151
|
Yan B, Zhu CD, Guo JT, Zhao LH, Zhao JL. miR-206 regulates the growth of the teleost tilapia (Oreochromis niloticus) through the modulation of IGF-1 gene expression. ACTA ACUST UNITED AC 2012. [PMID: 23197102 DOI: 10.1242/jeb.079590] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are ~22-nucleotide noncoding RNAs that play a crucial role in regulating muscle development. Our previous study shows that miR-206 is specifically expressed in tilapia skeletal muscle, and exhibits a dynamic expression pattern at different developmental stages. Here, we reveal that miR-206 emerges as a crucial regulator of tilapia growth. miR-206 loss of function leads to the acceleration of tilapia growth. IGF-1 is identified as the target gene of miR-206. miR-206 directly changes IGF-1 expression by targeting its 3' UTR, and inhibition of miR-206 substantially increases the IGF-1 mRNA level in vivo. Thus, miR-206 could be developed as a molecular marker to assist fish breeding.
Collapse
Affiliation(s)
- Biao Yan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | | | | | | | | |
Collapse
|
152
|
Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 2012; 334:1091-7. [PMID: 22116879 DOI: 10.1126/science.1206375] [Citation(s) in RCA: 510] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diverse bilaterian clades emerged apparently within a few million years during the early Cambrian, and various environmental, developmental, and ecological causes have been proposed to explain this abrupt appearance. A compilation of the patterns of fossil and molecular diversification, comparative developmental data, and information on ecological feeding strategies indicate that the major animal clades diverged many tens of millions of years before their first appearance in the fossil record, demonstrating a macroevolutionary lag between the establishment of their developmental toolkits during the Cryogenian [(850 to 635 million years ago (Ma)], and the later ecological success of metazoans during the Ediacaran (635 to 541 Ma) and Cambrian (541 to 488 Ma) periods. We argue that this diversification involved new forms of developmental regulation, as well as innovations in networks of ecological interaction within the context of permissive environmental circumstances.
Collapse
Affiliation(s)
- Douglas H Erwin
- Department of Paleobiology, National Museum of Natural History, Washington, DC 20013-7012, USA.
| | | | | | | | | | | |
Collapse
|
153
|
MiR-122 inhibits cell proliferation and tumorigenesis of breast cancer by targeting IGF1R. PLoS One 2012; 7:e47053. [PMID: 23056576 PMCID: PMC3466252 DOI: 10.1371/journal.pone.0047053] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/07/2012] [Indexed: 12/19/2022] Open
Abstract
miRNAs are emerging as critical regulators in carcinogenesis and tumor progression. Recently, microRNA-122 (miR-122) has been proved to play an important role in hepatocellular carcinoma, but its functions in the context of breast cancer (BC) remain unknown. In this study, we report that miR-122 is commonly downregulated in BC specimens and BC cell lines with important functional consequences. Overexpression of miR-122 not only dramatically suppressed cell proliferation, colony formation by inducing G1-phase cell-cycle arrest in vitro, but also reduced tumorigenicity in vivo. We then screened and identified a novel miR-122 target, insulin-like growth factor 1 receptor (IGF1R), and it was further confirmed by luciferase assay. Overexpression of miR-122 would specifically and markedly reduce its expression. Similar to the restoring miR-122 expression, IGF1R downregulation suppressed cell growth and cell-cycle progression, whereas IGF1R overexpression rescued the suppressive effect of miR-122. To identify the mechanisms, we investigated the Akt/mTOR/p70S6K pathway and found that the expression of Akt, mTOR and p70S6K were suppressed, whereas re-expression of IGF1R which did not contain the 3'UTR totally reversed the inhibition of Akt/mTOR/p70S6K signal pathway profile. We also identified a novel, putative miR-122 target gene, PI3CG, a member of PI3K family, which further suggests miR-122 may be a key regulator of the PI3K/Akt pathway. In clinical specimens, IGF1R was widely overexpressed and its mRNA levels were inversely correlated with miR-122 expression. Taken together, our results demonstrate that miR-122 functions as a tumor suppressor and plays an important role in inhibiting the tumorigenesis through targeting IGF1R and regulating PI3K/Akt/mTOR/p70S6K pathway. Given these, miR-122 may serve as a novel therapeutic or diagnostic/prognostic-target for treating BC.
Collapse
|
154
|
Jardim MJ, Dailey L, Silbajoris R, Diaz-Sanchez D. Distinct MicroRNA Expression in Human Airway Cells of Asthmatic Donors Identifies a Novel Asthma-Associated Gene. Am J Respir Cell Mol Biol 2012; 47:536-42. [DOI: 10.1165/rcmb.2011-0160oc] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
155
|
Jenny MJ, Aluru N, Hahn ME. Effects of short-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on microRNA expression in zebrafish embryos. Toxicol Appl Pharmacol 2012; 264:262-73. [PMID: 22921993 DOI: 10.1016/j.taap.2012.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 12/26/2022]
Abstract
Although many drugs and environmental chemicals are teratogenic, the mechanisms by which most toxicants disrupt embryonic development are not well understood. MicroRNAs, single-stranded RNA molecules of ~22 nt that regulate protein expression by inhibiting mRNA translation and promoting mRNA sequestration or degradation, are important regulators of a variety of cellular processes including embryonic development and cellular differentiation. Recent studies have demonstrated that exposure to xenobiotics can alter microRNA expression and contribute to the mechanisms by which environmental chemicals disrupt embryonic development. In this study we tested the hypothesis that developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a well-known teratogen, alters microRNA expression during zebrafish development. We exposed zebrafish embryos to DMSO (0.1%) or TCDD (5nM) for 1h at 30hours post fertilization (hpf) and measured microRNA expression using several methods at 36 and 60hpf. TCDD caused strong induction of CYP1A at 36hpf (62-fold) and 60hpf (135-fold) as determined by real-time RT-PCR, verifying the effectiveness of the exposure. MicroRNA expression profiles were determined using microarrays (Agilent and Exiqon), next-generation sequencing (SOLiD), and real-time RT-PCR. The two microarray platforms yielded results that were similar but not identical; both showed significant changes in expression of miR-451, 23a, 23b, 24 and 27e at 60hpf. Multiple analyses were performed on the SOLiD sequences yielding a total of 16 microRNAs as differentially expressed by TCDD in zebrafish embryos. However, miR-27e was the only microRNA to be identified as differentially expressed by all three methods (both microarrays, SOLiD sequencing, and real-time RT-PCR). These results suggest that TCDD exposure causes modest changes in expression of microRNAs, including some (miR-451, 23a, 23b, 24 and 27e) that are critical for hematopoiesis and cardiovascular development.
Collapse
Affiliation(s)
- Matthew J Jenny
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | | |
Collapse
|
156
|
Fang M, Jacob R, McDougal O, Oxford JT. Minor fibrillar collagens, variable regions alternative splicing, intrinsic disorder, and tyrosine sulfation. Protein Cell 2012; 3:419-33. [PMID: 22752873 PMCID: PMC3484837 DOI: 10.1007/s13238-012-2917-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 02/07/2012] [Indexed: 12/25/2022] Open
Abstract
Minor fibrillar collagen types V and XI, are those less abundant than the fibrillar collagen types I, II and III. The alpha chains share a high degree of similarity with respect to protein sequence in all domains except the variable region. Genomic variation and, in some cases, extensive alternative splicing contribute to the unique sequence characteristics of the variable region. While unique expression patterns in tissues exist, the functions and biological relevance of the variable regions have not been elucidated. In this review, we summarize the existing knowledge about expression patterns and biological functions of the collagen types V and XI alpha chains. Analysis of biochemical similarities among the peptides encoded by each exon of the variable region suggests the potential for a shared function. The alternative splicing, conservation of biochemical characteristics in light of low sequence conservation, and evidence for intrinsic disorder, suggest modulation of binding events between the surface of collagen fibrils and surrounding extracellular molecules as a shared function.
Collapse
Affiliation(s)
- Ming Fang
- Department of Biological Sciences, Boise State University, Boise, ID 83725 USA
- Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| | - Reed Jacob
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725 USA
- Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| | - Owen McDougal
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725 USA
- Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| | - Julia Thom Oxford
- Department of Biological Sciences, Boise State University, Boise, ID 83725 USA
- Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| |
Collapse
|
157
|
Juvvuna PK, Khandelia P, Lee LM, Makeyev EV. Argonaute identity defines the length of mature mammalian microRNAs. Nucleic Acids Res 2012; 40:6808-20. [PMID: 22505576 PMCID: PMC3413106 DOI: 10.1093/nar/gks293] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are 19- to 25-nt-long non-coding RNAs that regulate gene expression by base-pairing with target mRNAs and reducing their stability or translational efficiency. Mammalian miRNAs function in association with four closely related Argonaute proteins, AGO1–4. All four proteins contain the PAZ and the MID domains interacting with the miRNA 3′ and 5′ termini, respectively, as well as the PIWI domain comprising an mRNA ‘slicing’ activity in the case of AGO2 but not AGO1, AGO3 and AGO4. However, the slicing mode of the miRNA-programmed AGO2 is rarely realized in vivo and the four Argonautes are thought to play largely overlapping roles in the mammalian miRNA pathway. Here, we show that the average length of many miRNAs is diminished during nervous system development as a result of progressive shortening of the miRNA 3′ ends. We link this modification with an increase in the fractional abundance of Ago2 in the adult brain and identify a specific structural motif within the PAZ domain that enables efficient trimming of miRNAs associated with this but not the other three Argonautes. Taken together, our data suggest that mammalian Argonautes may define the length and possibly biological activity of mature mammalian miRNAs in a developmentally controlled manner.
