Malaysia, Sabah 88400, Malaysia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
156
|
Yang J, Skaro M, Chen J, Zhan D, Lyu L, Gay S, Kandeil A, Ali MA, Kayali G, Stoianova K, Ji P, Alabady M, Bahl J, Liu L, Arnold J. The species coalescent indicates possible bat and pangolin origins of the COVID-19 pandemic. Sci Rep 2023; 13:5571. [PMID: 37019985 PMCID: PMC10074375 DOI: 10.1038/s41598-023-32622-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
A consensus species tree is reconstructed from 11 gene trees for human, bat, and pangolin beta coronaviruses from samples taken early in the pandemic (prior to April 1, 2020). Using coalescent theory, the shallow (short branches relative to the hosts) consensus species tree provides evidence of recent gene flow events between bat and pangolin beta coronaviruses predating the zoonotic transfer to humans. The consensus species tree was also used to reconstruct the ancestral sequence of human SARS-CoV-2, which was 2 nucleotides different from the Wuhan sequence. The time to most recent common ancestor was estimated to be Dec 8, 2019 with a bat origin. Some human, bat, and pangolin coronavirus lineages found in China are phylogenetically distinct, a rare example of a class II phylogeography pattern (Avise et al. in Ann Rev Eco Syst 18:489-422, 1987). The consensus species tree is a product of evolutionary factors, providing evidence of repeated zoonotic transfers between bat and pangolin as a reservoir for future zoonotic transfers to humans.
Collapse
Affiliation(s)
- Jialin Yang
- Statistics Department, University of Georgia, Athens, GA, USA
| | - Michael Skaro
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Jiani Chen
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Duna Zhan
- Statistics Department, University of Georgia, Athens, GA, USA
| | - Leke Lyu
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Skylar Gay
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- University of Texas School of Public Health, Houston, TX, USA
| | - Ahmed Kandeil
- National Research Centre, Cairo, Egypt
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Ghazi Kayali
- Human-Link DMCC, Dubai, UAE
- University of Texas School of Public Health, Houston, TX, USA
| | - Kateryna Stoianova
- Georgia Genomics and Bioinformatics Center, University of Georgia, Athens, GA, USA
| | - Pensheng Ji
- Statistics Department, University of Georgia, Athens, GA, USA
| | - Magdy Alabady
- Georgia Genomics and Bioinformatics Center, University of Georgia, Athens, GA, USA
- Plant Biology Department, University of Georgia, Athens, GA, USA
| | - Justin Bahl
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, USA
| | - Liang Liu
- Statistics Department, University of Georgia, Athens, GA, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Jonathan Arnold
- Genetics Department, University of Georgia, Athens, GA, USA.
| |
Collapse
|
157
|
Sun Q, Li X, Kuang E. Subversion of autophagy machinery and organelle-specific autophagy by SARS-CoV-2 and coronaviruses. Autophagy 2023; 19:1055-1069. [PMID: 36005882 PMCID: PMC10012907 DOI: 10.1080/15548627.2022.2116677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/09/2022] Open
Abstract
As a new emerging severe coronavirus, the knowledge on the SARS-CoV-2 and COVID-19 remains very limited, whereas many concepts can be learned from the homologous coronaviruses. Macroautophagy/autophagy is finely regulated by SARS-CoV-2 infection and plays important roles in SARS-CoV-2 infection and pathogenesis. This review will explore the subversion and mechanism of the autophagy-related machinery, vacuoles and organelle-specific autophagy during infection of SARS-CoV-2 and coronaviruses to provide meaningful insights into the autophagy-related therapeutic strategies for infectious diseases of SARS-CoV-2 and coronaviruses.
Collapse
Affiliation(s)
- Qinqin Sun
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaojuan Li
- College of Clinic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Ministry of Education, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Guangzhou, Guangdong, China
| |
Collapse
|
158
|
Kwon T, Gaudreault NN, Cool K, McDowell CD, Morozov I, Richt JA. Stability of SARS-CoV-2 in Biological Fluids of Animals. Viruses 2023; 15:v15030761. [PMID: 36992470 PMCID: PMC10058514 DOI: 10.3390/v15030761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Since its first emergence in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to evolve genetically, jump species barriers, and expand its host range. There is growing evidence of interspecies transmission including infection of domestic animals and widespread circulation in wildlife. However, knowledge of SARS-CoV-2 stability in animal biological fluids and their role in transmission is still limited as previous studies focused on human biological fluids. Therefore, this study aimed to determine the SARS-CoV-2 stability in biological fluids from three animal species, cats, sheep and white-tailed deer (WTD). Saliva, feces, 10% fecal suspensions, and urine of cats, sheep, and WTD were mixed with a known concentration of virus and incubated under indoor and three different climatic conditions. Our results show that the virus was stable for up to 1 day in the saliva of cats, sheep, and WTD regardless of the environmental conditions. The virus remained infectious for up to 6 days in feces and 15 days in fecal suspension of WTD, whereas the virus was rather unstable in cat and sheep feces and fecal suspensions. We found the longest survival of SARS-CoV-2 in the urine of cats, sheep, and WTD. Furthermore, side-by-side comparison with different SARS-CoV-2 strains showed that the Alpha, Delta, and Omicron variants of concern were less stable than the ancestral Wuhan-like strain in WTD fecal suspension. The results of our study provide valuable information for assessing the potential role of various animal biological fluids in SARS-CoV-2 transmission.
Collapse
|
159
|
Hussein M, Andrade dos Ramos Z, Vink MA, Kroon P, Yu Z, Enjuanes L, Zuñiga S, Berkhout B, Herrera-Carrillo E. Efficient CRISPR-Cas13d-Based Antiviral Strategy to Combat SARS-CoV-2. Viruses 2023; 15:v15030686. [PMID: 36992394 PMCID: PMC10051389 DOI: 10.3390/v15030686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
The current SARS-CoV-2 pandemic forms a major global health burden. Although protective vaccines are available, concerns remain as new virus variants continue to appear. CRISPR-based gene-editing approaches offer an attractive therapeutic strategy as the CRISPR-RNA (crRNA) can be adjusted rapidly to accommodate a new viral genome sequence. This study aimed at using the RNA-targeting CRISPR-Cas13d system to attack highly conserved sequences in the viral RNA genome, thereby preparing for future zoonotic outbreaks of other coronaviruses. We designed 29 crRNAs targeting highly conserved sequences along the complete SARS-CoV-2 genome. Several crRNAs demonstrated efficient silencing of a reporter with the matching viral target sequence and efficient inhibition of a SARS-CoV-2 replicon. The crRNAs that suppress SARS-CoV-2 were also able to suppress SARS-CoV, thus demonstrating the breadth of this antiviral strategy. Strikingly, we observed that only crRNAs directed against the plus-genomic RNA demonstrated antiviral activity in the replicon assay, in contrast to those that bind the minus-genomic RNA, the replication intermediate. These results point to a major difference in the vulnerability and biology of the +RNA versus −RNA strands of the SARS-CoV-2 genome and provide important insights for the design of RNA-targeting antivirals.
Collapse
Affiliation(s)
- Mouraya Hussein
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Zaria Andrade dos Ramos
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Monique A. Vink
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Pascal Kroon
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Zhenghao Yu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
160
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains asymptomatic in 33% to 90% of older adults depending on their immune status from prior infection, vaccination, and circulating strain. Older adults symptomatic with SARS-CoV-2 often both present atypically, such as with a blunted fever response, and develop more severe disease. Early and late reports showed that older adults have increased severity of coronavirus disease 2019 (COVID-19) with higher case fatality rates and higher intensive care needs compared with younger adults. Infection and vaccine-induced antibody response and long-term effects of COVID-19 also differ in older adults.
Collapse
|
161
|
Lim CP, Kok BH, Lim HT, Chuah C, Abdul Rahman B, Abdul Majeed AB, Wykes M, Leow CH, Leow CY. Recent trends in next generation immunoinformatics harnessed for universal coronavirus vaccine design. Pathog Glob Health 2023; 117:134-151. [PMID: 35550001 PMCID: PMC9970233 DOI: 10.1080/20477724.2022.2072456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has globally devastated public health, the economies of many countries and quality of life universally. The recent emergence of immune-escaped variants and scenario of vaccinated individuals being infected has raised the global concerns about the effectiveness of the current available vaccines in transmission control and disease prevention. Given the high rate mutation of SARS-CoV-2, an efficacious vaccine targeting against multiple variants that contains virus-specific epitopes is desperately needed. An immunoinformatics approach is gaining traction in vaccine design and development due to the significant reduction in time and cost of immunogenicity studies and increasing reliability of the generated results. It can underpin the development of novel therapeutic methods and accelerate the design and production of peptide vaccines for infectious diseases. Structural proteins, particularly spike protein (S), along with other proteins have been studied intensively as promising coronavirus vaccine targets. Numbers of promising online immunological databases, tools and web servers have widely been employed for the design and development of next generation COVID-19 vaccines. This review highlights the role of immunoinformatics in identifying immunogenic peptides as potential vaccine targets, involving databases, and prediction and characterization of epitopes which can be harnessed for designing future coronavirus vaccines.
Collapse
Affiliation(s)
- Chin Peng Lim
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia.,Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Boon Hui Kok
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Hui Ting Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Candy Chuah
- Faculty of Health Sciences, Universiti Teknologi MARA, Penang, Malaysia
| | | | | | - Michelle Wykes
- Molecular Immunology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
162
|
Intestinal Tropism of a Betacoronavirus ( Merbecovirus) in Nathusius's Pipistrelle Bat ( Pipistrellus nathusii), Its Natural Host. J Virol 2023; 97:e0009923. [PMID: 36856426 PMCID: PMC10062147 DOI: 10.1128/jvi.00099-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
The emergence of several bat coronavirus-related disease outbreaks in human and domestic animals has fueled surveillance of coronaviruses in bats worldwide. However, little is known about how these viruses interact with their natural hosts. We demonstrate a Betacoronavirus (subgenus Merbecovirus), PN-βCoV, in the intestine of its natural host, Nathusius's Pipistrelle Bat (Pipistrellus nathusii), by combining molecular and microscopy techniques. Eighty-eight P. nathusii bat carcasses were tested for PN-βCoV RNA by RT-qPCR, of which 25 bats (28%) tested positive. PN-βCoV RNA was more often detected in samples of the intestinal tract than in other sample types. In addition, viral RNA loads were higher in intestinal samples compared to other sample types, both on average and in each individual bat. In one bat, we demonstrated Merbecovirus antigen and PN-βCoV RNA expression in intestinal epithelium and the underlying connective tissue using immunohistochemistry and in situ hybridization, respectively. These results indicate that PN-βCoV has a tropism for the intestinal epithelium of its natural host, Nathusius's Pipistrelle Bat, and imply that the fecal-oral route is a possible route of transmission. IMPORTANCE Virtually all mammal species circulate coronaviruses. Most of these viruses will infect one host species; however, coronaviruses are known to include species that can infect multiple hosts, for example the well-known virus that caused a pandemic, SARS-CoV-2. Chiroptera (bats) include over 1,400 different species, which are expected to harbor a great variety of coronaviruses. However, we know very little about how any of these coronaviruses interact with their bat hosts; for example, we do not know their modes of transmissions, or which cells they infect. Thus, we have a limited understanding of coronavirus infections in this important host group. The significance of our study is that we learned that a bat coronavirus that occurs in a common bat species in Europe has a tropism for the intestines. This implies the fecal-oral route is a likely transmission route.
