151
|
Peterson V, Vissani M, Luo S, Rabbani Q, Crone NE, Bush A, Mark Richardson R. A supervised data-driven spatial filter denoising method for speech artifacts in intracranial electrophysiological recordings. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535577. [PMID: 37066306 PMCID: PMC10104030 DOI: 10.1101/2023.04.05.535577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Neurosurgical procedures that enable direct brain recordings in awake patients offer unique opportunities to explore the neurophysiology of human speech. The scarcity of these opportunities and the altruism of participating patients compel us to apply the highest rigor to signal analysis. Intracranial electroencephalography (iEEG) signals recorded during overt speech can contain a speech artifact that tracks the fundamental frequency (F0) of the participant's voice, involving the same high-gamma frequencies that are modulated during speech production and perception. To address this artifact, we developed a spatial-filtering approach to identify and remove acoustic-induced contaminations of the recorded signal. We found that traditional reference schemes jeopardized signal quality, whereas our data-driven method denoised the recordings while preserving underlying neural activity.
Collapse
Affiliation(s)
- Victoria Peterson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Instituto de Matemática Aplicada del Litoral, IMAL, FIQ-UNL, CONICET, Santa Fe, Argentina
| | - Matteo Vissani
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Shiyu Luo
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine
| | - Qinwan Rabbani
- Department of Electrical & Computer Engineering, The Johns Hopkins University
| | - Nathan E. Crone
- Department of Neurology, The Johns Hopkins University School of Medicine
| | - Alan Bush
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - R. Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| |
Collapse
|
152
|
Stubbendorff C, Hale E, Bast T, Cassaday HJ, Martin SJ, Suwansawang S, Halliday DM, Stevenson CW. Dopamine D1-like receptors modulate synchronized oscillations in the hippocampal-prefrontal-amygdala circuit in contextual fear. Sci Rep 2023; 13:17631. [PMID: 37848657 PMCID: PMC10582086 DOI: 10.1038/s41598-023-44772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
Contextual fear conditioning (CFC) is mediated by a neural circuit that includes the hippocampus, prefrontal cortex, and amygdala, but the neurophysiological mechanisms underlying the regulation of CFC by neuromodulators remain unclear. Dopamine D1-like receptors (D1Rs) in this circuit regulate CFC and local synaptic plasticity, which is facilitated by synchronized oscillations between these areas. In rats, we determined the effects of systemic D1R blockade on CFC and oscillatory synchrony between dorsal hippocampus (DH), prelimbic (PL) cortex, basolateral amygdala (BLA), and ventral hippocampus (VH), which sends hippocampal projections to PL and BLA. D1R blockade altered DH-VH and reduced VH-PL and VH-BLA synchrony during CFC, as inferred from theta and gamma coherence and theta-gamma coupling. D1R blockade also impaired CFC, as indicated by decreased freezing at retrieval, which was characterized by altered DH-VH and reduced VH-PL, VH-BLA, and PL-BLA synchrony. This reduction in VH-PL-BLA synchrony was not fully accounted for by non-specific locomotor effects, as revealed by comparing between epochs of movement and freezing in the controls. These results suggest that D1Rs regulate CFC by modulating synchronized oscillations within the hippocampus-prefrontal-amygdala circuit. They also add to growing evidence indicating that this circuit synchrony at retrieval reflects a neural signature of learned fear.
Collapse
Affiliation(s)
- Christine Stubbendorff
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
| | - Ed Hale
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
- Envigo, Hillcrest, Dodgeford Lane, Belton, LE12 9TE, UK
| | - Tobias Bast
- School of Psychology, University of Nottingham, University Park, Nottingham, UK
- Neuroscience@Nottingham, University of Nottingham, Nottingham, UK
| | - Helen J Cassaday
- School of Psychology, University of Nottingham, University Park, Nottingham, UK
- Neuroscience@Nottingham, University of Nottingham, Nottingham, UK
| | - Stephen J Martin
- Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Sopapun Suwansawang
- School of Physics, Engineering and Technology, York Biomedical Research Institute, University of York, Heslington, York, UK
- Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom, Thailand
| | - David M Halliday
- School of Physics, Engineering and Technology, York Biomedical Research Institute, University of York, Heslington, York, UK
| | - Carl W Stevenson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
- Neuroscience@Nottingham, University of Nottingham, Nottingham, UK.
| |
Collapse
|
153
|
Qiao R, Zhang H, Tian Y. EEG cortical network reveals the temporo-spatial mechanism of visual search. Brain Res Bull 2023; 203:110758. [PMID: 37704055 DOI: 10.1016/j.brainresbull.2023.110758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/06/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
This study aims to explore a method based on brain networks for implicit attention by using wavelet coherence as feature to identify individual targets in the visual field, find the optimal classification rhythm and time window, and investigate the relationship between the optimal rhythm and N2pc event-related potential. The study uses a weighted minimum norm estimate to locate the sources of the scalp EEG and reconstructs the source time series. The functional connectivity between brain areas during the visual search process is evaluated using wavelet coherence analysis, and a lateral difference network is constructed based on the difference in coherence values between the left and right visual fields. A support vector machine classifier is trained based on the wavelet coherence network features to identify the target in the left or right visual field. We also extract N2pc from the source activity data of the parieto-occipital brain region and record the time period in which N2pc occurred. The study finds that the best classification performance is achieved in the theta rhythm from 200 to 400 ms and achieved an average classification accuracy of 87% (chance level: 51.07%) in a serial search task. And this time window corresponds to the time period when N2pc appeared. The results show that the use of wavelet coherence analysis to evaluate the functional connectivity between brain areas during the visual search process provides a new approach for analyzing brain activity. The study's findings regarding the relationship between the N2pc and theta rhythm and the effectiveness of using wavelet coherence network features based on the theta rhythm for visual search classification contribute to the understanding of the neural mechanisms underlying visual search.
Collapse
Affiliation(s)
- Rui Qiao
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Haiyong Zhang
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yin Tian
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Institute for Advanced Sciences,Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| |
Collapse
|
154
|
Sakakura K, Kuroda N, Sonoda M, Mitsuhashi T, Firestone E, Luat AF, Marupudi NI, Sood S, Asano E. Developmental atlas of phase-amplitude coupling between physiologic high-frequency oscillations and slow waves. Nat Commun 2023; 14:6435. [PMID: 37833252 PMCID: PMC10575956 DOI: 10.1038/s41467-023-42091-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
We investigated the developmental changes in high-frequency oscillation (HFO) and Modulation Index (MI) - the coupling measure between HFO and slow-wave phase. We generated normative brain atlases, using subdural EEG signals from 8251 nonepileptic electrode sites in 114 patients (ages 1.0-41.5 years) who achieved seizure control following resective epilepsy surgery. We observed a higher MI in the occipital lobe across all ages, and occipital MI increased notably during early childhood. The cortical areas exhibiting MI co-growth were connected via the vertical occipital fasciculi and posterior callosal fibers. While occipital HFO rate showed no significant age-association, the temporal, frontal, and parietal lobes exhibited an age-inversed HFO rate. Assessment of 1006 seizure onset sites revealed that z-score normalized MI and HFO rate were higher at seizure onset versus nonepileptic electrode sites. We have publicly shared our intracranial EEG data to enable investigators to validate MI and HFO-centric presurgical evaluations to identify the epileptogenic zone.
Collapse
Affiliation(s)
- Kazuki Sakakura
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Neurosurgery, University of Tsukuba, Tsukuba, 3058575, Japan
| | - Naoto Kuroda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
- Department of Neurosurgery, Yokohama City University, Yokohama-shi, 2360004, Japan
| | - Takumi Mitsuhashi
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
- Department of Neurosurgery, Juntendo University, Tokyo, 1138421, Japan
| | - Ethan Firestone
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
- Department of Physiology, Wayne State University, Detroit, MI, 48201, USA
| | - Aimee F Luat
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
- Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
- Department of Pediatrics, Central Michigan University, Mount Pleasant, MI, 48858, USA
| | - Neena I Marupudi
- Department of Neurosurgery, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
| | - Sandeep Sood
- Department of Neurosurgery, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA.
- Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
155
|
Király B, Domonkos A, Jelitai M, Lopes-Dos-Santos V, Martínez-Bellver S, Kocsis B, Schlingloff D, Joshi A, Salib M, Fiáth R, Barthó P, Ulbert I, Freund TF, Viney TJ, Dupret D, Varga V, Hangya B. The medial septum controls hippocampal supra-theta oscillations. Nat Commun 2023; 14:6159. [PMID: 37816713 PMCID: PMC10564782 DOI: 10.1038/s41467-023-41746-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/15/2023] [Indexed: 10/12/2023] Open
Abstract
Hippocampal theta oscillations orchestrate faster beta-to-gamma oscillations facilitating the segmentation of neural representations during navigation and episodic memory. Supra-theta rhythms of hippocampal CA1 are coordinated by local interactions as well as inputs from the entorhinal cortex (EC) and CA3 inputs. However, theta-nested gamma-band activity in the medial septum (MS) suggests that the MS may control supra-theta CA1 oscillations. To address this, we performed multi-electrode recordings of MS and CA1 activity in rodents and found that MS neuron firing showed strong phase-coupling to theta-nested supra-theta episodes and predicted changes in CA1 beta-to-gamma oscillations on a cycle-by-cycle basis. Unique coupling patterns of anatomically defined MS cell types suggested that indirect MS-to-CA1 pathways via the EC and CA3 mediate distinct CA1 gamma-band oscillations. Optogenetic activation of MS parvalbumin-expressing neurons elicited theta-nested beta-to-gamma oscillations in CA1. Thus, the MS orchestrates hippocampal network activity at multiple temporal scales to mediate memory encoding and retrieval.
Collapse
Affiliation(s)
- Bálint Király
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
- Department of Biological Physics, Institute of Physics, Eötvös Loránd University, Budapest, Hungary
| | - Andor Domonkos
- Subcortical Modulation Research Group, Institute of Experimental Medicine, Budapest, Hungary
| | - Márta Jelitai
- Subcortical Modulation Research Group, Institute of Experimental Medicine, Budapest, Hungary
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sergio Martínez-Bellver
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
- Department of Anatomy and Human Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Barnabás Kocsis
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Dániel Schlingloff
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Abhilasha Joshi
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Minas Salib
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Richárd Fiáth
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Péter Barthó
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - István Ulbert
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás F Freund
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Tim J Viney
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Viktor Varga
- Subcortical Modulation Research Group, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|
156
|
Chameh HM, Falby M, Movahed M, Arbabi K, Rich S, Zhang L, Lefebvre J, Tripathy SJ, De Pittà M, Valiante TA. Distinctive biophysical features of human cell-types: insights from studies of neurosurgically resected brain tissue. Front Synaptic Neurosci 2023; 15:1250834. [PMID: 37860223 PMCID: PMC10584155 DOI: 10.3389/fnsyn.2023.1250834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/21/2023] [Indexed: 10/21/2023] Open
Abstract
Electrophysiological characterization of live human tissue from epilepsy patients has been performed for many decades. Although initially these studies sought to understand the biophysical and synaptic changes associated with human epilepsy, recently, it has become the mainstay for exploring the distinctive biophysical and synaptic features of human cell-types. Both epochs of these human cellular electrophysiological explorations have faced criticism. Early studies revealed that cortical pyramidal neurons obtained from individuals with epilepsy appeared to function "normally" in comparison to neurons from non-epilepsy controls or neurons from other species and thus there was little to gain from the study of human neurons from epilepsy patients. On the other hand, contemporary studies are often questioned for the "normalcy" of the recorded neurons since they are derived from epilepsy patients. In this review, we discuss our current understanding of the distinct biophysical features of human cortical neurons and glia obtained from tissue removed from patients with epilepsy and tumors. We then explore the concept of within cell-type diversity and its loss (i.e., "neural homogenization"). We introduce neural homogenization to help reconcile the epileptogenicity of seemingly "normal" human cortical cells and circuits. We propose that there should be continued efforts to study cortical tissue from epilepsy patients in the quest to understand what makes human cell-types "human".