Collapse
Affiliation(s)
- Prasanna Kumar Juvvuna
- School of Biological Sciences and C.N. Yang Scholars Programme, Nanyang Technological University, 60 Nanyang Drive, SBS-02n-45, Singapore 637551
| | - Piyush Khandelia
- School of Biological Sciences and C.N. Yang Scholars Programme, Nanyang Technological University, 60 Nanyang Drive, SBS-02n-45, Singapore 637551
| | - Li Ming Lee
- School of Biological Sciences and C.N. Yang Scholars Programme, Nanyang Technological University, 60 Nanyang Drive, SBS-02n-45, Singapore 637551
| | - Eugene V. Makeyev
- School of Biological Sciences and C.N. Yang Scholars Programme, Nanyang Technological University, 60 Nanyang Drive, SBS-02n-45, Singapore 637551
- *To whom correspondence should be addressed. Tel: +65 6513 8151; Fax: +65 6791 3856;
| |
Collapse
|
158
|
Abstract
MicroRNAs (miRNAs) are endogenous short (20-22 nucleotides) non-coding RNA molecules that mediate gene expression. This is an important regulatory mechanism to modulate fundamental cellular processes such as differentiation, proliferation, death, metabolism, and pathophysiology of many diseases. The miRNA expression profile of the kidney differs greatly from that of other organs, as well as between the different regions in the kidney. In kidneys, miRNAs are indispensable for development and homeostasis. In this review, we explore the involvement of miRNAs in the regulation of blood pressure, hormone, water, and ion balance pertaining to kidney homeostasis. We also highlight their importance in renal pathophysiology, such as in polycystic disease, diabetic nephropathy, nephrogenic diabetes insipidus, hypertension, renal cancer, and kidney fibrosis (epithelial-mesenchymal transition). In addition, we highlight the need for further investigations on miRNA-based studies in the development of diagnostic, prognostic, and therapeutic tools for renal diseases.
Collapse
|
159
|
Yan B, Zhao LH, Guo JT, Zhao JL. miR-203b: a novel regulator of MyoD expression in tilapia skeletal muscle. J Exp Biol 2012; 216:447-51. [DOI: 10.1242/jeb.076315] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Summary
MyoD is one of the helix-loop-helix proteins regulating muscle-specific gene expression in tilapia. Tight regulation of MyoD protein level is necessary for the precise regulation of skeletal muscle development. MicroRNAs (miRNAs) are a class of regulatory RNAs that post-transcriptionally regulate gene expression. Increasing evidences have suggested that miRNAs play an important role in regulating skeletal muscle development. We reasoned that MyoD expression may be regulated by miRNAs. Bioinformatics prediction identify a putative miR-203b target site in the 3’-UTR of MyoD gene. Interestingly, miR-203b expression is negatively correlated is negatively correlated with MyoD expression. miR-203b suppression leads to a significant increase in MyoD expression, thereby activating MyoD downstream gene. 3’-UTR luciferase reporter assay further verifies the direct interaction between miR-203b and MyoD. Taken together, our studies reveal a novel molecular mechanism in which miRNA participates in transcriptional circuits that regulates gene expression in tilapia skeletal muscle.
Collapse
Affiliation(s)
- Biao Yan
- Shanghai Ocean University, China
| | | | | | | |
Collapse
|
160
|
Mohamed Ariff I, Mitra A, Basu A. Epigenetic regulation of self-renewal and fate determination in neural stem cells. J Neurosci Res 2011; 90:529-39. [DOI: 10.1002/jnr.22804] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 08/18/2011] [Accepted: 09/02/2011] [Indexed: 01/30/2023]
|
161
|
ZHDANOV VLADIMIRP. EFFECT OF NON-CODING RNA ON BISTABILITY AND OSCILLATIONS IN THE mRNA-PROTEIN INTERPLAY. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048010001159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The feedbacks between the mRNA and protein synthesis may result in kinetic bistability and oscillations. Two generic models predicting bistability include, respectively, a gene with positive regulation of the mRNA production by protein and two genes with mutual suppression of the mRNA production due to negative regulation of the gene transcription by protein. The simplest model predicting oscillations describes a gene with negative regulation of the mRNA production by protein formed via mRNA translation and a few steps of conversion. We complement these models by the steps of non-coding RNA (ncRNA) formation and ncRNA-mRNA association and degradation. With this extension, the bistability can often be observed as well. Without and with ncRNA, the biochemistry behind the steady states may be different. In the latter case, for example, ncRNA may control the mRNA population in the situations when this population is relatively small, and one can observe a switch in the mRNA, protein and ncRNA populations. Our analysis of oscillatory kinetics of the mRNA-protein interplay shows that with ncRNA the oscillations may be observed in a wider range of parameters and the amplitude of oscillations may be larger.
Collapse
Affiliation(s)
- VLADIMIR P. ZHDANOV
- Department of Applied Physics, Chalmers University of Technology,-41296 Göteborg, Sweden
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
162
|
Lee KM, Choi EJ, Kim IA. microRNA-7 increases radiosensitivity of human cancer cells with activated EGFR-associated signaling. Radiother Oncol 2011; 101:171-6. [DOI: 10.1016/j.radonc.2011.05.050] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/20/2011] [Accepted: 05/20/2011] [Indexed: 12/21/2022]
|
163
|
Maes OC, Chertkow HM, Wang E, Schipper HM. MicroRNA: Implications for Alzheimer Disease and other Human CNS Disorders. Curr Genomics 2011; 10:154-68. [PMID: 19881909 PMCID: PMC2705849 DOI: 10.2174/138920209788185252] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 02/18/2009] [Accepted: 03/11/2009] [Indexed: 02/06/2023] Open
Abstract
Understanding complex diseases such as sporadic Alzheimer disease (AD) has been a major challenge. Unlike the familial forms of AD, the genetic and environmental risks factors identified for sporadic AD are extensive. MicroRNAs are one of the major noncoding RNAs that function as negative regulators to silence or suppress gene expression via translational inhibition or message degradation. Their discovery has evoked great excitement in biomedical research for their promise as potential disease biomarkers and therapeutic targets. Key microRNAs have been identified as essential for a variety of cellular events including cell lineage determination, proliferation, apoptosis, DNA repair, and cytoskeletal organization; most, if not all, acting to fine-tune gene expression at the post-transcriptional level in a host of cellular signaling networks. Dysfunctional microRNA-mediated regulation has been implicated in the pathogenesis of many disease states. Here, the current understanding of the role of miRNAs in the central nervous system is reviewed with emphasis on their impact on the etiopathogenesis of sporadic AD.
Collapse
Affiliation(s)
- Olivier C Maes
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, Canada
| | | | | | | |
Collapse
|
164
|
Ghidoni R, Benussi L, Paterlini A, Albertini V, Binetti G, Emanuele E. Cerebrospinal fluid biomarkers for Alzheimer's disease: the present and the future. NEURODEGENER DIS 2011; 8:413-20. [PMID: 21709402 DOI: 10.1159/000327756] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 03/21/2011] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is the major cause of dementia in the elderly. The biochemical changes that precede AD may be present up to 20 years before the clinical manifestation of the disease. The translational development of AD biomarkers may be theoretically achieved via two different strategies: the first strategy can be defined as 'knowledge-based' (deductive method), while the second one is a hypothesis-generating 'unbiased' approach (inductive strategy). The 'knowledge-based' approach relies on a direct understanding of the neuropathological processes that underlie the development of AD. In contrast, the 'unbiased' approach involves the use of modern techniques including proteomics and bioinformatics that allow unbiased investigations of numerous putative markers that may be informative with regard to AD. Cerebrospinal fluid (CSF) dosage of neuropathological AD-associated proteins has already been incorporated into the neurochemical diagnosis of AD, attesting the relevance of translational research. In the last few years, biomarker discovery research has successfully utilized genomics and proteomics for the identification of several promising molecular markers for AD. In the present article, we discuss the present state of the art and the future challenges in the search of CSF biomarkers for AD.
