151
|
Tools and limitations to study the molecular composition of synapses by fluorescence microscopy. Biochem J 2017; 473:3385-3399. [PMID: 27729584 DOI: 10.1042/bcj20160366] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/23/2016] [Indexed: 01/21/2023]
Abstract
The synapse is densely packed with proteins involved in various highly regulated processes. Synaptic protein copy numbers and their stoichiometric distribution have a drastic influence on neuronal integrity and function. Therefore, the molecular analysis of synapses is a key element to understand their architecture and function. The overall structure of the synapse has been revealed with an exquisite amount of details by electron microscopy. However, the molecular composition and the localization of proteins are more easily addressed with fluorescence imaging, especially with the improved resolution achieved by super-resolution microscopy techniques. Notably, the fast improvement of imaging instruments has not been reflected in the optimization of biological sample preparation. During recent years, large efforts have been made to generate affinity probes smaller than conventional antibodies adapted for fluorescent super-resolution imaging. In this review, we briefly discuss the current views on synaptic organization and necessary key technologies to progress in the understanding of synaptic physiology. We also highlight the challenges faced by current fluorescent super-resolution methods, and we describe the prerequisites for an ideal study of synaptic organization.
Collapse
|
152
|
Measuring synaptic vesicles using cellular electrochemistry and nanoscale molecular imaging. Nat Rev Chem 2017. [DOI: 10.1038/s41570-017-0048] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
153
|
Zhou Y, Wu J, Bian Z, Suo J, Zheng G, Dai Q. Fourier ptychographic microscopy using wavelength multiplexing. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:66006. [PMID: 28613346 DOI: 10.1117/1.jbo.22.6.066006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
Fourier ptychographic microscopy (FPM) is a recently developed technique stitching low-resolution images in Fourier domain to realize wide-field high-resolution imaging. However, the time-consuming process of image acquisition greatly narrows its applications in dynamic imaging. We report a wavelength multiplexing strategy to speed up the acquisition process of FPM several folds. A proof-of-concept system is built to verify its feasibility. Distinguished from many current multiplexing methods in Fourier domain, we explore the potential of high-speed FPM in spectral domain. Compatible with most existing FPM methods, our strategy provides an approach to high-speed gigapixel microscopy. Several experimental results are also presented to validate the strategy.
Collapse
Affiliation(s)
- You Zhou
- Tsinghua University, Department of Automation, Beijing, China
| | - Jiamin Wu
- Tsinghua University, Department of Automation, Beijing, China
| | - Zichao Bian
- University of Connecticut, Biomedical Engineering, and Electrical and Computer Engineering, Storrs, Connecticut, United States
| | - Jinli Suo
- Tsinghua University, Department of Automation, Beijing, China
| | - Guoan Zheng
- University of Connecticut, Biomedical Engineering, and Electrical and Computer Engineering, Storrs, Connecticut, United States
| | - Qionghai Dai
- Tsinghua University, Department of Automation, Beijing, China
| |
Collapse
|
154
|
Lévesque É, Bechara WS, Constantineau-Forget L, Pelletier G, Rachel NM, Pelletier JN, Charette AB. General C-H Arylation Strategy for the Synthesis of Tunable Visible Light-Emitting Benzo[a]imidazo[2,1,5-c,d]indolizine Fluorophores. J Org Chem 2017; 82:5046-5067. [PMID: 28441020 DOI: 10.1021/acs.joc.6b02928] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein we report the discovery of the benzo[a]imidazo[2,1,5-c,d]indolizine motif displaying tunable emission covering most of the visible spectrum. The polycyclic core is obtained from readily available amides via a chemoselective process involving Tf2O-mediated amide cyclodehydration, followed by intramolecular C-H arylation. Additionally, these fluorescent heterocycles are easily functionalized using electrophilic reagents, enabling divergent access to varied substitution. The effects of said substitution on the compounds' photophysical properties were rationalized by density functional theory calculations. For some compounds, emission wavelengths are directly correlated to the substituent's Hammett constants. Easily introduced nonconjugated reactive functional groups allow the labeling of biomolecules without modification of emissive properties. This work provides a straightforward platform for the synthesis of new moderately bright fluorescent dyes remarkable for their chemical stability, predictability, and unusually high excitation-emission differential.
