151
|
Lee JH, Warner CM, Jin HE, Barnes E, Poda AR, Perkins EJ, Lee SW. Production of tunable nanomaterials using hierarchically assembled bacteriophages. Nat Protoc 2017; 12:1999-2013. [DOI: 10.1038/nprot.2017.085] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
152
|
Uechi H, Kuranaga E. Mechanisms of collective cell movement lacking a leading or free front edge in vivo. Cell Mol Life Sci 2017; 74:2709-2722. [PMID: 28243700 PMCID: PMC11107506 DOI: 10.1007/s00018-017-2489-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 12/15/2022]
Abstract
Collective cell movement is one of the strategies for achieving the complex shapes of tissues and organs. In this process, multiple cells within a group held together by cell-cell adhesion acquire mobility and move together in the same direction. In some well-studied models of collective cell movement, the mobility depends strongly on traction generated at the leading edge by cells located at the front. However, recent advances in live-imaging techniques have led to the discovery of other types of collective cell movement lacking a leading edge or even a free edge at the front, in a diverse array of morphological events, including tubule elongation, epithelial sheet extension, and tissue rotation. We herein review some of the developmental events that are organized by collective cell movement and attempt to elucidate the underlying cellular and molecular mechanisms, which include membrane protrusions, guidance cues, cell intercalation, and planer cell polarity, or chirality pathways.
Collapse
Affiliation(s)
- Hiroyuki Uechi
- Laboratory for Histogenetic Dynamics, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| | - Erina Kuranaga
- Laboratory for Histogenetic Dynamics, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan.
- Laboratory of Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
153
|
Cipitria A, Salmeron-Sanchez M. Mechanotransduction and Growth Factor Signalling to Engineer Cellular Microenvironments. Adv Healthc Mater 2017; 6. [PMID: 28792683 DOI: 10.1002/adhm.201700052] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/20/2017] [Indexed: 12/20/2022]
Abstract
Engineering cellular microenvironments involves biochemical factors, the extracellular matrix (ECM) and the interaction with neighbouring cells. This progress report provides a critical overview of key studies that incorporate growth factor (GF) signalling and mechanotransduction into the design of advanced microenvironments. Materials systems have been developed for surface-bound presentation of GFs, either covalently tethered or sequestered through physico-chemical affinity to the matrix, as an alternative to soluble GFs. Furthermore, some materials contain both GF and integrin binding regions and thereby enable synergistic signalling between the two. Mechanotransduction refers to the ability of the cells to sense physical properties of the ECM and to transduce them into biochemical signals. Various aspects of the physics of the ECM, i.e. stiffness, geometry and ligand spacing, as well as time-dependent properties, such as matrix stiffening, degradability, viscoelasticity, surface mobility as well as spatial patterns and gradients of physical cues are discussed. To conclude, various examples illustrate the potential for cooperative signalling of growth factors and the physical properties of the microenvironment for potential applications in regenerative medicine, cancer research and drug testing.
Collapse
Affiliation(s)
- Amaia Cipitria
- Julius Wolff Institute & Center for Musculoskeletal Surgery; Charité - Universitätsmedizin Berlin; 13353 Berlin Germany
- Berlin-Brandenburg Center for Regenerative Therapies; Charité - Universitätsmedizin Berlin; 13353 Berlin Germany
| | - Manuel Salmeron-Sanchez
- Division of Biomedical Engineering; School of Engineering; University of Glasgow; Glasgow G128LT UK
| |
Collapse
|
154
|
Leggett SE, Khoo AS, Wong IY. Multicellular tumor invasion and plasticity in biomimetic materials. Biomater Sci 2017; 5:1460-1479. [PMID: 28530743 PMCID: PMC5531215 DOI: 10.1039/c7bm00272f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer cell invasion through the extracellular matrix is associated with metastatic spread and therapeutic resistance. In carcinomas, the detachment and dissemination of individual cells has been associated with an epithelial-mesenchymal transition, but tumors can also invade using collective, multicellular phenotypes. This malignant tumor progression is also associated with alignment and stiffening of the surrounding extracellular matrix. Historically, tumor invasion has been investigated using 2D monolayer culture, small animal models or patient histology. These assays have been complemented by the use of natural biomaterials such as reconstituted basement membrane and collagen I. More recently, engineered materials with well-defined physical, chemical and biomolecular properties have enabled more controlled microenvironments. In this review, we highlight recent developments in multicellular tumor invasion based on microfabricated structures or hydrogels. We emphasize the role of interfacial geometries, biomaterial stiffness, matrix remodeling, and co-culture models. Finally, we discuss future directions for the field, particularly integration with precision measurements of biomaterial properties and single cell heterogeneity, standardization and scale-up of these platforms, as well as integration with patient-derived samples.
Collapse
Affiliation(s)
- Susan E Leggett
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA. and Pathobiology Graduate Program, Brown University, Providence, RI 02912, USA
| | - Amanda S Khoo
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA.
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA. and Pathobiology Graduate Program, Brown University, Providence, RI 02912, USA
| |
Collapse
|
155
|
Hakim V, Silberzan P. Collective cell migration: a physics perspective. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:076601. [PMID: 28282028 DOI: 10.1088/1361-6633/aa65ef] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cells have traditionally been viewed either as independently moving entities or as somewhat static parts of tissues. However, it is now clear that in many cases, multiple cells coordinate their motions and move as collective entities. Well-studied examples comprise development events, as well as physiological and pathological situations. Different ex vivo model systems have also been investigated. Several recent advances have taken place at the interface between biology and physics, and have benefitted from progress in imaging and microscopy, from the use of microfabrication techniques, as well as from the introduction of quantitative tools and models. We review these interesting developments in quantitative cell biology that also provide rich examples of collective out-of-equilibrium motion.
Collapse
Affiliation(s)
- Vincent Hakim
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, CNRS, PSL Research University, UPMC, Paris, France
| | | |
Collapse
|
156
|
Advanced biomaterials and microengineering technologies to recapitulate the stepwise process of cancer metastasis. Biomaterials 2017; 133:176-207. [DOI: 10.1016/j.biomaterials.2017.04.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/04/2017] [Accepted: 04/12/2017] [Indexed: 02/08/2023]
|
157
|
Paine IS, Lewis MT. The Terminal End Bud: the Little Engine that Could. J Mammary Gland Biol Neoplasia 2017; 22:93-108. [PMID: 28168376 PMCID: PMC5488158 DOI: 10.1007/s10911-017-9372-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
The mammary gland is one of the most regenerative organs in the body, with the majority of development occurring postnatally and in the adult mammal. Formation of the ductal tree is orchestrated by a specialized structure called the terminal end bud (TEB). The TEB is responsible for the production of mature cell types leading to the elongation of the subtending duct. The TEB is also the regulatory control point for basement membrane deposition, branching, angiogenesis, and pattern formation. While the hormonal control of TEB growth is well characterized, the local regulatory factors are less well understood. Recent studies of pubertal outgrowth and ductal elongation have yielded surprising details in regards to ongoing processes in the TEB. Here we summarize the current understanding of TEB biology, discuss areas of future study, and discuss the use of the TEB as a model for the study of breast cancer.
Collapse
Affiliation(s)
- Ingrid S Paine
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael T Lewis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department Radiology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
158
|
Martin KC, Yuan X, Stimac G, Bannerman K, Anderson J, Roy C, Glykofrydis F, Yin H, Davies JA. Symmetry-breaking in branching epithelia: cells on micro-patterns under flow challenge the hypothesis of positive feedback by a secreted autocrine inhibitor of motility. J Anat 2017; 230:766-774. [PMID: 28369863 PMCID: PMC5442143 DOI: 10.1111/joa.12599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2017] [Indexed: 01/21/2023] Open
Abstract
Branching morphogenesis of epithelia involves division of cells into leader (tip) and follower (stalk) cells. Published work on cell lines in culture has suggested that symmetry-breaking takes place via a secreted autocrine inhibitor of motility, the inhibitor accumulating more in concave regions of the culture boundary, slowing advance of cells there, and less in convex areas, allowing advance and a further exaggeration of the concave/convex difference. Here we test this hypothesis using a two-dimensional culture system that includes strong flow conditions to remove accumulating diffusible secretions. We find that, while motility does indeed follow boundary curvature in this system, flow makes no difference: this challenges the hypothesis of control by a diffusible secreted autocrine inhibitor.