Collapse
Affiliation(s)
- Roberta Ghidoni
- Proteomics Unit, IRCCS Centro S. Giovanni di Dio-Fatebenefratelli, Brescia, Italy. rghidoni @ fatebenefratelli.it
| | | | | | | | | | | |
Collapse
|
165
|
Tserel L, Runnel T, Kisand K, Pihlap M, Bakhoff L, Kolde R, Peterson H, Vilo J, Peterson P, Rebane A. MicroRNA expression profiles of human blood monocyte-derived dendritic cells and macrophages reveal miR-511 as putative positive regulator of Toll-like receptor 4. J Biol Chem 2011; 286:26487-95. [PMID: 21646346 DOI: 10.1074/jbc.m110.213561] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dendritic cells (DCs) and macrophages (MFs) are important multifunctional immune cells. Like other cell types, they express hundreds of different microRNAs (miRNAs) that are recently discovered post-transcriptional regulators of gene expression. Here we present updated miRNA expression profiles of monocytes, DCs and MFs. Compared with monocytes, ∼50 miRNAs were found to be differentially expressed in immature and mature DCs or MFs, with major expression changes occurring during the differentiation. Knockdown of DICER1, a protein needed for miRNA biosynthesis, led to lower DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) and enhanced CD14 protein levels, confirming the importance of miRNAs in DC differentiation in general. Inhibition of the two most highly up-regulated miRNAs, miR-511 and miR-99b, also resulted in reduced DC-SIGN level. Prediction of miRNA-511 targets revealed a number of genes with known immune functions, of which TLR4 and CD80 were validated using inhibition of miR-511 in DCs and luciferase assays in HEK293 cells. Interestingly, under the cell cycle arrest conditions, miR-511 seems to function as a positive regulator of TLR4. In conclusion, we have identified miR-511 as a novel potent modulator of human immune response. In addition, our data highlight that miRNA influence on gene expression is dependent on the cellular environment.
Collapse
Affiliation(s)
- Liina Tserel
- Molecular Pathology, Faculty of Medicine, University of Tartu, Tartu 50411, Estonia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Yao Q, Cao S, Li C, Mengesha A, Kong B, Wei M. Micro-RNA-21 regulates TGF-β-induced myofibroblast differentiation by targeting PDCD4 in tumor-stroma interaction. Int J Cancer 2011; 128:1783-92. [PMID: 20533548 DOI: 10.1002/ijc.25506] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Transforming growth factor-β1 (TGF-β1) induces stromal fibroblast-to-myofibroblast transdifferentiation in the tumor-stroma interactive microenvironment via modulation of multiple phenotypic and functional genes, which plays a critical role in tumor progression. Up to now, the involvement of micro-RNAs (miRNAs) and their roles in TGF-β1-induced myofibroblast differentiation in tumor-stroma interaction are unclear. Using quantitative real-time RT-PCR, we demonstrated that the expression of micro-RNA-21 (miR-21) was upregulated in activated fibroblasts after treatment with TGF-β1 or conditioned medium from cancer cells. To determine the potential roles of miR-21 in TGF-β1-mediated gene regulation during myofibroblast conversion, we showed that miR-21 expression was downregulated by miR-21 inhibitor and upregulated by miR-21 mimic. Interestingly, downregulation of miR-21 with the inhibitor effectively inhibited TGF-β1-induced myofibroblast differentiation while upregulation of miR-21 with a mimic significantly promoted myofibroblast differentiation. We further demonstrated that MiR-21 directly targeted and downregulated programmed cell death 4 (PDCD4) gene, which in turn acted as a negative regulator of several phenotypic and functional genes of myofibroblasts. Taken together, these results suggested that miR-21 participated in TGF-β1-induced myofibroblast transdifferentiation in cancer stroma by targeting PDCD4.
Collapse
Affiliation(s)
- Qin Yao
- Griffith Institute for Health and Medical Research, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| | | | | | | | | | | |
Collapse
|
167
|
Gong X, Wu R, Wang H, Guo X, Wang D, Gu Y, Zhang Y, Zhao W, Cheng L, Wang C, Guo Z. Evaluating the consistency of differential expression of microRNA detected in human cancers. Mol Cancer Ther 2011; 10:752-60. [PMID: 21398424 DOI: 10.1158/1535-7163.mct-10-0837] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Differential expression of microRNA (miRNA) is involved in many human diseases and could potentially be used as a biomarker for disease diagnosis, prognosis, and therapy. However, inconsistency has often been found among differentially expressed miRNAs identified in various studies when using miRNA arrays for a particular disease such as a cancer. Before broadly applying miRNA arrays in a clinical setting, it is critical to evaluate inconsistent discoveries in a rational way. Thus, using data sets from 2 types of cancers, our study shows that the differentially expressed miRNAs detected from multiple experiments for each cancer exhibit stable regulation direction. This result also indicates that miRNA arrays could be used to reliably capture the signals of the regulation direction of differentially expressed miRNAs in cancer. We then assumed that 2 differentially expressed miRNAs with the same regulation direction in a particular cancer play similar functional roles if they regulate the same set of cancer-associated genes. On the basis of this hypothesis, we proposed a score to assess the functional consistency between differentially expressed miRNAs separately extracted from multiple studies for a particular cancer. We showed although lists of differentially expressed miRNAs identified from different studies for each cancer were highly variable, they were rather consistent at the level of function. Thus, the detection of differentially expressed miRNAs in various experiments for a certain disease tends to be functionally reproducible and capture functionally related differential expression of miRNAs in the disease.
Collapse
Affiliation(s)
- Xue Gong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Abstract
Epigenetic regulation represents a fundamental mechanism to maintain cell-type-specific gene expression during development and serves as an essential mediator to interface the extrinsic environment and the intrinsic genetic programme. Adult neurogenesis occurs in discrete regions of the adult mammalian brain and is known to be tightly regulated by various physiological, pathological and pharmacological stimuli. Emerging evidence suggests that various epigenetic mechanisms play important roles in fine-tuning and coordinating gene expression during adult neurogenesis. Here we review recent progress in our understanding of various epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNAs, as well as cross-talk among these mechanisms, in regulating different aspects of adult mammalian neurogenesis.
Collapse
Affiliation(s)
- Jiaqi Sun
- School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Jiawei Sun
- School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Guo-li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
169
|
Abstract
PURPOSE OF REVIEW The identification of transcriptional activators and repressors of hair cell fates has recently been augmented by the discovery of microRNAs (miRNAs) that can function as post-transcriptional repressors in sensory hair cells. RECENT FINDINGS miRNAs are approximately 21-nucleotide single-stranded ribonucleic acids that can each repress protein synthesis of many target genes by interacting with messenger RNA transcripts. A triplet of these miRNAs, the miR-183 family, is highly expressed in vertebrate hair cells, as well as a variety of other peripheral neurosensory cells. Point mutations in one member of this family, miR-96, underlie DFNA50 autosomal deafness in humans and lead to abnormal hair cell development and survival in mice. In zebrafish, overexpression of the miR-183 family induces extra and ectopic hair cells, whereas knockdown reduces hair cell numbers. Genetically engineered mice with a block in miRNA biosynthesis during early ear development, or during hair cell differentiation, reveal the necessity of miRNAs at these crucial time points. SUMMARY Because miRNAs can simultaneously down-regulate dozens to perhaps hundreds of transcripts, they will soon be explored as potential therapeutic agents to repair or regenerate hair cells in animal models.
Collapse
|
170
|
Chen C, Tan R, Wong L, Fekete R, Halsey J. Quantitation of microRNAs by real-time RT-qPCR. Methods Mol Biol 2011; 687:113-34. [PMID: 20967604 DOI: 10.1007/978-1-60761-944-4_8] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
MicroRNAs (miRNAs) are ∼22 nucleotide regulatory RNA molecules that play important roles in controlling developmental and physiological processes in animals and plants. Measuring the level of miRNA expression is a critical step in methods that study the regulation of biological functions and that use miRNA profiles as diagnostic markers for cancer and other diseases. Even though the quantitation of these small miRNA molecules by RT-qPCR is challenging because of their short length and sequence similarity, a number of quantitative RT-qPCR-based miRNA quantitation methods have been introduced since 2004. The most commonly used methods are stem-loop reverse transcription (RT)-based TaqMan(®) MicroRNA assays and arrays. The high sensitivity and specificity, large dynamic range, and simple work flow of TaqMan(®) MicroRNA assays and arrays have made TaqMan analysis the method of choice for miRNA expression profiling and follow-up validation. Other methods such as poly (A) tailing-based and direct RT-based SYBR miRNA assays are also discussed in this chapter.