Collapse
Affiliation(s)
- Homeira Moradi Chameh
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Madeleine Falby
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Mandana Movahed
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Keon Arbabi
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Scott Rich
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Liang Zhang
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Jérémie Lefebvre
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Mathematics, University of Toronto, Toronto, ON, Canada
| | - Shreejoy J. Tripathy
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Maurizio De Pittà
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Basque Center for Applied Mathematics, Bilbao, Spain
- Faculty of Medicine, University of the Basque Country, Leioa, Spain
| | - Taufik A. Valiante
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
- Max Planck-University of Toronto Center for Neural Science and Technology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
157
|
Lukarski D, Petkoski S, Ji P, Stankovski T. Delta-alpha cross-frequency coupling for different brain regions. CHAOS (WOODBURY, N.Y.) 2023; 33:103126. [PMID: 37844293 DOI: 10.1063/5.0157979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
Neural interactions occur on different levels and scales. It is of particular importance to understand how they are distributed among different neuroanatomical and physiological relevant brain regions. We investigated neural cross-frequency couplings between different brain regions according to the Desikan-Killiany brain parcellation. The adaptive dynamic Bayesian inference method was applied to EEG measurements of healthy resting subjects in order to reconstruct the coupling functions. It was found that even after averaging over all subjects, the mean coupling function showed a characteristic waveform, confirming the direct influence of the delta-phase on the alpha-phase dynamics in certain brain regions and that the shape of the coupling function changes for different regions. While the averaged coupling function within a region was of similar form, the region-averaged coupling function was averaged out, which implies that there is a common dependence within separate regions across the subjects. It was also found that for certain regions the influence of delta on alpha oscillations is more pronounced and that oscillations that influence other are more evenly distributed across brain regions than the influenced oscillations. When presenting the information on brain lobes, it was shown that the influence of delta emanating from the brain as a whole is greatest on the alpha oscillations of the cingulate frontal lobe, and at the same time the influence of delta from the cingulate parietal brain lobe is greatest on the alpha oscillations of the whole brain.
Collapse
Affiliation(s)
- Dushko Lukarski
- Faculty of Medicine, Ss. Cyril and Methodius University, 1000 Skopje, Macedonia
- University Clinic for Radiotherapy and Oncology, 1000 Skopje, Macedonia
| | - Spase Petkoski
- Aix Marseille Univ, INSERM, Inst Neurosci Syst (INS), 13005 Marseille, France
| | - Peng Ji
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 200433 Shanghai, China
| | - Tomislav Stankovski
- Faculty of Medicine, Ss. Cyril and Methodius University, 1000 Skopje, Macedonia
- Department of Physics, Lancaster University, LA1 4YB Lancaster, United Kingdom
| |
Collapse
|
158
|
Itthipuripat S, Phangwiwat T, Wiwatphonthana P, Sawetsuttipan P, Chang KY, Störmer VS, Woodman GF, Serences JT. Dissociable Neural Mechanisms Underlie the Effects of Attention on Visual Appearance and Response Bias. J Neurosci 2023; 43:6628-6652. [PMID: 37620156 PMCID: PMC10538590 DOI: 10.1523/jneurosci.2192-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 07/10/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
A prominent theoretical framework spanning philosophy, psychology, and neuroscience holds that selective attention penetrates early stages of perceptual processing to alter the subjective visual experience of behaviorally relevant stimuli. For example, searching for a red apple at the grocery store might make the relevant color appear brighter and more saturated compared with seeing the exact same red apple while searching for a yellow banana. In contrast, recent proposals argue that data supporting attention-related changes in appearance reflect decision- and motor-level response biases without concurrent changes in perceptual experience. Here, we tested these accounts by evaluating attentional modulations of EEG responses recorded from male and female human subjects while they compared the perceived contrast of attended and unattended visual stimuli rendered at different levels of physical contrast. We found that attention enhanced the amplitude of the P1 component, an early evoked potential measured over visual cortex. A linking model based on signal detection theory suggests that response gain modulations of the P1 component track attention-induced changes in perceived contrast as measured with behavior. In contrast, attentional cues induced changes in the baseline amplitude of posterior alpha band oscillations (∼9-12 Hz), an effect that best accounts for cue-induced response biases, particularly when no stimuli are presented or when competing stimuli are similar and decisional uncertainty is high. The observation of dissociable neural markers that are linked to changes in subjective appearance and response bias supports a more unified theoretical account and demonstrates an approach to isolate subjective aspects of selective information processing.SIGNIFICANCE STATEMENT Does attention alter visual appearance, or does it simply induce response bias? In the present study, we examined these competing accounts using EEG and linking models based on signal detection theory. We found that response gain modulations of the visually evoked P1 component best accounted for attention-induced changes in visual appearance. In contrast, cue-induced baseline shifts in alpha band activity better explained response biases. Together, these results suggest that attention concurrently impacts visual appearance and response bias, and that these processes can be experimentally isolated.
Collapse
Affiliation(s)
- Sirawaj Itthipuripat
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut’s University of Technology Thonburi, Bangkok, 10140, Thailand
- Big Data Experience Center, King Mongkut’s University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Tanagrit Phangwiwat
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut’s University of Technology Thonburi, Bangkok, 10140, Thailand
- Big Data Experience Center, King Mongkut’s University of Technology Thonburi, Bangkok, 10140, Thailand
- Computer Engineering Department, Faculty of Engineering, King Mongkut’s University of Technology Thonburi Bangkok, 10140, Thailand
| | - Praewpiraya Wiwatphonthana
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut’s University of Technology Thonburi, Bangkok, 10140, Thailand
- SECCLO Consortium, Department of Computer Science, Aalto University School of Science, Espoo, 02150, Finland
| | - Prapasiri Sawetsuttipan
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut’s University of Technology Thonburi, Bangkok, 10140, Thailand
- Big Data Experience Center, King Mongkut’s University of Technology Thonburi, Bangkok, 10140, Thailand
- Computer Engineering Department, Faculty of Engineering, King Mongkut’s University of Technology Thonburi Bangkok, 10140, Thailand
| | - Kai-Yu Chang
- Department of Cognitive Science, University of California–San Diego, La Jolla, California 92093-1090
| | - Viola S. Störmer
- Department of Psychological and Brain Science, Dartmouth College, Hanover, New Hampshire 03755
| | - Geoffrey F. Woodman
- Department of Psychology, Center for Integrative and Cognitive Neuroscience, and Interdisciplinary Program in Neuroscience, Vanderbilt University, Nashville, Tennessee 37235
| | - John T. Serences
- Neurosciences Graduate Program, Department of Psychology, University of California–San Diego, La Jolla, California 92093-1090
| |
Collapse
|
159
|
Cheng JL, Tan C, Liu HY, Han DM, Liu ZC. Past, present, and future of deep transcranial magnetic stimulation: A review in psychiatric and neurological disorders. World J Psychiatry 2023; 13:607-619. [PMID: 37771645 PMCID: PMC10523198 DOI: 10.5498/wjp.v13.i9.607] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 09/15/2023] Open
Abstract
Deep transcranial magnetic stimulation (DTMS) is a new non-invasive neuromodulation technique based on repetitive transcranial magnetic stimulation tech-nology. The new H-coil has significant advantages in the treatment and mechanism research of psychiatric and neurological disorders. This is due to its deep stimulation site and wide range of action. This paper reviews the clinical progress of DTMS in psychiatric and neurological disorders such as Parkinson's disease, Alzheimer's disease, post-stroke motor dysfunction, aphasia, and other neurological disorders, as well as anxiety, depression, and schizophrenia.
Collapse
Affiliation(s)
- Jin-Ling Cheng
- Department of Rehabilitation Medicine, Shaoguan First People’s Hospital, Shaoguan 512000, Guangdong Province, China
| | - Cheng Tan
- Department of Rehabilitation Medicine, Shaoguan First People’s Hospital, Shaoguan 512000, Guangdong Province, China
| | - Hui-Yu Liu
- Department of Infectious Diseases, Yuebei Second People’s Hospital, Shaoguan 512026, Guangdong Province, China
| | - Dong-Miao Han
- Department of Rehabilitation Therapy Teaching and Research, Gannan Healthcare Vocational College, Ganzhou 341000, Jiangxi Province, China
| | - Zi-Cai Liu
- Department of Rehabilitation Medicine, Shaoguan First People’s Hospital, Shaoguan 512000, Guangdong Province, China
| |
Collapse
|
160
|
Zabeh E, Foley NC, Jacobs J, Gottlieb JP. Beta traveling waves in monkey frontal and parietal areas encode recent reward history. Nat Commun 2023; 14:5428. [PMID: 37669966 PMCID: PMC10480436 DOI: 10.1038/s41467-023-41125-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Brain function depends on neural communication, but the mechanisms of this communication are not well understood. Recent studies suggest that one form of neural communication is through traveling waves (TWs)-patterns of neural oscillations that propagate within and between brain areas. We show that TWs are robust in microarray recordings in frontal and parietal cortex and encode recent reward history. Two adult male monkeys made saccades to obtain probabilistic rewards and were sensitive to the (statistically irrelevant) reward on the previous trial. TWs in frontal and parietal areas were stronger in trials that followed a prior reward versus a lack of reward and, in the frontal lobe, correlated with the monkeys' behavioral sensitivity to the prior reward. The findings suggest that neural communication mediated by TWs within the frontal and parietal lobes contribute to maintaining information about recent reward history and mediating the impact of this history on the monkeys' expectations.
Collapse
Affiliation(s)
- Erfan Zabeh
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Nicholas C Foley
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Department of Neurological Surgery, Columbia University, New York, NY, USA.
| | - Jacqueline P Gottlieb
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
161
|
Montijn ND, Gerritsen L, van Son D, Engelhard IM. Positive future thinking without task-relevance increases anxiety and frontal stress regulation. Biol Psychol 2023; 182:108620. [PMID: 37399916 DOI: 10.1016/j.biopsycho.2023.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
Negative anticipatory biases can affect the way we interpret and subjectively experience events. Through its role in emotion regulation, positive future thinking may provide an accessible way to attenuate these biases. However, it is unclear whether positive future thinking works ubiquitously, independent of contextual relevance. Here, we used a positive future thinking intervention (task-relevant; task-irrelevant and control condition) prior to a social stress task to adapt the way this task was experienced. We assessed subjective and objective stress measures and also recorded resting state electroencephalography (EEG) to assess intervention related differences in the level of frontal delta-beta coupling, which is considered a neurobiological substrate of stress regulation. Results show that the intervention reduced subjective stress and anxiety, and increased social fixation behavior and task performance, but only if future thinking was task-relevant. Paradoxically, task-irrelevant positive future thoughts enhanced negative perceptual biases and stress reactivity. This increase in stress reactivity was corroborated by elevated levels of frontal delta-beta coupling during event anticipation, which suggests an increased demand for stress regulation. Together, these findings show that positive future thinking can mitigate the negative emotional, behavioral and neurobiological consequences of a stressful event, but that it should not be applied indiscriminately.
Collapse
Affiliation(s)
- Nicole D Montijn
- Department of Clinical Psychology, Utrecht University, Utrecht, the Netherlands
| | - Lotte Gerritsen
- Department of Clinical Psychology, Utrecht University, Utrecht, the Netherlands
| | - Dana van Son
- Department of Clinical Psychology, Utrecht University, Utrecht, the Netherlands; Institute of Psychology, Leiden University, Leiden, the Netherlands
| | - Iris M Engelhard
- Department of Clinical Psychology, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
162
|
Mischler G, Raghavan V, Keshishian M, Mesgarani N. naplib-python: Neural acoustic data processing and analysis tools in python. SOFTWARE IMPACTS 2023; 17:100541. [PMID: 37771949 PMCID: PMC10538526 DOI: 10.1016/j.simpa.2023.100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Recently, the computational neuroscience community has pushed for more transparent and reproducible methods across the field. In the interest of unifying the domain of auditory neuroscience, naplib-python provides an intuitive and general data structure for handling all neural recordings and stimuli, as well as extensive preprocessing, feature extraction, and analysis tools which operate on that data structure. The package removes many of the complications associated with this domain, such as varying trial durations and multi-modal stimuli, and provides a general-purpose analysis framework that interfaces easily with existing toolboxes used in the field.