Collapse
|
163
|
Berche P. Gain-of-function and origin of Covid19. Presse Med 2023; 52:104167. [PMID: 37269978 PMCID: PMC10234839 DOI: 10.1016/j.lpm.2023.104167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023] Open
Abstract
In nature, wild viruses adapted for transmission circulate in many animal species (bats, birds, primates…). Contamination of other animals, including humans, may occur by crossing of the species barrier. Genetic manipulations have been carried out on wild viruses to favor the species jumping and to increase of viral virulence. The aim was to identify the critical genes for pathogenicity. This has been mainly performed on potentially epidemic pathogens, as Myxovirus influenzae of avian flu and coronaviruses of SARS and MERS epidemics. These dangerous experiments were subject to a moratorium in the United States (2014-2017). Three years after the emergence of Covid-19, the origin of du SARS-CoV2 remains a mystery. Covid19 appeared in Wuhan, officially in December 2019, but probably during the autumn 2019. The virus was identified in January 2020. It belongs to the genus Betacoronavirus (subgenus Sarbecovirus). It was at once highly contagious. In addition, the primary isolates were genetically very homogeneous, differing only by two nucleotides without evidence for adaptive mutations. In addition, the Spike protein, a major virulence factor, has a furin site, not found in any other known sarbecovirus. Unlike the SARS and MERS epidemics, no intermediate host has been detected so far. Finally, no other outbreaks were reported at the beginning of the pandemic outside of Wuhan, contrary to what happened with the emergence of SARS (2002) and H7N9 avian influenza (2013). Today, there are two scenarios to explain the emergence of SARS-CoV2. Proponents of the natural origin argue that the bat virus might have directly infected humans, spreading silently at a low level in humans for years, without eliminating the existence of undetected intermediate hosts. This does not explain the origin in Wuhan, far away from the natural virus reservoirs. The furin site would have arisen spontaneously from other coronaviruses. The alternative scenario is that of a laboratory accident after gain-of-function manipulations from a SARS-like virus, or even the occurrence of a human contamination by a natural CoV virus grown on cells in Wuhan. This article is an update to the Quarterly Medical Review (QMR) devoted to the history of modern pandemics. To access this QMR contents, please go here: https://www.sciencedirect.com/journal/la-presse-medicale/vol/51/issue/3.
Collapse
|
164
|
Hillary VE, Ceasar SA. An update on COVID-19: SARS-CoV-2 variants, antiviral drugs, and vaccines. Heliyon 2023; 9:e13952. [PMID: 36855648 PMCID: PMC9946785 DOI: 10.1016/j.heliyon.2023.e13952] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious and pathogenic virus that first appeared in late December 2019. This SARS-CoV-2 causes an infection of an acute respiratory disease called "coronavirus infectious disease-2019 (COVID-19). The World Health Organization (WHO) declared this SARS-CoV-2 outbreak a great pandemic on March 11, 2020. As of January 31, 2023, SARS-CoV-2 recorded more than 67 million cases and over 6 million deaths. Recently, novel mutated variants of SARS-CoV are also creating a serious health concern worldwide, and the future novel variant is still mysterious. As infection cases of SARS-CoV-2 are increasing daily, scientists are trying to combat the disease using numerous antiviral drugs and vaccines against SARS-CoV-2. To our knowledge, this is the first comprehensive review that summarized the dynamic nature of SARS-CoV-2 transmission, SARS-CoV-2 variants (a variant of concern and variant of interest), antiviral drugs and vaccines utilized against SARS-CoV-2 at a glance. Hopefully, this review will enable the researcher to gain knowledge on SARS-CoV-2 variants and vaccines, which will also pave the way to identify efficient novel vaccines against forthcoming SARS-CoV-2 strains.
Collapse
Key Words
- ACE2, Angiotensin-converting enzyme 2
- Antiviral drugs
- COVID-19
- COVID-19, Coronavirus infectious disease-2019
- EUA, Emergency Use Authorization
- FDA, Food and Drug Administration
- NIH, National Institutes of Health
- RBD, Receptor-binding domain
- SARS-CoV-2
- SARS-CoV-2 variants
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
- VOC, Variants of Concern
- VOI, Variants of Interests
- Vaccines
- WHO, World Health Organization
Collapse
Affiliation(s)
- Varghese Edwin Hillary
- Department of Biosciences, Rajagiri College of Social Sciences, Cochin, 683 104, Kerala, India
| | | |
Collapse
|
165
|
Cable J, Denison MR, Kielian M, Jackson WT, Bartenschlager R, Ahola T, Mukhopadhyay S, Fremont DH, Kuhn RJ, Shannon A, Frazier MN, Yuen KY, Coyne CB, Wolthers KC, Ming GL, Guenther CS, Moshiri J, Best SM, Schoggins JW, Jurado KA, Ebel GD, Schäfer A, Ng LFP, Kikkert M, Sette A, Harris E, Wing PAC, Eggenberger J, Krishnamurthy SR, Mah MG, Meganck RM, Chung D, Maurer-Stroh S, Andino R, Korber B, Perlman S, Shi PY, Bárcena M, Aicher SM, Vu MN, Kenney DJ, Lindenbach BD, Nishida Y, Rénia L, Williams EP. Positive-strand RNA viruses-a Keystone Symposia report. Ann N Y Acad Sci 2023; 1521:46-66. [PMID: 36697369 PMCID: PMC10347887 DOI: 10.1111/nyas.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Positive-strand RNA viruses have been the cause of several recent outbreaks and epidemics, including the Zika virus epidemic in 2015, the SARS outbreak in 2003, and the ongoing SARS-CoV-2 pandemic. On June 18-22, 2022, researchers focusing on positive-strand RNA viruses met for the Keystone Symposium "Positive-Strand RNA Viruses" to share the latest research in molecular and cell biology, virology, immunology, vaccinology, and antiviral drug development. This report presents concise summaries of the scientific discussions at the symposium.
Collapse
Affiliation(s)
| | - Mark R Denison
- Department of Pediatrics and Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; and Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, Tennessee, USA
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - William T Jackson
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University and German Cancer Research Center (DKFZ), Research Division Virus-associated Carcinogenesis, Heidelberg, Germany
| | - Tero Ahola
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | | | - Daved H Fremont
- Department of Pathology & Immunology; Department of Molecular Microbiology; and Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Ashleigh Shannon
- Architecture et Fonction des Macromolécules Biologiques, CNRS and Aix Marseille Université, Marseille, France
| | - Meredith N Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, People's Republic of China
| | - Carolyn B Coyne
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Katja C Wolthers
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam and Amsterdam Institute for Infection and Immunity, OrganoVIR Labs, Amsterdam, The Netherlands
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Jasmine Moshiri
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Sonja M Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kellie Ann Jurado
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory D Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lisa F P Ng
- ASTAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science Technology and Research (A*STAR), Singapore City, Singapore
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Peter A C Wing
- Nuffield Department of Medicine and Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Julie Eggenberger
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Siddharth R Krishnamurthy
- Metaorganism Immunity Section, Laboratory of Immune System Biology and NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marcus G Mah
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore City, Singapore
| | - Rita M Meganck
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Donghoon Chung
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, Texas, USA
| | - Sebastian Maurer-Stroh
- Yong Loo Lin School of Medicine and Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore City, Singapore
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, and Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Montserrat Bárcena
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sophie-Marie Aicher
- Institut Pasteurgrid, Université de Paris Cité, Virus Sensing and Signaling Unit, Paris, France
| | - Michelle N Vu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Devin J Kenney
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yukiko Nishida
- Chugai Pharmaceutical, Co., Tokyo, Japan
- Lee Kong Chian School of Medicine and School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Laurent Rénia
- ASTAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science Technology and Research (A*STAR), Singapore City, Singapore
| | - Evan P Williams
- Department of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
166
|
Bandyopadhyay SS, Halder AK, Saha S, Chatterjee P, Nasipuri M, Basu S. Assessment of GO-Based Protein Interaction Affinities in the Large-Scale Human-Coronavirus Family Interactome. Vaccines (Basel) 2023; 11:549. [PMID: 36992133 PMCID: PMC10059867 DOI: 10.3390/vaccines11030549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
SARS-CoV-2 is a novel coronavirus that replicates itself via interacting with the host proteins. As a result, identifying virus and host protein-protein interactions could help researchers better understand the virus disease transmission behavior and identify possible COVID-19 drugs. The International Committee on Virus Taxonomy has determined that nCoV is genetically 89% compared to the SARS-CoV epidemic in 2003. This paper focuses on assessing the host-pathogen protein interaction affinity of the coronavirus family, having 44 different variants. In light of these considerations, a GO-semantic scoring function is provided based on Gene Ontology (GO) graphs for determining the binding affinity of any two proteins at the organism level. Based on the availability of the GO annotation of the proteins, 11 viral variants, viz., SARS-CoV-2, SARS, MERS, Bat coronavirus HKU3, Bat coronavirus Rp3/2004, Bat coronavirus HKU5, Murine coronavirus, Bovine coronavirus, Rat coronavirus, Bat coronavirus HKU4, Bat coronavirus 133/2005, are considered from 44 viral variants. The fuzzy scoring function of the entire host-pathogen network has been processed with ~180 million potential interactions generated from 19,281 host proteins and around 242 viral proteins. ~4.5 million potential level one host-pathogen interactions are computed based on the estimated interaction affinity threshold. The resulting host-pathogen interactome is also validated with state-of-the-art experimental networks. The study has also been extended further toward the drug-repurposing study by analyzing the FDA-listed COVID drugs.
Collapse
Affiliation(s)
- Soumyendu Sekhar Bandyopadhyay
- Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India
- Department of Computer Science and Engineering, School of Engineering and Technology, Adamas University, Kolkata 700126, India
| | - Anup Kumar Halder
- Faculty of Mathematics and Information Sciences, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Sovan Saha
- Department of Computer Science and Engineering (Artificial Intelligence and Machine Learning), Techno Main Salt Lake, Sector V, Kolkata 700091, India
| | - Piyali Chatterjee
- Department of Computer Science and Engineering, Netaji Subhash Engineering College, Kolkata 700152, India
| | - Mita Nasipuri
- Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India
| | - Subhadip Basu
- Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
167
|
Gao B, Zhu S. Mutation-driven parallel evolution in emergence of ACE2-utilizing sarbecoviruses. Front Microbiol 2023; 14:1118025. [PMID: 36910184 PMCID: PMC9996049 DOI: 10.3389/fmicb.2023.1118025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
Mutation and recombination are two major genetic mechanisms that drive the evolution of viruses. They both exert an interplay during virus evolution, in which mutations provide a first ancestral source of genetic diversity for subsequent recombination. Sarbecoviruses are a group of evolutionarily related β-coronaviruses including human severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 and a trove of related animal viruses called SARS-like CoVs (SL-CoVs). This group of members either use or not use angiotensin-converting enzyme 2 (ACE2) as their entry receptor, which has been linked to the properties of their spike protein receptor binding domains (RBDs). This raises an outstanding question regarding how ACE2 binding originated within sarbecoviruses. Using a combination of analyses of phylogenies, ancestral sequences, structures, functions and molecular dynamics, we provide evidence in favor of an evolutionary scenario, in which three distinct ancestral RBDs independently developed the ACE2 binding trait via parallel amino acid mutations. In this process, evolutionary intermediate RBDs might be firstly formed through loop extensions to offer key functional residues accompanying point mutations to remove energetically unfavorable interactions and to change the dynamics of the functional loops, all required for ACE2 binding. Subsequent optimization in the context of evolutionary intermediates led to the independent emergence of ACE2-binding RBDs in the SARS-CoV and SARS-CoV-2 clades of Asian origin and the clade comprising SL-CoVs of European and African descent. These findings will help enhance our understanding of mutation-driven evolution of sarbecoviruses in their early history.