Collapse
Affiliation(s)
- Caifu Chen
- Genomic Assays R&D, Molecular Biology Systems Division, Life Technologies, Foster City, CA, USA.
| | | | | | | | | |
Collapse
|
171
|
Diakos C, Zhong S, Xiao Y, Zhou M, Vasconcelos GM, Krapf G, Yeh RF, Zheng S, Kang M, Wiencke JK, Pombo-de-Oliveira MS, Panzer-Grümayer R, Wiemels JL. TEL-AML1 regulation of survivin and apoptosis via miRNA-494 and miRNA-320a. Blood 2010; 116:4885-93. [PMID: 20807887 PMCID: PMC3265147 DOI: 10.1182/blood-2009-02-206706] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 08/08/2010] [Indexed: 12/19/2022] Open
Abstract
There is increasing evidence that miRNA and transcription factors interact in an instructive fashion in normal and malignant hematopoiesis. We explored the impact of TEL-AML1 (ETV6-RUNX1), the most common fusion protein in childhood leukemia, on miRNA expression and the leukemic phenotype. Using RNA interference, miRNA expression arrays, and quantitative polymerase chain reaction, we identified miRNA-494 and miRNA-320a to be up-regulated upon TEL-AML1 silencing independently of TEL expression. Chromatin immunoprecipitation analysis identified miRNA-494 as a direct miRNA target of the fusion protein TEL-AML1. Using bioinformatic analysis as well as functional luciferase experiments, we demonstrate that survivin is a target of the 2 miRNAs. miRNA-494 and miRNA-320a were introduced to the cells by transfection and survivin expression determined by Western blot analysis. These miRNAs blocked survivin expression and resulted in apoptosis in a similar manner as TEL-AML1 silencing by itself; this silencing was also shown to be Dicer-dependent. miRNAs-494 and -320a are expressed at lower levels in TEL-AML1+ leukemias compared with immunophenotype-matched nonTEL-AML1 acute lymphoblastic leukemia subtypes, and within TEL-AML1+ leukemias their expression is correlated to survivin levels. In summary our data suggest that TEL-AML1 might exert its antiapoptotic action at least in part by suppressing miRNA-494 and miRNA-320a, lowering their expression causing enhanced survivin expression.
Collapse
Affiliation(s)
- Christofer Diakos
- Laboratory for Molecular Epidemiology, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Smith P, Al Hashimi A, Girard J, Delay C, Hébert SS. In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs. J Neurochem 2010; 116:240-7. [PMID: 21062284 DOI: 10.1111/j.1471-4159.2010.07097.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The β-amyloid peptide that accumulate in Alzheimer's disease (AD) brain derive from proteolytic processing of the amyloid precursor protein (APP). Recent evidence suggest that microRNAs (miRNAs) participate in the post-transcriptional regulation of APP expression. Because gene dosage effects of the APP gene can cause genetic AD, dysregulation of the miRNA network could contribute significantly to disease. Here, we present evidence that, besides APP expression regulation, miRNAs are equally involved in the regulation of neuronal APP mRNA alternative splicing. Lack of miRNAs in post-mitotic neurons in vivo is associated with APP exons 7 and 8 inclusion, while ectopic expression of miR-124, an abundant neuronal-specific miRNA, reversed these effects in cultured neurons. Similar results were obtained by depletion of endogenous polypyrimidine tract binding protein 1 (PTBP1) in cells, a recognized miR-124 target gene. Furthermore, PTBP1 levels correlate with the presence of APP exons 7 and 8, while PTBP2 levels correlate with the skipping of these exons during neuronal differentiation. Finally, we show that miR-124 is down-regulated in AD brain. In sum, our results suggest that specific miRNAs are involved in the fine-tuning of APP alternative splicing in neurons. Since abnormal neuronal splicing of APP affects β-amyloid peptide production, these results could contribute to the understanding of the implication of miRNAs in brain health and disease.
Collapse
Affiliation(s)
- Pascal Smith
- Centre de recherche du CHUQ (CHUL), Axe Neurosciences, Québec, Canada
| | | | | | | | | |
Collapse
|
173
|
JIANG L, LIU X, CHEN Z, JIN Y, HEIDBREDER CE, KOLOKYTHAS A, WANG A, DAI Y, ZHOU X. MicroRNA-7 targets IGF1R (insulin-like growth factor 1 receptor) in tongue squamous cell carcinoma cells. Biochem J 2010; 432:199-205. [PMID: 20819078 PMCID: PMC3130335 DOI: 10.1042/bj20100859] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
miR-7 (microRNA-7) has been characterized as a tumour suppressor in several human cancers. It targets a number of proto-oncogenes that contribute to cell proliferation and survival. However, the mechanism(s) by which miR-7 suppresses tumorigenesis in TSCC (tongue squamous cell carcinoma) is unknown. The present bioinformatics analysis revealed that IGF1R (insulin-like growth factor 1 receptor) mRNA is a potential target for miR-7. Ectopic transfection of miR-7 led to a significant reduction in IGF1R at both the mRNA and protein levels in TSCC cells. Knockdown of miR-7 in TSCC cells enhanced IGF1R expression. Direct targeting of miR-7 to three candidate binding sequences located in the 3'-untranslated region of IGF1R mRNA was confirmed using luciferase-reporter-gene assays. The miR-7-mediated down-regulation of IGF1R expression attenuated the IGF1 (insulin-like growth factor 1)-induced activation of Akt (protein kinase B) in TSCC cell lines, which in turn resulted in a reduction in cell proliferation and cell-cycle arrest, and an enhanced apoptotic rate. Taken together, the present results demonstrated that miR-7 regulates the IGF1R/Akt signalling pathway by post-transcriptional regulation of IGF1R. Our results indicate that miR-7 plays an important role in TSCC and may serve as a novel therapeutic target for TSCC patients.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Apoptosis/drug effects
- Base Sequence
- Binding Sites/genetics
- Blotting, Western
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Cycle/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Down-Regulation
- Enzyme Activation/drug effects
- Gene Expression Regulation, Neoplastic
- Humans
- Insulin-Like Growth Factor I/pharmacology
- Luciferases/genetics
- Luciferases/metabolism
- MicroRNAs/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tongue Neoplasms/genetics
- Tongue Neoplasms/metabolism
- Tongue Neoplasms/pathology
- Transfection
Collapse
Affiliation(s)
- Lu JIANG
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, U.S.A
| | - Xiqiang LIU
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, U.S.A
| | - Zujian CHEN
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, U.S.A
| | - Yi JIN
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, U.S.A
| | - Caroline E. HEIDBREDER
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, U.S.A
| | - Antonia KOLOKYTHAS
- Department of Oral and Maxillofacial Surgery, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, U.S.A
- Graduate College, UIC Cancer Center, University of Illinois at Chicago, 914 South Wood Street, Chicago, IL 60612, U.S.A
| | - Anxun WANG
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, U.S.A
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Yang DAI
- Department of Bioengineering, College of Engineering, University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607, U.S.A
| | - Xiaofeng ZHOU
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, U.S.A
- Graduate College, UIC Cancer Center, University of Illinois at Chicago, 914 South Wood Street, Chicago, IL 60612, U.S.A
| |
Collapse
|
174
|
Corcoran C, Friel AM, Duffy MJ, Crown J, O'Driscoll L. Intracellular and extracellular microRNAs in breast cancer. Clin Chem 2010; 57:18-32. [PMID: 21059829 DOI: 10.1373/clinchem.2010.150730] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Successful treatment of breast cancer is enhanced by early detection and, if possible, subsequent patient-tailored therapy. Toward this goal, it is essential to identify and understand the most relevant panels of biomarkers, some of which may also have relevance as therapeutic targets. METHODS We critically reviewed published literature on microRNAs (miRNAs) as relevant to breast cancer. SUMMARY Since the initial recognition of the association of miRNAs with breast cancer in 2005, studies involving cell lines, in vivo models, and clinical specimens have implicated several functions for miRNAs, including suppressing oncogenesis and tumors, promoting or inhibiting metastasis, and increasing sensitivity or resistance to chemotherapy and targeted agents in breast cancer. For example, miR-21 is overexpressed in both male and female breast tumors compared with normal breast tissue and has been associated with advanced stage, lymph node positivity, and reduced survival time. miR-21 knock-down in cell-line models has been associated with increased sensitivity to topotecan and taxol in vitro and the limitation of lung metastasis in vivo. Furthermore, the discovery of extracellular miRNAs (including miR-21), existing either freely or in exosomes in the systemic circulation, has led to the possibility that such molecules may serve as biomarkers for ongoing patient monitoring. Although additional investigations are necessary to fully exploit the use of miRNAs in breast cancer, there is increasing evidence that miRNAs have potential not only to facilitate the determination of diagnosis and prognosis and the prediction of response to treatment, but also to act as therapeutic targets and replacement therapies.
Collapse
Affiliation(s)
- Claire Corcoran
- School of Pharmacy and Pharmaceutical Sciences and Molecular Therapeutics for Cancer Ireland (MTCI), Trinity College Dublin, Dublin, Ireland
| | | | | | | | | |
Collapse
|
175
|
Xu J, Li CX, Li YS, Lv JY, Ma Y, Shao TT, Xu LD, Wang YY, Du L, Zhang YP, Jiang W, Li CQ, Xiao Y, Li X. MiRNA-miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features. Nucleic Acids Res 2010; 39:825-36. [PMID: 20929877 PMCID: PMC3035454 DOI: 10.1093/nar/gkq832] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Synergistic regulations among multiple microRNAs (miRNAs) are important to understand the mechanisms of complex post-transcriptional regulations in humans. Complex diseases are affected by several miRNAs rather than a single miRNA. So, it is a challenge to identify miRNA synergism and thereby further determine miRNA functions at a system-wide level and investigate disease miRNA features in the miRNA–miRNA synergistic network from a new view. Here, we constructed a miRNA–miRNA functional synergistic network (MFSN) via co-regulating functional modules that have three features: common targets of corresponding miRNA pairs, enriched in the same gene ontology category and close proximity in the protein interaction network. Predicted miRNA synergism is validated by significantly high co-expression of functional modules and significantly negative regulation to functional modules. We found that the MFSN exhibits a scale free, small world and modular architecture. Furthermore, the topological features of disease miRNAs in the MFSN are distinct from non-disease miRNAs. They have more synergism, indicating their higher complexity of functions and are the global central cores of the MFSN. In addition, miRNAs associated with the same disease are close to each other. The structure of the MFSN and the features of disease miRNAs are validated to be robust using different miRNA target data sets.