Collapse
Affiliation(s)
- Kimberly C. Martin
- Centre for Integrative PhysiologyUniversity of EdinburghGeorge SquareEdinburghEH8 9XBUK
| | - Xiaofei Yuan
- School of EngineeringJames Watt BuildingUniversity of GlasgowGL12 8QQUK
| | - Gregory Stimac
- Centre for Integrative PhysiologyUniversity of EdinburghGeorge SquareEdinburghEH8 9XBUK
| | - Kieran Bannerman
- Centre for Integrative PhysiologyUniversity of EdinburghGeorge SquareEdinburghEH8 9XBUK
| | - Jamie Anderson
- Centre for Integrative PhysiologyUniversity of EdinburghGeorge SquareEdinburghEH8 9XBUK
| | - Chloe Roy
- Centre for Integrative PhysiologyUniversity of EdinburghGeorge SquareEdinburghEH8 9XBUK
| | - Fokion Glykofrydis
- Centre for Integrative PhysiologyUniversity of EdinburghGeorge SquareEdinburghEH8 9XBUK
| | - Huabing Yin
- School of EngineeringJames Watt BuildingUniversity of GlasgowGL12 8QQUK
| | - Jamie A. Davies
- Centre for Integrative PhysiologyUniversity of EdinburghGeorge SquareEdinburghEH8 9XBUK
| |
Collapse
|
159
|
Liu AP, Chaudhuri O, Parekh SH. New advances in probing cell-extracellular matrix interactions. Integr Biol (Camb) 2017; 9:383-405. [PMID: 28352896 PMCID: PMC5708530 DOI: 10.1039/c6ib00251j] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/20/2017] [Indexed: 12/17/2022]
Abstract
The extracellular matrix (ECM) provides structural and biochemical support to cells within tissues. An emerging body of evidence has established that the ECM plays a key role in cell mechanotransduction - the study of coupling between mechanical inputs and cellular phenotype - through either mediating transmission of forces to the cells, or presenting mechanical cues that guide cellular behaviors. Recent progress in cell mechanotransduction research has been facilitated by advances of experimental tools, particularly microtechnologies, engineered biomaterials, and imaging and analytical methods. Microtechnologies have enabled the design and fabrication of controlled physical microenvironments for the study and measurement of cell-ECM interactions. Advances in engineered biomaterials have allowed researchers to develop synthetic ECMs that mimic tissue microenvironments and investigate the impact of altered physicochemical properties on various cellular processes. Finally, advanced imaging and spectroscopy techniques have facilitated the visualization of the complex interaction between cells and ECM in vitro and in living tissues. This review will highlight the application of recent innovations in these areas to probing cell-ECM interactions. We believe cross-disciplinary approaches, combining aspects of the different technologies reviewed here, will inspire innovative ideas to further elucidate the secrets of ECM-mediated cell control.
Collapse
Affiliation(s)
- Allen P. Liu
- Department of Mechanical Engineering , University of Michigan , Ann Arbor , MI 48109 , USA .
- Department of Biomedical Engineering , University of Michigan , Ann Arbor , MI 48109 , USA
- Cellular and Molecular Biology Program , University of Michigan , Ann Arbor , MI 48109 , USA
- Biophysics Program , University of Michigan , Ann Arbor , MI 48109 , USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering , Stanford University , Stanford , CA 94305 , USA .
| | - Sapun H. Parekh
- Department of Molecular Spectroscopy , Max Planck Institute for Polymer Research , Mainz 55128 , Germany .
| |
Collapse
|
160
|
Davidson LA. Mechanical design in embryos: mechanical signalling, robustness and developmental defects. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150516. [PMID: 28348252 PMCID: PMC5379024 DOI: 10.1098/rstb.2015.0516] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2016] [Indexed: 12/18/2022] Open
Abstract
Embryos are shaped by the precise application of force against the resistant structures of multicellular tissues. Forces may be generated, guided and resisted by cells, extracellular matrix, interstitial fluids, and how they are organized and bound within the tissue's architecture. In this review, we summarize our current thoughts on the multiple roles of mechanics in direct shaping, mechanical signalling and robustness of development. Genetic programmes of development interact with environmental cues to direct the composition of the early embryo and endow cells with active force production. Biophysical advances now provide experimental tools to measure mechanical resistance and collective forces during morphogenesis and are allowing integration of this field with studies of signalling and patterning during development. We focus this review on concepts that highlight this integration, and how the unique contributions of mechanical cues and gradients might be tested side by side with conventional signalling systems. We conclude with speculation on the integration of large-scale programmes of development, and how mechanical responses may ensure robust development and serve as constraints on programmes of tissue self-assembly.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'.
Collapse
Affiliation(s)
- Lance A Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
161
|
Wu Q, Maire M, Lerouge S, Therriault D, Heuzey MC. 3D Printing of Microstructured and Stretchable Chitosan Hydrogel for Guided Cell Growth. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201700058] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Qinghua Wu
- Department of Chemical Engineering; Polytechnique de Montréal; C.P. 6079, succ. Centre-Ville Montréal H3C 3A7 Québec, Québec Canada
| | - Marion Maire
- École de Technologie Supérieure (ÉTS); The University of Montreal Hospital Research Centre (CRCHUM); 1100 Rue Notre-Dame O Montréal H3C 1K3 Québec Canada
| | - Sophie Lerouge
- École de Technologie Supérieure (ÉTS); The University of Montreal Hospital Research Centre (CRCHUM); 1100 Rue Notre-Dame O Montréal H3C 1K3 Québec Canada
| | - Daniel Therriault
- Laboratory for Multiscale Mechanics (LM2); Polytechnique de Montréal; C.P. 6079, succ. Centre-Ville Montréal H3C 3A7 Québec Canada
| | - Marie-Claude Heuzey
- Department of Chemical Engineering; Polytechnique de Montréal; C.P. 6079, succ. Centre-Ville Montréal H3C 3A7 Québec, Québec Canada
| |
Collapse
|
162
|
Vafaei S, Tabaei SR, Biswas KH, Groves JT, Cho NJ. Dynamic Cellular Interactions with Extracellular Matrix Triggered by Biomechanical Tuning of Low-Rigidity, Supported Lipid Membranes. Adv Healthc Mater 2017; 6. [PMID: 28371558 DOI: 10.1002/adhm.201700243] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Indexed: 11/09/2022]
Abstract
The behavior of cells in a tissue is regulated by chemical as well as physical signals arising from their microenvironment. While gel-based substrates have been widely used for mimicking a range of substrate rigidities, there is a need for the development of low rigidity substrates for mimicking the physical properties of soft tissues. In this study, the authors report the development of a supported lipid bilayer (SLB)-based low rigidity substrate for cell adhesion studies. SLBs are functionalized with either collagen I or fibronectin via covalent, amine coupling to a carboxyl group-modified lipid molecule. While the lipid molecules in the bilayer show long-range lateral mobility, the covalently functionalized extracellular matrix (ECM) proteins are immobile on the bilayer surface. Specific adhesion of cells results in an enrichment of the protein on the bilayer and the appearance of a zone of depletion around the cells. Further, the lateral reorganization of the ECM proteins is controlled by altering the fluidity of lipid molecules in the substrate. Thus, the experimental platform developed in this study can be utilized for addressing basic questions related to cell adhesion on low rigidity substrates as well as biomedical applications requiring adhesion of cells to low rigidity substrates.
Collapse
Affiliation(s)
- Setareh Vafaei
- Centre for Biomimetic Sensor Science; Nanyang Technological University; 50 Nanyang Drive 637553 Singapore Singapore
- School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore Singapore
| | - Seyed R. Tabaei
- Centre for Biomimetic Sensor Science; Nanyang Technological University; 50 Nanyang Drive 637553 Singapore Singapore
- School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore Singapore
| | - Kabir H. Biswas
- Mechanobiology Institute; National University of Singapore; 117411 Singapore Singapore
| | - Jay T. Groves
- Mechanobiology Institute; National University of Singapore; 117411 Singapore Singapore
- Department of Chemistry; University of California; Berkeley CA 94720 USA
| | - Nam-Joon Cho
- Centre for Biomimetic Sensor Science; Nanyang Technological University; 50 Nanyang Drive 637553 Singapore Singapore
- School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore Singapore
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive 637459 Singapore Singapore
| |
Collapse
|
163
|
Nerger BA, Siedlik MJ, Nelson CM. Microfabricated tissues for investigating traction forces involved in cell migration and tissue morphogenesis. Cell Mol Life Sci 2017; 74:1819-1834. [PMID: 28008471 PMCID: PMC5391279 DOI: 10.1007/s00018-016-2439-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 01/09/2023]
Abstract
Cell-generated forces drive an array of biological processes ranging from wound healing to tumor metastasis. Whereas experimental techniques such as traction force microscopy are capable of quantifying traction forces in multidimensional systems, the physical mechanisms by which these forces induce changes in tissue form remain to be elucidated. Understanding these mechanisms will ultimately require techniques that are capable of quantifying traction forces with high precision and accuracy in vivo or in systems that recapitulate in vivo conditions, such as microfabricated tissues and engineered substrata. To that end, here we review the fundamentals of traction forces, their quantification, and the use of microfabricated tissues designed to study these forces during cell migration and tissue morphogenesis. We emphasize the differences between traction forces in two- and three-dimensional systems, and highlight recently developed techniques for quantifying traction forces.
Collapse
Affiliation(s)
- Bryan A Nerger
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA
| | - Michael J Siedlik
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA.
- Department of Molecular Biology, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA.
| |
Collapse
|
164
|
Farahat M, Sathi GA, Hara ES, Taketa H, Kuboki T, Matsumoto T. MSCs feeder layers induce SMG self-organization and branching morphogenesis. PLoS One 2017; 12:e0176453. [PMID: 28448600 PMCID: PMC5407632 DOI: 10.1371/journal.pone.0176453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/11/2017] [Indexed: 01/14/2023] Open
Abstract
Dysfunction of salivary glands leads to several oral health problems, including dental caries, mastication and swallowing dysfunctions and multiple oral infections. Conventional treatments for such condition fell short of providing satisfying therapeutic results. Recent advances in organ regeneration therapy which utilize tissue stem cells to fabricate bioengineered 3D organ buds, have introduced a promising therapeutic tool for full functional organ regeneration. However, finding a sustainable and easily accessible cell source for such approaches is still challenging, especially in case of severely atrophied tissues such as irradiated salivary glands. In response to this, we hypothesized that bone marrow derived mesenchymal stem cells (MSCs) could be used as feeder cells to induce salivary epithelial tissues/cells branching. Indeed, in 2D cultures, MSCs supported branching of embryonic submandibular salivary gland (SMG) epithelium. Interestingly, this enhancing effect was dependent on the initial number of MSC feeder cells. In addition, MSCs supported the self-assembly of SMG epithelial progenitor cells into well-patterned and branched 3D salivary organoids. Therefore, these findings propose MSCs as a valuable candidate cell source for induced SMG epithelial branching, which can potentially be applied in future methods for SMG regeneration approaches.