Collapse
Affiliation(s)
- Éric Lévesque
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal , P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - William S Bechara
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal , P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - Léa Constantineau-Forget
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal , P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - Guillaume Pelletier
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal , P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - Natalie M Rachel
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal , P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - Joelle N Pelletier
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal , P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - André B Charette
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal , P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
155
|
Roubinet B, Weber M, Shojaei H, Bates M, Bossi ML, Belov VN, Irie M, Hell SW. Fluorescent Photoswitchable Diarylethenes for Biolabeling and Single-Molecule Localization Microscopies with Optical Superresolution. J Am Chem Soc 2017; 139:6611-6620. [PMID: 28437075 DOI: 10.1021/jacs.7b00274] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A modular assembly of water-soluble diarylethenes (DAEs), applicable as biomarkers for optical nanoscopy, is reported. Reversibly photoswitchable 1,2-bis(2-alkyl-6-phenyl-1-benzothiophene-1,1-dioxide-3-yl)perfluorocyclopentenes possessing a fluorescent "closed" form were decorated with one or two methoxy group(s) attached to the para-position(s) of phenyl ring(s) and two, four, or eight carboxylic acid groups. Antibody conjugates of these DAEs feature low aggregation, efficient photoswitching in aqueous buffers, specific staining of cellular structures, and photophysical properties (high emission efficiencies and low cycloreversion quantum yields) enabling their application in superresolution microscopy. Images of tubulin, vimentin, and nuclear pore complexes are presented. The superresolution images can also be acquired by using solely 488 nm light without additional photoactivation with UV light. These DAEs exhibit reversible photoswitching without requiring any additives to the imaging media and open new paths toward the modular design of fluorescent dyes for bioimaging with optical superresolution.
Collapse
Affiliation(s)
- Benoît Roubinet
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | - Michael Weber
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | - Heydar Shojaei
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | - Mark Bates
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | - Mariano L Bossi
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | - Vladimir N Belov
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | - Masahiro Irie
- Research Center for Smart Molecules, Department of Chemistry, Rikkyo University , Nishi-Ikebukuro 3-34-1, Toshimaku, Tokyo 171-8501, Japan
| | - Stefan W Hell
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
156
|
Guillaud L, Dimitrov D, Takahashi T. Presynaptic morphology and vesicular composition determine vesicle dynamics in mouse central synapses. eLife 2017; 6. [PMID: 28432787 PMCID: PMC5423771 DOI: 10.7554/elife.24845] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/18/2017] [Indexed: 11/13/2022] Open
Abstract
Transport of synaptic vesicles (SVs) in nerve terminals is thought to play essential roles in maintenance of neurotransmission. To identify factors modulating SV movements, we performed real-time imaging analysis of fluorescently labeled SVs in giant calyceal and conventional hippocampal terminals. Compared with small hippocampal terminals, SV movements in giant calyceal terminals were faster, longer and kinetically more heterogeneous. Morphological maturation of giant calyceal terminals was associated with an overall reduction in SV mobility and displacement heterogeneity. At the molecular level, SVs over-expressing vesicular glutamate transporter 1 (VGLUT1) showed higher mobility than VGLUT2-expressing SVs. Pharmacological disruption of the presynaptic microtubule network preferentially reduced long directional movements of SVs between release sites. Functionally, synaptic stimulation appeared to recruit SVs to active zones without significantly altering their mobility. Hence, the morphological features of nerve terminals and the molecular signature of vesicles are key elements determining vesicular dynamics and movements in central synapses.
Collapse
Affiliation(s)
- Laurent Guillaud
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | - Dimitar Dimitrov
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | - Tomoyuki Takahashi
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| |
Collapse
|
157
|
Wang Y, Bai Z, Wang Q, Wang G. Experimental Investigations on Fluorescence Excitation and Depletion of Carbon Dots. J Fluoresc 2017; 27:1435-1441. [PMID: 28421321 DOI: 10.1007/s10895-017-2082-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/04/2017] [Indexed: 01/15/2023]
Abstract
Carbon dots (CDs) can be readily synthesized and utilized as attractive fluorescent probes for a variety of applications. In this study, we have synthesized CDs using a previously published method and characterized their photo-physical properties. The resultant CDs possess prominent photo-stability and short emission wavelength in the violet region. Our study reveals that CDs, with weak photo-bleaching, enable them to be employed to achieve high spatial resolution in stimulated emission depletion (STED) microscopy. The depletion efficiency can reach 60%. More importantly, the shorter excitation wavelength of CDs contributes to further improvement of resolution for STED microscopy. An excellent candidate for fluorophores, these CDs have potential to be used in super-resolution imaging for STED microscopy.