Collapse
Affiliation(s)
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
168
|
Burke B, Rocha SM, Zhan S, Eckley M, Reasoner C, Addetia A, Lewis J, Fagre A, Charley P, Richt JA, Weiss SR, Tjalkens RB, Veesler D, Aboellail T, Schountz T. Regulatory T Cell-like Response to SARS-CoV-2 in Jamaican Fruit Bats ( Artibeus jamaicensis ) Transduced with Human ACE2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528205. [PMID: 36824814 PMCID: PMC9949052 DOI: 10.1101/2023.02.13.528205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Insectivorous Old World horseshoe bats ( Rhinolophus spp.) are the likely source of the ancestral SARS-CoV-2 prior to its spillover into humans and causing the COVID-19 pandemic. Natural coronavirus infections of bats appear to be principally confined to the intestines, suggesting fecal-oral transmission; however, little is known about the biology of SARS-related coronaviruses in bats. Previous experimental challenges of Egyptian fruit bats ( Rousettus aegyptiacus ) resulted in limited infection restricted to the respiratory tract, whereas insectivorous North American big brown bats ( Eptesicus fuscus ) showed no evidence of infection. In the present study, we challenged Jamaican fruit bats ( Artibeus jamaicensis ) with SARS-CoV-2 to determine their susceptibility. Infection was confined to the intestine for only a few days with prominent viral nucleocapsid antigen in epithelial cells, and mononuclear cells of the lamina propria and Peyer's patches, but with no evidence of infection of other tissues; none of the bats showed visible signs of disease or seroconverted. Expression levels of ACE2 were low in the lungs, which may account for the lack of pulmonary infection. Bats were then intranasally inoculated with a replication-defective adenovirus encoding human ACE2 and 5 days later challenged with SARS-CoV-2. Viral antigen was prominent in lungs for up to 14 days, with loss of pulmonary cellularity during this time; however, the bats did not exhibit weight loss or visible signs of disease. From day 7, bats had low to moderate IgG antibody titers to spike protein by ELISA, and one bat on day 10 had low-titer neutralizing antibodies. CD4 + helper T cells became activated upon ex vivo recall stimulation with SARS-CoV-2 nucleocapsid peptide library and exhibited elevated mRNA expression of the regulatory T cell cytokines interleukin-10 and transforming growth factor-β, which may have limited inflammatory pathology. Collectively, these data show that Jamaican fruit bats are poorly susceptibility to SARS-CoV-2 but that expression of human ACE2 in their lungs leads to robust infection and an adaptive immune response with low-titer antibodies and a regulatory T cell-like response that may explain the lack of prominent inflammation in the lungs. This model will allow for insight of how SARS-CoV-2 infects bats and how bat innate and adaptive immune responses engage the virus without overt clinical disease. Author Summary Bats are reservoir hosts of many viruses that infect humans, yet little is known about how they host these viruses, principally because of a lack of relevant and susceptible bat experimental infection models. Although SARS-CoV-2 originated in bats, no robust infection models of bats have been established. We determined that Jamaican fruit bats are poorly susceptible to SARS-CoV-2; however, their lungs can be transduced with human ACE2, which renders them susceptible to SARS-CoV-2. Despite robust infection of the lungs and diminishment of pulmonary cellularity, the bats showed no overt signs of disease and cleared the infection after two weeks. Despite clearance of infection, only low-titer antibody responses occurred and only a single bat made neutralizing antibody. Assessment of the CD4 + helper T cell response showed that activated cells expressed the regulatory T cell cytokines IL-10 and TGFβ that may have tempered pulmonary inflammation.
Collapse
|
169
|
Pagani I, Ghezzi S, Alberti S, Poli G, Vicenzi E. Origin and evolution of SARS-CoV-2. EUROPEAN PHYSICAL JOURNAL PLUS 2023; 138:157. [PMID: 36811098 PMCID: PMC9933829 DOI: 10.1140/epjp/s13360-023-03719-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 01/19/2023] [Indexed: 05/14/2023]
Abstract
SARS-CoV-2 is a novel coronavirus that emerged in China at the end of 2019 causing the severe disease known as coronavirus disease 2019 (COVID-19). SARS-CoV-2, as to the previously highly pathogenic human coronaviruses named SARS-CoV, the etiological agent of severe acute respiratory syndrome (SARS), has a zoonotic origin, although SARS-CoV-2 precise chain of animal-to-human transmission remains undefined. Unlike the 2002-2003 pandemic caused by SARS-CoV whose extinction from the human population was achieved in eight months, SARS-CoV-2 has been spreading globally in an immunologically naïve population in an unprecedented manner. The efficient infection and replication of SARS-CoV-2 has resulted in the emergence of viral variants that have become predominant posing concerns about their containment as they are more infectious with variable pathogenicity in respect to the original virus. Although vaccine availability is limiting severe disease and death caused by SARS-CoV-2 infection, its extinction is far to be close and predictable. In this regard, the emersion of the Omicron viral variant in November 2021 was characterized by humoral immune escape and it has reinforced the importance of the global monitoring of SARS-CoV-2 evolution. Given the importance of the SARS-CoV-2 zoonotic origin, it will also be crucial to monitor the animal-human interface to be better prepared to cope with future infections of pandemic potential.
Collapse
Affiliation(s)
- Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina, 58, Milan, Italy
| | - Silvia Ghezzi
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina, 58, Milan, Italy
| | - Simone Alberti
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina, 58, Milan, Italy
| | - Guido Poli
- Human Immuno-Virology (H.I.V.) Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina, 58, Milan, Italy
- Vita-Salute San Raffaele University School of Medicine, Via Olgettina, 58, Milan, Italy
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina, 58, Milan, Italy
| |
Collapse
|
170
|
Kane Y, Wong G, Gao GF. Animal Models, Zoonotic Reservoirs, and Cross-Species Transmission of Emerging Human-Infecting Coronaviruses. Annu Rev Anim Biosci 2023; 11:1-31. [PMID: 36790890 DOI: 10.1146/annurev-animal-020420-025011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Over the past three decades, coronavirus (CoV) diseases have impacted humans more than any other emerging infectious disease. The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19 (coronavirus disease 2019), has resulted in huge economic disruptions and loss of human lives. The SARS-CoV-2 genome was found to mutate more rapidly due to sustained transmission in humans and potentially animals, resulting in variants of concern (VOCs) that threaten global human health. However, the primary difficulties are filling in the current knowledge gaps in terms of the origin and modalities of emergence for these viruses. Because many CoVs threatening human health are suspected to have a zoonotic origin, identifying the animal hosts implicated in the spillover or spillback events would be beneficial for current pandemic management and to prevent future outbreaks. In this review, wesummarize the animal models, zoonotic reservoirs, and cross-species transmission of the emerging human CoVs. Finally, we comment on potential sources of SARS-CoV-2 Omicron VOCs and the new SARS-CoV-2 recombinants currently under investigation.
Collapse
Affiliation(s)
- Yakhouba Kane
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China; , .,University of Chinese Academy of Sciences, Beijing, China
| | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China; ,
| | - George F Gao
- University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; .,Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
171
|
Eckhart L, Sipos W. Differential Loss of OAS Genes Indicates Diversification of Antiviral Immunity in Mammals. Vaccines (Basel) 2023; 11:vaccines11020419. [PMID: 36851296 PMCID: PMC9964502 DOI: 10.3390/vaccines11020419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
One of the main mechanisms of inducing an antiviral response depends on 2'-5'-oligoadenylate synthetases (OAS), which sense double-stranded RNA in the cytoplasm and activate RNase L. Mutations leading to the loss of functional OAS1 and OAS2 genes have been identified as important modifiers of the human immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we performed comparative genomics to search for inactivating mutations of OAS genes in other species of mammals and to establish a model for the diversifying evolution of the OAS gene family. We found that a recombination of the OAS and OAS-like (OASL) loci has led to the loss of OAS2 in camelids, which also lack OAS3. Both paralogs of OASL and OAS3 are absent in Asian pangolins. An evolutionarily ancient OAS paralog, which we tentatively name OAS4, has been lost in pangolins, bats and humans. A previously unknown OAS gene, tentatively named OAS5, is present in Yangochiroptera, a suborder of bats. These differences in the OAS gene repertoire may affect innate immune responses to coronaviruses and other RNA viruses.
Collapse
Affiliation(s)
- Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence:
| | - Wolfgang Sipos
- Clinical Department for Farm Animals and Herd Management, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
172
|
Popov IV, Ohlopkova OV, Donnik IM, Zolotukhin PV, Umanets A, Golovin SN, Malinovkin AV, Belanova AA, Lipilkin PV, Lipilkina TA, Popov IV, Logvinov AK, Dubovitsky NA, Stolbunova KA, Sobolev IA, Alekseev AY, Shestopalov AM, Burkova VN, Chikindas ML, Venema K, Ermakov AM. Detection of coronaviruses in insectivorous bats of Fore-Caucasus, 2021. Sci Rep 2023; 13:2306. [PMID: 36759670 PMCID: PMC9909659 DOI: 10.1038/s41598-023-29099-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Coronaviruses (CoVs) pose a huge threat to public health as emerging viruses. Bat-borne CoVs are especially unpredictable in their evolution due to some unique features of bat physiology boosting the rate of mutations in CoVs, which is already high by itself compared to other viruses. Among bats, a meta-analysis of overall CoVs epizootiology identified a nucleic acid observed prevalence of 9.8% (95% CI 8.7-10.9%). The main objectives of our study were to conduct a qPCR screening of CoVs' prevalence in the insectivorous bat population of Fore-Caucasus and perform their characterization based on the metagenomic NGS of samples with detected CoV RNA. According to the qPCR screening, CoV RNA was detected in 5 samples, resulting in a 3.33% (95% CI 1.1-7.6%) prevalence of CoVs in bats from these studied locations. BetaCoVs reads were identified in raw metagenomic NGS data, however, detailed characterization was not possible due to relatively low RNA concentration in samples. Our results correspond to other studies, although a lower prevalence in qPCR studies was observed compared to other regions and countries. Further studies should require deeper metagenomic NGS investigation, as a supplementary method, which will allow detailed CoV characterization.
Collapse
Affiliation(s)
- Igor V Popov
- Centre for Healthy Eating and Food Innovation, Maastricht University-Campus Venlo, 5900 AA, Venlo, The Netherlands.