Collapse
Affiliation(s)
- Mahmoud Farahat
- Department of Biomaterials, Okayama University, Okayama, Japan
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University, Okayama, Japan
| | - Gulsan Ara Sathi
- Department of Bio-Systems Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | | | - Hiroaki Taketa
- Department of Biomaterials, Okayama University, Okayama, Japan
- Center for the Development of Medical and Health Care Education, Okayama University, Okayama, Japan
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University, Okayama, Japan
| | | |
Collapse
|
165
|
Mihalko EP, Brown AC. Material Strategies for Modulating Epithelial to Mesenchymal Transitions. ACS Biomater Sci Eng 2017; 4:1149-1161. [PMID: 33418653 DOI: 10.1021/acsbiomaterials.6b00751] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Epithelial to mesenchymal transitions (EMT) involve the phenotypic change of epithelial cells into fibroblast-like cells. This process is accompanied by the loss of cell-cell contacts, increased extracellular matrix (ECM) production, stress fiber alignment, and an increase in cell mobility. While essential for development and wound repair, EMT has also been recognized as a contributing factor to fibrotic diseases and cancer. Both chemical and mechanical cues, such as tumor necrosis factor alpha, NF-κB, Wnt, Notch, interleukin-8, metalloproteinase-3, ECM proteins, and ECM stiffness can determine the degree and duration of EMT events. Additionally, transforming growth factor beta is a primary driver of EMT and, interestingly, can be activated through cell-mediated mechanoactivation. In this review, we highlight recent findings demonstrating the contribution of mechanical stimuli, such as tissue and material stiffness, in driving EMT. We then highlight material strategies for controlling EMT events. Finally, we discuss drivers of the similar process of endothelial to mesenchymal transition (EndoMT) and corresponding material strategies for controlling EndoMT.
Collapse
Affiliation(s)
- Emily P Mihalko
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ashley C Brown
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
166
|
Shah SB, Singh A. Cellular self-assembly and biomaterials-based organoid models of development and diseases. Acta Biomater 2017; 53:29-45. [PMID: 28159716 DOI: 10.1016/j.actbio.2017.01.075] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/29/2016] [Accepted: 01/27/2017] [Indexed: 12/11/2022]
Abstract
Organogenesis and morphogenesis have informed our understanding of physiology, pathophysiology, and avenues to create new curative and regenerative therapies. Thus far, this understanding has been hindered by the lack of a physiologically relevant yet accessible model that affords biological control. Recently, three-dimensional ex vivo cellular cultures created through cellular self-assembly under natural extracellular matrix cues or through biomaterial-based directed assembly have been shown to physically resemble and recapture some functionality of target organs. These "organoids" have garnered momentum for their applications in modeling human development and disease, drug screening, and future therapy design or even organ replacement. This review first discusses the self-organizing organoids as materials with emergent properties and their advantages and limitations. We subsequently describe biomaterials-based strategies used to afford more control of the organoid's microenvironment and ensuing cellular composition and organization. In this review, we also offer our perspective on how multifunctional biomaterials with precise spatial and temporal control could ultimately bridge the gap between in vitro organoid platforms and their in vivo counterparts. STATEMENT OF SIGNIFICANCE Several notable reviews have highlighted PSC-derived organoids and 3D aggregates, including embryoid bodies, from a development and cellular assembly perspective. The focus of this review is to highlight the materials-based approaches that cells, including PSCs and others, adopt for self-assembly and the controlled development of complex tissues, such as that of the brain, gut, and immune system.
Collapse
|
167
|
Green JJ, Elisseeff JH. Mimicking biological functionality with polymers for biomedical applications. Nature 2017; 540:386-394. [PMID: 27974772 DOI: 10.1038/nature21005] [Citation(s) in RCA: 319] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 09/12/2016] [Indexed: 12/12/2022]
Abstract
The vast opportunities for biomaterials design and functionality enabled by mimicking nature continue to stretch the limits of imagination. As both biological understanding and engineering capabilities develop, more sophisticated biomedical materials can be synthesized that have multifaceted chemical, biological and physical characteristics designed to achieve specific therapeutic goals. Mimicry is being used in the design of polymers for biomedical applications that are required locally in tissues, systemically throughout the body, and at the interface with tissues.
Collapse
Affiliation(s)
- Jordan J Green
- Translational Tissue Engineering Center, Departments of Biomedical Engineering and Ophthalmology, and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Departments of Biomedical Engineering and Ophthalmology, and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
168
|
Murrow LM, Weber RJ, Gartner ZJ. Dissecting the stem cell niche with organoid models: an engineering-based approach. Development 2017; 144:998-1007. [PMID: 28292846 PMCID: PMC5358107 DOI: 10.1242/dev.140905] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
For many tissues, single resident stem cells grown in vitro under appropriate three-dimensional conditions can produce outgrowths known as organoids. These tissues recapitulate much of the cell composition and architecture of the in vivo organ from which they derive, including the formation of a stem cell niche. This has facilitated the systematic experimental manipulation and single-cell, high-throughput imaging of stem cells within their respective niches. Furthermore, emerging technologies now make it possible to engineer organoids from purified cellular and extracellular components to directly model and test stem cell-niche interactions. In this Review, we discuss how organoids have been used to identify and characterize stem cell-niche interactions and uncover new niche components, focusing on three adult-derived organoid systems. We also describe new approaches to reconstitute organoids from purified cellular components, and discuss how this technology can help to address fundamental questions about the adult stem cell niche.
Collapse
Affiliation(s)
- Lyndsay M Murrow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Box 2280, San Francisco, CA 94158, USA
| | - Robert J Weber
- Graduate Program in Chemistry and Chemical Biology, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Box 2280, San Francisco, CA 94158, USA
- Graduate Program in Chemistry and Chemical Biology, University of California at San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
169
|
Wang S, Sekiguchi R, Daley WP, Yamada KM. Patterned cell and matrix dynamics in branching morphogenesis. J Cell Biol 2017; 216:559-570. [PMID: 28174204 PMCID: PMC5350520 DOI: 10.1083/jcb.201610048] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/05/2016] [Accepted: 12/21/2016] [Indexed: 12/16/2022] Open
Abstract
Many embryonic organs undergo branching morphogenesis to maximize their functional epithelial surface area. Branching morphogenesis requires the coordinated interplay of multiple types of cells with the extracellular matrix (ECM). During branching morphogenesis, new branches form by "budding" or "clefting." Cell migration, proliferation, rearrangement, deformation, and ECM dynamics have varied roles in driving budding versus clefting in different organs. Elongation of the newly formed branch and final maturation of the tip involve cellular mechanisms that include cell elongation, intercalation, convergent extension, proliferation, and differentiation. New methodologies such as high-resolution live imaging, tension sensors, and force-mapping techniques are providing exciting new opportunities for future research into branching morphogenesis.
Collapse
Affiliation(s)
- Shaohe Wang
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Rei Sekiguchi
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - William P Daley
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
170
|
Kaylan KB, Kourouklis AP, Underhill GH. A High-throughput Cell Microarray Platform for Correlative Analysis of Cell Differentiation and Traction Forces. J Vis Exp 2017:55362. [PMID: 28287589 PMCID: PMC5408965 DOI: 10.3791/55362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microfabricated cellular microarrays, which consist of contact-printed combinations of biomolecules on an elastic hydrogel surface, provide a tightly controlled, high-throughput engineered system for measuring the impact of arrayed biochemical signals on cell differentiation. Recent efforts using cell microarrays have demonstrated their utility for combinatorial studies in which many microenvironmental factors are presented in parallel. However, these efforts have focused primarily on investigating the effects of biochemical cues on cell responses. Here, we present a cell microarray platform with tunable material properties for evaluating both cell differentiation by immunofluorescence and biomechanical cell-substrate interactions by traction force microscopy. To do so, we have developed two different formats utilizing polyacrylamide hydrogels of varying Young's modulus fabricated on either microscope slides or glass-bottom Petri dishes. We provide best practices and troubleshooting for the fabrication of microarrays on these hydrogel substrates, the subsequent cell culture on microarrays, and the acquisition of data. This platform is well-suited for use in investigations of biological processes for which both biochemical (e.g., extracellular matrix composition) and biophysical (e.g., substrate stiffness) cues may play significant, intersecting roles.