Collapse
Affiliation(s)
- Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Kriegel AJ, Fang Y, Liu Y, Tian Z, Mladinov D, Matus IR, Ding X, Greene AS, Liang M. MicroRNA-target pairs in human renal epithelial cells treated with transforming growth factor beta 1: a novel role of miR-382. Nucleic Acids Res 2010; 38:8338-47. [PMID: 20716515 PMCID: PMC3001085 DOI: 10.1093/nar/gkq718] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We reported previously an approach for identifying microRNA (miRNA)-target pairs by combining miRNA and proteomic analyses. The approach was applied in the present study to examine human renal epithelial cells treated with transforming growth factor β1 (TGFβ1), a model of epithelial-mesenchymal transition important for the development of renal interstitial fibrosis. Treatment of human renal epithelial cells with TGFβ1 resulted in upregulation of 16 miRNAs and 18 proteins and downregulation of 17 miRNAs and 16 proteins. Of the miRNAs and proteins that exhibited reciprocal changes in expression, 77 pairs met the sequence criteria for miRNA-target interactions. Knockdown of miR-382, which was up-regulated by TGFβ1, attenuated TGFβ1-induced loss of the epithelial marker E-cadherin. miR-382 was confirmed by 3'-untranslated region reporter assay to target five genes that were downregulated at the protein level by TGFβ1, including superoxide dismutase 2 (SOD2). Knockdown of miR-382 attenuated TGFβ1-induced downregulation of SOD2. Overexpression of SOD2 ameliorated TGFβ1-induced loss of the epithelial marker. The study provided experimental evidence in the form of reciprocal expression at the protein level for a large number of predicted miRNA-target pairs and discovered a novel role of miR-382 and SOD2 in the loss of epithelial characteristics induced by TGFβ1.
Collapse
Affiliation(s)
- Alison J Kriegel
- Department of Physiology, Biotechnology and Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Matrix metalloproteinase 9 expression: new regulatory elements. J Ocul Biol Dis Infor 2010; 3:41-52. [PMID: 21818406 DOI: 10.1007/s12177-010-9054-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 06/28/2010] [Indexed: 12/11/2022] Open
Abstract
Retinal ganglion cells apoptosis is linked to matrix metalloproteinase 9 (MMP-9) controlled changes of extracellular matrix. Abnormal expression of MMP-9 is associated with glaucomatous alterations. Thus, the knowledge of MMP-9 regulation is important for the understanding the pathogenesis of glaucoma. Here, we investigated the role of 3'-untranslated regions (3'-UTR) and microRNAs in MMP-9 regulation. We used in vitro mutagenesis and Luc reporter system to identify regulatory elements in the 3'-UTR of MMP-9. microRNAs were analyzed by qRT-PCR, and their role was investigated with inhibitors and mimics. We identified targets for miRNAs in 3'-UTR of MMP-9 involved in the regulation of MMP-9 expression. We then isolated miRNAs from the optic nerve A7 astrocytes and 293 T cells and confirmed the role of mi340 in the regulation using specific inhibitors and mimics. The results obtained show a new miRNA-mediated mechanism of MMP-9 expression regulation.
Collapse
|
178
|
Haramati S, Chapnik E, Sztainberg Y, Eilam R, Zwang R, Gershoni N, McGlinn E, Heiser PW, Wills AM, Wirguin I, Rubin LL, Misawa H, Tabin CJ, Brown R, Chen A, Hornstein E. miRNA malfunction causes spinal motor neuron disease. Proc Natl Acad Sci U S A 2010; 107:13111-6. [PMID: 20616011 PMCID: PMC2919953 DOI: 10.1073/pnas.1006151107] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Defective RNA metabolism is an emerging mechanism involved in ALS pathogenesis and possibly in other neurodegenerative disorders. Here, we show that microRNA (miRNA) activity is essential for long-term survival of postmitotic spinal motor neurons (SMNs) in vivo. Thus, mice that do not process miRNA in SMNs exhibit hallmarks of spinal muscular atrophy (SMA), including sclerosis of the spinal cord ventral horns, aberrant end plate architecture, and myofiber atrophy with signs of denervation. Furthermore, a neurofilament heavy subunit previously implicated in motor neuron degeneration is specifically up-regulated in miRNA-deficient SMNs. We demonstrate that the heavy neurofilament subunit is a target of miR-9, a miRNA that is specifically down-regulated in a genetic model of SMA. These data provide evidence for miRNA function in SMN diseases and emphasize the potential role of miR-9-based regulatory mechanisms in adult neurons and neurodegenerative states.
Collapse
Affiliation(s)
| | | | - Yehezkel Sztainberg
- Departments of Neurobiology and
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Raya Eilam
- Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | - Edwina McGlinn
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Patrick W. Heiser
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Anne-Marie Wills
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
| | - Itzhak Wirguin
- Department of Neurology, Soroka Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 91352 , Israel
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Hidemi Misawa
- Department of Pharmacology, Keio University Faculty of Pharmacy, Tokyo 160-8582, Japan; and
| | | | - Robert Brown
- Department of Neurology, University of Massachusetts School of Medicine, Worcester, MA 01655
| | | | | |
Collapse
|
179
|
Wang WX, Wilfred BR, Madathil SK, Tang G, Hu Y, Dimayuga J, Stromberg AJ, Huang Q, Saatman KE, Nelson PT. miR-107 regulates granulin/progranulin with implications for traumatic brain injury and neurodegenerative disease. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:334-45. [PMID: 20489155 PMCID: PMC2893676 DOI: 10.2353/ajpath.2010.091202] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/12/2010] [Indexed: 11/20/2022]
Abstract
Granulin (GRN, or progranulin) is a protein involved in wound repair, inflammation, and neoplasia. GRN has also been directly implicated in frontotemporal dementia and may contribute to Alzheimer's disease pathogenesis. However, GRN regulation expression is poorly understood. A high-throughput experimental microRNA assay showed that GRN is the strongest target for miR-107 in human H4 neuroglioma cells. miR-107 has been implicated in Alzheimer's disease pathogenesis, and sequence elements in the open reading frame-rather than the 3' untranslated region-of GRN mRNA are recognized by miR-107 and are highly conserved among vertebrate species. To better understand the mechanism of this interaction, FLAG-tagged Argonaute constructs were used following miR-107 transfection. GRN mRNA interacts preferentially with Argonaute 2. In vitro and in vivo studies indicate that regulation of GRN by miR-107 may be functionally important. Glucose supplementation in cultured cells that leads to increased miR-107 levels also results in decreased GRN expression, including changes in cell compartmentation and decreased secretion of GRN protein. This effect was eliminated following miR-107 transfection. We also tested a mouse model where miR-107 has been shown to be down-regulated. In brain tissue subjacent to 1.0 mm depth controlled cortical impact, surviving hippocampal neurons show decreased miR-107 with augmentation of neuronal GRN expression. These findings indicate that miR-107 contributes to GRN expression regulation with implications for brain disorders.
Collapse
Affiliation(s)
- Wang-Xia Wang
- Department of Pathology, Division of Neuropathology, and the Sanders-Brown Center on Aging, Rm 311, Sanders-Brown Center, 800 S. Limestone, University of Kentucky, Lexington, KY 40536-0230, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Matrajt M. Non-coding RNA in apicomplexan parasites. Mol Biochem Parasitol 2010; 174:1-7. [PMID: 20566348 DOI: 10.1016/j.molbiopara.2010.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 05/29/2010] [Accepted: 06/01/2010] [Indexed: 11/28/2022]
Abstract
In recent years it has became evident that the transcriptome of most species has little protein-coding capacity and that the abundance of non-coding RNA was previously overlooked. Non-coding RNAs were initially thought to be transcriptional noise, however, a growing number of studies is showing that many of these RNAs have important regulatory functions. Here, we review the progress done in apicomplexan parasites in this rapidly growing field.