- Agrobiotechnology Center, Faculty "Bioengineering and Veterinary Medicine", Don State Technical University, Rostov-On-Don, 344000, Russia.
| | - Olesia V Ohlopkova
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program On the Development of Genetic Technologies, Koltsovo, 630559, Russia
| | - Irina M Donnik
- Ural State Agrarian University, Ekaterinburg, 620075, Russia
| | | | - Alexander Umanets
- Centre for Healthy Eating and Food Innovation, Maastricht University-Campus Venlo, 5900 AA, Venlo, The Netherlands
- Maastricht University, Youth, Food and Health, 5900 AA, Venlo, The Netherlands
| | - Sergey N Golovin
- Agrobiotechnology Center, Faculty "Bioengineering and Veterinary Medicine", Don State Technical University, Rostov-On-Don, 344000, Russia
| | - Aleksey V Malinovkin
- Agrobiotechnology Center, Faculty "Bioengineering and Veterinary Medicine", Don State Technical University, Rostov-On-Don, 344000, Russia
| | | | - Pavel V Lipilkin
- Agrobiotechnology Center, Faculty "Bioengineering and Veterinary Medicine", Don State Technical University, Rostov-On-Don, 344000, Russia
| | - Tatyana A Lipilkina
- Agrobiotechnology Center, Faculty "Bioengineering and Veterinary Medicine", Don State Technical University, Rostov-On-Don, 344000, Russia
| | - Ilya V Popov
- Agrobiotechnology Center, Faculty "Bioengineering and Veterinary Medicine", Don State Technical University, Rostov-On-Don, 344000, Russia
| | - Alexandr K Logvinov
- Agrobiotechnology Center, Faculty "Bioengineering and Veterinary Medicine", Don State Technical University, Rostov-On-Don, 344000, Russia
| | - Nikita A Dubovitsky
- Research Institute of Virology, Federal State Budgetary Scientific Institution "Federal Research Center for Fundamental and Translational Medicine", 630117, Novosibirsk, Russia
| | - Kristina A Stolbunova
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, 630559, Koltsovo, Russia
| | - Ivan A Sobolev
- Research Institute of Virology, Federal State Budgetary Scientific Institution "Federal Research Center for Fundamental and Translational Medicine", 630117, Novosibirsk, Russia
| | - Alexander Yu Alekseev
- Research Institute of Virology, Federal State Budgetary Scientific Institution "Federal Research Center for Fundamental and Translational Medicine", 630117, Novosibirsk, Russia
| | - Alexander M Shestopalov
- Research Institute of Virology, Federal State Budgetary Scientific Institution "Federal Research Center for Fundamental and Translational Medicine", 630117, Novosibirsk, Russia
| | - Valentina N Burkova
- Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow, 119991, Russia
- National Research University Higher School of Economics, Moscow, 101000, Russia
| | - Michael L Chikindas
- Agrobiotechnology Center, Faculty "Bioengineering and Veterinary Medicine", Don State Technical University, Rostov-On-Don, 344000, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, 08901, USA
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Koen Venema
- Centre for Healthy Eating and Food Innovation, Maastricht University-Campus Venlo, 5900 AA, Venlo, The Netherlands
| | - Alexey M Ermakov
- Agrobiotechnology Center, Faculty "Bioengineering and Veterinary Medicine", Don State Technical University, Rostov-On-Don, 344000, Russia
| |
Collapse
|
173
|
Escalera-Zamudio M, Kosakovsky Pond SL, de la Viña NM, Gutiérrez B, Inward RPD, Thézé J, van Dorp L, Castelán-Sánchez HG, Bowden TA, Pybus OG, Hulswit RJG. Identification of evolutionary trajectories shared across human betacoronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2021.05.24.445313. [PMID: 34075377 PMCID: PMC8168386 DOI: 10.1101/2021.05.24.445313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Comparing the evolution of distantly related viruses can provide insights into common adaptive processes related to shared ecological niches. Phylogenetic approaches, coupled with other molecular evolution tools, can help identify mutations informative on adaptation, whilst the structural contextualization of these to functional sites of proteins may help gain insight into their biological properties. Two zoonotic betacoronaviruses capable of sustained human-to-human transmission have caused pandemics in recent times (SARS-CoV-1 and SARS-CoV-2), whilst a third virus (MERS-CoV) is responsible for sporadic outbreaks linked to animal infections. Moreover, two other betacoronaviruses have circulated endemically in humans for decades (HKU1 and OC43). To search for evidence of adaptive convergence between established and emerging betacoronaviruses capable of sustained human-to-human transmission (HKU1, OC43, SARS-CoV-1 and SARS-CoV-2), we developed a methodological pipeline to classify shared non-synonymous mutations as putatively denoting homoplasy (repeated mutations that do not share direct common ancestry) or stepwise evolution (sequential mutations leading towards a novel genotype). In parallel, we look for evidence of positive selection, and draw upon protein structure data to identify potential biological implications. We find 30 mutations, with four of these [codon sites 18121 (nsp14/residue 28), 21623 (spike/21), 21635 (spike/25) and 23948 (spike/796); SARS-CoV-2 genome numbering] displaying evolution under positive selection and proximity to functional protein regions. Our findings shed light on potential mechanisms underlying betacoronavirus adaptation to the human host and pinpoint common mutational pathways that may occur during establishment of human endemicity.
Collapse
|
174
|
Zeng L, Lu Y, Yan W, Yang Y. A Protein Co-Conservation Network Model Characterizes Mutation Effects on SARS-CoV-2 Spike Protein. Int J Mol Sci 2023; 24:ijms24043255. [PMID: 36834664 PMCID: PMC9960056 DOI: 10.3390/ijms24043255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
The emergence of numerous variants of SARS-CoV-2 has presented challenges to the global efforts to control the COVID-19 pandemic. The major mutation is in the SARS-CoV-2 viral envelope spike protein that is responsible for virus attachment to the host, and is the main target for host antibodies. It is critically important to study the biological effects of the mutations to understand the mechanisms of how mutations alter viral functions. Here, we propose a protein co-conservation weighted network (PCCN) model only based on the protein sequence to characterize the mutation sites by topological features and to investigate the mutation effects on the spike protein from a network view. Frist, we found that the mutation sites on the spike protein had significantly larger centrality than the non-mutation sites. Second, the stability changes and binding free energy changes in the mutation sites were positively significantly correlated with their neighbors' degree and the shortest path length separately. The results indicate that our PCCN model provides new insights into mutations on spike proteins and reflects the mutation effects on protein function alternations.
Collapse
Affiliation(s)
- Lianjie Zeng
- School of Computer Science & Technology, Soochow University, Suzhou 215000, China
- Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210000, China
| | - Yitan Lu
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China
| | - Wenying Yan
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Suzhou 215123, China
- Correspondence: (W.Y.); (Y.Y.)
| | - Yang Yang
- School of Computer Science & Technology, Soochow University, Suzhou 215000, China
- Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210000, China
- Correspondence: (W.Y.); (Y.Y.)
| |
Collapse
|
175
|
Dwyer DE. The Origins of Severe Acute Respiratory Syndrome-Coronavirus-2. Semin Respir Crit Care Med 2023; 44:3-7. [PMID: 36646081 DOI: 10.1055/s-0042-1759564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An outbreak of severe pneumonia of unknown cause was identified in Wuhan, China in December 2019: the causative agent was a novel betacoronavirus, severe acute respiratory syndrome-cotonavirus-2 (SARS-CoV-2), a virus that joins a list of coronaviruses causing severe (e.g., SARS and Middle East respiratory syndrome) or milder (e.g., 229E, OC43, NL63, and HKU1) respiratory tract infection. The World Health Organization (WHO) classified the spreading outbreak as a pandemic on March 11, 2020. Many SARS-related coronaviruses (SARSr-CoVs) have been identified in bats, particularly in Rhinolophus horseshoe bats, animals that are common in southern China and Southeast Asia. Many of the features of SARS-CoV-2 that facilitate human infection-the furin cleavage site, the receptor binding domain that binds to the human ACE2 receptor-can be identified in SARSr-CoVs. Related coronaviruses can be detected in pangolins and other animals, and human SARS-CoV-2 itself can infect various animals, some of which can transmit SARS-CoV-2 back to humans. Investigation by the WHO and others pointed to the initial outbreak being centered on the Huanan wet market in Wuhan where wild and farmed animals were sold, and where environmental testing revealed widespread SARS-CoV-2 contamination. This supports the hypothesis that bats, probably via an intermediate animal, are the origin of SARS-CoV-2. Other possible origins have been postulated, such as an accidental or deliberate laboratory leak, or virus present in frozen foods, but evidence for these ideas has not surfaced. Study of the origins of SARS-CoV-2 have been complicated by intense media and political commentary, features that may slow the studies required to understand the viral origins. Such studies are complex and may be slow: international openness and co-operation is vital. Origins explanations are needed to predict or prevent future pandemics and support the "One Health" approach to disease.
Collapse
Affiliation(s)
- Dominic E Dwyer
- Public Health Pathology, New South Wales Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
176
|
Liu Z, Gao X, Kan C, Li L, Zhang Y, Gao Y, Zhang S, Zhou L, Zhao H, Li M, Zhang Z, Sun Y. CRISPR-Cas13d effectively targets SARS-CoV-2 variants, including Delta and Omicron, and inhibits viral infection. MedComm (Beijing) 2023; 4:e208. [PMID: 36744219 PMCID: PMC9887993 DOI: 10.1002/mco2.208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 02/01/2023] Open
Abstract
The recent pandemic of variants of concern (VOC) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the need for innovative anti-SARS-CoV-2 approaches in addition to vaccines and antiviral therapeutics. Here, we demonstrate that a CRISPR-Cas13-based strategy against SARS-CoV-2 can effectively degrade viral RNA. First, we conducted a cytological infection experiment, screened CRISPR-associated RNAs (crRNAs) targeting conserved regions of viruses, and used an in vitro system to validate functional crRNAs. Reprogrammed Cas13d effectors targeting NSP13, NSP14, and nucleocapsid transcripts achieved >99% silencing efficiency in human cells which are infected with coronavirus 2, including the emerging variants in the last 2 years, B.1, B.1.1.7 (Alpha), D614G B.1.351 (Beta), and B.1.617 (Delta). Furthermore, we conducted bioinformatics data analysis. We collected the sequence information of COVID-19 and its variants from China, and phylogenetic analysis revealed that these crRNA oligos could target almost 100% of the SARS-CoV family, including the emerging new variant, Omicron. The reprogrammed Cas13d exhibited high specificity, efficiency, and rapid deployment properties; therefore, it is promising for antiviral drug development. This system could possibly be used to protect against unexpected SARS-CoV-2 variants carrying multiple mutations.