Collapse
Affiliation(s)
- Kerim B Kaylan
- Department of Bioengineering, University of Illinois at Urbana-Champaign
| | | | | |
Collapse
|
171
|
miR-2478 inhibits TGFβ1 expression by targeting the transcriptional activation region downstream of the TGFβ1 promoter in dairy goats. Sci Rep 2017; 7:42627. [PMID: 28198456 PMCID: PMC5309801 DOI: 10.1038/srep42627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/13/2017] [Indexed: 02/08/2023] Open
Abstract
In a previous study, miR-2478 was demonstrated to be up-regulated in dairy goat mammary glands during peak lactation compared with the dry period. However, the detailed mechanisms by which miR-2478 regulates physiological lactation and mammary gland development in dairy goats remain unclear. In this study, we used bioinformatics analysis and homologous cloning to predict the target genes of miR-2478 and selected INSR, FBXO11, TGFβ1 and ING4 as candidate target genes of miR-2478. Subsequently, by targeting the 5′UTR of the TGFβ1 gene, we verified that miR-2478 significantly inhibited TGFβ1 transcription and the Pearson’s correlation coefficient between miR-2478 expression and TGFβ1 expression was −0.98. Furthermore, we identified the potential promoter and transcription factor binding regions of TGFβ1 and analyzed the potential mechanisms of interaction between miR-2478 and TGFβ1. Dual-luciferase reporter assays revealed that two regions, spanning from −904 to −690 bp and from −79 to +197 bp, were transcription factor binding regions of TGFβ1. Interesting, the miR-2478 binding sequence was determined to span from +123 to +142 bp in the TGFβ1 gene promoter. Thus, our results have demonstrated that miR-2478 binds to the core region of the TGFβ1 promoter and that it affects goat mammary gland development by inhibiting TGFβ1 transcription.
Collapse
|
172
|
Identity and dynamics of mammary stem cells during branching morphogenesis. Nature 2017; 542:313-317. [PMID: 28135720 DOI: 10.1038/nature21046] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022]
Abstract
During puberty, the mouse mammary gland develops into a highly branched epithelial network. Owing to the absence of exclusive stem cell markers, the location, multiplicity, dynamics and fate of mammary stem cells (MaSCs), which drive branching morphogenesis, are unknown. Here we show that morphogenesis is driven by proliferative terminal end buds that terminate or bifurcate with near equal probability, in a stochastic and time-invariant manner, leading to a heterogeneous epithelial network. We show that the majority of terminal end bud cells function as highly proliferative, lineage-committed MaSCs that are heterogeneous in their expression profile and short-term contribution to ductal extension. Yet, through cell rearrangements during terminal end bud bifurcation, each MaSC is able to contribute actively to long-term growth. Our study shows that the behaviour of MaSCs is not directly linked to a single expression profile. Instead, morphogenesis relies upon lineage-restricted heterogeneous MaSC populations that function as single equipotent pools in the long term.
Collapse
|
173
|
Abstract
The mouse mammary gland is widely used as a model for human breast cancer and has greatly added to our understanding of the molecular mechanisms involved in breast cancer development and progression. To fully appreciate the validity and limitations of the mouse model, it is essential to be aware of the similarities and also the differences that exist between the mouse mammary gland and the human breast. This introduction therefore describes the parallels and contrasts in mouse mammary gland and human breast morphogenesis from an early embryonic phase through to puberty, adulthood, pregnancy, parturition, and lactation, and finally the regressive stage of involution.
Collapse
Affiliation(s)
- Sara McNally
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, 4, Ireland.
| | - Torsten Stein
- Institute of Cancer Sciences, College of MVLS, University of Glasgow, Glasgow, UK
| |
Collapse
|
174
|
McBryan J, Howlin J. Pubertal Mammary Gland Development: Elucidation of In Vivo Morphogenesis Using Murine Models. Methods Mol Biol 2017; 1501:77-114. [PMID: 27796948 DOI: 10.1007/978-1-4939-6475-8_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the past 25 years, the combination of increasingly sophisticated gene targeting technology with transplantation techniques has allowed researchers to address a wide array of questions about postnatal mammary gland development. These in turn have significantly contributed to our knowledge of other branched epithelial structures. This review chapter highlights a selection of the mouse models exhibiting a pubertal mammary gland phenotype with a focus on how they have contributed to our overall understanding of in vivo mammary morphogenesis. We discuss mouse models that have enabled us to assign functions to particular genes and proteins and, more importantly, have determined when and where these factors are required for completion of ductal outgrowth and branch patterning. The reason for the success of the mouse mammary gland model is undoubtedly the suitability of the postnatal mammary gland to experimental manipulation. The gland itself is very amenable to investigation and the combination of genetic modification with accessibility to the tissue has allowed an impressive number of studies to inform biology. Excision of the rudimentary epithelial structure postnatally allows genetically modified tissue to be readily transplanted into wild type stroma or vice versa, and has thus defined the contribution of each compartment to particular phenotypes. Similarly, whole gland transplantation has been used to definitively discern local effects from indirect systemic effects of various growth factors and hormones. While appreciative of the power of these tools and techniques, we are also cognizant of some of their limitations, and we discuss some shortcomings and future strategies that can overcome them.
Collapse
Affiliation(s)
- Jean McBryan
- Department of Molecular Medicine Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital, Dublin, 9, Ireland
| | - Jillian Howlin
- Division of Oncology-Pathology, Lund University Cancer Center/Medicon Village, Building 404:B2, Scheelevägen 2, 223 81, Lund, Sweden.
| |
Collapse
|
175
|
Simian M, Bissell MJ. Organoids: A historical perspective of thinking in three dimensions. J Cell Biol 2016; 216:31-40. [PMID: 28031422 PMCID: PMC5223613 DOI: 10.1083/jcb.201610056] [Citation(s) in RCA: 425] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/05/2016] [Accepted: 12/13/2016] [Indexed: 02/08/2023] Open
Abstract
In this perspective, Simian and Bissell discuss the evolution of the 3D culture and organoid research field up to now as well as its future directions. In the last ten years, there has been a dramatic surge in the number of publications where single or groups of cells are grown in substrata that have elements of basement membrane leading to the formation of tissue-like structures referred to as organoids. However, this field of research began many decades ago, when the pioneers of cell culture began to ask questions we still ask today: How does organogenesis occur? How do signals integrate to make such vastly different tissues and organs given that the sequence of the genome in our trillions of cells is identical? Here, we summarize how work over the past century generated the conceptual framework that has allowed us to make progress in the understanding of tissue-specific morphogenetic programs. The development of cell culture systems that provide accurate and physiologically relevant models are proving to be key in establishing appropriate platforms for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Marina Simian
- Instituto de Nanosistemas, Universidad Nacional de San Martín, San Martín 1650, Provincia de Buenos Aires, Argentina
| | - Mina J Bissell
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
176
|
Nasrollahi S, Banerjee S, Qayum B, Banerjee P, Pathak A. Nanoscale Matrix Topography Influences Microscale Cell Motility through Adhesions, Actin Organization, and Cell Shape. ACS Biomater Sci Eng 2016; 3:2980-2986. [DOI: 10.1021/acsbiomaterials.6b00554] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samila Nasrollahi
- Department of Mechanical
Engineering and Materials Science, Washington University, Saint Louis, Missouri 63130, United States
| | - Sriya Banerjee
- Department of Mechanical
Engineering and Materials Science, Washington University, Saint Louis, Missouri 63130, United States
| | - Beenish Qayum
- Department of Mechanical
Engineering and Materials Science, Washington University, Saint Louis, Missouri 63130, United States
| | - Parag Banerjee
- Department of Mechanical
Engineering and Materials Science, Washington University, Saint Louis, Missouri 63130, United States
| | - Amit Pathak
- Department of Mechanical
Engineering and Materials Science, Washington University, Saint Louis, Missouri 63130, United States
| |
Collapse
|
177
|
Ruprecht V, Monzo P, Ravasio A, Yue Z, Makhija E, Strale PO, Gauthier N, Shivashankar GV, Studer V, Albiges-Rizo C, Viasnoff V. How cells respond to environmental cues - insights from bio-functionalized substrates. J Cell Sci 2016; 130:51-61. [PMID: 27856508 DOI: 10.1242/jcs.196162] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Biomimetic materials have long been the (he)art of bioengineering. They usually aim at mimicking in vivo conditions to allow in vitro culture, differentiation and expansion of cells. The past decade has witnessed a considerable amount of progress in soft lithography, bio-inspired micro-fabrication and biochemistry, allowing the design of sophisticated and physiologically relevant micro- and nano-environments. These systems now provide an exquisite toolbox with which we can control a large set of physicochemical environmental parameters that determine cell behavior. Bio-functionalized surfaces have evolved from simple protein-coated solid surfaces or cellular extracts into nano-textured 3D surfaces with controlled rheological and topographical properties. The mechanobiological molecular processes by which cells interact and sense their environment can now be unambiguously understood down to the single-molecule level. This Commentary highlights recent successful examples where bio-functionalized substrates have contributed in raising and answering new questions in the area of extracellular matrix sensing by cells, cell-cell adhesion and cell migration. The use, the availability, the impact and the challenges of such approaches in the field of biology are discussed.