Collapse
Affiliation(s)
- Mariana Matrajt
- Department of Microbiology and Molecular Genetics, University of Vermont, Stafford Hall, Room 306, 95 Carrigan Drive, Burlington, VT 05405, United States.
| |
Collapse
|
181
|
Loya CM, Van Vactor D, Fulga TA. Understanding neuronal connectivity through the post-transcriptional toolkit. Genes Dev 2010; 24:625-35. [PMID: 20360381 DOI: 10.1101/gad.1907710] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Post-transcriptional regulatory mechanisms have emerged as a critical component underlying the diversification and spatiotemporal control of the proteome during the establishment of precise neuronal connectivity. These mechanisms have been shown to be important for virtually all stages of assembling a neural network, from neurite guidance, branching, and growth to synapse morphogenesis and function. From the moment a gene is transcribed, it undergoes a series of post-transcriptional regulatory modifications in the nucleus and cytoplasm until its final deployment as a functional protein. Initially, a message is subjected to extensive structural regulation through alternative splicing, which is capable of greatly expanding the protein repertoire by generating, in some cases, thousands of functionally distinct isoforms from a single gene locus. Then, RNA packaging into neuronal transport granules and recognition by RNA-binding proteins and/or microRNAs is capable of restricting protein synthesis to selective locations and under specific input conditions. This ability of the post-transcriptional apparatus to expand the informational content of a cell and control the deployment of proteins in both spatial and temporal dimensions is a feature well adapted for the extreme morphological properties of neural cells. In this review, we describe recent advances in understanding how post-transcriptional regulatory mechanisms refine the proteomic complexity required for the assembly of intricate and specific neural networks.
Collapse
Affiliation(s)
- Carlos M Loya
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
182
|
Liu Y, Taylor NE, Lu L, Usa K, Cowley AW, Ferreri NR, Yeo NC, Liang M. Renal medullary microRNAs in Dahl salt-sensitive rats: miR-29b regulates several collagens and related genes. Hypertension 2010; 55:974-82. [PMID: 20194304 PMCID: PMC2862728 DOI: 10.1161/hypertensionaha.109.144428] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 01/29/2010] [Indexed: 01/10/2023]
Abstract
MicroRNAs are endogenous repressors of gene expression. We examined microRNAs in the renal medulla of Dahl salt-sensitive rats and consomic SS-13(BN) rats. Salt-induced hypertension and renal injury in Dahl salt-sensitive rats, particularly medullary interstitial fibrosis, have been shown previously to be substantially attenuated in SS-13(BN) rats. Of 377 microRNAs examined, 5 were found to be differentially expressed between Dahl salt-sensitive rats and consomic SS-13(BN) rats receiving a high-salt diet. Real-time PCR analysis demonstrated that high-salt diets induced substantial upregulation of miR-29b in the renal medulla of SS-13(BN) rats but not in SS rats. miR-29b was predicted to regulate 20 collagen genes, matrix metalloproteinase 2 (Mmp2), integrin beta1 (Itgb1), and other genes related to the extracellular matrix. Expression of 9 collagen genes and Mmp2 was upregulated by a high-salt diet in the renal medulla of SS rats, but not in SS-13(BN) rats, an expression pattern opposite to miR-29b. Knockdown of miR-29b in the kidneys of SS-13(BN) rats resulted in upregulation of several collagen genes. miR-29b reduced expression levels of several collagen genes and Itgb1 in cultured rat renal medullary epithelial cells. Moreover, miR-29b suppressed the activity of luciferase when the reporter gene was linked to a 3'-untranslated segment of collagen genes Col1a1, Col3a1, Col4a1, Col5a1, Col5a2, Col5a3, Col7a1, Col8a1, Mmp2, or Itgb1 but not Col12a1. The result demonstrated broad effects of miR-29b on a large number of collagens and genes related to the extracellular matrix and suggested involvement of miR-29b in the protection from renal medullary injury in SS-13(BN) rats.
Collapse
Affiliation(s)
- Yong Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Norman E. Taylor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Limin Lu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, P.R. China
| | - Kristie Usa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Allen W. Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Nicholas R. Ferreri
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595
| | - Nan Cher Yeo
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
183
|
Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Künstner A, Searle S, White S, Vilella AJ, Fairley S, Heger A, Kong L, Ponting CP, Jarvis ED, Mello CV, Minx P, Lovell P, Velho TAF, Ferris M, Balakrishnan CN, Sinha S, Blatti C, London SE, Li Y, Lin YC, George J, Sweedler J, Southey B, Gunaratne P, Watson M, Nam K, Backström N, Smeds L, Nabholz B, Itoh Y, Whitney O, Pfenning AR, Howard J, Völker M, Skinner BM, Griffin DK, Ye L, McLaren WM, Flicek P, Quesada V, Velasco G, Lopez-Otin C, Puente XS, Olender T, Lancet D, Smit AFA, Hubley R, Konkel MK, Walker JA, Batzer MA, Gu W, Pollock DD, Chen L, Cheng Z, Eichler EE, Stapley J, Slate J, Ekblom R, Birkhead T, Burke T, Burt D, Scharff C, Adam I, Richard H, Sultan M, Soldatov A, Lehrach H, Edwards SV, Yang SP, Li X, Graves T, Fulton L, Nelson J, Chinwalla A, Hou S, Mardis ER, Wilson RK. The genome of a songbird. Nature 2010; 464:757-62. [PMID: 20360741 PMCID: PMC3187626 DOI: 10.1038/nature08819] [Citation(s) in RCA: 628] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 01/06/2010] [Indexed: 01/16/2023]
Abstract
The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken-the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.
Collapse
Affiliation(s)
- Wesley C Warren
- The Genome Center, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Damianov A, Black DL. Autoregulation of Fox protein expression to produce dominant negative splicing factors. RNA (NEW YORK, N.Y.) 2010; 16:405-16. [PMID: 20042473 PMCID: PMC2811669 DOI: 10.1261/rna.1838210] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 10/19/2009] [Indexed: 05/23/2023]
Abstract
The Fox proteins are a family of regulators that control the alternative splicing of many exons in neurons, muscle, and other tissues. Each of the three mammalian paralogs, Fox-1 (A2BP1), Fox-2 (RBM9), and Fox-3 (HRNBP3), produces proteins with a single RNA-binding domain (RRM) flanked by N- and C-terminal domains that are highly diversified through the use of alternative promoters and alternative splicing patterns. These genes also express protein isoforms lacking the second half of the RRM (FoxDeltaRRM), due to the skipping of a highly conserved 93-nt exon. Fox binding elements overlap the splice sites of these exons in Fox-1 and Fox-2, and the Fox proteins themselves inhibit exon inclusion. Unlike other cases of splicing autoregulation by RNA-binding proteins, skipping the RRM exon creates an in-frame deletion in the mRNA to produce a stable protein. These FoxDeltaRRM isoforms expressed from cDNA exhibit highly reduced binding to RNA in vivo. However, we show that they can act as repressors of Fox-dependent splicing, presumably by competing with full-length Fox isoforms for interaction with other splicing factors. Interestingly, the Drosophila Fox homolog contains a nearly identical exon in its RRM domain that also has flanking Fox-binding sites. Thus, rather than autoregulation of splicing controlling the abundance of the regulator, the Fox proteins use a highly conserved mechanism of splicing autoregulation to control production of a dominant negative isoform.
Collapse
Affiliation(s)
- Andrey Damianov
- Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | |
Collapse
|
185
|
Wang FE, Zhang C, Maminishkis A, Dong L, Zhi C, Li R, Zhao J, Majerciak V, Gaur AB, Chen S, Miller SS. MicroRNA-204/211 alters epithelial physiology. FASEB J 2010; 24:1552-71. [PMID: 20056717 DOI: 10.1096/fj.08-125856] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
MicroRNA (miRNA) expression in fetal human retinal pigment epithelium (hfRPE), retina, and choroid were pairwise compared to determine those miRNAs that are enriched by 10-fold or more in each tissue compared with both of its neighbors. miRs-184, 187, 200a/200b, 204/211, and 221/222 are enriched in hfRPE by 10- to 754-fold compared with neuroretina or choroid (P<0.05). Five of these miRNAs are enriched in RPE compared with 20 tissues throughout the body and are 10- to 20,000-fold more highly expressed (P<0.005). miR-204 and 211 are the most highly expressed in the RPE. In addition, expression of miR-204/211 is significantly lower in the NCI60 tumor cell line panel compared with that in 13 normal tissues, suggesting the progressive disruption of epithelial barriers and increased proliferation. We demonstrated that TGF-beta receptor 2 (TGF-betaR2) and SNAIL2 are direct targets of miR-204 and that a reduction in miR-204 expression leads to reduced expression of claudins 10, 16, and 19 (message/protein) consistent with our observation that anti-miR-204/211 decreased transepithelial resistance by 80% and reduced cell membrane voltage and conductance. The anti-miR-204-induced decrease in Kir7.1 protein levels suggests a signaling pathway that connects TGF-betaR2 and maintenance of potassium homeostasis. Overall, these data indicate a critical role for miR-204/211 in maintaining epithelial barrier function and cell physiology.