Collapse
Affiliation(s)
- Zongzhi Liu
- Central LaboratoryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina,University of Chinese Academy of SciencesBeijingChina,CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences/China National Center for BioinformationBeijingChina
| | - Xiang Gao
- Institute of HepatologyNational Clinical Research Center for Infectious DiseaseSchool of MedicineShenzhen Third People's HospitalThe Second Affiliated HospitalSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Chuanwen Kan
- University of Chinese Academy of SciencesBeijingChina,Beijing Institute of GenomicsChinese Academy of Sciences, China National Center for BioinformationBeijingChina
| | - Lingyu Li
- Central LaboratoryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina,University of Chinese Academy of SciencesBeijingChina,CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences/China National Center for BioinformationBeijingChina
| | - Yuan Zhang
- Key Laboratory for Regenerative MedicineMinistry of EducationSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong
| | - Yibo Gao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shengyuan Zhang
- Institute of HepatologyNational Clinical Research Center for Infectious DiseaseSchool of MedicineShenzhen Third People's HospitalThe Second Affiliated HospitalSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Liangji Zhou
- Key Laboratory for Regenerative MedicineMinistry of EducationSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong
| | - Hui Zhao
- Key Laboratory for Regenerative MedicineMinistry of EducationSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong,Kunming Institute of Zoology, The Chinese University of Hong Kong (KIZ‐CUHK) Joint Laboratory of Bioresources and Molecular Research of Common DiseasesThe Chinese University of Hong KongHong Kong,Hong Kong Branch of CAS Center for Excellence in Animal Evolution and GeneticsThe Chinese University of Hong KongHong Kong
| | - Mingkun Li
- University of Chinese Academy of SciencesBeijingChina,Key Laboratory of Genomic and Precision MedicineBeijing Institute of GenomicsChinese Academy of SciencesChina National Center for BioinformationBeijingChina
| | - Zheng Zhang
- Institute of HepatologyNational Clinical Research Center for Infectious DiseaseSchool of MedicineShenzhen Third People's HospitalThe Second Affiliated HospitalSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Yingli Sun
- Central LaboratoryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina,University of Chinese Academy of SciencesBeijingChina,CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences/China National Center for BioinformationBeijingChina
| |
Collapse
|
177
|
Zhao J, Dellicour S, Yan Z, Veit M, Gill MS, He WT, Zhai X, Ji X, Suchard MA, Lemey P, Su S. Early Genomic Surveillance and Phylogeographic Analysis of Getah Virus, a Reemerging Arbovirus, in Livestock in China. J Virol 2023; 97:e0109122. [PMID: 36475767 PMCID: PMC9888209 DOI: 10.1128/jvi.01091-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/14/2022] [Indexed: 12/13/2022] Open
Abstract
Getah virus (GETV) mainly causes disease in livestock and may pose an epidemic risk due to its expanding host range and the potential of long-distance dispersal through animal trade. Here, we used metagenomic next-generation sequencing (mNGS) to identify GETV as the pathogen responsible for reemerging swine disease in China and subsequently estimated key epidemiological parameters using phylodynamic and spatially-explicit phylogeographic approaches. The GETV isolates were able to replicate in a variety of cell lines, including human cells, and showed high pathogenicity in a mouse model, suggesting the potential for more mammal hosts. We obtained 16 complete genomes and 79 E2 gene sequences from viral strains collected in China from 2016 to 2021 through large-scale surveillance among livestock, pets, and mosquitoes. Our phylogenetic analysis revealed that three major GETV lineages are responsible for the current epidemic in livestock in China. We identified three potential positively selected sites and mutations of interest in E2, which may impact the transmissibility and pathogenicity of the virus. Phylodynamic inference of the GETV demographic dynamics identified an association between livestock meat consumption and the evolution of viral genetic diversity. Finally, phylogeographic reconstruction of GETV dispersal indicated that the sampled lineages have preferentially circulated within areas associated with relatively higher mean annual temperature and pig population density. Our results highlight the importance of continuous surveillance of GETV among livestock in southern Chinese regions associated with relatively high temperatures. IMPORTANCE Although livestock is known to be the primary reservoir of Getah virus (GETV) in Asian countries, where identification is largely based on serology, the evolutionary history and spatial epidemiology of GETV in these regions remain largely unknown. Through our sequencing efforts, we provided robust support for lineage delineation of GETV and identified three major lineages that are responsible for the current epidemic in livestock in China. We further analyzed genomic and epidemiological data to reconstruct the recent demographic and dispersal history of GETV in domestic animals in China and to explore the impact of environmental factors on its genetic diversity and its diffusion. Notably, except for livestock meat consumption, other pig-related factors such as the evolution of live pig transport and pork production do not show a significant association with the evolution of viral genetic diversity, pointing out that further studies should investigate the potential contribution of other host species to the GETV outbreak. Our analysis of GETV demonstrates the need for wider animal species surveillance and provides a baseline for future studies of the molecular epidemiology and early warning of emerging arboviruses in China.
Collapse
Affiliation(s)
- Jin Zhao
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Sanya Institute of Nanjing Agricultural University, Sanya, China
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Ziqing Yan
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Berlin, Germany
| | - Mandev S. Gill
- Department of Statistics, University of Georgia, Athens, Georgia, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Wan-Ting He
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Sanya Institute of Nanjing Agricultural University, Sanya, China
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Xiaofeng Zhai
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Sanya Institute of Nanjing Agricultural University, Sanya, China
| | - Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Marc A. Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California, USA
- Department of Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Shuo Su
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Sanya Institute of Nanjing Agricultural University, Sanya, China
| |
Collapse
|
178
|
Isolation and Characterization of Distinct Rotavirus A in Bat and Rodent Hosts. J Virol 2023; 97:e0145522. [PMID: 36633410 PMCID: PMC9888233 DOI: 10.1128/jvi.01455-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rotavirus A (RVA) causes diarrheal disease in humans and various animals. Recent studies have identified bat and rodent RVAs with evidence of zoonotic transmission and genome reassortment. However, the virological properties of bat and rodent RVAs with currently identified genotypes still need to be better clarified. Here, we performed virus isolation-based screening for RVA in animal specimens and isolated RVAs (representative strains: 16-06 and MpR12) from Egyptian fruit bat and Natal multimammate mouse collected in Zambia. Whole-genome sequencing and phylogenetic analysis revealed that the genotypes of bat RVA 16-06 were identical to that of RVA BATp39 strain from the Kenyan fruit bat, which has not yet been characterized. Moreover, all segments of rodent RVA MpR12 were highly divergent and assigned to novel genotypes, but RVA MpR12 was phylogenetically closer to bat RVAs than to other rodent RVAs, indicating a unique evolutionary history. We further investigated the virological properties of the isolated RVAs. In brief, we found that 16-06 entered cells by binding to sialic acids on the cell surface, while MpR12 entered in a sialic acid-independent manner. Experimental inoculation of suckling mice with 16-06 and MpR12 revealed that these RVAs are causative agents of diarrhea. Moreover, 16-06 and MpR12 demonstrated an ability to infect and replicate in a 3D-reconstructed primary human intestinal epithelium with comparable efficiency to the human RVA. Taken together, our results detail the unique genetic and virological features of bat and rodent RVAs and demonstrate the need for further investigation of their zoonotic potential. IMPORTANCE Recent advances in nucleotide sequence detection methods have enabled the detection of RVA genomes from various animals. These studies have discovered multiple divergent RVAs and have resulted in proposals for the genetic classification of novel genotypes. However, most of these RVAs have been identified via dsRNA viral genomes and not from infectious viruses, and their virological properties, such as cell/host tropisms, transmissibility, and pathogenicity, are unclear and remain to be clarified. Here, we successfully isolated RVAs with novel genome constellations from three bats and one rodent in Zambia. In addition to whole-genome sequencing, the isolated RVAs were characterized by glycan-binding affinity, pathogenicity in mice, and infectivity to the human gut using a 3D culture of primary intestinal epithelium. Our study reveals the first virological properties of bat and rodent RVAs with high genetic diversity and unique evolutional history and provides basic knowledge to begin estimating the potential of zoonotic transmission.
Collapse
|
179
|
Meta Djomsi D, Lacroix A, Soumah AK, Kinganda Lusamaki E, Mesdour A, Raulino R, Esteban A, Ndong Bass I, Mba Djonzo FA, Goumou S, Ndimbo-Kimugu SP, Lempu G, Mbala Kingebeni P, Bamuleka DM, Likofata J, Muyembe Tamfum JJ, Toure A, Mpoudi Ngole E, Kouanfack C, Delaporte E, Keita AK, Ahuka-Mundeke S, Ayouba A, Peeters M. Coronaviruses Are Abundant and Genetically Diverse in West and Central African Bats, including Viruses Closely Related to Human Coronaviruses. Viruses 2023; 15:337. [PMID: 36851551 PMCID: PMC9967053 DOI: 10.3390/v15020337] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Bats are at the origin of human coronaviruses, either directly or via an intermediate host. We tested swabs from 4597 bats (897 from the Democratic Republic of Congo (DRC), 2191 from Cameroon and 1509 from Guinea) with a broadly reactive PCR in the RdRp region. Coronaviruses were detected in 903 (19.6%) bats and in all species, with more than 25 individuals tested. The highest prevalence was observed in Eidolon helvum (239/733; 39.9%) and Rhinolophus sp. (306/899; 34.1%), followed by Hipposideros sp. (61/291; 20.9%). Frugivorous bats were predominantly infected with beta coronaviruses from the Nobecovirus subgenus (93.8%), in which at least 6 species/genus-specific subclades were observed. In contrast, insectivorous bats were infected with beta-coronaviruses from different subgenera (Nobecovirus (8.5%), Hibecovirus (32.8%), Merbecovirus (0.5%) and Sarbecovirus (57.6%)) and with a high diversity of alpha-coronaviruses. Overall, our study shows a high prevalence and genetic diversity of coronaviruses in bats and illustrates that Rhinolophus bats in Africa are infected at high levels with the Sarbecovirus subgenus, to which SARS-CoV-2 belongs. It is important to characterize in more detail the different coronavirus lineages from bats for their potential to infect human cells, their evolution and to study frequency and modes of contact between humans and bats in Africa.
Collapse
Affiliation(s)
- Dowbiss Meta Djomsi
- Centre de Recherche sur les Maladies Emergentes et Réémergentes (CREMER), Yaounde P.O. Box 1857, Cameroon
| | - Audrey Lacroix
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France
| | - Abdoul Karim Soumah
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Gamal Abdel Nasser University (UGANC), Conakry BP6629, Guinea
| | - Eddy Kinganda Lusamaki
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of Congo
| | - Asma Mesdour
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France
| | - Raisa Raulino
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France
| | - Amandine Esteban
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France
| | - Innocent Ndong Bass
- Centre de Recherche sur les Maladies Emergentes et Réémergentes (CREMER), Yaounde P.O. Box 1857, Cameroon
| | | | - Souana Goumou
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Gamal Abdel Nasser University (UGANC), Conakry BP6629, Guinea
| | | | - Guy Lempu
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of Congo
| | - Placide Mbala Kingebeni
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of Congo
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa P.O. Box 1197, Democratic Republic of Congo
| | - Daniel Mukadi Bamuleka
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa P.O. Box 1197, Democratic Republic of Congo
- Institut National de Recherche Biomédicale (INRB), Kinshasa P.O. Box 1197, Democratic Republic of Congo
| | - Jacques Likofata
- Laboratoire Provincial de Mbandaka, Mbandaka, Democratic Republic of Congo
| | - Jean-Jacques Muyembe Tamfum
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of Congo
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa P.O. Box 1197, Democratic Republic of Congo
| | - Abdoulaye Toure
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Gamal Abdel Nasser University (UGANC), Conakry BP6629, Guinea
- Department of Public Health, Faculty of Health Sciences and Techniques, Gamal Abdel Nasser University (UGANC), Conakry P.O. Box 1147, Guinea
| | - Eitel Mpoudi Ngole
- Centre de Recherche sur les Maladies Emergentes et Réémergentes (CREMER), Yaounde P.O. Box 1857, Cameroon
| | - Charles Kouanfack
- Centre de Recherche sur les Maladies Emergentes et Réémergentes (CREMER), Yaounde P.O. Box 1857, Cameroon
| | - Eric Delaporte
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France
| | - Alpha Kabinet Keita
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Gamal Abdel Nasser University (UGANC), Conakry BP6629, Guinea
- Department of Public Health, Faculty of Health Sciences and Techniques, Gamal Abdel Nasser University (UGANC), Conakry P.O. Box 1147, Guinea
| | - Steve Ahuka-Mundeke
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of Congo
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa P.O. Box 1197, Democratic Republic of Congo
| | - Ahidjo Ayouba
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France
| | - Martine Peeters
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France
| |
Collapse
|
180
|
Chen J, Wang R, Hozumi Y, Liu G, Qiu Y, Wei X, Wei GW. Emerging Dominant SARS-CoV-2 Variants. J Chem Inf Model 2023; 63:335-342. [PMID: 36577010 PMCID: PMC9843632 DOI: 10.1021/acs.jcim.2c01352] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 12/29/2022]
Abstract
Accurate and reliable forecasting of emerging dominant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants enables policymakers and vaccine makers to get prepared for future waves of infections. The last three waves of SARS-CoV-2 infections caused by dominant variants, Omicron (BA.1), BA.2, and BA.4/BA.5, were accurately foretold by our artificial intelligence (AI) models built with biophysics, genotyping of viral genomes, experimental data, algebraic topology, and deep learning. On the basis of newly available experimental data, we analyzed the impacts of all possible viral spike (S) protein receptor-binding domain (RBD) mutations on the SARS-CoV-2 infectivity. Our analysis sheds light on viral evolutionary mechanisms, i.e., natural selection through infectivity strengthening and antibody resistance. We forecast that BP.1, BL*, BA.2.75*, BQ.1*, and particularly BN.1* have a high potential to become the new dominant variants to drive the next surge. Our key projection about these variants dominance made on Oct. 18, 2022 (see arXiv:2210.09485) became reality in late November 2022.