Collapse
Affiliation(s)
- Verena Ruprecht
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Andrea Ravasio
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Zhang Yue
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Ekta Makhija
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Pierre Olivier Strale
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
| | | | - G V Shivashankar
- IFOM, Via Adamello, 16, Milano 20139, Italy.,Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Vincent Studer
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
| | - Corinne Albiges-Rizo
- INSERM, U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Institute Albert Bonniot, University Grenoble Alpes, La Tronche F-38700, France
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore .,CNRS UMI 3639, 5A Engineering Drive 1, 117411 Singapore
| |
Collapse
|
178
|
Tissue-scale, personalized modeling and simulation of prostate cancer growth. Proc Natl Acad Sci U S A 2016; 113:E7663-E7671. [PMID: 27856758 DOI: 10.1073/pnas.1615791113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recently, mathematical modeling and simulation of diseases and their treatments have enabled the prediction of clinical outcomes and the design of optimal therapies on a personalized (i.e., patient-specific) basis. This new trend in medical research has been termed "predictive medicine." Prostate cancer (PCa) is a major health problem and an ideal candidate to explore tissue-scale, personalized modeling of cancer growth for two main reasons: First, it is a small organ, and, second, tumor growth can be estimated by measuring serum prostate-specific antigen (PSA, a PCa biomarker in blood), which may enable in vivo validation. In this paper, we present a simple continuous model that reproduces the growth patterns of PCa. We use the phase-field method to account for the transformation of healthy cells to cancer cells and use diffusion-reaction equations to compute nutrient consumption and PSA production. To accurately and efficiently compute tumor growth, our simulations leverage isogeometric analysis (IGA). Our model is shown to reproduce a known shape instability from a spheroidal pattern to fingered growth. Results of our computations indicate that such shift is a tumor response to escape starvation, hypoxia, and, eventually, necrosis. Thus, branching enables the tumor to minimize the distance from inner cells to external nutrients, contributing to cancer survival and further development. We have also used our model to perform tissue-scale, personalized simulation of a PCa patient, based on prostatic anatomy extracted from computed tomography images. This simulation shows tumor progression similar to that seen in clinical practice.
Collapse
|
179
|
Goddard ET, Hill RC, Barrett A, Betts C, Guo Q, Maller O, Borges VF, Hansen KC, Schedin P. Quantitative extracellular matrix proteomics to study mammary and liver tissue microenvironments. Int J Biochem Cell Biol 2016; 81:223-232. [PMID: 27771439 DOI: 10.1016/j.biocel.2016.10.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 01/22/2023]
Abstract
Normal epithelium exists within a dynamic extracellular matrix (ECM) that is tuned to regulate tissue specific epithelial cell function. As such, ECM contributes to tissue homeostasis, differentiation, and disease, including cancer. Though it is now recognized that the functional unit of normal and transformed epithelium is the epithelial cell and its adjacent ECM, we lack a basic understanding of tissue-specific ECM composition and abundance, as well as how physiologic changes in ECM impact cancer risk and outcomes. While traditional proteomic techniques have advanced to robustly identify ECM proteins within tissues, methods to determine absolute abundance have lagged. Here, with a focus on tissues relevant to breast cancer, we utilize mass spectrometry methods optimized for absolute quantitative ECM analysis. Employing an extensive protein extraction and digestion method, combined with stable isotope labeled Quantitative conCATamer (QconCAT) peptides that serve as internal standards for absolute quantification of protein, we quantify 98 ECM, ECM-associated, and cellular proteins in a single analytical run. In rodent models, we applied this approach to the primary site of breast cancer, the normal mammary gland, as well as a common and particularly deadly site of breast cancer metastasis, the liver. We find that mammary gland and liver have distinct ECM abundance and relative composition. Further, we show mammary gland ECM abundance and relative compositions differ across the reproductive cycle, with the most dramatic changes occurring during the pro-tumorigenic window of weaning-induced involution. Combined, this work suggests ECM candidates for investigation of breast cancer progression and metastasis, particularly in postpartum breast cancers that are characterized by high metastatic rates. Finally, we suggest that with use of absolute quantitative ECM proteomics to characterize tissues of interest, it will be possible to reconstruct more relevant in vitro models to investigate tumor-ECM dynamics at higher resolution.
Collapse
Affiliation(s)
- Erica T Goddard
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Ryan C Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander Barrett
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Courtney Betts
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Qiuchen Guo
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Ori Maller
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California San Francisco, San Francisco, CA, USA
| | - Virginia F Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; University of Colorado Cancer Center, Aurora, CO, USA; Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Pepper Schedin
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA; Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
180
|
Haque A, Gheibi P, Gao Y, Foster E, Son KJ, You J, Stybayeva G, Patel D, Revzin A. Cell biology is different in small volumes: endogenous signals shape phenotype of primary hepatocytes cultured in microfluidic channels. Sci Rep 2016; 6:33980. [PMID: 27681582 PMCID: PMC5041105 DOI: 10.1038/srep33980] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022] Open
Abstract
The approaches for maintaining hepatocytes in vitro are aimed at recapitulating aspects of the native liver microenvironment through the use of co-cultures, surface coatings and 3D spheroids. This study highlights the effects of spatial confinement-a less studied component of the in vivo microenvironment. We demonstrate that hepatocytes cultured in low-volume microfluidic channels (microchambers) retain differentiated hepatic phenotype for 21 days whereas cells cultured in regular culture plates under identical conditions de-differentiate after 7 days. Careful consideration of nutrient delivery and oxygen tension suggested that these factors could not solely account for enhanced cell function in microchambers. Through a series of experiments involving microfluidic chambers of various heights and inhibition of key molecular pathways, we confirmed that phenotype of hepatocytes in small volumes was shaped by endogenous signals, both hepato-inductive growth factors (GFs) such as hepatocyte growth factor (HGF) and hepato-disruptive GFs such as transforming growth factor (TGF)-β1. Hepatocytes are not generally thought of as significant producers of GFs–this role is typically assigned to nonparenchymal cells of the liver. Our study demonstrates that, in an appropriate microenvironment, hepatocytes produce hepato-inductive and pro-fibrogenic signals at the levels sufficient to shape their phenotype and function.
Collapse
Affiliation(s)
- Amranul Haque
- Department of Biomedical Engineering, University of California Davis, CA 95616, USA
| | - Pantea Gheibi
- Department of Biomedical Engineering, University of California Davis, CA 95616, USA
| | - Yandong Gao
- Department of Biomedical Engineering, University of California Davis, CA 95616, USA
| | - Elena Foster
- Department of Biomedical Engineering, University of California Davis, CA 95616, USA
| | - Kyung Jin Son
- Department of Biomedical Engineering, University of California Davis, CA 95616, USA
| | - Jungmok You
- Department of Biomedical Engineering, University of California Davis, CA 95616, USA.,Department of Plant and Environmental New Resources, Kyung Hee University, Youngin-si, Gyeonggi-do, South Korea
| | - Gulnaz Stybayeva
- Department of Biomedical Engineering, University of California Davis, CA 95616, USA
| | - Dipali Patel
- Department of Biomedical Engineering, University of California Davis, CA 95616, USA
| | - Alexander Revzin
- Department of Biomedical Engineering, University of California Davis, CA 95616, USA
| |
Collapse
|
181
|
Abstract
We consider reaction-diffusion equations on a thin curved surface and obtain a set of effective reaction-diffusion (R-D) equations to O(ε^{2}), where ε is the surface thickness. We observe that the R-D systems on these curved surfaces can have space-dependent reaction kinetics. Further, we use linear stability analysis to study the Schnakenberg model on spherical and cylindrical geometries. The dependence of the steady state on the thickness is determined for both cases, and we find that a change in the thickness can stabilize the unstable modes, and vice versa. The combined effect of thickness and curvature can play an important role in the rearrangement of spatial patterns on thin curved surfaces.
Collapse
Affiliation(s)
- Sankaran Nampoothiri
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram 695016, India
| |
Collapse
|
182
|
Todhunter ME, Weber RJ, Farlow J, Jee NY, Cerchiari AE, Gartner ZJ. Fabrication of 3-D Reconstituted Organoid Arrays by DNA-Programmed Assembly of Cells (DPAC). ACTA ACUST UNITED AC 2016; 8:147-178. [PMID: 27622567 DOI: 10.1002/cpch.8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tissues are the organizational units of function in metazoan organisms. Tissues comprise an assortment of cellular building blocks, soluble factors, and extracellular matrix (ECM) composed into specific three-dimensional (3-D) structures. The capacity to reconstitute tissues in vitro with the structural complexity observed in vivo is key to understanding processes such as morphogenesis, homeostasis, and disease. In this article, we describe DNA-programmed assembly of cells (DPAC), a method to fabricate viable, functional arrays of organoid-like tissues within 3-D ECM gels. In DPAC, dissociated cells are chemically functionalized with degradable oligonucleotide "Velcro," allowing rapid, specific, and reversible cell adhesion to a two-dimensional (2-D) template patterned with complementary DNA. An iterative assembly process builds up organoids, layer-by-layer, from this initial 2-D template and into the third dimension. Cleavage of the DNA releases the completed array of tissues that are captured and fully embedded in ECM gels for culture and observation. DPAC controls the size, shape, composition, and spatial heterogeneity of organoids and permits positioning of constituent cells with single-cell resolution even within cultures several centimeters long. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Michael E Todhunter
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California.,Tetrad Graduate Program, University of California, San Francisco, California
| | - Robert J Weber
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California.,Chemistry & Chemical Biology Graduate Program, University of California, San Francisco, California
| | - Justin Farlow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California.,Tetrad Graduate Program, University of California, San Francisco, California
| | - Noel Y Jee
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California.,Chemistry & Chemical Biology Graduate Program, University of California, San Francisco, California
| | - Alec E Cerchiari
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California.,Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, California
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California.,Center for Systems and Synthetic Biology, University of California, San Francisco, California
| |
Collapse
|
183
|
Hosseini Y, Agah M, Verbridge SS. Endothelial cell sensing, restructuring, and invasion in collagen hydrogel structures. Integr Biol (Camb) 2016; 7:1432-41. [PMID: 26379187 DOI: 10.1039/c5ib00207a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Experimental tools to model cell-tissue interactions will likely lead to new ways to both understand and treat cancer. While the mechanical properties and regulation of invasion have been recently studied for tumor cells, they have received less attention in the context of tumor vascular dynamics. In this article, we have investigated the interaction between the surfaces of structures encountered by endothelial cells invading their surrounding extracellular matrix (ECM) during angiogenesis. For this purpose, we have fabricated round and sharp geometries with various curvature and sharpness indices in collagen hydrogel over a wide range of stiffness to mimic different microenvironments varying from normal to tumor tissues. We have then cultured endothelial cells on these structures to investigate the bi-directional interaction between the cells and ECM. We have observed that cell invasion frequency is higher from the structures with the highest sharpness and curvature index, while interestingly the dependence of invasion on the local micro-geometry is strongest for the highest density matrices. Notably, structures with the highest invasion length are linked with higher deformation of side structures, which may be related to traction force-activated signaling suggesting further investigation. We have noted that round structures are more favorable for cell adhesion and in some cases round structures drive cell invasion faster than sharp ones. These results highlight the ability of endothelial cells to sense small variations in ECM geometry, and respond with a balance of matrix invasion as well as deformation, with potential implications for feedback mechanisms that may enhance vascular abnormality in response to tumor-induced ECM alterations.