Collapse
Affiliation(s)
- Gavin Mischler
- Mortimer B. Zuckerman Mind Brain Behavior, Columbia University, NY, United States
- Department of Electrical Engineering, Columbia University, NY, United States
| | - Vinay Raghavan
- Mortimer B. Zuckerman Mind Brain Behavior, Columbia University, NY, United States
- Department of Electrical Engineering, Columbia University, NY, United States
| | - Menoua Keshishian
- Mortimer B. Zuckerman Mind Brain Behavior, Columbia University, NY, United States
- Department of Electrical Engineering, Columbia University, NY, United States
| | - Nima Mesgarani
- Corresponding author at: Mortimer B. Zuckerman Mind Brain Behavior, Columbia University, NY, United States. (N. Mesgarani)
| |
Collapse
|
163
|
Stier C, Braun C, Focke NK. Adult lifespan trajectories of neuromagnetic signals and interrelations with cortical thickness. Neuroimage 2023; 278:120275. [PMID: 37451375 PMCID: PMC10443236 DOI: 10.1016/j.neuroimage.2023.120275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Oscillatory power and phase synchronization map neuronal dynamics and are commonly studied to differentiate the healthy and diseased brain. Yet, little is known about the course and spatial variability of these features from early adulthood into old age. Leveraging magnetoencephalography (MEG) resting-state data in a cross-sectional adult sample (n = 350), we probed lifespan differences (18-88 years) in connectivity and power and interaction effects with sex. Building upon recent attempts to link brain structure and function, we tested the spatial correspondence between age effects on cortical thickness and those on functional networks. We further probed a direct structure-function relationship at the level of the study sample. We found MEG frequency-specific patterns with age and divergence between sexes in low frequencies. Connectivity and power exhibited distinct linear trajectories or turning points at midlife that might reflect different physiological processes. In the delta and beta bands, these age effects corresponded to those on cortical thickness, pointing to co-variation between the modalities across the lifespan. Structure-function coupling was frequency-dependent and observed in unimodal or multimodal regions. Altogether, we provide a comprehensive overview of the topographic functional profile of adulthood that can form a basis for neurocognitive and clinical investigations. This study further sheds new light on how the brain's structural architecture relates to fast oscillatory activity.
Collapse
Affiliation(s)
- Christina Stier
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany; Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany.
| | - Christoph Braun
- MEG-Center, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; CIMeC, Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Niels K Focke
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
164
|
Rustamov N, Souders L, Sheehan L, Carter A, Leuthardt EC. IpsiHand Brain-Computer Interface Therapy Induces Broad Upper Extremity Motor Recovery in Chronic Stroke. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.26.23294320. [PMID: 37693482 PMCID: PMC10491278 DOI: 10.1101/2023.08.26.23294320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background and Purpose Chronic hemiparetic stroke patients have very limited benefits from current therapies. Brain-computer interface (BCI) engaging the unaffected hemisphere has emerged as a promising novel therapeutic approach for chronic stroke rehabilitation. This study investigated the effectiveness of the IpsiHand System, a contralesionally-controlled BCI therapy in chronic stroke patients with impaired upper extremity motor function. We further explored neurophysiological features of motor recovery affected by BCI. We hypothesized that BCI therapy would induce a broad motor recovery in the upper extremity (proximal and distal), and there would be corresponding changes in baseline theta and gamma oscillations, which have been shown to be associated with motor recovery. Methods Thirty chronic hemiparetic stroke patients performed a therapeutic BCI task for 12 weeks. Motor function assessment data and resting state electroencephalogram (EEG) signals were acquired before initiating BCI therapy and across BCI therapy sessions. The Upper Extremity Fugl-Meyer assessment (UEFM) served as a primary motor outcome assessment tool. Theta-gamma cross-frequency coupling (CFC) was computed and correlated with motor recovery. Results Chronic stroke patients achieved significant motor improvement with BCI therapy. We found significant improvement in both proximal and distal upper extremity motor function. Importantly, motor function improvement was independent of Botox application. Theta-gamma CFC enhanced bilaterally over the C3 and C4 motor electrodes following BCI therapy. We observed significant positive correlations between motor recovery and theta gamma CFC increase across BCI therapy sessions. Conclusions BCI therapy resulted in significant motor function improvement across the proximal and distal upper extremities of patients. This therapy was significantly correlated with changes in baseline cortical dynamics, specifically theta-gamma CFC increases in both the right and left motor regions. This may represent rhythm-specific cortical oscillatory mechanism for BCI-driven motor rehabilitation in chronic stroke patients.
Collapse
|
165
|
Kotlewska I, Panek B, Nowicka A, Asanowicz D. Posterior theta activity reveals an early signal of self-face recognition. Sci Rep 2023; 13:13823. [PMID: 37620563 PMCID: PMC10449829 DOI: 10.1038/s41598-023-41071-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Self-related visual information, especially one's own face and name, are processed in a specific, prioritized way. However, the spatio-temporal brain dynamics of self-prioritization have remained elusive. Moreover, it has been unclear whether this prioritization is an effect of enhancement and amplification, or rather a facilitating automatization of processing self-referential information. In this EEG study, 25 married women (who changed their surnames after marriage, so that their past and present surnames could be used as stimuli) performed a detection task with faces and names from five categories: self, self from the past, friend, famous, and unknown person. The aim was to determine the temporal and spatial characteristics of early electrophysiological markers of self-referential processing. We report results of event-related component (ERP) and time-frequency analyses. In the ERPs, the earliest self-relevance effect was displayed only 300 ms after stimulus onset in the midfrontal N2, and later in the parietal P3b, independently of the stimulus type. No self-relevance effect was found on the N170 component. However, local theta power at the occipito-temporal (visual) areas and inter-regional theta phase coherence between the visual and midfrontal areas showed that self-relevance differentiation of faces began already about 100-300 ms after stimulus onset. No such early effects were found for names. The results are discussed in terms of the time-course, functional localization, stimulus-specificity, and automatization of self-prioritization.
Collapse
Affiliation(s)
- Ilona Kotlewska
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060, Krakow, Poland.
| | - Bartłomiej Panek
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060, Krakow, Poland
| | - Anna Nowicka
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Pasteura 3, 02-093, Warsaw, Poland
| | - Dariusz Asanowicz
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060, Krakow, Poland
| |
Collapse
|
166
|
Moradi F, van den Berg M, Mirjebreili M, Kosten L, Verhoye M, Amiri M, Keliris GA. Early classification of Alzheimer's disease phenotype based on hippocampal electrophysiology in the TgF344-AD rat model. iScience 2023; 26:107454. [PMID: 37599835 PMCID: PMC10432721 DOI: 10.1016/j.isci.2023.107454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/27/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
The hippocampus plays a vital role in navigation, learning, and memory, and is affected in Alzheimer's disease (AD). This study investigated the classification of AD-transgenic rats versus wild-type littermates using electrophysiological activity recorded from the hippocampus at an early, presymptomatic stage of the disease (6 months old) in the TgF344-AD rat model. The recorded signals were filtered into low frequency (LFP) and high frequency (spiking activity) signals, and machine learning classifiers were employed to identify the rat genotype (TG vs. WT). By analyzing specific frequency bands in the low frequency signals and calculating distance metrics between spike trains in the high frequency signals, accurate classification was achieved. Gamma band power emerged as a valuable signal for classification, and combining information from both low and high frequency signals improved the accuracy further. These findings provide valuable insights into the early stage effects of AD on different regions of the hippocampus.
Collapse
Affiliation(s)
- Faraz Moradi
- Faculty of Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Monica van den Berg
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | | | - Lauren Kosten
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Mahmood Amiri
- Medical Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Georgios A. Keliris
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Institute of Computer Science, Foundation for Research & Technology - Hellas, Heraklion, Crete, Greece
| |
Collapse
|
167
|
Gruenwald J, Sieghartsleitner S, Kapeller C, Scharinger J, Kamada K, Brunner P, Guger C. Characterization of High-Gamma Activity in Electrocorticographic Signals. Front Neurosci 2023; 17:1206120. [PMID: 37609450 PMCID: PMC10440607 DOI: 10.3389/fnins.2023.1206120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction Electrocorticographic (ECoG) high-gamma activity (HGA) is a widely recognized and robust neural correlate of cognition and behavior. However, fundamental signal properties of HGA, such as the high-gamma frequency band or temporal dynamics of HGA, have never been systematically characterized. As a result, HGA estimators are often poorly adjusted, such that they miss valuable physiological information. Methods To address these issues, we conducted a thorough qualitative and quantitative characterization of HGA in ECoG signals. Our study is based on ECoG signals recorded from 18 epilepsy patients while performing motor control, listening, and visual perception tasks. In this study, we first categorize HGA into HGA types based on the cognitive/behavioral task. For each HGA type, we then systematically quantify three fundamental signal properties of HGA: the high-gamma frequency band, the HGA bandwidth, and the temporal dynamics of HGA. Results The high-gamma frequency band strongly varies across subjects and across cognitive/behavioral tasks. In addition, HGA time courses have lowpass character, with transients limited to 10 Hz. The task-related rise time and duration of these HGA time courses depend on the individual subject and cognitive/behavioral task. Task-related HGA amplitudes are comparable across the investigated tasks. Discussion This study is of high practical relevance because it provides a systematic basis for optimizing experiment design, ECoG acquisition and processing, and HGA estimation. Our results reveal previously unknown characteristics of HGA, the physiological principles of which need to be investigated in further studies.
Collapse
Affiliation(s)
- Johannes Gruenwald
- g.tec medical engineering GmbH, Schiedlberg, Austria
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | - Sebastian Sieghartsleitner
- g.tec medical engineering GmbH, Schiedlberg, Austria
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | | | - Josef Scharinger
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | - Kyousuke Kamada
- Department for Neurosurgery, Asahikawa Medical University, Asahikawa, Japan
- Hokashin Group Megumino Hospital, Sapporo, Japan
| | - Peter Brunner
- National Center for Adaptive Neurotechnologies, Albany, NY, United States
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States
| | | |
Collapse
|
168
|
Chen X, Li Y, Li R, Yuan X, Liu M, Zhang W, Li Y. Multiple cross-frequency coupling analysis of resting-state EEG in patients with mild cognitive impairment and Alzheimer's disease. Front Aging Neurosci 2023; 15:1142085. [PMID: 37600515 PMCID: PMC10436577 DOI: 10.3389/fnagi.2023.1142085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Electroencephalographic (EEG) abnormalities are seen in patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) with characteristic features of cognitive impairment. The most common findings of EEG features in AD and MCI patients are increased relative power of slow oscillations (delta and theta rhythms) and decreased relative power of fast oscillations (alpha, beta and gamma rhythms). However, impairments in cognitive processes in AD and MCI are not sufficiently reflected by brain oscillatory activity in a particular frequency band. MCI patients are at high risk of progressing to AD. Cross-frequency coupling (CFC), which refers to coupling between different frequency bands, is a crucial tool for comprehending changes in brain oscillations and cognitive performance. CFC features exhibit some specificity in patients with AD and MCI, but a comparison between CFC features in individuals with these disorders is still lacking. The aim of this study was to explore changes in CFC properties in MCI and AD and to explore the relationship between CFC properties and multiple types of cognitive functional performance. Methods We recorded resting-state EEG (rsEEG) signals in 46 MCI patients, 43 AD patients, and 43 cognitively healthy controls (HCs) and analyzed the changes in CFC as well as the relationship between CFC and scores on clinical tests of cognitive function. Results and discussion Multiple couplings between low-frequency oscillations and high-frequency oscillations were found to be significantly enhanced in AD patients compared to those of HCs and MCI, while delta-gamma as well as theta-gamma couplings in the right temporal and parietal lobes were significantly enhanced in MCI patients compared to HCs. Moreover, theta-gamma coupling in the right temporal lobe tended to be stronger in MCI patients than in HCs, and it was stronger in AD than in MCI. Multiple CFC properties were found to correlate significantly with various cognitive domains, especially the memory function domain. Overall, these findings suggest that AD and MCI patients must use more neural resources to maintain a resting brain state and that alterations in theta-gamma coupling in the temporal lobe become progressively obvious during disease progression and are likely to be a valuable indicator of MCI and AD pathology.