Collapse
Affiliation(s)
- Jiahui Chen
- Department of Mathematics, Michigan State University, MI 48824, USA
| | - Rui Wang
- Department of Mathematics, Michigan State University, MI 48824, USA
| | - Yuta Hozumi
- Department of Mathematics, Michigan State University, MI 48824, USA
| | - Gengzhuo Liu
- Department of Mathematics, Michigan State University, MI 48824, USA
| | - Yuchi Qiu
- Department of Mathematics, Michigan State University, MI 48824, USA
| | - Xiaoqi Wei
- Department of Mathematics, Michigan State University, MI 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA
| |
Collapse
|
181
|
Juhas M. COVID-19. BRIEF LESSONS IN MICROBIOLOGY 2023:123-133. [DOI: 10.1007/978-3-031-29544-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
182
|
Rao SS, Parthasarathy K, Sounderrajan V, Neelagandan K, Anbazhagan P, Chandramouli V. Susceptibility of SARS Coronavirus-2 infection in domestic and wild animals: a systematic review. 3 Biotech 2023; 13:5. [PMID: 36514483 PMCID: PMC9741861 DOI: 10.1007/s13205-022-03416-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022] Open
Abstract
Animals and viruses have constantly been co-evolving under natural circumstances and pandemic like situations. They harbour harmful viruses which can spread easily. In the recent times we have seen pandemic like situations being created as a result of the spread of deadly and fatal viruses. Coronaviruses (CoVs) are one of the wellrecognized groups of viruses. There are four known genera of Coronavirus family namely, alpha (α), beta (β), gamma (γ), and delta (δ). Animals have been infected with CoVs belonging to all four genera. In the last few decades the world has witnessed an emergence of severe acute respiratory syndromes which had created a pandemic like situation such as SARS CoV, MERS-CoV. We are currently in another pandemic like situation created due to the uncontrolled spread of a similar coronavirus namely SARSCoV-2. These findings are based on a small number of animals and do not indicate whether animals can transmit disease to humans. Several mammals, including cats, dogs, bank voles, ferrets, fruit bats, hamsters, mink, pigs, rabbits, racoon dogs, and white-tailed deer, have been found to be infected naturally by the virus. Certain laboratory discoveries revealed that animals such as cats, ferrets, fruit bats, hamsters, racoon dogs, and white-tailed deer can spread the illness to other animals of the same species. This review article gives insights on the current knowledge about SARS-CoV-2 infection and development in animals on the farm and in domestic community and their impact on society.
Collapse
Affiliation(s)
- Sudhanarayani S. Rao
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119 India
| | - Krupakar Parthasarathy
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119 India
| | - Vignesh Sounderrajan
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119 India
| | - K. Neelagandan
- Centre for Chemical Biology and Therapeutics, Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, India
| | | | | |
Collapse
|
183
|
Mubareka S, Amuasi J, Banerjee A, Carabin H, Copper Jack J, Jardine C, Jaroszewicz B, Keefe G, Kotwa J, Kutz S, McGregor D, Mease A, Nicholson L, Nowak K, Pickering B, Reed MG, Saint-Charles J, Simonienko K, Smith T, Scott Weese J, Jane Parmley E. Strengthening a One Health approach to emerging zoonoses. Facets (Ott) 2023. [DOI: 10.1139/facets-2021-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Given the enormous global impact of the COVID-19 pandemic, outbreaks of highly pathogenic avian influenza in Canada, and manifold other zoonotic pathogen activity, there is a pressing need for a deeper understanding of the human-animal-environment interface and the intersecting biological, ecological, and societal factors contributing to the emergence, spread, and impact of zoonotic diseases. We aim to apply a One Health approach to pressing issues related to emerging zoonoses, and propose a functional framework of interconnected but distinct groups of recommendations around strategy and governance, technical leadership (operations), equity, education and research for a One Health approach and Action Plan for Canada. Change is desperately needed, beginning by reorienting our approach to health and recalibrating our perspectives to restore balance with the natural world in a rapid and sustainable fashion. In Canada, a major paradigm shift in how we think about health is required. All of society must recognize the intrinsic value of all living species and the importance of the health of humans, other animals, and ecosystems to health for all.
Collapse
Affiliation(s)
| | - John Amuasi
- Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti Region, Ghana
| | | | | | - Joe Copper Jack
- Indigenous Knowledge Holder, Whitehorse, Yukon Territory, Canada
| | | | | | - Greg Keefe
- University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | | | - Susan Kutz
- University of Calgary, Calgary, Alberta, Canada
| | | | - Anne Mease
- Selkirk First Nation Citizen, Selkirk First Nation, Yukon Territory, Canada
| | | | | | - Brad Pickering
- Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | |
Collapse
|
184
|
Juhas M. Emerging and Zoonotic Diseases. BRIEF LESSONS IN MICROBIOLOGY 2023:111-122. [DOI: 10.1007/978-3-031-29544-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
185
|
Juhas M. Future Pandemics. BRIEF LESSONS IN MICROBIOLOGY 2023:135-142. [DOI: 10.1007/978-3-031-29544-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
186
|
Wang LF, Mani S, Tan CW, Anderson DE. Assays for Detecting Henipavirus Antibodies. Methods Mol Biol 2023; 2682:245-258. [PMID: 37610587 DOI: 10.1007/978-1-0716-3283-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
While molecular detection has increasingly become the detection method of choice for infectious diseases, antibody detection remains an important approach for diagnosis and surveillance. For henipaviruses, antibody detection methods such as ELISA and Western blot played a key role in the initial discovery of bats as the natural reservoir host. Here, we will describe three additional antibody detection methods (LIPS, Luminex, and pseudovirus systems), which can be used in most BSL2 laboratories without the need for live virus and a high containment BSL4 facility.
Collapse
Affiliation(s)
- Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - Shailendra Mani
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- NCR Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Danielle E Anderson
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity , Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
187
|
Moraga-Fernández A, Sánchez-Sánchez M, Queirós J, Lopes AM, Vicente J, Pardavila X, Sereno-Cadierno J, Alves PC, de la Fuente J, Fernández de Mera IG. A study of viral pathogens in bat species in the Iberian Peninsula: identification of new coronavirus genetic variants. Int J Vet Sci Med 2022; 10:100-110. [PMID: 36407496 PMCID: PMC9639555 DOI: 10.1080/23144599.2022.2139985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bats have long been associated with multiple pathogens, including viruses affecting humans such as henipaviruses, filoviruses, bunyaviruses and coronaviruses. The alpha and beta coronaviruses genera can infect most mammalian species. Among them, betacoronavirus SARS-CoV, MERS-CoV and SARS-CoV-2, which have caused the three major pandemics in the last two decades, have been proposed to originate in bats. In this study, 194 oral swabs from 22 bats species sampled in 19 locations of the Iberian Peninsula were analysed and characterized by three different PCR tests (coronavirus generic real-time RT-PCR, multiplex conventional PCR, and SARS-CoV-2 specific real-time RT-PCR) to detect bat coronaviruses. Screening with coronavirus generic PCR showed 102 positives out of 194 oral swabs analysed. Then, metabarcoding with multiplex PCR amplified 15 positive samples. Most of the coronaviruses detected in this study belong to alphacoronavirus (α-CoV) genus, with multiple alphacoronaviruses identified by up to five different genetic variants coexisting in the same bat. One of the positive samples identified in a Miniopterus schreibersii bat positive for the generic coronavirus PCR and the specific SARS-CoV-2 PCR was classified as betacoronavirus (-CoV) through phylogenetic analysis. These results support the rapid evolution of coronaviruses to generate new genomic potentially pathogenic variants likely through co-infection and recombination.
Collapse
Affiliation(s)
- Alberto Moraga-Fernández
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), SaBio Research Group, Ciudad Real, Spain
| | - Marta Sánchez-Sánchez
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), SaBio Research Group, Ciudad Real, Spain
| | - João Queirós
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Estação Biológica de Mértola (EBM), CIBIO, Praça Luís de Camões, Mértola, Portugal
| | - Ana M. Lopes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Joaquín Vicente
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), SaBio Research Group, Ciudad Real, Spain
| | - Xosé Pardavila
- Sorex, Ecoloxía e Medio Ambiente S.L., Santiago de Compostela. A Coruña, Spain
| | - Jorge Sereno-Cadierno
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), SaBio Research Group, Ciudad Real, Spain
| | - Paulo C. Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Estação Biológica de Mértola (EBM), CIBIO, Praça Luís de Camões, Mértola, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - José de la Fuente
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), SaBio Research Group, Ciudad Real, Spain
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | | |
Collapse
|
188
|
Nabi F, Ahmad O, Khan YA, Nabi A, Md Amiruddin H, Abul Qais F, Masroor A, Hisamuddin M, Uversky VN, Khan RH. Computational studies on phylogeny and drug designing using molecular simulations for COVID-19. J Biomol Struct Dyn 2022; 40:10753-10762. [PMID: 34278954 DOI: 10.1080/07391102.2021.1947895] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since the first appearance of a novel coronavirus pneumonia (NCP) caused by a novel human coronavirus, and especially after the infection started its rapid spread over the world causing the COVID-19 (coronavirus disease 2019) pandemics, a very substantial part of the scientific community is engaged in the intensive research dedicated to finding of the potential therapeutics to cure this disease. As repurposing of existing drugs represents the only instant solution for those infected with the virus, we have been working on utilization of the structure-based virtual screening method to find some potential medications. In this study, we screened a library of 646 FDA approved drugs against the receptor-binding domain of the SARS-CoV-2 spike (S) protein and the main protease of this virus. Scoring functions revealed that some of the anticancer drugs (such as Pazopanib, Irinotecan, and Imatinib), antipsychotic drug (Risperidone), and antiviral drug (Raltegravir) have a potential to interact with both targets with high efficiency. Further we performed molecular dynamics simulations to understand the evolution in protein upon interaction with drug. Also, we have performed a phylogenetic analysis of 43 different coronavirus strains infecting 12 different mammalian species.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Owais Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Yawar Ali Khan
- Department of Bioengeenering, Intergral University, Lucknow, India
| | - Anas Nabi
- Department of Computer Science, Vivekanand College of Technology and Management, Aligarh, India
| | - Hashmi Md Amiruddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Aiman Masroor
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Malik Hisamuddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Vladimir N Uversky
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, Russia.,Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
189
|
Abstract
Hundreds of sarbecoviruses have been found in bats, but only a fraction of them have the ability to infect cells using angiotensin-converting enzyme 2 (ACE2), the receptor for SARS-CoV and -2. To date, only ACE2-dependent sarbecoviruses have been isolated from field samples or grown in the laboratory. ACE2-independent sarbecoviruses, comprising the majority of the subgenus, have not been propagated in any type of cell culture, as the factors and conditions needed for their replication are completely unknown. Given the significant zoonotic threat posed by sarbecoviruses, cell culture models and in vitro tools are urgently needed to study the rest of this subgenus. We previously showed that the exogenous protease trypsin could facilitate cell entry of viral-like particles pseudotyped with spike protein from some of the ACE2-independent sarbecoviruses. Here, we tested if these conditions were sufficient to support bona fide viral replication using recombinant bat sarbecoviruses. In the presence of trypsin, some of the spike proteins from clade 2 viruses were capable of supporting bat sarbecovirus infection and replication in human and bat cells. Protease experiments showed a specific viral dependence on high levels of trypsin, as TMPRSS2 and furin had no effect on clade 2 virus entry. These results shed light on how sarbecoviruses transmit and coexist in their natural hosts, provide key insights for future efforts to isolate and grow these viruses from field samples, and further underscore the need for broadly protective, universal coronavirus vaccines. IMPORTANCE Our studies demonstrate that some unexplored sarbecoviruses are capable of replicating in human and bat cells in an ACE2-independent way but need a high trypsin environment. We found that trypsin is not compensated by other known proteases involved in some coronavirus entry. This work provides important information that the trypsin-dependent entry may be a widely employed mechanism for coronaviruses and will help for further understanding the biological features of the less-studied viruses.