Collapse
Affiliation(s)
- Y Hosseini
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia, 24061, USA.
| | - M Agah
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia, 24061, USA. and Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - S S Verbridge
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, 24061, USA
| |
Collapse
|
184
|
Lee J, Abdeen AA, Wycislo KL, Fan TM, Kilian KA. Interfacial geometry dictates cancer cell tumorigenicity. NATURE MATERIALS 2016; 15:856-62. [PMID: 27043781 DOI: 10.1038/nmat4610] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 02/25/2016] [Indexed: 05/26/2023]
Abstract
Within the heterogeneous architecture of tumour tissue there exists an elusive population of stem-like cells that are implicated in both recurrence and metastasis. Here, by using engineered extracellular matrices, we show that geometric features at the perimeter of tumour tissue will prime a population of cells with a stem-cell-like phenotype. These cells show characteristics of cancer stem cells in vitro, as well as enhanced tumorigenicity in murine models of primary tumour growth and pulmonary metastases. We also show that interfacial geometry modulates cell shape, adhesion through integrin α5β1, MAPK and STAT activity, and initiation of pluripotency signalling. Our results for several human cancer cell lines suggest that interfacial geometry triggers a general mechanism for the regulation of cancer-cell state. Similar to how a growing tumour can co-opt normal soluble signalling pathways, our findings demonstrate how cancer can also exploit geometry to orchestrate oncogenesis.
Collapse
Affiliation(s)
- Junmin Lee
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Amr A Abdeen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kathryn L Wycislo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kristopher A Kilian
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
185
|
Weigelin B, Friedl P. Cancer cells: Stemness shaped by curvature. NATURE MATERIALS 2016; 15:827-828. [PMID: 27443907 DOI: 10.1038/nmat4711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Bettina Weigelin
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA and in the Department of Cell Biology, Radboud University Medical Centre, 6525GA Nijmegen, Netherlands
| | - Peter Friedl
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA and in the Department of Cell Biology, Radboud University Medical Centre, 6525GA Nijmegen, Netherlands
- Cancer Genomics Center, 3584 CG Utrecht, Netherlands
| |
Collapse
|
186
|
Piotrowski-Daspit AS, Nelson CM. Engineering Three-dimensional Epithelial Tissues Embedded within Extracellular Matrix. J Vis Exp 2016. [PMID: 27500521 DOI: 10.3791/54283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The architecture of branched organs such as the lungs, kidneys, and mammary glands arises through the developmental process of branching morphogenesis, which is regulated by a variety of soluble and physical signals in the microenvironment. Described here is a method created to study the process of branching morphogenesis by forming engineered three-dimensional (3D) epithelial tissues of defined shape and size that are completely embedded within an extracellular matrix (ECM). This method enables the formation of arrays of identical tissues and enables the control of a variety of environmental factors, including tissue geometry, spacing, and ECM composition. This method can also be combined with widely used techniques such as traction force microscopy (TFM) to gain more information about the interactions between cells and their surrounding ECM. The protocol can be used to investigate a variety of cell and tissue processes beyond branching morphogenesis, including cancer invasion.
Collapse
Affiliation(s)
| | - Celeste M Nelson
- Chemical and Biological Engineering, Princeton University; Molecular Biology, Princeton University;
| |
Collapse
|
187
|
Navis A, Nelson CM. Pulling together: Tissue-generated forces that drive lumen morphogenesis. Semin Cell Dev Biol 2016; 55:139-47. [PMID: 26778757 PMCID: PMC4903947 DOI: 10.1016/j.semcdb.2016.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022]
Abstract
Mechanical interactions are essential for bending and shaping tissues during morphogenesis. A common feature of nearly all internal organs is the formation of a tubular network consisting of an epithelium that surrounds a central lumen. Lumen formation during organogenesis requires precisely coordinated mechanical and biochemical interactions. Whereas many genetic regulators of lumen formation have been identified, relatively little is known about the mechanical cues that drive lumen morphogenesis. Lumens can be shaped by a variety of physical behaviors including wrapping a sheet of cells around a hollow core, rearranging cells to expose a lumenal cavity, or elongating a tube via cell migration, though many of the details underlying these movements remain poorly understood. It is essential to define how forces generated by individual cells cooperate to produce the tissue-level forces that drive organogenesis. Transduction of mechanical forces relies on several conserved processes including the contraction of cytoskeletal networks or expansion of lumens through increased fluid pressure. The morphogenetic events that drive lumen formation serve as a model for similar mechanical processes occurring throughout development. To understand how lumenal networks arise, it will be essential to investigate how biochemical and mechanical processes integrate to generate complex structures from comparatively simple interactions.
Collapse
Affiliation(s)
- Adam Navis
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
188
|
Campàs O. A toolbox to explore the mechanics of living embryonic tissues. Semin Cell Dev Biol 2016; 55:119-30. [PMID: 27061360 PMCID: PMC4903887 DOI: 10.1016/j.semcdb.2016.03.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/15/2016] [Indexed: 01/03/2023]
Abstract
The sculpting of embryonic tissues and organs into their functional morphologies involves the spatial and temporal regulation of mechanics at cell and tissue scales. Decades of in vitro work, complemented by some in vivo studies, have shown the relevance of mechanical cues in the control of cell behaviors that are central to developmental processes, but the lack of methodologies enabling precise, quantitative measurements of mechanical cues in vivo have hindered our understanding of the role of mechanics in embryonic development. Several methodologies are starting to enable quantitative studies of mechanics in vivo and in situ, opening new avenues to explore how mechanics contributes to shaping embryonic tissues and how it affects cell behavior within developing embryos. Here we review the present methodologies to study the role of mechanics in living embryonic tissues, considering their strengths and drawbacks as well as the conditions in which they are most suitable.
Collapse
Affiliation(s)
- Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA; Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA 93106, USA; California Nanosystems Institute, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
189
|
Bao Z, Lin J, Ye L, Zhang Q, Chen J, Yang Q, Yu Q. Modulation of Mammary Gland Development and Milk Production by Growth Hormone Expression in GH Transgenic Goats. Front Physiol 2016; 7:278. [PMID: 27445863 PMCID: PMC4926316 DOI: 10.3389/fphys.2016.00278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/20/2016] [Indexed: 01/09/2023] Open
Abstract
Mammary gland development during puberty and reconstruction during pregnancy and lactation is under the control of circulating endocrine hormones, such as growth hormone, which are released from the pituitary. In this study, we explored the influence of overexpression of growth hormone in the mammary gland on breast development and milk production in goats. Using transcriptome sequencing, we found that the number of highly expressed genes was greater in GH transgenic goats than non-transgenic goats. Furthermore, KEGG pathway analysis showed that the majority of the genes belonged to the MAPK signaling pathway and the ECM-receptor interaction pathway. The expression of genes related to breast development was further confirmed using qRT-PCR. Interestingly, both milk production and milk quality were increased. The results of these experiments imply that overexpression of growth hormone in the breast may stimulate breast development and enhances milk production by modulating alveolar cell proliferation or branching through the MAPK signaling pathway.
Collapse
Affiliation(s)
- Zekun Bao
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Jian Lin
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Lulu Ye
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Qiang Zhang
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | | | - Qian Yang
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Qinghua Yu
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| |
Collapse
|
190
|
Urdy S, Goudemand N, Pantalacci S. Looking Beyond the Genes: The Interplay Between Signaling Pathways and Mechanics in the Shaping and Diversification of Epithelial Tissues. Curr Top Dev Biol 2016; 119:227-90. [PMID: 27282028 DOI: 10.1016/bs.ctdb.2016.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The core of Evo-Devo lies in the intuition that the way tissues grow during embryonic development, the way they sustain their structure and function throughout lifetime, and the way they evolve are closely linked. Epithelial tissues are ubiquitous in metazoans, covering the gut and internal branched organs, as well as the skin and its derivatives (ie, teeth). Here, we discuss in vitro, in vivo, and in silico studies on epithelial tissues to illustrate the conserved, dynamical, and complex aspects of their development. We then explore the implications of the dynamical and nonlinear nature of development on the evolution of their size and shape at the phenotypic and genetic levels. In rare cases, when the interplay between signaling and mechanics is well understood at the cell level, it is becoming clear that the structure of development leads to covariation of characters, an integration which in turn provides some predictable structure to evolutionary changes. We suggest that such nonlinear systems are prone to genetic drift, cryptic genetic variation, and context-dependent mutational effects. We argue that experimental and theoretical studies at the cell level are critical to our understanding of the phenotypic and genetic evolution of epithelial tissues, including carcinomas.