Collapse
Affiliation(s)
- Xi Chen
- School of Communication and Information Engineering, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| | - Yingjie Li
- College of International Education, Shanghai University, Shanghai, China
- School of Life Science, Institute of Biomedical Engineering, Shanghai University, Shanghai, China
| | - Renren Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao Yuan
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Meng Liu
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Shanghai Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Wei Zhang
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunxia Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
169
|
Chen B, Tan H, Ding M, Liu L, Wang S, Peng X, Tian H, Jiang J, Gao J, Huang W, Li H, Ye Y, Wang F, Wilson DA, Tu Y, Peng F. Nanorobot-Mediated Synchronized Neuron Activation. ACS NANO 2023; 17:13826-13839. [PMID: 37449804 DOI: 10.1021/acsnano.3c03575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Interactions between active materials lead to collective behavior and even intelligence beyond the capability of individuals. Such behaviors are prevalent in nature and can be observed in animal colonies, providing these species with diverse capacities for communication and cooperation. In artificial systems, however, collective intelligence systems interacting with biological entities remains unexplored. Herein, we describe black (B)-TiO2@N/Au nanorobots interacting through photocatalytic pure water splitting-induced electrophoresis that exhibit periodic swarming oscillations under programmed near-infrared light. The periodic chemical-electric field generated by the oscillating B-TiO2@N/Au nanorobot swarm leads to local neuron activation in vitro. The field oscillations and neurotransmission from synchronized neurons further trigger the resonance oscillation of neuron populations without synaptic contact (about 2 mm spacing), in different ways from normal neuron oscillation requiring direct contact. We envision that the oscillating nanorobot swarm platforms will shed light on contactless communication of neurons and offer tools to explore interactions between neurons.
Collapse
Affiliation(s)
- Bin Chen
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haixin Tan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Miaomiao Ding
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lu Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuanghu Wang
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui 323020, China
| | - Xiuyun Peng
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui 323020, China
| | - Hao Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiamiao Jiang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junbin Gao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weichang Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huaan Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yicheng Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fei Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, The Netherland
| | - Yingfeng Tu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
170
|
Gallimore CG, Ricci DA, Hamm JP. Spatiotemporal dynamics across visual cortical laminae support a predictive coding framework for interpreting mismatch responses. Cereb Cortex 2023; 33:9417-9428. [PMID: 37310190 PMCID: PMC10393498 DOI: 10.1093/cercor/bhad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
Context modulates neocortical processing of sensory data. Unexpected visual stimuli elicit large responses in primary visual cortex (V1)-a phenomenon known as deviance detection (DD) at the neural level, or "mismatch negativity" (MMN) when measured with EEG. It remains unclear how visual DD/MMN signals emerge across cortical layers, in temporal relation to the onset of deviant stimuli, and with respect to brain oscillations. Here we employed a visual "oddball" sequence-a classic paradigm for studying aberrant DD/MMN in neuropsychiatric populations-and recorded local field potentials in V1 of awake mice with 16-channel multielectrode arrays. Multiunit activity and current source density profiles showed that although basic adaptation to redundant stimuli was present early (50 ms) in layer 4 responses, DD emerged later (150-230 ms) in supragranular layers (L2/3). This DD signal coincided with increased delta/theta (2-7 Hz) and high-gamma (70-80 Hz) oscillations in L2/3 and decreased beta oscillations (26-36 Hz) in L1. These results clarify the neocortical dynamics elicited during an oddball paradigm at a microcircuit level. They are consistent with a predictive coding framework, which posits that predictive suppression is present in cortical feed-back circuits, which synapse in L1, whereas "prediction errors" engage cortical feed-forward processing streams, which emanate from L2/3.
Collapse
Affiliation(s)
- Connor G Gallimore
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
| | - David A Ricci
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
| | - Jordan P Hamm
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
- Center for Behavioral Neuroscience, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
| |
Collapse
|
171
|
Weber J, Iwama G, Solbakk AK, Blenkmann AO, Larsson PG, Ivanovic J, Knight RT, Endestad T, Helfrich R. Subspace partitioning in the human prefrontal cortex resolves cognitive interference. Proc Natl Acad Sci U S A 2023; 120:e2220523120. [PMID: 37399398 PMCID: PMC10334727 DOI: 10.1073/pnas.2220523120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/31/2023] [Indexed: 07/05/2023] Open
Abstract
The human prefrontal cortex (PFC) constitutes the structural basis underlying flexible cognitive control, where mixed-selective neural populations encode multiple task features to guide subsequent behavior. The mechanisms by which the brain simultaneously encodes multiple task-relevant variables while minimizing interference from task-irrelevant features remain unknown. Leveraging intracranial recordings from the human PFC, we first demonstrate that competition between coexisting representations of past and present task variables incurs a behavioral switch cost. Our results reveal that this interference between past and present states in the PFC is resolved through coding partitioning into distinct low-dimensional neural states; thereby strongly attenuating behavioral switch costs. In sum, these findings uncover a fundamental coding mechanism that constitutes a central building block of flexible cognitive control.
Collapse
Affiliation(s)
- Jan Weber
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, 72076Tübingen, Germany
- International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction, University of Tübingen, 72076Tübingen, Germany
| | - Gabriela Iwama
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, 72076Tübingen, Germany
- International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction, University of Tübingen, 72076Tübingen, Germany
| | - Anne-Kristin Solbakk
- Department of Psychology, University of Oslo, 0373Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, 0373Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, 0372Oslo, Norway
- Department of Neuropsychology, Helgeland Hospital, 8657Mosjøen, Norway
| | - Alejandro O. Blenkmann
- Department of Psychology, University of Oslo, 0373Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, 0373Oslo, Norway
| | - Pal G. Larsson
- Department of Neurosurgery, Oslo University Hospital, 0372Oslo, Norway
| | - Jugoslav Ivanovic
- Department of Neurosurgery, Oslo University Hospital, 0372Oslo, Norway
| | - Robert T. Knight
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA94720
- Department of Psychology, UC Berkeley, Berkeley, CA94720
| | - Tor Endestad
- Department of Psychology, University of Oslo, 0373Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, 0373Oslo, Norway
| | - Randolph Helfrich
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, 72076Tübingen, Germany
| |
Collapse
|
172
|
Pessoa ALS, Quesada AA, Nóbrega PR, Viana APO, de Oliveira KT, Figueiredo T, Santos S, Kok F. Neuropsychological Characterization of Autosomal Recessive Intellectual Developmental Disorder 59 Associated with IMPA1 (MRT59). Brain Sci 2023; 13:1048. [PMID: 37508980 PMCID: PMC10377093 DOI: 10.3390/brainsci13071048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Biallelic loss of function of IMPA1 causes autosomal recessive intellectual developmental disorder 59 (MRT59, OMIM #617323). MRT59 has been reported to present with significant intellectual disability and disruptive behavior, but little is known about the neurocognitive pattern of those patients. Thus, the aims of this study were: (1) to assess the cognitive profile of these patients, and (2) to evaluate their functional dependence levels. Eighteen adults, aged 37 to 89 years, participated in this study: nine MRT59 patients, five heterozygous carriers and four non-carrier family members. All of them were from a consanguineous family living in Northeast Brazil. All IMPA1 patients had the (c.489_493dupGGGCT) pathogenic variant in homozygosis. For cognitive assessment, the WASI battery was applied in nine MRT59 patients and compared to heterozygous carriers and non-carrier family members. Functional dependence was evaluated using the functional independence measure (FIM). Patients showed moderate to severe intellectual disability and severe functional disabilities. Heterozygous carriers did not differ from non-carriers. MRT59 patients should be followed up by health professionals in an interdisciplinary way to understand their cognitive disabilities and functional needs properly.
Collapse
Affiliation(s)
- Andre Luiz Santos Pessoa
- Albert Sabin Children's Hospital, Fortaleza 60410-794, Brazil
- Faculty of Medicine, State University of Ceará (UECE), Fortaleza 60714-903, Brazil
| | - Andrea Amaro Quesada
- The Edson Queiroz Foundation, University of Fortaleza (UNIFOR), Fortaleza 60811-905, Brazil
| | - Paulo Ribeiro Nóbrega
- Hospital Universitário Walter Cantídio-UFC, Fortaleza 60430-372, Brazil
- Faculty of Medicine, Centro Universitário Christus, Fortaleza 60160-230, Brazil
| | | | | | - Thalita Figueiredo
- Faculty of Medicine, Federal University of Alagoas (UFAL), Maceio 57200-000, Brazil
| | - Silvana Santos
- State University of Paraíba (UEPB), Campina Grande 58429-500, Brazil
| | - Fernando Kok
- Department of Neurology, University of São Paulo (USP), São Paulo 05508-220, Brazil
| |
Collapse
|
173
|
Gunasekaran H, Azizi L, van Wassenhove V, Herbst SK. Characterizing endogenous delta oscillations in human MEG. Sci Rep 2023; 13:11031. [PMID: 37419933 PMCID: PMC10328979 DOI: 10.1038/s41598-023-37514-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023] Open
Abstract
Rhythmic activity in the delta frequency range (0.5-3 Hz) is a prominent feature of brain dynamics. Here, we examined whether spontaneous delta oscillations, as found in invasive recordings in awake animals, can be observed in non-invasive recordings performed in humans with magnetoencephalography (MEG). In humans, delta activity is commonly reported when processing rhythmic sensory inputs, with direct relationships to behaviour. However, rhythmic brain dynamics observed during rhythmic sensory stimulation cannot be interpreted as an endogenous oscillation. To test for endogenous delta oscillations we analysed human MEG data during rest. For comparison, we additionally analysed two conditions in which participants engaged in spontaneous finger tapping and silent counting, arguing that internally rhythmic behaviours could incite an otherwise silent neural oscillator. A novel set of analysis steps allowed us to show narrow spectral peaks in the delta frequency range in rest, and during overt and covert rhythmic activity. Additional analyses in the time domain revealed that only the resting state condition warranted an interpretation of these peaks as endogenously periodic neural dynamics. In sum, this work shows that using advanced signal processing techniques, it is possible to observe endogenous delta oscillations in non-invasive recordings of human brain dynamics.
Collapse
Affiliation(s)
- Harish Gunasekaran
- Cognitive Neuroimaging Unit, NeuroSpin, CEA, INSERM, CNRS, Université Paris-Saclay, 91191, Gif/Yvette, France
| | - Leila Azizi
- Cognitive Neuroimaging Unit, NeuroSpin, CEA, INSERM, CNRS, Université Paris-Saclay, 91191, Gif/Yvette, France
| | - Virginie van Wassenhove
- Cognitive Neuroimaging Unit, NeuroSpin, CEA, INSERM, CNRS, Université Paris-Saclay, 91191, Gif/Yvette, France
| | - Sophie K Herbst
- Cognitive Neuroimaging Unit, NeuroSpin, CEA, INSERM, CNRS, Université Paris-Saclay, 91191, Gif/Yvette, France.
| |
Collapse
|
174
|
Singh S, Dawar D, Pandian J, Sahonta R, Kumar CS, Mahadevappa M. Post-Stroke Resting-State EEG Connectivity: A Longitudinal Neuro-Rehabilitation Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083534 DOI: 10.1109/embc40787.2023.10340073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Stroke is a leading cause of permanent disability worldwide. Even after adequate treatment, the majority of patients do not recover fully, making them dependent on others for carrying out Activities of Daily Living (ADL). An improved understanding of the underlying mechanism of plasticity will help us in customizing the translational approach for learning and rehabilitation following a stroke. For this study, a 2-minute resting state EEG data were recorded at 5 time-points for 3-months after stroke onset. Directed Transfer Function (DTF) was used to study neural reorganization for 3 months. DTF for different brain regions and sub-bands was correlated with FMA. The information flow was studied for different brain regions as well as Affected Region (AR). Occipital region showed good correlation (r = 0.45 to 0.47) with FMA. Contra-lesional and ipsi-lesional regions trajectories complement each other during acute and sub-acute phase. The information outflow vs inflow imbalance of AR was restored by the end of 3 months. DTF can be used as biomarker for studying neuroplasticity. Occipital, temporal and motor cortex regions play an important role during neuro-rehabilitation. The information about different regions during rehabilitation will help us in designing subject-specific interventions for better recovery.