Collapse
|
190
|
Analogous comparison unravels heightened antiviral defense and boosted viral infection upon immunosuppression in bat organoids. Signal Transduct Target Ther 2022; 7:392. [PMID: 36529763 PMCID: PMC9760641 DOI: 10.1038/s41392-022-01247-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Horseshoe bats host numerous SARS-related coronaviruses without overt disease signs. Bat intestinal organoids, a unique model of bat intestinal epithelium, allow direct comparison with human intestinal organoids. We sought to unravel the cellular mechanism(s) underlying bat tolerance of coronaviruses by comparing the innate immunity in bat and human organoids. We optimized the culture medium, which enabled a consecutive passage of bat intestinal organoids for over one year. Basal expression levels of IFNs and IFN-stimulated genes were higher in bat organoids than in their human counterparts. Notably, bat organoids mounted a more rapid, robust and prolonged antiviral defense than human organoids upon Poly(I:C) stimulation. TLR3 and RLR might be the conserved pathways mediating antiviral response in bat and human intestinal organoids. The susceptibility of bat organoids to a bat coronavirus CoV-HKU4, but resistance to EV-71, an enterovirus of exclusive human origin, indicated that bat organoids adequately recapitulated the authentic susceptibility of bats to certain viruses. Importantly, TLR3/RLR inhibition in bat organoids significantly boosted viral growth in the early phase after SARS-CoV-2 or CoV-HKU4 infection. Collectively, the higher basal expression of antiviral genes, especially more rapid and robust induction of innate immune response, empowered bat cells to curtail virus propagation in the early phase of infection.
Collapse
|
191
|
Kamau J, Ergunay K, Webala PW, Justi SA, Bourke BP, Kamau MW, Hassell J, Chege MN, Mwaura DK, Simiyu C, Kibiwot S, Onyuok S, Caicedo-Quiroga L, Li T, Zimmerman DM, Linton YM. A Novel Coronavirus and a Broad Range of Viruses in Kenyan Cave Bats. Viruses 2022; 14:v14122820. [PMID: 36560824 PMCID: PMC9785147 DOI: 10.3390/v14122820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND METHODS To investigate virus diversity in hot zones of probable pathogen spillover, 54 oral-fecal swabs were processed from five bat species collected from three cave systems in Kenya, using metagenome sequencing. RESULTS Viruses belonging to the Astroviridae, Circoviridae, Coronaviridae, Dicistroviridae, Herpesviridae and Retroviridae were detected, with unclassified viruses. Retroviral sequences were prevalent; 74.1% of all samples were positive, with distinct correlations between virus, site and host bat species. Detected retroviruses comprised Myotis myotis, Myotis ricketti, Myotis daubentonii and Galidia endogenous retroviruses, murine leukemia virus-related virus and Rhinolophus ferrumequinum retrovirus (RFRV). A near-complete genome of a local RFRV strain with identical genome organization and 2.8% nucleotide divergence from the prototype isolate was characterized. Bat coronavirus sequences were detected with a prevalence of 24.1%, where analyses on the ORF1ab region revealed a novel alphacoronavirus lineage. Astrovirus sequences were detected in 25.9%of all samples, with considerable diversity. In 9.2% of the samples, other viruses including Actinidia yellowing virus 2, bat betaherpesvirus, Bole tick virus 4, Cyclovirus and Rhopalosiphum padi virus were identified. CONCLUSIONS Further monitoring of bats across Kenya is essential to facilitate early recognition of possibly emergent zoonotic viruses.
Collapse
Affiliation(s)
- Joseph Kamau
- One Health Centre, Institute of Primate Research (IPR), Nairobi 00502, Kenya
| | - Koray Ergunay
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland, MD 20746, USA
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
- Department of Medical Microbiology, Virology Unit, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC 20560, USA
- Correspondence:
| | - Paul W. Webala
- Department of Forestry and Wildlife Management, Maasai Mara University, Narok 20500, Kenya
| | - Silvia A. Justi
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland, MD 20746, USA
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC 20560, USA
| | - Brian P. Bourke
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland, MD 20746, USA
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC 20560, USA
| | - Maureen W. Kamau
- Mpala Research Centre, Nanyuki 10400, Kenya
- Global Health Program, Smithsonian Conservation Biology Institute (SCBI), Front Royal, VA 22630, USA
| | - James Hassell
- Mpala Research Centre, Nanyuki 10400, Kenya
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, CT 06520, USA
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | - Mary N. Chege
- One Health Centre, Institute of Primate Research (IPR), Nairobi 00502, Kenya
| | - David K. Mwaura
- One Health Centre, Institute of Primate Research (IPR), Nairobi 00502, Kenya
| | - Cynthia Simiyu
- Department of Forestry and Wildlife Management, Maasai Mara University, Narok 20500, Kenya
| | - Sospeter Kibiwot
- Department of Forestry and Wildlife Management, Maasai Mara University, Narok 20500, Kenya
| | - Samson Onyuok
- Zoology Department, National Museums of Kenya, Nairobi 00100, Kenya
| | - Laura Caicedo-Quiroga
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland, MD 20746, USA
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC 20560, USA
| | - Tao Li
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Dawn M. Zimmerman
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland, MD 20746, USA
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC 20560, USA
- Zoology Department, National Museums of Kenya, Nairobi 00100, Kenya
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland, MD 20746, USA
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC 20560, USA
| |
Collapse
|
192
|
Akaishi T, Fujiwara K, Ishii T. Genetic Recombination Sites Away from the Insertion/Deletion Hotspots in SARS-Related Coronaviruses. TOHOKU J EXP MED 2022; 259:17-26. [PMID: 36351613 DOI: 10.1620/tjem.2022.j093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
The genome sequences of severe acute respiratory syndrome (SARS)-related coronaviruses (sarbecoviruses) have been reported to include many long and complex insertions/deletions (indels) in specific genomic regions, including open reading frame 1a (ORF1a), S1 domain of the spike, and ORF8 genes. These indel hotspots incorporate various non-classical, long, and complex indels with uncertain developmental processes. A possible explanation for these complex and diversified indels at the hotspots is genetic recombination. To determine the possible association between recombination events and development of indel hotspots, this study investigated the genome sequences of many sarbecoviruses from different countries and hosts and compared the distributions of the indel hotspots and recombination sites by performing multiple sequence alignments and recombination analyses. The genomes of 19 SARS-related coronaviruses (15 coronaviruses that infect bats, two that infect humans, one that infects pangolins, and one that infects civets), including human-infecting SARS-CoV and SARS-CoV-2, were evaluated. Hotspots of complex indels with diverse RNA sequences around gaps were clustered in non-structural protein 2 (Nsp2) and Nsp3 of ORF1a, S1, and ORF8. Phylogenetic reconstructions revealed different structures of the inferred phylogenetic trees between genomic regions, and recombination analyses identified multiple recombination sites across ORF1ab and S genes. However, the nucleotide positions of the indel hotspots were not identical with the identified recombination sites in the recombinant viruses, suggesting the involvement of different developmental processes of indel hotspots and genetic recombination. Further research is required to elucidate the developmental mechanisms underpinning clustered complex indels and recombination events in the evolutionary history of sarbecoviruses.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Education and Support for Regional Medicine, Tohoku University
- COVID-19 Testing Center, Tohoku University
| | - Kei Fujiwara
- Department of Gastroenterology and Metabolism, Nagoya City University
| | - Tadashi Ishii
- Department of Education and Support for Regional Medicine, Tohoku University
- COVID-19 Testing Center, Tohoku University
| |
Collapse
|
193
|
Moran TE, Hammers DE, Lee SW. The Role of Host-Cellular Responses in COVID-19 Endothelial Dysfunction. Curr Drug Targets 2022; 23:1555-1566. [PMID: 35748550 DOI: 10.2174/1389450123666220624094940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 01/25/2023]
Abstract
SARS-CoV2, Severe acute respiratory syndrome coronavirus 2, is a novel member of the human coronavirus family that has recently emerged worldwide to cause COVID-19 disease. COVID-19 disease has been declared a worldwide pandemic with over 270 million total cases, and >5 million deaths as of this writing. Although co-morbidities and preexisting conditions have played a significant role in the severity of COVID-19, the hallmark feature of severe disease associated with SARS-CoV2 is respiratory failure. Recent findings have demonstrated a key role for endothelial dysfunction caused by SARS-CoV2 in these clinical outcomes, characterized by endothelial inflammation, the persistence of a pro-coagulative state, and major recruitment of leukocytes and other immune cells to localized areas of endothelial dysfunction. Though it is generally recognized that endothelial impairment is a major contributor to COVID-19 disease, studies to examine the initial cellular events involved in triggering endothelial dysfunction are needed. In this article, we review the general strategy of pathogens to exploit endothelial cells and the endothelium to cause disease. We discuss the role of the endothelium in COVID-19 disease and highlight very recent findings that identify key signaling and cellular events that are associated with the initiation of SARS-CoV2 infection. These studies may reveal specific molecular pathways that can serve as potential means of therapeutic development against COVID-19 disease.