Collapse
Affiliation(s)
- S Urdy
- University of Zürich, Institute of Physics, Zürich, Switzerland.
| | - N Goudemand
- Univ Lyon, ENS Lyon, CNRS, Université Claude Bernard Lyon 1, Institut de Génomique Fonctionnelle de Lyon, UMR 5242, Lyon Cedex 07, France
| | - S Pantalacci
- Univ Lyon, ENS Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratory of Biology and Modelling of the Cell, UMR 5239, INSERM U1210, Lyon Cedex 07, France
| |
Collapse
|
191
|
Abdeen AA, Lee J, Kilian KA. Capturing extracellular matrix properties in vitro: Microengineering materials to decipher cell and tissue level processes. Exp Biol Med (Maywood) 2016; 241:930-8. [PMID: 27075930 PMCID: PMC4950351 DOI: 10.1177/1535370216644532] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rapid advances in biology have led to the establishment of new fields with tremendous translational potential including regenerative medicine and immunoengineering. One commonality to these fields is the need to extract cells for manipulation in vitro; however, results obtained in laboratory cell culture will often differ widely from observations made in vivo. To more closely emulate native cell biology in the laboratory, designer engineered environments have proved a successful methodology to decipher the properties of the extracellular matrix that govern cellular decision making. Here, we present an overview of matrix properties that affect cell behavior, strategies for recapitulating important parameters in vitro, and examples of how these properties can affect cell and tissue level processes, with emphasis on leveraging these tools for immunoengineering.
Collapse
Affiliation(s)
- Amr A Abdeen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Junmin Lee
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kristopher A Kilian
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
192
|
A Geometrically-Constrained Mathematical Model of Mammary Gland Ductal Elongation Reveals Novel Cellular Dynamics within the Terminal End Bud. PLoS Comput Biol 2016; 12:e1004839. [PMID: 27115287 PMCID: PMC4845990 DOI: 10.1371/journal.pcbi.1004839] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/01/2016] [Indexed: 11/29/2022] Open
Abstract
Mathematics is often used to model biological systems. In mammary gland development, mathematical modeling has been limited to acinar and branching morphogenesis and breast cancer, without reference to normal duct formation. We present a model of ductal elongation that exploits the geometrically-constrained shape of the terminal end bud (TEB), the growing tip of the duct, and incorporates morphometrics, region-specific proliferation and apoptosis rates. Iterative model refinement and behavior analysis, compared with biological data, indicated that the traditional metric of nipple to the ductal front distance, or percent fat pad filled to evaluate ductal elongation rate can be misleading, as it disregards branching events that can reduce its magnitude. Further, model driven investigations of the fates of specific TEB cell types confirmed migration of cap cells into the body cell layer, but showed their subsequent preferential elimination by apoptosis, thus minimizing their contribution to the luminal lineage and the mature duct. Our paper describes a mathematical model of mammary ductal elongation during pubertal development. We make several conclusions that will be of interest to scientists studying mammary gland biology, epithelial tube formation, and branching morphogenesis. First, our model indicates that a common measurement of developmental outgrowth (‘percent fat pad filled’) underestimates the total growth and leads to mischaracterization of mutant phenotypes. Second, we show that cap cells, a population enriched with putative mammary stem cells, do not contribute to the luminal lineage as previously hypothesized. Further, we find that a high percentage of proliferation in these cells is not used productively to actually form the mammary duct. We believe our model has future application to other branching organs and also for the modeling of disease states in the breast.
Collapse
|
193
|
Lin E, Sikand A, Wickware J, Hao Y, Derda R. Peptide microarray patterning for controlling and monitoring cell growth. Acta Biomater 2016; 34:53-59. [PMID: 26805426 DOI: 10.1016/j.actbio.2016.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 01/09/2016] [Accepted: 01/20/2016] [Indexed: 02/08/2023]
Abstract
The fate of cells is influenced by their microenvironment and many cell types undergo differentiation when stimulated by extracellular cues, such as soluble growth factors and the insoluble extracellular matrix (ECM). Stimulating differentiation by insoluble or "immobilized" cues is a particularly attractive method because it allows for the induction of differentiation in a spatially-defined cohort of cells within a larger subpopulation. To improve the design of de novo screening of such insoluble factors, we describe a methodology for producing high-density peptide microarrays suitable for extended cell culture and fluorescence microscopy. As a model, we used a murine mammary gland cell line (NMuMG) that undergoes epithelial to mesenchymal transition (EMT) in response to soluble transforming growth factor beta (TGF-β) and surface-immobilized peptides that target TGF-β receptors (TGFβRI/II). We repurposed a well-established DNA microarray printing technique to produce arrays of micropatterned surfaces that displayed TGFβRI/II-binding peptides and integrin binding peptides. Upon long-term culture on these arrays, only NMuMG cells residing on EMT-stimulating areas exhibited growth arrest and decreased E-cadherin expression. We believe that the methodology created in this report will aid the development of peptide-decorated surfaces that can locally stimulate defined cell surface receptors and control EMT and other well-characterized differentiation events. STATEMENT OF SIGNIFICANCE Scope of work: This manuscript aims to accelerate the development of instructive biomaterials decorated with specific ligands that target cell-surface receptors and induce specific differentiation of cells upon contact. These materials can be used for practical applications, such as fabricating synthetic materials for large scale, stem cell culture, or investigating differentiation and asymmetric division in stem cells. Specifically, in this manuscript, we repurposed a DNA microarray printer to produce microarrays of peptide-terminated self-assembled monolayers (SAMs). To demonstrate the utility of these arrays in phenotypic assays with mammalian cells, we monitored the induction of epithelial to mesenchymal transition (EMT) in murine mammary epithelial cells using specific peptide ligands printed on these arrays. Novelty: We, and others, have published several strategies for producing peptide-based arrays suitable for long-term phenotypic assays. Many reports relied on patterning steps that made adaptation difficult. The use of a DNA microarray printer as the sole production tool simplified the production of peptide microarrays and increased the throughput of this technology. We confirmed that simplification in production did not compromise the performance of the array; it is still possible to study short-term adhesion, long-term growth, and complex phenotypic responses, such as EMT, in the cells. EMT was studied using immunofluorescent staining after four days of culture. IMPACT This methodology will serve as a foundation for future screening of instructive biomaterials in our research group. As DNA printers are broadly available in academic institutions, we foresee rapid adaptation of this approach by academic researchers.
Collapse
|
194
|
Yang Z, Balic A, Michon F, Juuri E, Thesleff I. Mesenchymal Wnt/β-Catenin Signaling Controls Epithelial Stem Cell Homeostasis in Teeth by Inhibiting the Antiapoptotic Effect of Fgf10. Stem Cells 2016; 33:1670-81. [PMID: 25693510 DOI: 10.1002/stem.1972] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/17/2015] [Indexed: 01/05/2023]
Abstract
Continuous growth of rodent incisors relies on epithelial stem cells (SCs) located in the SC niche called labial cervical loop (LaCL). Here, we found a population of apoptotic cells residing in a specific location of the LaCL in mouse incisor. Activated Caspase 3 and Caspase 9, expressed in this location colocalized in part with Lgr5 in putative SCs. The addition of Caspase inhibitors to incisors ex vivo resulted in concentration dependent thickening of LaCL. To examine the role of Wnt signaling in regulation of apoptosis, we exposed the LaCL of postnatal day 2 (P2) mouse incisor ex vivo to BIO, a known activator of Wnt/β-catenin signaling. This resulted in marked thinning of LaCL as well as enhanced apoptosis. We found that Wnt/β-catenin signaling was intensely induced by BIO in the mesenchyme surrounding the LaCL, but, unexpectedly, no β-catenin activity was detected in the LaCL epithelium either before or after BIO treatment. We discovered that the expression of Fgf10, an essential growth factor for incisor epithelial SCs, was dramatically downregulated in the mesenchyme around BIO-treated LaCL, and that exogenous Fgf10 could rescue the thinning of the LaCL caused by BIO. We conclude that the homeostasis of the epithelial SC population in the mouse incisor depends on a proper rate of apoptosis and that this apoptosis is controlled by signals from the mesenchyme surrounding the LaCL. Fgf10 is a key mesenchymal signal limiting apoptosis of incisor epithelial SCs and its expression is negatively regulated by Wnt/β-catenin. Stem Cells 2015;33:1670-1681.