Collapse
|
175
|
Cainelli E, Vedovelli L, Carretti B, Bisiacchi P. EEG correlates of developmental dyslexia: a systematic review. ANNALS OF DYSLEXIA 2023; 73:184-213. [PMID: 36417146 PMCID: PMC10247570 DOI: 10.1007/s11881-022-00273-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/25/2022] [Indexed: 06/08/2023]
Abstract
Dyslexia is one of the most studied learning disorders. Despite this, its biological basis and main causes are still not fully understood. Electroencephalography (EEG) could be a powerful tool in identifying the underlying mechanisms, but knowledge of the EEG correlates of developmental dyslexia (DD) remains elusive. We aimed to systematically review the evidence on EEG correlates of DD and establish their quality. In July 2021, we carried out an online search of the PubMed and Scopus databases to identify published articles on EEG correlates in children with dyslexia aged 6 to 12 years without comorbidities. We follow the PRISMA guidelines and assess the quality using the Appraisal Tool questionnaire. Our final analysis included 49 studies (14% high quality, 63% medium, 20% low, and 2% very low). Studies differed greatly in methodology, making a summary of their results challenging. However, some points came to light. Even at rest, children with dyslexia and children in the control group exhibited differences in several EEG measures, particularly in theta and alpha frequencies; these frequencies appear to be associated with learning performance. During reading-related tasks, the differences between dyslexic and control children seem more localized in the left temporoparietal sites. The EEG activity of children with dyslexia and children in the control group differed in many aspects, both at rest and during reading-related tasks. Our data are compatible with neuroimaging studies in the same diagnostic group and expand the literature by offering new insights into functional significance.
Collapse
Affiliation(s)
- Elisa Cainelli
- Department of General Psychology, University of Padova, Via Venezia, 8, 35133, Padua, Italy.
| | - Luca Vedovelli
- Unit of Biostatistics, Epidemiology, and Public Health, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padua, Italy
| | - Barbara Carretti
- Department of General Psychology, University of Padova, Via Venezia, 8, 35133, Padua, Italy
| | - Patrizia Bisiacchi
- Department of General Psychology, University of Padova, Via Venezia, 8, 35133, Padua, Italy
- Padova Neuroscience Centre, PNC, Padua, Italy
| |
Collapse
|
176
|
Vanneste S, De Ridder D. BurstDR spinal cord stimulation rebalances pain input and pain suppression in the brain in chronic neuropathic pain. Brain Stimul 2023; 16:1186-1195. [PMID: 37541579 DOI: 10.1016/j.brs.2023.07.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
OBJECTIVE Chronic pain is processed by at least three well-known pathways, two pain provoking pathways including a medial 'suffering' and lateral 'painfulness' pathway. A third descending pain pathway modulates pain but is predominantly inhibitory. Chronic pain can be seen as an imbalance between the two pain-provoking and the pain inhibitory pathways. If this assumption is correct, then the imbalance between pain input and pain suppression should reverse and normalize in response to successful, i.e., pain reducing burstDR spinal cord stimulation, one of the current treatment options for neuropathic pain. MATERIALS AND METHODS Fifteen patients, who received spinal cord stimulation for failed back surgery were included in this study, using source localized electrical brain activity and connectivity recording via EEG to identify the purported imbalance. RESULTS BurstDR spinal cord stimulation induces a significant change in EEG activity in both the left and right somatosensory cortex (SSC) for both θ and γ oscillations. In the dorsal anterior cingulate cortex (dACC), we observed a significant drop in both α and β oscillations. This reduction is accompanied by a change in pain intensity and suffering. BurstDR spinal cord stimulation is also associated with a reduction in θ at the pregenual anterior cingulate cortex (pgACC). Analyzing effective connectivity indicates that for the θ band, more information is sent from the pgACC to the left and right SSC. For α, increased information is sent from the pgACC to the dACC and both the left and right SSC. This is associated with a reduced θ-γ coupling in the SSC and reduced α-β coupling in dACC. CONCLUSION This study suggests that chronic pain is indeed an imbalance between the ascending and descending pathways in the brain and that burst spinal cord stimulation can normalize this imbalance in the brain.
Collapse
Affiliation(s)
- Sven Vanneste
- Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| | - Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Dunedin School of Medicine, University of Otago, New Zealand
| |
Collapse
|
177
|
Yao S, Chen Y, Zhuang Q, Zhang Y, Lan C, Zhu S, Becker B, Kendrick KM. Sniffing oxytocin: Nose to brain or nose to blood? Mol Psychiatry 2023; 28:3083-3091. [PMID: 37185959 PMCID: PMC10615745 DOI: 10.1038/s41380-023-02075-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
In recent years ample studies have reported that intranasal administration of the neuropeptide oxytocin can facilitate social motivation and cognition in healthy and clinical populations. However, it is still unclear how effects are mediated since intranasally administered oxytocin can both directly enter the brain (nose to brain) and increase peripheral vascular concentrations (nose to blood). The relative functional contributions of these routes are not established and have received insufficient attention in the field. The current study used vasoconstrictor pretreatment to prevent intranasal oxytocin (24 IU) from increasing peripheral concentrations and measured effects on both resting-state neural (electroencephalography) and physiological responses (electrocardiogram, electrogastrogram and skin conductance). Results demonstrated that intranasal oxytocin alone produced robust and widespread increases of delta-beta cross-frequency coupling (CFC) from 30 min post-treatment but did not influence peripheral physiological measures. As predicted, vasoconstrictor pretreatment greatly reduced the normal increase in peripheral oxytocin concentrations and, importantly, abolished the majority of intranasal oxytocin effects on delta-beta CFC. Furthermore, time-dependent positive correlations were found between increases in plasma oxytocin concentrations and corresponding increases in delta-beta CFC following oxytocin treatment alone. Our findings suggest a critical role of peripheral vasculature-mediated routes on neural effects of exogenous oxytocin administration with important translational implications for its use as an intervention in psychiatric disorders.
Collapse
Affiliation(s)
- Shuxia Yao
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Yuanshu Chen
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Zhuang
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Yingying Zhang
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Chunmei Lan
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Siyu Zhu
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M Kendrick
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
178
|
van Schalkwijk FJ, Weber J, Hahn MA, Lendner JD, Inostroza M, Lin JJ, Helfrich RF. An evolutionary conserved division-of-labor between archicortical and neocortical ripples organizes information transfer during sleep. Prog Neurobiol 2023:102485. [PMID: 37353109 DOI: 10.1016/j.pneurobio.2023.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Systems-level memory consolidation during sleep depends on the temporally precise interplay between cardinal sleep oscillations. Specifically, hippocampal ripples constitute a key substrate of the hippocampal-neocortical dialogue underlying memory formation. Recently, it became evident that ripples are not unique to archicortex, but constitute a wide-spread neocortical phenomenon. To date, little is known about the morphological similarities between archi- and neocortical ripples. Moreover, it remains undetermined if neocortical ripples fulfill distinct functional roles. Leveraging intracranial recordings from the human medial temporal lobe (MTL) and neocortex during sleep, our results reveal region-specific functional specializations, albeit a near-uniform morphology. While MTL ripples synchronize the memory network to trigger directional MTL-to-neocortical information flow, neocortical ripples reduce information flow to minimize interference. At the population level, MTL ripples confined population dynamics to a low-dimensional subspace, while neocortical ripples diversified the population response; thus, constituting an effective mechanism to functionally uncouple the MTL-neocortical network. Critically, we replicated the key findings in rodents, where the same division-of-labor between archi- and neocortical ripples was evident. In sum, these results uncover an evolutionary preserved mechanism where the precisely coordinated interplay between MTL and neocortical ripples temporally segregates MTL information transfer from subsequent neocortical processing during sleep.
Collapse
Affiliation(s)
- Frank J van Schalkwijk
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany.
| | - Jan Weber
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany; International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction, University of Tübingen, Germany.
| | - Michael A Hahn
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany.
| | - Janna D Lendner
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany; Department of Anesthesiology and Intensive Care Medicine, University Medical Center Tübingen; Hoppe-Seyler-Str 3, 72076 Tübingen, Germany.
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.
| | - Jack J Lin
- Department of Neurology, University of California, Davis, 4860 Y St., Sacramento, CA 95817, USA; The Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA.
| | - Randolph F Helfrich
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany.
| |
Collapse
|
179
|
Rodriguez F, He S, Tan H. The potential of convolutional neural networks for identifying neural states based on electrophysiological signals: experiments on synthetic and real patient data. Front Hum Neurosci 2023; 17:1134599. [PMID: 37333834 PMCID: PMC10272439 DOI: 10.3389/fnhum.2023.1134599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/03/2023] [Indexed: 06/20/2023] Open
Abstract
Processing incoming neural oscillatory signals in real-time and decoding from them relevant behavioral or pathological states is often required for adaptive Deep Brain Stimulation (aDBS) and other brain-computer interface (BCI) applications. Most current approaches rely on first extracting a set of predefined features, such as the power in canonical frequency bands or various time-domain features, and then training machine learning systems that use those predefined features as inputs and infer what the underlying brain state is at each given time point. However, whether this algorithmic approach is best suited to extract all available information contained within the neural waveforms remains an open question. Here, we aim to explore different algorithmic approaches in terms of their potential to yield improvements in decoding performance based on neural activity such as measured through local field potentials (LFPs) recordings or electroencephalography (EEG). In particular, we aim to explore the potential of end-to-end convolutional neural networks, and compare this approach with other machine learning methods that are based on extracting predefined feature sets. To this end, we implement and train a number of machine learning models, based either on manually constructed features or, in the case of deep learning-based models, on features directly learnt from the data. We benchmark these models on the task of identifying neural states using simulated data, which incorporates waveform features previously linked to physiological and pathological functions. We then assess the performance of these models in decoding movements based on local field potentials recorded from the motor thalamus of patients with essential tremor. Our findings, derived from both simulated and real patient data, suggest that end-to-end deep learning-based methods may surpass feature-based approaches, particularly when the relevant patterns within the waveform data are either unknown, difficult to quantify, or when there may be, from the point of view of the predefined feature extraction pipeline, unidentified features that could contribute to decoding performance. The methodologies proposed in this study might hold potential for application in adaptive deep brain stimulation (aDBS) and other brain-computer interface systems.
Collapse
|
180
|
Ricci L, Tamilia E, Mercier M, Pepi C, Carfì-Pavia G, De Benedictis A, Assenza G, Di Lazzaro V, Vigevano F, Specchio N, de Palma L. Phase-amplitude coupling between low- and high-frequency activities as preoperative biomarker of focal cortical dysplasia subtypes. Clin Neurophysiol 2023; 150:40-48. [PMID: 37002979 DOI: 10.1016/j.clinph.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/08/2023] [Accepted: 03/02/2023] [Indexed: 04/01/2023]
Abstract
OBJECTIVE To evaluate whether ictal phase-amplitude coupling (PAC) between high-frequency activity and low-frequency activity could be used as a preoperative biomarker of Focal Cortical Dysplasia (FCD) subtypes. We hypothesize that FCD seizures present unique PAC characteristics that may be linked to their specific histopathological features. METHODS We retrospectively examined 12 children with FCD and refractory epilepsy who underwent successful epilepsy surgery. We identified ictal onsets recorded with stereo-EEG. We estimated the strength of PAC between low-frequencies and high-frequencies for each seizure by means of modulation index. Generalized mixed effect models and receiver operating characteristic (ROC) curve analysis were used to test the association between ictal PAC and FCD subtypes. RESULTS Ictal PAC was significantly higher in patients with FCD type II compared to type I, only on SOZ-electrodes (p < 0.005). No differences in ictal PAC were found on non-SOZ electrodes. Pre-ictal PAC registered on SOZ electrodes predicted FCD histopathology with a classification accuracy > 0.9 (p < 0.05). CONCLUSIONS The correlations between histopathology and neurophysiology provide evidence for the contribution of ictal PAC as a preoperative biomarker of FCD subtypes. SIGNIFICANCE Developed into a proper clinical application, such a technique may help improve clinical management and facilitate the prediction of surgical outcome in patients with FCD undergoing stereo-EEG monitoring.