Collapse
Affiliation(s)
- Thomas E Moran
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Daniel E Hammers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.,W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, USA.,Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
194
|
Chen J, Qiu Y, Wang R, Wei GW. Persistent Laplacian projected Omicron BA.4 and BA.5 to become new dominating variants. Comput Biol Med 2022; 151:106262. [PMID: 36379191 PMCID: PMC10754203 DOI: 10.1016/j.compbiomed.2022.106262] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/15/2022]
Abstract
Due to its high transmissibility, Omicron BA.1 ousted the Delta variant to become a dominating variant in late 2021 and was replaced by more transmissible Omicron BA.2 in March 2022. An important question is which new variants will dominate in the future. Topology-based deep learning models have had tremendous success in forecasting emerging variants in the past. However, topology is insensitive to homotopic shape evolution in virus-human protein-protein binding, which is crucial to viral evolution and transmission. This challenge is tackled with persistent Laplacian, which is able to capture both the topological change and homotopic shape evolution of data. Persistent Laplacian-based deep learning models are developed to systematically evaluate variant infectivity. Our comparative analysis of Alpha, Beta, Gamma, Delta, Lambda, Mu, and Omicron BA.1, BA.1.1, BA.2, BA.2.11, BA.2.12.1, BA.3, BA.4, and BA.5 unveils that Omicron BA.2.11, BA.2.12.1, BA.3, BA.4, and BA.5 are more contagious than BA.2. In particular, BA.4 and BA.5 are about 36% more infectious than BA.2 and are projected to become new dominant variants by natural selection. Moreover, the proposed models outperform the state-of-the-art methods on three major benchmark datasets for mutation-induced protein-protein binding free energy changes. Our key projection about BA4 and BA.5's dominance made on May 1, 2022 (see arXiv:2205.00532) became a reality in late June 2022.
Collapse
Affiliation(s)
- Jiahui Chen
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
| | - Yuchi Qiu
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
| | - Rui Wang
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA; Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
195
|
Pavan M, Bassani D, Sturlese M, Moro S. From the Wuhan-Hu-1 strain to the XD and XE variants: is targeting the SARS-CoV-2 spike protein still a pharmaceutically relevant option against COVID-19? J Enzyme Inhib Med Chem 2022; 37:1704-1714. [PMID: 35695095 PMCID: PMC9196651 DOI: 10.1080/14756366.2022.2081847] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/20/2022] [Indexed: 11/08/2022] Open
Abstract
Since the outbreak of the COVID-19 pandemic in December 2019, the SARS-CoV-2 genome has undergone several mutations. The emergence of such variants has resulted in multiple pandemic waves, contributing to sustaining to date the number of infections, hospitalisations, and deaths despite the swift development of vaccines, since most of these mutations are concentrated on the Spike protein, a viral surface glycoprotein that is the main target for most vaccines. A milestone in the fight against the COVID-19 pandemic has been represented by the development of Paxlovid, the first orally available drug against COVID-19, which acts on the Main Protease (Mpro). In this article, we analyse the structural features of both the Spike protein and the Mpro of the recently reported SARS-CoV-2 variant XE, as well the closely related XD and XF ones, discussing their impact on the efficacy of existing treatments against COVID-19 and on the development of future ones.
Collapse
Affiliation(s)
- Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
196
|
Viral cross-class transmission results in disease of a phytopathogenic fungus. THE ISME JOURNAL 2022; 16:2763-2774. [PMID: 36045287 PMCID: PMC9428384 DOI: 10.1038/s41396-022-01310-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 12/15/2022]
Abstract
Interspecies transmission of viruses is a well-known phenomenon in animals and plants whether via contacts or vectors. In fungi, interspecies transmission between distantly related fungi is often suspected but rarely experimentally documented and may have practical implications. A newly described double-strand RNA (dsRNA) virus found asymptomatic in the phytopathogenic fungus Leptosphaeria biglobosa of cruciferous crops was successfully transmitted to an evolutionarily distant, broad-host range pathogen Botrytis cinerea. Leptosphaeria biglobosa botybirnavirus 1 (LbBV1) was characterized in L. biglobosa strain GZJS-19. Its infection in L. biglobosa was asymptomatic, as no significant differences in radial mycelial growth and pathogenicity were observed between LbBV1-infected and LbBV1-free strains. However, cross-species transmission of LbBV1 from L. biglobosa to infection in B. cinerea resulted in the hypovirulence of the recipient B. cinerea strain t-459-V. The cross-species transmission was succeeded only by inoculation of mixed spores of L. biglobosa and B. cinerea on PDA or on stems of oilseed rape with the efficiency of 4.6% and 18.8%, respectively. To investigate viral cross-species transmission between L. biglobosa and B. cinerea in nature, RNA sequencing was carried out on L. biglobosa and B. cinerea isolates obtained from Brassica samples co-infected by these two pathogens and showed that at least two mycoviruses were detected in both fungal groups. These results indicate that cross-species transmission of mycoviruses may occur frequently in nature and result in the phenotypical changes of newly invaded phytopathogenic fungi. This study also provides new insights for using asymptomatic mycoviruses as biocontrol agent.
Collapse
|
197
|
Murakami S, Kitamura T, Matsugo H, Kamiki H, Oyabu K, Sekine W, Takenaka-Uema A, Sakai-Tagawa Y, Kawaoka Y, Horimoto T. Isolation of Bat Sarbecoviruses, Japan. Emerg Infect Dis 2022; 28:2500-2503. [PMID: 36417954 PMCID: PMC9707576 DOI: 10.3201/eid2812.220801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Surveillance of bat betacoronaviruses is crucial for understanding their spillover potential. We isolated bat sarbecoviruses from Rhinolophus cornutus bats in multiple locations in Japan. These viruses grew efficiently in cells expressing R. cornutus angiotensin converting enzyme-2, but not in cells expressing human angiotensin converting enzyme-2, suggesting a narrow host range.
Collapse
|
198
|
Adams LE, Leist SR, Dinnon KH, West A, Gully KL, Anderson EJ, Loome JF, Madden EA, Powers JM, Schäfer A, Sarkar S, Castillo IN, Maron JS, McNamara RP, Bertera HL, Zweigert MR, Higgins JS, Hampton BK, Premkumar L, Alter G, Montgomery SA, Baxter VK, Heise MT, Baric RS. Fc mediated pan-sarbecovirus protection after alphavirus vector vaccination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.28.518175. [PMID: 36482964 PMCID: PMC9727761 DOI: 10.1101/2022.11.28.518175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two group 2B β-coronaviruses (sarbecoviruses) have caused regional and global epidemics in modern history. The mechanisms of cross protection driven by the sarbecovirus spike, a dominant immunogen, are less clear yet critically important for pan-sarbecovirus vaccine development. We evaluated the mechanisms of cross-sarbecovirus protective immunity using a panel of alphavirus-vectored vaccines covering bat to human strains. While vaccination did not prevent virus replication, it protected against lethal heterologous disease outcomes in both SARS-CoV-2 and clade 2 bat sarbecovirus HKU3-SRBD challenge models. The spike vaccines tested primarily elicited a highly S1-specific homologous neutralizing antibody response with no detectable cross-virus neutralization. We found non-neutralizing antibody functions that mediated cross protection in wild-type mice were mechanistically linked to FcgR4 and spike S2-binding antibodies. Protection was lost in FcR knockout mice, further supporting a model for non-neutralizing, protective antibodies. These data highlight the importance of FcR-mediated cross-protective immune responses in universal pan-sarbecovirus vaccine designs.
Collapse
|
199
|
Roy PK, Song MG, Jeon EB, Kim SH, Park SY. Effects of dietary intake behavior, food supply, nutrition, and health during the COVID-19 outbreak. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1032750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, which began in 2019, has far-reaching ramifications, including economic losses and health challenges that still affect various parts of the world. During our review, we learned that the entire world is working to stop the spread of the SARS-CoV-2 outbreak. We explore ways that may lower the danger of SARS-CoV-2 contamination and useful strategies to avoid the possibility of SARS-CoV-2 spreading through food. While hygienic protocols are required in the food supply sector, cleaning, disinfection, and the avoidance of cross-contamination across food categories and other related goods at different stages of the manufacturing process remain especially important because the virus can survive for long periods of time on inert materials such as food packaging. Furthermore, personal hygiene (regular washing and disinfection), wearing gloves and using masks, garments, and footwear dedicated to maintaining hygiene provide on-site safety for food sector personnel, supply chain intermediaries, and consumers. Restrictions imposed in response to the pandemic (e.g., closure of physical workplaces, canteens, cafes, restaurants, schools, and childcare institutions), changes in household grocery shopping frequency, individuals' perceived risk of COVID-19, income losses due to the pandemic, and sociodemographic factors are among the factors. The conclusions drawn from this study consider the implications of healthy diets, food system resilience, behavior change, and nutritional imbalance for policymakers and food supply chain participants, as well as the antimicrobial effects of vitamins and nutrients. During a public health crisis, people should eat less, necessitating preventive policies and nutritional advice to deal with this.
Collapse
|
200
|
Borsatto A, Akkad O, Galdadas I, Ma S, Damfo S, Haider S, Kozielski F, Estarellas C, Gervasio FL. Revealing druggable cryptic pockets in the Nsp1 of SARS-CoV-2 and other β-coronaviruses by simulations and crystallography. eLife 2022; 11:e81167. [PMID: 36412088 PMCID: PMC9681203 DOI: 10.7554/elife.81167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/06/2022] [Indexed: 11/23/2022] Open
Abstract
Non-structural protein 1 (Nsp1) is a main pathogenicity factor of α- and β-coronaviruses. Nsp1 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suppresses the host gene expression by sterically blocking 40S host ribosomal subunits and promoting host mRNA degradation. This mechanism leads to the downregulation of the translation-mediated innate immune response in host cells, ultimately mediating the observed immune evasion capabilities of SARS-CoV-2. Here, by combining extensive molecular dynamics simulations, fragment screening and crystallography, we reveal druggable pockets in Nsp1. Structural and computational solvent mapping analyses indicate the partial crypticity of these newly discovered and druggable binding sites. The results of fragment-based screening via X-ray crystallography confirm the druggability of the major pocket of Nsp1. Finally, we show how the targeting of this pocket could disrupt the Nsp1-mRNA complex and open a novel avenue to design new inhibitors for other Nsp1s present in homologous β-coronaviruses.
Collapse
Affiliation(s)
- Alberto Borsatto
- School of Pharmaceutical Sciences, University of GenevaGenevaSwitzerland
- ISPSO, University of GenevaGenevaSwitzerland
| | - Obaeda Akkad
- School of Pharmaceutical Sciences, University of GenevaGenevaSwitzerland
- ISPSO, University of GenevaGenevaSwitzerland
| | - Ioannis Galdadas
- School of Pharmaceutical Sciences, University of GenevaGenevaSwitzerland
- ISPSO, University of GenevaGenevaSwitzerland
| | - Shumeng Ma
- School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Shymaa Damfo
- School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Shozeb Haider
- School of Pharmacy, University College LondonLondonUnited Kingdom
- UCL Centre for Advanced Research Computing, University College LondonLondonUnited Kingdom
| | - Frank Kozielski
- School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Carolina Estarellas
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Theoretical and Computational Chemistry, University of BarcelonaBarcelonaSpain
| | - Francesco Luigi Gervasio
- School of Pharmaceutical Sciences, University of GenevaGenevaSwitzerland
- ISPSO, University of GenevaGenevaSwitzerland
- Chemistry Department, University College LondonLondonUnited Kingdom
- Institute of Structural and Molecular Biology, University College LondonLondonUnited Kingdom
| |
Collapse
|