Collapse
Affiliation(s)
- Fei E Wang
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2510, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Yelamanchili SV, Chaudhuri AD, Chen LN, Xiong H, Fox HS. MicroRNA-21 dysregulates the expression of MEF2C in neurons in monkey and human SIV/HIV neurological disease. Cell Death Dis 2010; 1:e77. [PMID: 21170291 PMCID: PMC3002786 DOI: 10.1038/cddis.2010.56] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 08/06/2010] [Accepted: 08/11/2010] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) play important roles in regulating a plethora of physiological and pathophysiogical processes including neurodegeneration. In both HIV associated dementia in humans and its monkey model SIV encephalitis we find miR-21, a miRNA largely known for its link to oncogenesis, to be significantly upregulated in the brain. In situ hybridization of the diseased brain sections revealed induction of miR-21 in neurons. MiR-21 can be induced in neurons by prolonged N-methyl-D-aspartic acid receptor stimulation, an excitotoxic process active in HIV and other neurodegenerative diseases. Introduction of miR-21 into human neurons leads to pathological functional defects. Furthermore, we show that miR-21 specifically targets the mRNA of myocyte enhancer factor 2C (MEF2C), a transcription factor crucial for neuronal function, and reduces its expression. MEF2C is dramatically downregulated in neurons of HIV-associated dementia patients as well as monkeys with SIVE. Together, this study elucidates a novel role for miR-21 in the brain, not only as a potential signature of neurological disease but also as a crucial effector of HIV induced neuronal dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- S V Yelamanchili
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - A Datta Chaudhuri
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - L-N Chen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - H Xiong
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - H S Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
187
|
Mattick JS. Deconstructing the dogma: a new view of the evolution and genetic programming of complex organisms. Ann N Y Acad Sci 2009; 1178:29-46. [PMID: 19845626 DOI: 10.1111/j.1749-6632.2009.04991.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since the birth of molecular biology it has been generally assumed that most genetic information is transacted by proteins, and that RNA plays an intermediary role. This led to the subsidiary assumption that the vast tracts of noncoding sequences in the genomes of higher organisms are largely nonfunctional, despite the fact that they are transcribed. These assumptions have since become articles of faith, but they are not necessarily correct. I propose an alternative evolutionary history whereby developmental and cognitive complexity has arisen by constructing sophisticated RNA-based regulatory networks that interact with generic effector complexes to control gene expression patterns and the epigenetic trajectories of differentiation and development. Environmental information can also be conveyed into this regulatory system via RNA editing, especially in the brain. Moreover, the observations that RNA-directed epigenetic changes can be inherited raises the intriguing question: has evolution learnt how to learn?
Collapse
Affiliation(s)
- John S Mattick
- Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia.
| |
Collapse
|
188
|
Jacob S, Landeros-Weisenberger A, Leckman JF. Autism spectrum and obsessive-compulsive disorders: OC behaviors, phenotypes and genetics. Autism Res 2009; 2:293-311. [PMID: 20029829 PMCID: PMC3974607 DOI: 10.1002/aur.108] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorders (ASDs) are a phenotypically and etiologically heterogeneous set of disorders that include obsessive-compulsive behaviors (OCB) that partially overlap with symptoms associated with obsessive-compulsive disorder (OCD). The OCB seen in ASD vary depending on the individual's mental and chronological age as well as the etiology of their ASD. Although progress has been made in the measurement of the OCB associated with ASD, more work is needed including the potential identification of heritable endophenotypes. Likewise, important progress toward the understanding of genetic influences in ASD has been made by greater refinement of relevant phenotypes using a broad range of study designs, including twin and family-genetic studies, parametric and nonparametric linkage analyses, as well as candidate gene studies and the study of rare genetic variants. These genetic analyses could lead to the refinement of the OCB phenotypes as larger samples are studied and specific associations are replicated. Like ASD, OCB are likely to prove to be multidimensional and polygenic. Some of the vulnerability genes may prove to be generalist genes influencing the phenotypic expression of both ASD and OCD while others will be specific to subcomponents of the ASD phenotype. In order to discover molecular and genetic mechanisms, collaborative approaches need to generate shared samples, resources, novel genomic technologies, as well as more refined phenotypes and innovative statistical approaches. There is a growing need to identify the range of molecular pathways involved in OCB related to ASD in order to develop novel treatment interventions.
Collapse
Affiliation(s)
- Suma Jacob
- Department of Psychiatry, University of Illinois School, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
189
|
Cardinali B, Castellani L, Fasanaro P, Basso A, Alemà S, Martelli F, Falcone G. Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells. PLoS One 2009; 4:e7607. [PMID: 19859555 PMCID: PMC2762614 DOI: 10.1371/journal.pone.0007607] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 10/07/2009] [Indexed: 12/16/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a class of small non-coding RNAs that have recently emerged as important regulators of gene expression. They negatively regulate gene expression post-transcriptionally by translational repression and target mRNA degradation. miRNAs have been shown to play crucial roles in muscle development and in regulation of muscle cell proliferation and differentiation. Methodology/Principal Findings By comparing miRNA expression profiling of proliferating myoblasts versus differentiated myotubes, a number of modulated miRNAs, not previously implicated in regulation of myogenic differentiation, were identified. Among these, miR-221 and miR-222 were strongly down-regulated upon differentiation of both primary and established myogenic cells. Conversely, miR-221 and miR-222 expression was restored in post-mitotic, terminally differentiated myotubes subjected to Src tyrosine kinase activation. By the use of specific inhibitors we provide evidence that expression of miR-221 and miR-222 is under the control of the Ras-MAPK pathway. Both in myoblasts and in myotubes, levels of the cell cycle inhibitor p27 inversely correlated with miR-221 and miR-222 expression, and indeed we show that p27 mRNA is a direct target of these miRNAs in myogenic cells. Ectopic expression of miR-221 and miR-222 in myoblasts undergoing differentiation induced a delay in withdrawal from the cell cycle and in myogenin expression, followed by inhibition of sarcomeric protein accumulation. When miR-221 and miR-222 were expressed in myotubes undergoing maturation, a profound alteration of myofibrillar organization was observed. Conclusions/Significance miR-221 and miR-222 have been found to be modulated during myogenesis and to play a role both in the progression from myoblasts to myocytes and in the achievement of the fully differentiated phenotype. Identification of miRNAs modulating muscle gene expression is crucial for the understanding of the circuits controlling skeletal muscle differentiation and maintenance.
Collapse
Affiliation(s)
- Beatrice Cardinali
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche, Monterotondo, Italy
| | - Loriana Castellani
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche, Monterotondo, Italy
- Dipartimento di Scienze Motorie e della Salute, Università degli Studi di Cassino, Cassino, Italy
| | | | - Annalisa Basso
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche, Monterotondo, Italy
| | - Stefano Alemà
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche, Monterotondo, Italy
| | - Fabio Martelli
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, IRCCS, Rome, Italy
| | - Germana Falcone
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche, Monterotondo, Italy
- * E-mail:
| |
Collapse
|
190
|
Abstract
In a recent issue of Nature Neuroscience, Cheng et al. (2009) demonstrate that miR-124, the most abundant of the microRNAs in the adult brain, positively modulates the transitory progression of adult subventricular zone (SVZ) neurogenesis.
Collapse
|
191
|
Tu K, Yu H, Hua YJ, Li YY, Liu L, Xie L, Li YX. Combinatorial network of primary and secondary microRNA-driven regulatory mechanisms. Nucleic Acids Res 2009; 37:5969-80. [PMID: 19671526 PMCID: PMC2764428 DOI: 10.1093/nar/gkp638] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent miRNA transfection experiments show strong evidence that miRNAs influence not only their target but also non-target genes; the precise mechanism of the extended regulatory effects of miRNAs remains to be elucidated. A hypothetical two-layer regulatory network in which transcription factors (TFs) function as important mediators of miRNA-initiated regulatory effects was envisioned, and a comprehensive strategy was developed to map such miRNA-centered regulatory cascades. Given gene expression profiles after miRNA-perturbation, along with putative miRNA–gene and TF–gene regulatory relationships, highly likely degraded targets were fetched by a non-parametric statistical test; miRNA-regulated TFs and their downstream targets were mined out through linear regression modeling. When applied to 53 expression datasets, this strategy discovered combinatorial regulatory networks centered around 19 miRNAs. A tumor-related regulatory network was diagrammed as an example, with the important tumor-related regulators TP53 and MYC playing hub connector roles. A web server is provided for query and analysis of all reported data in this article. Our results reinforce the growing awareness that non-coding RNAs may play key roles in the transcription regulatory network. Our strategy could be applied to reveal conditional regulatory pathways in many more cellular contexts.