Collapse
Affiliation(s)
- Lorenzo Ricci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Eleonora Tamilia
- Fetal-Neonatal Neuroimaging Developmental Science Center, Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mattia Mercier
- Rare and Complex Epilepsies, Department of Neurological Science, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, 00165 Rome, Italy
| | - Chiara Pepi
- Rare and Complex Epilepsies, Department of Neurological Science, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, 00165 Rome, Italy
| | - Giusy Carfì-Pavia
- Rare and Complex Epilepsies, Department of Neurological Science, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, 00165 Rome, Italy
| | - Alessandro De Benedictis
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Giovanni Assenza
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Federico Vigevano
- Department of Neurological Science, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Nicola Specchio
- Rare and Complex Epilepsies, Department of Neurological Science, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, 00165 Rome, Italy.
| | - Luca de Palma
- Rare and Complex Epilepsies, Department of Neurological Science, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, 00165 Rome, Italy
| |
Collapse
|
181
|
Andrade-Talavera Y, Fisahn A, Rodríguez-Moreno A. Timing to be precise? An overview of spike timing-dependent plasticity, brain rhythmicity, and glial cells interplay within neuronal circuits. Mol Psychiatry 2023; 28:2177-2188. [PMID: 36991134 PMCID: PMC10611582 DOI: 10.1038/s41380-023-02027-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/31/2023]
Abstract
In the mammalian brain information processing and storage rely on the complex coding and decoding events performed by neuronal networks. These actions are based on the computational ability of neurons and their functional engagement in neuronal assemblies where precise timing of action potential firing is crucial. Neuronal circuits manage a myriad of spatially and temporally overlapping inputs to compute specific outputs that are proposed to underly memory traces formation, sensory perception, and cognitive behaviors. Spike-timing-dependent plasticity (STDP) and electrical brain rhythms are suggested to underlie such functions while the physiological evidence of assembly structures and mechanisms driving both processes continues to be scarce. Here, we review foundational and current evidence on timing precision and cooperative neuronal electrical activity driving STDP and brain rhythms, their interactions, and the emerging role of glial cells in such processes. We also provide an overview of their cognitive correlates and discuss current limitations and controversies, future perspectives on experimental approaches, and their application in humans.
Collapse
Affiliation(s)
- Yuniesky Andrade-Talavera
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013, Seville, Spain.
| | - André Fisahn
- Department of Biosciences and Nutrition and Department of Women's and Children's Health, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013, Seville, Spain.
| |
Collapse
|
182
|
Yeh CH, Zhang C, Shi W, Lo MT, Tinkhauser G, Oswal A. Cross-Frequency Coupling and Intelligent Neuromodulation. CYBORG AND BIONIC SYSTEMS 2023; 4:0034. [PMID: 37266026 PMCID: PMC10231647 DOI: 10.34133/cbsystems.0034] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Cross-frequency coupling (CFC) reflects (nonlinear) interactions between signals of different frequencies. Evidence from both patient and healthy participant studies suggests that CFC plays an essential role in neuronal computation, interregional interaction, and disease pathophysiology. The present review discusses methodological advances and challenges in the computation of CFC with particular emphasis on potential solutions to spurious coupling, inferring intrinsic rhythms in a targeted frequency band, and causal interferences. We specifically focus on the literature exploring CFC in the context of cognition/memory tasks, sleep, and neurological disorders, such as Alzheimer's disease, epilepsy, and Parkinson's disease. Furthermore, we highlight the implication of CFC in the context and for the optimization of invasive and noninvasive neuromodulation and rehabilitation. Mainly, CFC could support advancing the understanding of the neurophysiology of cognition and motor control, serve as a biomarker for disease symptoms, and leverage the optimization of therapeutic interventions, e.g., closed-loop brain stimulation. Despite the evident advantages of CFC as an investigative and translational tool in neuroscience, further methodological improvements are required to facilitate practical and correct use in cyborg and bionic systems in the field.
Collapse
Affiliation(s)
- Chien-Hung Yeh
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Chuting Zhang
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Wenbin Shi
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Men-Tzung Lo
- Department of Biomedical Sciences and Engineering,
National Central University, Taoyuan, Taiwan
| | - Gerd Tinkhauser
- Department of Neurology,
Bern University Hospital and University of Bern, Bern, Switzerland
| | - Ashwini Oswal
- MRC Brain Network Dynamics Unit,
University of Oxford, Oxford, UK
| |
Collapse
|
183
|
Haslacher D, Narang A, Sokoliuk R, Cavallo A, Reber P, Nasr K, Santarnecchi E, Soekadar SR. In vivo phase-dependent enhancement and suppression of human brain oscillations by transcranial alternating current stimulation (tACS). Neuroimage 2023:120187. [PMID: 37230205 DOI: 10.1016/j.neuroimage.2023.120187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
Transcranial alternating current stimulation (tACS) can influence perception and behavior, with recent evidence also highlighting its potential impact in clinical settings, but its underlying mechanisms are poorly understood. Behavioral and indirect physiological evidence indicates that phase-dependent constructive and destructive interference between the applied electric field and brain oscillations at the stimulation frequency may play an important role, but in vivo validation during stimulation was unfeasible because stimulation artifacts impede single-trial assessment of brain oscillations during tACS. Here, we attenuated stimulation artifacts to provide evidence for phase-dependent enhancement and suppression of visually evoked steady state responses (SSR) during amplitude-modulated tACS (AM-tACS). We found that AM-tACS enhanced and suppressed SSR by 5.77 ± 2.95 %, while it enhanced and suppressed corresponding visual perception by 7.99 ± 5.15 %. While not designed to investigate the underlying mechanisms of this effect, our study suggests feasibility and superiority of phase-locked (closed-loop) AM-tACS over conventional (open-loop) AM-tACS to purposefully enhance or suppress brain oscillations at specific frequencies.
Collapse
Affiliation(s)
- David Haslacher
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Asmita Narang
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Rodika Sokoliuk
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Alessia Cavallo
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Philipp Reber
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Khaled Nasr
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program & Network Control Laboratory, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | - Surjo R Soekadar
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany..
| |
Collapse
|
184
|
Manasova D, Stankovski T. Neural Cross-Frequency Coupling Functions in Sleep. Neuroscience 2023:S0306-4522(23)00227-0. [PMID: 37225051 DOI: 10.1016/j.neuroscience.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
The human brain presents a heavily connected complex system. From a relatively fixed anatomy, it can enable a vast repertoire of functions. One important brain function is the process of natural sleep, which alters consciousness and voluntary muscle activity. On neural level, these alterations are accompanied by changes of the brain connectivity. In order to reveal the changes of connectivity associated with sleep, we present a methodological framework for reconstruction and assessment of functional interaction mechanisms. By analyzing EEG (electroencephalogram) recordings from human whole night sleep, first, we applied a time-frequency wavelet transform to study the existence and strength of brainwave oscillations. Then we applied a dynamical Bayesian inference on the phase dynamics in the presence of noise. With this method we reconstructed the cross-frequency coupling functions, which revealed the mechanism of how the interactions occur and manifest. We focus our analysis on the delta-alpha coupling function and observe how this cross-frequency coupling changes during the different sleep stages. The results demonstrated that the delta-alpha coupling function was increasing gradually from Awake to NREM3 (non-rapid eye movement), but only during NREM2 and NREM3 deep sleep it was significant in respect of surrogate data testing. The analysis on the spatially distributed connections showed that this significance is strong only for within the single electrode region and in the front-to-back direction. The presented methodological framework is for the whole-night sleep recordings, but it also carries general implications for other global neural states.
Collapse
Affiliation(s)
- Dragana Manasova
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France; Université Paris Cité, Paris, France
| | - Tomislav Stankovski
- Faculty of Medicine, Ss Cyril and Methodius University, Skopje 1000, North Macedonia; Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom.
| |
Collapse
|
185
|
Berry B, Varatharajah Y, Kremen V, Kucewicz M, Guragain H, Brinkmann B, Duque J, Carvalho DZ, Stead M, Sieck G, Worrell G. Phase-Amplitude Coupling Localizes Pathologic Brain with Aid of Behavioral Staging in Sleep. Life (Basel) 2023; 13:life13051186. [PMID: 37240831 DOI: 10.3390/life13051186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/28/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Low frequency brain rhythms facilitate communication across large spatial regions in the brain and high frequency rhythms are thought to signify local processing among nearby assemblies. A heavily investigated mode by which these low frequency and high frequency phenomenon interact is phase-amplitude coupling (PAC). This phenomenon has recently shown promise as a novel electrophysiologic biomarker, in a number of neurologic diseases including human epilepsy. In 17 medically refractory epilepsy patients undergoing phase-2 monitoring for the evaluation of surgical resection and in whom temporal depth electrodes were implanted, we investigated the electrophysiologic relationships of PAC in epileptogenic (seizure onset zone or SOZ) and non-epileptogenic tissue (non-SOZ). That this biomarker can differentiate seizure onset zone from non-seizure onset zone has been established with ictal and pre-ictal data, but less so with interictal data. Here we show that this biomarker can differentiate SOZ from non-SOZ interictally and is also a function of interictal epileptiform discharges. We also show a differential level of PAC in slow-wave-sleep relative to NREM1-2 and awake states. Lastly, we show AUROC evaluation of the localization of SOZ is optimal when utilizing beta or alpha phase onto high-gamma or ripple band. The results suggest an elevated PAC may reflect an electrophysiology-based biomarker for abnormal/epileptogenic brain regions.
Collapse
Affiliation(s)
- Brent Berry
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Yogatheesan Varatharajah
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Biomedical and Electrical/Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Vaclav Kremen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University, 160 00 Prague, Czech Republic
| | - Michal Kucewicz
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hari Guragain
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Benjamin Brinkmann
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Juliano Duque
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Computing and Mathematics, FFCLRP, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | | | - Matt Stead
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Gary Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory Worrell
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
186
|
Man V, Cockburn J, Flouty O, Gander PE, Sawada M, Kovach CK, Kawasaki H, Oya H, Howard MA, O'Doherty JP. Temporally organized representations of reward and risk in the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.539916. [PMID: 37214975 PMCID: PMC10197553 DOI: 10.1101/2023.05.09.539916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The value and uncertainty associated with choice alternatives constitute critical features along which decisions are made. While the neural substrates supporting reward and risk processing have been investigated, the temporal organization by which these computations are encoded remains elusive. Here we leverage the high spatiotemporal precision of intracranial electroencephalography (iEEG) to uncover how representations of decision-related computations unfold in time. We present evidence of locally distributed representations of reward and risk variables that are temporally organized across multiple regions of interest. Reward outcome representations across wide-spread regions follow a temporally cascading order along the anteroposterior axis of the brain. In contrast, expected value can be decoded from multiple regions at the same time, and error signals in both reward and risk domains reflect a mixture of sequential and parallel encoding. We highlight the role of the anterior insula in generalizing between reward prediction error (RePE) and risk prediction error (RiPE), within which the encoding of RePE in the distributed iEEG signal predicts RiPE. Together our results emphasize the utility of uncovering temporal dynamics in the human brain for understanding how computational processes critical for value-based decisions under uncertainty unfold.
Collapse
|
187
|
Gauthier-Umaña C, Valderrama M, Múnera A, Nava-Mesa MO. BOARD-FTD-PACC: a graphical user interface for the synaptic and cross-frequency analysis derived from neural signals. Brain Inform 2023; 10:12. [PMID: 37155028 PMCID: PMC10167074 DOI: 10.1186/s40708-023-00191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/01/2023] [Indexed: 05/10/2023] Open
Abstract
In order to understand the link between brain functional states and behavioral/cognitive processes, the information carried in neural oscillations can be retrieved using different analytic techniques. Processing these different bio-signals is a complex, time-consuming, and often non-automatized process that requires customization, due to the type of signal acquired, acquisition method implemented, and the objectives of each individual research group. To this end, a new graphical user interface (GUI), named BOARD-FTD-PACC, was developed and designed to facilitate the visualization, quantification, and analysis of neurophysiological recordings. BOARD-FTD-PACC provides different and customizable tools that facilitate the task of analyzing post-synaptic activity and complex neural oscillatory data, mainly cross-frequency analysis. It is a flexible and user-friendly software that can be used by a wide range of users to extract valuable information from neurophysiological signals such as phase-amplitude coupling and relative power spectral density, among others. BOARD-FTD-PACC allows researchers to select, in the same open-source GUI, different approaches and techniques that will help promote a better understanding of synaptic and oscillatory activity in specific brain structures with or without stimulation.