Collapse
Affiliation(s)
- Zheqiong Yang
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan, Hubei, People's Republic of China
| | | | | | | | | |
Collapse
|
195
|
Kwag HR, Serbo JV, Korangath P, Sukumar S, Romer LH, Gracias DH. A Self-Folding Hydrogel In Vitro Model for Ductal Carcinoma. Tissue Eng Part C Methods 2016; 22:398-407. [PMID: 26831041 DOI: 10.1089/ten.tec.2015.0442] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A significant challenge in oncology is the need to develop in vitro models that accurately mimic the complex microenvironment within and around normal and diseased tissues. Here, we describe a self-folding approach to create curved hydrogel microstructures that more accurately mimic the geometry of ducts and acini within the mammary glands, as compared to existing three-dimensional block-like models or flat dishes. The microstructures are composed of photopatterned bilayers of poly (ethylene glycol) diacrylate (PEGDA), a hydrogel widely used in tissue engineering. The PEGDA bilayers of dissimilar molecular weights spontaneously curve when released from the underlying substrate due to differential swelling ratios. The photopatterns can be altered via AutoCAD-designed photomasks so that a variety of ductal and acinar mimetic structures can be mass-produced. In addition, by co-polymerizing methacrylated gelatin (methagel) with PEGDA, microstructures with increased cell adherence are synthesized. Biocompatibility and versatility of our approach is highlighted by culturing either SUM159 cells, which were seeded postfabrication, or MDA-MB-231 cells, which were encapsulated in hydrogels; cell viability is verified over 9 and 15 days, respectively. We believe that self-folding processes and associated tubular, curved, and folded constructs like the ones demonstrated here can facilitate the design of more accurate in vitro models for investigating ductal carcinoma.
Collapse
Affiliation(s)
- Hye Rin Kwag
- 1 Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland
| | - Janna V Serbo
- 2 Department of Biomedical Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Preethi Korangath
- 3 Department of Oncology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Saraswati Sukumar
- 3 Department of Oncology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Lewis H Romer
- 2 Department of Biomedical Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,4 Department of Anesthesiology and Critical Care Medicine, Cell Biology, Pediatrics, Center for Cell Dynamics, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - David H Gracias
- 1 Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland.,5 Department of Materials Science and Engineering, Johns Hopkins University , Baltimore, Maryland
| |
Collapse
|
196
|
Controlling Cell Functions and Fate with Surfaces and Hydrogels: The Role of Material Features in Cell Adhesion and Signal Transduction. Gels 2016; 2:gels2010012. [PMID: 30674144 PMCID: PMC6318664 DOI: 10.3390/gels2010012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/23/2016] [Accepted: 03/01/2016] [Indexed: 12/12/2022] Open
Abstract
In their natural environment, cells are constantly exposed to a cohort of biochemical and biophysical signals that govern their functions and fate. Therefore, materials for biomedical applications, either in vivo or in vitro, should provide a replica of the complex patterns of biological signals. Thus, the development of a novel class of biomaterials requires, on the one side, the understanding of the dynamic interactions occurring at the interface of cells and materials; on the other, it requires the development of technologies able to integrate multiple signals precisely organized in time and space. A large body of studies aimed at investigating the mechanisms underpinning cell-material interactions is mostly based on 2D systems. While these have been instrumental in shaping our understanding of the recognition of and reaction to material stimuli, they lack the ability to capture central features of the natural cellular environment, such as dimensionality, remodelling and degradability. In this work, we review the fundamental traits of material signal sensing and cell response. We then present relevant technologies and materials that enable fabricating systems able to control various aspects of cell behavior, and we highlight potential differences that arise from 2D and 3D settings.
Collapse
|
197
|
Abstract
The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tissues that only survive for short durations. To improve their physiological relevance, we report a method for bioprinting 3D cell-laden, vascularized tissues that exceed 1 cm in thickness and can be perfused on chip for long time periods (>6 wk). Specifically, we integrate parenchyma, stroma, and endothelium into a single thick tissue by coprinting multiple inks composed of human mesenchymal stem cells (hMSCs) and human neonatal dermal fibroblasts (hNDFs) within a customized extracellular matrix alongside embedded vasculature, which is subsequently lined with human umbilical vein endothelial cells (HUVECs). These thick vascularized tissues are actively perfused with growth factors to differentiate hMSCs toward an osteogenic lineage in situ. This longitudinal study of emergent biological phenomena in complex microenvironments represents a foundational step in human tissue generation.
Collapse
|
198
|
Bavli D, Ezra E, Kitsberg D, Vosk-Artzi M, Murthy SK, Nahmias Y. One step antibody-mediated isolation and patterning of multiple cell types in microfluidic devices. BIOMICROFLUIDICS 2016; 10:024112. [PMID: 27051469 PMCID: PMC4808062 DOI: 10.1063/1.4944741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 03/09/2016] [Indexed: 06/05/2023]
Abstract
Cell-cell interactions play a key role in regeneration, differentiation, and basic tissue function taking place under physiological shear forces. However, current solutions to mimic such interactions by micro-patterning cells within microfluidic devices have low resolution, high fabrication complexity, and are limited to one or two cell types. Here, we present a microfluidic platform capable of laminar patterning of any biotin-labeled peptide using streptavidin-based surface chemistry. The design permits the generation of arbitrary cell patterns from heterogeneous mixtures in microfluidic devices. We demonstrate the robust co-patterning of α-CD24, α-ASGPR-1, and α-Tie2 antibodies for rapid isolation and co-patterning of mixtures of hepatocytes and endothelial cells. In addition to one-step isolation and patterning, our design permits step-wise patterning of multiple cell types and empty spaces to create complex cellular geometries in vitro. In conclusion, we developed a microfluidic device that permits the generation of perfusable tissue-like patterns in microfluidic devices by directly injecting complex cell mixtures such as differentiated stem cells or tissue digests with minimal sample preparation.
Collapse
Affiliation(s)
- Danny Bavli
- Alexander Grass Center for Bioengineering, The Selim and Rachel Benin School for Computer Science and Engineering, The Hebrew University of Jerusalem , Jerusalem 9190401, Israel
| | - Elishai Ezra
- Alexander Grass Center for Bioengineering, The Selim and Rachel Benin School for Computer Science and Engineering, The Hebrew University of Jerusalem , Jerusalem 9190401, Israel
| | - Daniel Kitsberg
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem , Jerusalem 9190401, Israel
| | | | - Shashi K Murthy
- Department of Chemical Engineering and Barnett Institute of Chemical and Biological Analysis, Northeastern University , Boston, Massachusetts 02115, USA
| | | |
Collapse
|
199
|
Dahl-Jensen SB, Figueiredo-Larsen M, Grapin-Botton A, Sneppen K. Short-range growth inhibitory signals from the epithelium can drive non-stereotypic branching in the pancreas. Phys Biol 2016; 13:016007. [PMID: 26906913 DOI: 10.1088/1478-3975/13/1/016007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many organs such as the vasculature, kidney, lungs, pancreas and several other glands form ramified networks of tubes that either maximize exchange surfaces between two compartments or minimize the volume of an organ dedicated to the production and local delivery of a cell-derived product. The structure of these tubular networks can be stereotyped, as in the lungs, or stochastic with large variations between individuals, as in the pancreas. The principles driving stereotyped branching have attracted much attention and several models have been proposed and refined. Here we focus on the pancreas, as a model of non-stereotyped branching. In many ramified tubular organs, an important role of the mesenchyme as a source of branching signals has been proposed, including in the pancreas. However, our previous work has shown that in the absence of mesenchyme, epithelial cells seeded in vitro in Matrigel form heavily branched organoids. Here we experimentally show that pancreatic organoids grow primarily at the tips. Furthermore, in contrast to classical 'depletion of activator' mechanisms, organoids growing in close vicinity seem not to affect each other's growth before they get in contact. We recapitulate these observations in an in silico model of branching assuming a 'local inhibitor' is secreted by the epithelium. Remarkably this simple mechanism is sufficient to generate branched organoids similar to those observed in vitro, including their transition from filled spheres to a tree like structure. Quantifying the similarity between in silico and in vitro development through a normalized surface to volume ratio, our in silico model predicts that inhibition is likely to be cooperative and that the diffusing inhibitor decays within a length scale of 10-20 μm.
Collapse
Affiliation(s)
- Svend Bertel Dahl-Jensen
- DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200 Copenhagen N, Denmark. Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
200
|
Handorf AM, Zhou Y, Halanski MA, Li WJ. Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 2016; 11:1-15. [PMID: 25915734 DOI: 10.1080/15476278.2015.1019687] [Citation(s) in RCA: 439] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tissue development is orchestrated by the coordinated activities of both chemical and physical regulators. While much attention has been given to the role that chemical regulators play in driving development, researchers have recently begun to elucidate the important role that the mechanical properties of the extracellular environment play. For instance, the stiffness of the extracellular environment has a role in orienting cell division, maintaining tissue boundaries, directing cell migration, and driving differentiation. In addition, extracellular matrix stiffness is important for maintaining normal tissue homeostasis, and when matrix mechanics become imbalanced, disease progression may ensue. In this article, we will review the important role that matrix stiffness plays in dictating cell behavior during development, tissue homeostasis, and disease progression.
Collapse
Key Words
- ECM, Extracellular matrix
- EPC, Endothelial progenitor cell
- FA, Focal adhesion
- FAK, Focal adhesion kinase
- LOX, Lysyl oxidase
- MKL1, Megakaryoblastic leukemia factor-1
- MMP, Matrix metalloproteinase
- MSC, Mesenchymal stem cell
- ROCK, Rho-associated protein kinase
- VSMC, Vascular smooth muscle cell.
- cancer
- extracellular matrix
- fibrosis
- stiffness
- tissue development
- tissue homeostasis
Collapse
Affiliation(s)
- Andrew M Handorf
- a Department of Orthopedics and Rehabilitation; University of Wisconsin-Madison ; Madison , WI , USA
| | | | | | | |
Collapse
|