Collapse
Affiliation(s)
- Kang Tu
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, PR China
| | | | | | | | | | | | | |
Collapse
|
192
|
Reddy SDN, Pakala SB, Ohshiro K, Rayala S, Kumar R. MicroRNA-661, a c/EBPalpha target, inhibits metastatic tumor antigen 1 and regulates its functions. Cancer Res 2009; 69:5639-42. [PMID: 19584269 PMCID: PMC2721803 DOI: 10.1158/0008-5472.can-09-0898] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MicroRNAs (miR) have been identified as posttranscriptional modifiers of target gene regulation and control the expression of gene products important in cancer progression. Here, we show that miR-661 inhibits the expression of metastatic tumor antigen 1 (MTA1), a widely up-regulated gene product in human cancer, by targeting the 3' untranslated region (UTR) of MTA1 mRNA. We found that endogenous miR-661 expression was positively regulated by the c/EBPalpha transcription factor, which is down-regulated during cancer progression. c/EBPalpha directly interacted with the miR-661 chromatin and bound to miR-661 putative promoter that contains a c/EBPalpha-consensus motif. In addition, we found that the level of MTA1 protein was progressively up-regulated, whereas that of miR-661 and its activator, c/EBPalpha, were down-regulated in a breast cancer progression model consisting of MCF-10A cell lines whose phenotypes ranged from noninvasive to highly invasive. c/EBPalpha expression in breast cancer cells resulted in increased miR-661 expression and reduced MTA1 3'UTR-luciferase activity and MTA1 protein level. We also provide evidence that the introduction of miR-661 inhibited the motility, invasiveness, anchorage-independent growth, and tumorigenicity of invasive breast cancer cells. We believe our findings show for the first time that c/EBPalpha regulates the level of miR-661 and in turn modifies the functions of the miR661-MTA1 pathway in human cancer cells. Based on these findings, we suggest that miR-661 be further investigated for therapeutic use in down-regulating the expression of MTA1 in cancer cells.
Collapse
Affiliation(s)
- Sirigiri Divijendra Natha Reddy
- Department of Biochemistry and Molecular biology and Institute of Coregulator Biology, George Washington University Medical Center, Washington DC 20037
| | - Suresh B. Pakala
- Department of Biochemistry and Molecular biology and Institute of Coregulator Biology, George Washington University Medical Center, Washington DC 20037
| | - Kazufumi Ohshiro
- Department of Biochemistry and Molecular biology and Institute of Coregulator Biology, George Washington University Medical Center, Washington DC 20037
| | - Suresh Rayala
- Department of Biochemistry and Molecular biology and Institute of Coregulator Biology, George Washington University Medical Center, Washington DC 20037
| | - Rakesh Kumar
- Department of Biochemistry and Molecular biology and Institute of Coregulator Biology, George Washington University Medical Center, Washington DC 20037
| |
Collapse
|
193
|
Intrinsic noise in post-transcriptional gene regulation by small non-coding RNA. Biophys Chem 2009; 143:60-9. [DOI: 10.1016/j.bpc.2009.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 04/01/2009] [Accepted: 04/01/2009] [Indexed: 11/22/2022]
|
194
|
Peterson KJ, Dietrich MR, McPeek MA. MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion. Bioessays 2009; 31:736-47. [DOI: 10.1002/bies.200900033] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
195
|
Soukup GA. Little but loud: small RNAs have a resounding affect on ear development. Brain Res 2009; 1277:104-14. [PMID: 19245798 PMCID: PMC2700218 DOI: 10.1016/j.brainres.2009.02.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 02/07/2023]
Abstract
The impact of small RNA function has resonated throughout nearly every aspect of eukaryotic biology and captured the varied interests of researchers, whether they are endeavoring to understand the basis of development and disease or seeking novel therapeutic targets and tools. The genetic regulatory roles of microRNAs (miRNAs) are particularly interesting given that these often highly conserved factors post-transcriptionally silence many complementary target genes by inhibiting messenger RNA translation. In this regard, miRNAs can be considered as counterparts to transcription factors, the ensemble of which establishes the set of expressed genes that define the characteristics of a specific cell type. In this review, evidence supporting a resounding role for small RNAs in development and maturation of sensory epithelia in the mouse inner ear will be considered with an emphasis on the contribution of one hair cell miRNA family (miR-183, miR-96, and miR-182). Although there is much yet to be explored in this fledgling aspect of ear biology, the breadth of miRNA expression and functional requirement for ear development are already sounding off.
Collapse
Affiliation(s)
- Garrett A Soukup
- Department of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|
196
|
Abstract
The message is loud and clear. MicroRNA-96, one in a cluster of three related neurosensory microRNAs, is crucial to the development and maintenance of inner ear hair cells and hearing in mice and humans. Two recent studies show that mutations in the critical seed region of the microRNA underlie the cause of hair cell degeneration and progressive hearing loss. Other recent reports reveal the general requirement of microRNAs for sensory epithelial development and maintenance in Dicer knockout mouse ear. The challenge begins to determine whether microRNAs will resonate as therapeutic agents or target molecules to preserve or restore hearing.
Collapse
Affiliation(s)
- Michael D Weston
- Department of Oral Biology, Creighton University School of Dentistry, California Plaza, Omaha, Nebraska 68178, USA
| | | |
Collapse
|
197
|
Multilevel targeting of hematopoietic stem cell self-renewal, differentiation and apoptosis for leukemia therapy. Pharmacol Ther 2009; 122:264-80. [DOI: 10.1016/j.pharmthera.2009.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 03/03/2009] [Indexed: 12/11/2022]
|
198
|
Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW, Heber S, Peterson KJ. The deep evolution of metazoan microRNAs. Evol Dev 2009; 11:50-68. [PMID: 19196333 DOI: 10.1111/j.1525-142x.2008.00302.x] [Citation(s) in RCA: 388] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
microRNAs (miRNAs) are approximately 22-nucleotide noncoding RNA regulatory genes that are key players in cellular differentiation and homeostasis. They might also play important roles in shaping metazoan macroevolution. Previous studies have shown that miRNAs are continuously being added to metazoan genomes through time, and, once integrated into gene regulatory networks, show only rare mutations within the primary sequence of the mature gene product and are only rarely secondarily lost. However, because the conclusions from these studies were largely based on phylogenetic conservation of miRNAs between model systems like Drosophila and the taxon of interest, it was unclear if these trends would describe most miRNAs in most metazoan taxa. Here, we describe the shared complement of miRNAs among 18 animal species using a combination of 454 sequencing of small RNA libraries with genomic searches. We show that the evolutionary trends elucidated from the model systems are generally true for all miRNA families and metazoan taxa explored: the continuous addition of miRNA families with only rare substitutions to the mature sequence, and only rare instances of secondary loss. Despite this conservation, we document evolutionary stable shifts to the determination of position 1 of the mature sequence, a phenomenon we call seed shifting, as well as the ability to post-transcriptionally edit the 5' end of the mature read, changing the identity of the seed sequence and possibly the repertoire of downstream targets. Finally, we describe a novel type of miRNA in demosponges that, although shows a different pre-miRNA structure, still shows remarkable conservation of the mature sequence in the two sponge species analyzed. We propose that miRNAs might be excellent phylogenetic markers, and suggest that the advent of morphological complexity might have its roots in miRNA innovation.
Collapse
Affiliation(s)
- Benjamin M Wheeler
- Department of Computer Science, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | | | |
Collapse
|
199
|
Abstract
Systems molecular medicine is the science of combining systems biology with molecular analysis and intervention to address clinically relevant questions. MicroRNAs (miRNAs) appear particularly suitable to serve as hubs of regulatory networks underlying complex diseases. Clear experimental evidence for coordinated regulation of a large number of genes by miRNAs, however, is still rare. It leaves open several fundamental questions that are important for determining the value of miRNA in complex regulatory networks and in systems molecular medicine. Physiological genomics is a powerful approach for addressing these open questions.
Collapse
Affiliation(s)
- Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| |
Collapse
|
200
|
Sethi P, Lukiw WJ. Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer's disease temporal lobe neocortex. Neurosci Lett 2009; 459:100-4. [PMID: 19406203 DOI: 10.1016/j.neulet.2009.04.052] [Citation(s) in RCA: 331] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 03/30/2009] [Accepted: 04/22/2009] [Indexed: 02/05/2023]
Abstract
Micro-RNA (miRNA) mediated regulation of messenger RNA (mRNA) complexity in the central nervous system (CNS) is emerging as a critical factor in the control of CNS-specific gene expression during development, plasticity, aging and disease. In these studies, miRNA array and Northern blot based tracking of specific miRNA abundances and decay kinetics in human neural (HN) cells in primary culture and in short post-mortem interval (PMI, approximately 1h) human brain tissues showed a limited stability and relatively short half-life ( approximately 1-3.5h) for specific brain-enriched miRNAs. In short PMI Alzheimer's disease (AD)-affected temporal lobe neocortex, miRNA-9, miRNA-125b and miRNA-146a were found to be significantly up-regulated, an effect that was not seen in several related neurological disorders. The results suggest (a) that unless specifically stabilized, certain brain-enriched miRNAs represent a rapidly executed signaling system employing highly transient effectors of CNS gene expression, and (b) that in AD temporal lobe neocortex specific brain miRNAs are significantly up-regulated in abundance and strongly correlate with the presence of AD-type neuropatholgical change.
Collapse
Affiliation(s)
- Prerna Sethi
- Department of Health Information Management, Louisiana Technical University, Ruston, LA 71272, USA
| | | |
Collapse
|