Collapse
Affiliation(s)
- Cécile Gauthier-Umaña
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
- Department of Systems Engineering, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Mario Valderrama
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Alejandro Múnera
- Behavioral Neurophysiology Laboratory, Physiological Sciences Department, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Mauricio O Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
188
|
Behroozmand R, Sarmukadam K, Fridriksson J. Aberrant modulation of broadband neural oscillations reflects vocal sensorimotor deficits in post-stroke aphasia. Clin Neurophysiol 2023; 149:100-112. [PMID: 36934601 PMCID: PMC10101924 DOI: 10.1016/j.clinph.2023.02.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/11/2023]
Abstract
OBJECTIVE The present study investigated the neural oscillatory correlates of impaired vocal sensorimotor control in left-hemisphere stroke. METHODS Electroencephalography (EEG) signals were recorded from 34 stroke and 46 control subjects during speech vowel vocalization and listening tasks under normal and pitch-shifted auditory feedback. RESULTS Time-frequency analyses revealed aberrantly decreased theta (4-8 Hz) and increased gamma band (30-80 Hz) power in frontal and posterior parieto-occipital regions as well as reduced alpha (8-13 Hz) and beta (13-30 Hz) desynchronization over sensorimotor areas before speech vowel vocalization in left-hemisphere stroke compared with controls. Subjects with the stroke also presented with aberrant modulation of broadband (4-80 Hz) neural oscillations over sensorimotor regions after speech vowel onset during vocalization and listening under normal and altered auditory feedback. We found that the atypical pattern of broadband neural oscillatory modulation was correlated with diminished vocal feedback error compensation behavior and the severity of co-existing language-related aphasia symptoms associated with left-hemisphere stroke. CONCLUSIONS These findings indicate complex interplays between the underlying mechanisms of speech and language and their deficits in post-stroke aphasia. SIGNIFICANCE Our data motivate the notion of studying neural oscillatory dynamics as a critical component for the examination of speech and language disorders in post-stroke aphasia.
Collapse
Affiliation(s)
- Roozbeh Behroozmand
- Speech Neuroscience Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC 29208, USA.
| | - Kimaya Sarmukadam
- Speech Neuroscience Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC 29208, USA
| | - Julius Fridriksson
- The Aphasia Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 915 Greene St, Columbia, SC 29208, USA; Center for the Study of Aphasia Recovery (C-STAR), Arnold School of Public Health, University of South Carolina, 915 Greene St, Columbia, SC 29208, USA
| |
Collapse
|
189
|
Ding Z, Guan L, He W, Gu H, Wang Y, Li X. Spatial characteristics of closed-loop TMS-EEG with occipital alpha-phase synchronized. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
190
|
Das A, Menon V. Concurrent- and After-Effects of Medial Temporal Lobe Stimulation on Directed Information Flow to and from Prefrontal and Parietal Cortices during Memory Formation. J Neurosci 2023; 43:3159-3175. [PMID: 36963847 PMCID: PMC10146497 DOI: 10.1523/jneurosci.1728-22.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023] Open
Abstract
Electrical stimulation of the medial temporal lobe (MTL) has the potential to uncover causal circuit mechanisms underlying memory function. However, little is known about how MTL stimulation alters information flow with frontoparietal cortical regions implicated in episodic memory. We used intracranial EEG recordings from humans (14 participants, 10 females) to investigate how MTL stimulation alters directed information flow between MTL and PFC and between MTL and posterior parietal cortex (PPC). Participants performed a verbal episodic memory task during which they were presented with words and asked to recall them after a delay of ∼20 s; 50 Hz stimulation was applied to MTL electrodes on selected trials during memory encoding. Directed information flow was examined using phase transfer entropy. Behaviorally, we observed that MTL stimulation reduced memory recall. MTL stimulation decreased top-down PFC→MTL directed information flow during both memory encoding and subsequent memory recall, revealing aftereffects more than 20 s after end of stimulation. Stimulation suppressed top-down PFC→MTL influences to a greater extent than PPC→MTL. Finally, MTL→PFC information flow on stimulation trials was significantly lower for successful, compared with unsuccessful, memory recall; in contrast, MTL→ventral PPC information flow was higher for successful, compared with unsuccessful, memory recall. Together, these results demonstrate that the effects of MTL stimulation are behaviorally, regionally, and directionally specific, that MTL stimulation selectively impairs directional signaling with PFC, and that causal MTL-ventral PPC circuits support successful memory recall. Findings provide new insights into dynamic casual circuits underling episodic memory and their modulation by MTL stimulation.SIGNIFICANCE STATEMENT The medial temporal lobe (MTL) and its interactions with prefrontal and parietal cortices (PFC and PPC) play a critical role in human memory. Dysfunctional MTL-PFC and MTL-PPC circuits are prominent in psychiatric and neurologic disorders, including Alzheimer's disease and schizophrenia. Brain stimulation has emerged as a potential mechanism for enhancing memory and cognitive functions, but the underlying neurophysiological mechanisms and dynamic causal circuitry underlying bottom-up and top-down signaling involving the MTL are unknown. Here, we use intracranial EEG recordings to investigate the effects of MTL stimulation on causal signaling in key episodic memory circuits linking the MTL with PFC and PPC. Our findings have implications for translational applications aimed at realizing the promise of brain stimulation-based treatment of memory disorders.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry & Behavioral Sciences
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences
- Department of Neurology & Neurological Sciences
- Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
191
|
De Ridder D, Friston K, Sedley W, Vanneste S. A parahippocampal-sensory Bayesian vicious circle generates pain or tinnitus: a source-localized EEG study. Brain Commun 2023; 5:fcad132. [PMID: 37223127 PMCID: PMC10202557 DOI: 10.1093/braincomms/fcad132] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/14/2023] [Accepted: 04/19/2023] [Indexed: 05/25/2023] Open
Abstract
Pain and tinnitus share common pathophysiological mechanisms, clinical features, and treatment approaches. A source-localized resting-state EEG study was conducted in 150 participants: 50 healthy controls, 50 pain, and 50 tinnitus patients. Resting-state activity as well as functional and effective connectivity was computed in source space. Pain and tinnitus were characterized by increased theta activity in the pregenual anterior cingulate cortex, extending to the lateral prefrontal cortex and medial anterior temporal lobe. Gamma-band activity was increased in both auditory and somatosensory cortex, irrespective of the pathology, and extended to the dorsal anterior cingulate cortex and parahippocampus. Functional and effective connectivity were largely similar in pain and tinnitus, except for a parahippocampal-sensory loop that distinguished pain from tinnitus. In tinnitus, the effective connectivity between parahippocampus and auditory cortex is bidirectional, whereas the effective connectivity between parahippocampus and somatosensory cortex is unidirectional. In pain, the parahippocampal-somatosensory cortex is bidirectional, but parahippocampal auditory cortex unidirectional. These modality-specific loops exhibited theta-gamma nesting. Applying a Bayesian brain model of brain functioning, these findings suggest that the phenomenological difference between auditory and somatosensory phantom percepts result from a vicious circle of belief updating in the context of missing sensory information. This finding may further our understanding of multisensory integration and speaks to a universal treatment for pain and tinnitus-by selectively disrupting parahippocampal-somatosensory and parahippocampal-auditory theta-gamma activity and connectivity.
Collapse
Affiliation(s)
- Dirk De Ridder
- Unit of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Karl Friston
- Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, UK
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Sven Vanneste
- Correspondence to: Sven Vanneste Lab for Clinical & Integrative Neuroscience Global Brain Health Institute and Institute of Neuroscience Trinity College Dublin, College Green 2, Dublin D02 PN40, Ireland E-mail:
| |
Collapse
|
192
|
Gallimore CG, Ricci D, Hamm JP. Spatiotemporal dynamics across visual cortical laminae support a predictive coding framework for interpreting mismatch responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537173. [PMID: 37131642 PMCID: PMC10153128 DOI: 10.1101/2023.04.17.537173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Context modulates neocortical processing of sensory data. Unexpected visual stimuli elicit large responses in primary visual cortex (V1) -- a phenomenon known as deviance detection (DD) at the neural level, or "mismatch negativity" (MMN) when measured with EEG. It remains unclear how visual DD/MMN signals emerge across cortical layers, in temporal relation to the onset of deviant stimuli, and with respect to brain oscillations. Here we employed a visual "oddball" sequence - a classic paradigm for studying aberrant DD/MMN in neuropsychiatric populations - and recorded local field potentials in V1 of awake mice with 16-channel multielectrode arrays. Multiunit activity and current source density profiles showed that while basic adaptation to redundant stimuli was present early (50ms) in layer 4 responses, DD emerged later (150-230ms) in supragranular layers (L2/3). This DD signal coincided with increased delta/theta (2-7Hz) and high-gamma (70-80Hz) oscillations in L2/3 and decreased beta oscillations (26-36hz) in L1. These results clarify the neocortical dynamics elicited during an oddball paradigm at a microcircuit level. They are consistent with a predictive coding framework, which posits that predictive suppression is present in cortical feed-back circuits, which synapse in L1, while "prediction errors" engage cortical feed-forward processing streams, which emanate from L2/3.
Collapse
|
193
|
Atiwiwat D, Aquilino M, Devinsky O, Bardakjian BL, Carlen PL. Interregional phase-amplitude coupling between theta rhythm in the nucleus tractus solitarius and high-frequency oscillations in the hippocampus during REM sleep in rats. Sleep 2023; 46:zsad027. [PMID: 36782374 PMCID: PMC10091087 DOI: 10.1093/sleep/zsad027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/30/2022] [Indexed: 02/15/2023] Open
Abstract
Cross-frequency coupling (CFC) between theta and high-frequency oscillations (HFOs) is predominant during active wakefulness, REM sleep and behavioral and learning tasks in rodent hippocampus. Evidence suggests that these state-dependent CFCs are linked to spatial navigation and memory consolidation processes. CFC studies currently include only the cortical and subcortical structures. To our knowledge, the study of nucleus tractus solitarius (NTS)-cortical structure CFC is still lacking. Here we investigate CFC in simultaneous local field potential recordings from hippocampal CA1 and the NTS during behavioral states in freely moving rats. We found a significant increase in theta (6-8 Hz)-HFO (120-160 Hz) coupling both within the hippocampus and between NTS theta and hippocampal HFOs during REM sleep. Also, the hippocampal HFOs were modulated by different but consistent phases of hippocampal and NTS theta oscillations. These findings support the idea that phase-amplitude coupling is both state- and frequency-specific and CFC analysis may serve as a tool to help understand the selective functions of neuronal network interactions in state-dependent information processing. Importantly, the increased NTS theta-hippocampal HFO coupling during REM sleep may represent the functional connectivity between these two structures which reflects the function of the hippocampus in visceral learning with the sensory information provided by the NTS. This gives a possible insight into an association between the sensory activity and REM-sleep dependent memory consolidation.
Collapse
Affiliation(s)
- Danita Atiwiwat
- Krembil Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Biosignal Research Center for Health, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Mark Aquilino
- Krembil Research Institute, University of Toronto, Toronto, ON, Canada
- Departments of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | - Orrin Devinsky
- New York University Langone Medical Center, Neurology, New York, NY, United States
| | - Berj L Bardakjian
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Peter L Carlen
- Krembil Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Departments of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
194
|
Duan Y, Wang S, Yuan Q, Shi Y, Jiang N, Jiang D, Song J, Wang P, Zhuang L. Long-Term Flexible Neural Interface for Synchronous Recording of Cross-Regional Sensory Processing along the Olfactory Pathway. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2205768. [PMID: 37035943 DOI: 10.1002/smll.202205768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/04/2023] [Indexed: 06/19/2023]
Abstract
Humans perceive the world through five senses, of which olfaction is the oldest evolutionary sense that enables the detection of chemicals in the external environment. Recent progress in bioinspired electronics has boosted the development of artificial sensory systems. Here, a biohybrid olfactory system is proposed by integrating living mammals with implantable flexible neural electrodes, to employ the outstanding properties of mammalian olfactory system. In olfactory perception, the peripheral organ-olfactory epithelium (OE) projects axons into the olfactory relay station-olfactory bulb (OB). The olfactory information encoded in the neural activity is recorded from both OE and OB simultaneously using flexible neural electrodes. Results reveal that spontaneous slow oscillations (<12 Hz) in both OE and OB closely follow respiration. This respiration-locked rhythm modulates the amplitude of fast oscillations (>20 Hz), which are associated with odor perception. Further, by extracting the characteristics of odor-evoked oscillatory signals, responses of different odors are identified and classified with 80% accuracy. This study demonstrates for the first time that the flexible electrode enables chronic stable electrophysiological recordings of the peripheral and central olfactory system in vivo. Overall, the method provides a novel neural interface for olfactory biosensing and cognitive processing.
Collapse
Affiliation(s)
- Yan Duan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- The MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 310027, China
| | - Suhao Wang
- Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, 310027, China
| | - Qunchen Yuan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310027, China
| | - Yingqian Shi
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Nan Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Deming Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310027, China
| | - Jizhou Song
- Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310012, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- The MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- The MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
195
|
Saint Amour di Chanaz L, Pérez-Bellido A, Wu X, Lonzano-Soldevilla D, Pacheco-Estefan D, Lehongre K, Conde-Blanco E, Roldan P, Adam C, Lambrecq V, Frazzini V, Donaire A, Carreño M, Navarro V, Valero-Cabré A, Fuentemilla L. Gamma amplitude is coupled to opposed hippocampal theta-phase states during the encoding and retrieval of episodic memories in humans. Curr Biol 2023; 33:1836-1843.e6. [PMID: 37060906 DOI: 10.1016/j.cub.2023.03.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/05/2023] [Accepted: 03/24/2023] [Indexed: 04/17/2023]
Abstract
Computational models and in vivo studies in rodents suggest that the emergence of gamma activity (40-140 Hz) during memory encoding and retrieval is coupled to opposed-phase states of the underlying hippocampal theta rhythm (4-9 Hz).1,2,3,4,5,6,7,8,9,10 However, direct evidence for whether human hippocampal gamma-modulated oscillatory activity in memory processes is coupled to opposed-phase states of the ongoing theta rhythm remains elusive. Here, we recorded local field potentials (LFPs) directly from the hippocampus of 10 patients with epilepsy, using depth electrodes. We used a memory encoding and retrieval task whereby trial unique sequences of pictures depicting real-life episodes were presented, and 24 h later, participants were asked to recall them upon the appearance of the first picture of the encoded episodic sequence. We found theta-to-gamma cross-frequency coupling that was specific to the hippocampus during both the encoding and retrieval of episodic memories. We also revealed that gamma was coupled to opposing theta phases during both encoding and recall processes. Additionally, we observed that the degree of theta-gamma phase opposition between encoding and recall was associated with participants' memory performance, so gamma power was modulated by theta phase for both remembered and forgotten trials, although only for remembered trials the dominant theta phase was different for encoding and recall trials. The current results offer direct empirical evidence in support of hippocampal theta-gamma phase opposition models in human long-term memory and provide fundamental insights into mechanistic predictions derived from computational and animal work, thereby contributing to establishing similarities and differences across species.
Collapse
Affiliation(s)
- Ludovico Saint Amour di Chanaz
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain
| | - Alexis Pérez-Bellido
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain
| | - Xiongbo Wu
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Diego Lonzano-Soldevilla
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Crta. M40, Km. 38, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Daniel Pacheco-Estefan
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Katia Lehongre
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Estefanía Conde-Blanco
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Pedro Roldan
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Claude Adam
- AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Virginie Lambrecq
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Département de Neurophysiologie, Hôpital PitiéSalpêtrière, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Valerio Frazzini
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Département de Neurophysiologie, Hôpital PitiéSalpêtrière, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Antonio Donaire
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Mar Carreño
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Vincent Navarro
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Département de Neurophysiologie, Hôpital PitiéSalpêtrière, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Center of Reference for Rare Epilepsies, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Antoni Valero-Cabré
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, CNRS UMR 7225, INSERM U1127, Paris, France; Faculty of Health and Science, Cognitive Neurolab, Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Avinguda del Tibidabo, 39-43, 08035 Barcelona, Spain; Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University School of Medicine, 72 E Concord Street, Boston, MA 02118, USA
| | - Lluís Fuentemilla
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute for Biomedical Research of Bellvitge, C/ Feixa Llarga, s/n - Pavelló de Govern -Edifici Modular, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| |
Collapse
|
196
|
Daume J, Kaminski J, Schjetnan AGP, Salimpour Y, Khan U, Reed C, Anderson W, Valiante TA, Mamelak AN, Rutishauser U. Control of working memory maintenance by theta-gamma phase amplitude coupling of human hippocampal neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535772. [PMID: 37066145 PMCID: PMC10104113 DOI: 10.1101/2023.04.05.535772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Retaining information in working memory (WM) is a demanding process that relies on cognitive control to protect memoranda-specific persistent activity from interference. How cognitive control regulates WM storage, however, remains unknown. We hypothesized that interactions of frontal control and hippocampal persistent activity are coordinated by theta-gamma phase amplitude coupling (TG-PAC). We recorded single neurons in the human medial temporal and frontal lobe while patients maintained multiple items in WM. In the hippocampus, TG-PAC was indicative of WM load and quality. We identified cells that selectively spiked during nonlinear interactions of theta phase and gamma amplitude. These PAC neurons were more strongly coordinated with frontal theta activity when cognitive control demand was high, and they introduced information-enhancing and behaviorally relevant noise correlations with persistently active neurons in the hippocampus. We show that TG-PAC integrates cognitive control and WM storage to improve the fidelity of WM representations and facilitate behavior.
Collapse
Affiliation(s)
- Jonathan Daume
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jan Kaminski
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Andrea G P Schjetnan
- Krembil Research Institute and Division of Neurosurgery, University Health Network (UHN), University of Toronto, Toronto, ON, Canada
| | - Yousef Salimpour
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Umais Khan
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chrystal Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - William Anderson
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Taufik A Valiante
- Krembil Research Institute and Division of Neurosurgery, University Health Network (UHN), University of Toronto, Toronto, ON, Canada
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
197
|
Abstract
Sensory processing, short-term memory, and decision-making often deal with multiple items, or options, simultaneously. I review evidence suggesting that the brain handles such multiple items by "rhythmic attentional scanning (RAS)": each item is processed in a separate cycle of the theta rhythm, involving several gamma cycles, to reach an internally consistent representation in the form of a gamma-synchronized neuronal group. Within each theta cycle, items that are extended in representational space are scanned by traveling waves. Such scanning might go across small numbers of simple items linked into a chunk.
Collapse
Affiliation(s)
- Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands.
| |
Collapse
|
198
|
Fernandez-Ruiz A, Sirota A, Lopes-Dos-Santos V, Dupret D. Over and above frequency: Gamma oscillations as units of neural circuit operations. Neuron 2023; 111:936-953. [PMID: 37023717 PMCID: PMC7614431 DOI: 10.1016/j.neuron.2023.02.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 04/08/2023]
Abstract
Gamma oscillations (∼30-150 Hz) are widespread correlates of neural circuit functions. These network activity patterns have been described across multiple animal species, brain structures, and behaviors, and are usually identified based on their spectral peak frequency. Yet, despite intensive investigation, whether gamma oscillations implement causal mechanisms of specific brain functions or represent a general dynamic mode of neural circuit operation remains unclear. In this perspective, we review recent advances in the study of gamma oscillations toward a deeper understanding of their cellular mechanisms, neural pathways, and functional roles. We discuss that a given gamma rhythm does not per se implement any specific cognitive function but rather constitutes an activity motif reporting the cellular substrates, communication channels, and computational operations underlying information processing in its generating brain circuit. Accordingly, we propose shifting the attention from a frequency-based to a circuit-level definition of gamma oscillations.
Collapse
Affiliation(s)
| | - Anton Sirota
- Bernstein Center for Computational Neuroscience, Faculty of Medicine, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany.
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
199
|
Mischler G, Raghavan V, Keshishian M, Mesgarani N. naplib-python: Neural Acoustic Data Processing and Analysis Tools in Python. ARXIV 2023:arXiv:2304.01799v1. [PMID: 37064534 PMCID: PMC10104195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Recently, the computational neuroscience community has pushed for more transparent and reproducible methods across the field. In the interest of unifying the domain of auditory neuroscience, naplib-python provides an intuitive and general data structure for handling all neural recordings and stimuli, as well as extensive preprocessing, feature extraction, and analysis tools which operate on that data structure. The package removes many of the complications associated with this domain, such as varying trial durations and multi-modal stimuli, and provides a general-purpose analysis framework that interfaces easily with existing toolboxes used in the field.
Collapse
Affiliation(s)
- Gavin Mischler
- Mortimer B. Zuckerman Mind Brain Behavior, Columbia University, New York, United States
- Department of Electrical Engineering, Columbia University, New York, United States
| | - Vinay Raghavan
- Mortimer B. Zuckerman Mind Brain Behavior, Columbia University, New York, United States
- Department of Electrical Engineering, Columbia University, New York, United States
| | - Menoua Keshishian
- Mortimer B. Zuckerman Mind Brain Behavior, Columbia University, New York, United States
- Department of Electrical Engineering, Columbia University, New York, United States
| | - Nima Mesgarani
- Mortimer B. Zuckerman Mind Brain Behavior, Columbia University, New York, United States
- Department of Electrical Engineering, Columbia University, New York, United States
| |
Collapse
|
200
|
Ueda T, Iimura Y, Mitsuhashi T, Suzuki H, Miao Y, Nishioka K, Tamrakar S, Matsui R, Tanaka T, Otsubo H, Sugano H, Kondo A. Chronological changes in phase-amplitude coupling during epileptic seizures in temporal lobe epilepsy. Clin Neurophysiol 2023; 148:44-51. [PMID: 36796285 DOI: 10.1016/j.clinph.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/25/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To analyze chronological changes in phase-amplitude coupling (PAC) and verify whether PAC analysis can diagnose epileptogenic zones during seizures. METHODS We analyzed 30 seizures in 10 patients with mesial temporal lobe epilepsy who had ictal discharges with preictal spiking followed by low-voltage fast activity patterns on intracranial electroencephalography. We used the amplitude of two high-frequency bands (ripples: 80-200 Hz, fast ripples: 200-300 Hz) and the phase of three slow wave bands (0.5-1 Hz, 3-4 Hz, and 4-8 Hz) for modulation index (MI) calculation from 2 minutes before seizure onset to seizure termination. We evaluated the accuracy of epileptogenic zone detection by MI, in which a combination of MI was better for diagnosis and analyzed patterns of chronological changes in MI during seizures. RESULTS MIRipples/3-4 Hz and MIRipples/4-8 Hz in the hippocampus were significantly higher than those in the peripheral regions from seizure onset. Corresponding to the phase on intracranial electroencephalography, MIRipples/3-4 Hz decreased once and subsequently increased again. MIRipples/4-8 Hz showed continuously high values. CONCLUSIONS Continuous measurement of MIRipples/3-4 Hz and MIRipples/4-8 Hz could help identify epileptogenic zones. SIGNIFICANCE PAC analysis of ictal epileptic discharges can help epileptogenic zone identification.
Collapse
Affiliation(s)
- Tetsuya Ueda
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan.
| | - Yasushi Iimura
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan.
| | - Takumi Mitsuhashi
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan.
| | - Hiroharu Suzuki
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan.
| | - Yao Miao
- Department of Electronic and Information Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| | - Kazuki Nishioka
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan.
| | - Samantha Tamrakar
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan.
| | - Ryousuke Matsui
- Department of Electronic and Information Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| | - Toshihisa Tanaka
- Department of Electronic and Information Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| | - Hiroshi Otsubo
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan; Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Hidenori Sugano
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan.
| | - Akihide Kondo
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan.
| |
Collapse
|