Collapse
Affiliation(s)
- Yunxia Wang
- Biomedical Engineering Program & Department of Mechanical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Zhenhua Bai
- Biomedical Engineering Program & Department of Mechanical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Guiren Wang
- Biomedical Engineering Program & Department of Mechanical Engineering, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
158
|
Richter KN, Rizzoli SO, Jähne S, Vogts A, Lovric J. Review of combined isotopic and optical nanoscopy. NEUROPHOTONICS 2017; 4:020901. [PMID: 28466025 PMCID: PMC5400889 DOI: 10.1117/1.nph.4.2.020901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 04/10/2017] [Indexed: 05/31/2023]
Abstract
Investigating the detailed substructure of the cell is beyond the ability of conventional optical microscopy. Electron microscopy, therefore, has been the only option for such studies for several decades. The recent implementation of several super-resolution optical microscopy techniques has rendered the investigation of cellular substructure easier and more efficient. Nevertheless, optical microscopy only provides an image of the present structure of the cell, without any information on its long-temporal changes. These can be investigated by combining super-resolution optics with a nonoptical imaging technique, nanoscale secondary ion mass spectrometry, which investigates the isotopic composition of the samples. The resulting technique, combined isotopic and optical nanoscopy, enables the investigation of both the structure and the "history" of the cellular elements. The age and the turnover of cellular organelles can be read by isotopic imaging, while the structure can be analyzed by optical (fluorescence) approaches. We present these technologies, and we discuss their implementation for the study of biological samples. We conclude that, albeit complex, this type of technology is reliable enough for mass application to cell biology.
Collapse
Affiliation(s)
- Katharina N. Richter
- University of Göttingen Medical Center, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, Department of Neuro- and Sensory Physiology, Göttingen, Germany
| | - Silvio O. Rizzoli
- University of Göttingen Medical Center, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, Department of Neuro- and Sensory Physiology, Göttingen, Germany
| | - Sebastian Jähne
- University of Göttingen Medical Center, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, Department of Neuro- and Sensory Physiology, Göttingen, Germany
- International Max Planck Research School for Neurosciences, Göttingen, Germany
| | - Angela Vogts
- Leibniz-Institute for Baltic Sea Research, Rostock, Germany
| | - Jelena Lovric
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Gothenburg, Sweden
| |
Collapse
|
159
|
A stochastic model of active zone material mediated synaptic vesicle docking and priming at resting active zones. Sci Rep 2017; 7:278. [PMID: 28325932 PMCID: PMC5428245 DOI: 10.1038/s41598-017-00360-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/21/2017] [Indexed: 11/09/2022] Open
Abstract
Synaptic vesicles (SVs) fuse with the presynaptic membrane (PM) at specialized regions called active zones for synaptic transmission. SVs are associated with dense aggregates of macromolecules called active zone material (AZM) that has been thought to be involved in SV release. However, its role has recently begun to be elucidated. Several morphological studies proposed distinctively different AZM mediated SV docking and priming models: sequential and concurrent SV docking/priming. To explore ways to reconcile the contradictory models we develop a stochastic AZM mediated SV docking and priming model. We assume that the position of each connection site of the AZM macromolecules on their SV, directly linking the SV with the PM, varies by random shortening and lengthening of the macromolecules at resting active zones. We also perform computer simulations of SVs near the PM at resting active zones, and the results show that the distribution of the AZM connection sites can significantly affect the SV's docking efficiency and distribution of its contact area with the PM, thus priming and that the area correlates with the shape of the SVs providing a way to account for seemingly irreconcilable observations reported about the spatial relationship of SVs with the PM at active zones.
Collapse
|
160
|
Affiliation(s)
- Hans Blom
- Royal Institute of Technology (KTH), Dept Applied Physics, SciLifeLab, 17165 Solna, Sweden
| | - Jerker Widengren
- Royal Institute of Technology (KTH), Dept Applied Physics, Albanova Univ Center, 10691 Stockholm, Sweden
| |
Collapse
|
161
|
Abstract
Mitochondrial DNA (mtDNA) in cells is organized in nucleoids containing DNA and various proteins. This review discusses questions of organization and structural dynamics of nucleoids as well as their protein components. The structures of mt-nucleoid from different organisms are compared. The currently accepted model of nucleoid organization is described and questions needing answers for better understanding of the fine mechanisms of the mitochondrial genetic apparatus functioning are discussed.
Collapse
Affiliation(s)
- A A Kolesnikov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| |
Collapse
|
162
|
Minoshima M, Kikuchi K. Photostable and photoswitching fluorescent dyes for super-resolution imaging. J Biol Inorg Chem 2017; 22:639-652. [PMID: 28083655 DOI: 10.1007/s00775-016-1435-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/28/2016] [Indexed: 12/18/2022]
Abstract
Super-resolution fluorescence microscopy is a recently developed imaging tool for biological researches. Several methods have been developed for detection of fluorescence signals from molecules in a subdiffraction-limited area, breaking the diffraction limit of the conventional optical microscopies and allowing visualization of detailed macromolecular structures in cells. As objectives are exposed to intense laser in the optical systems, fluorophores for super-resolution microscopy must be tolerated even under severe light irradiation conditions. The fluorophores must also be photoactivatable and photoswitchable for single-molecule localization-based super-resolution microscopy, because the number of active fluorophores must be controlled by light irradiation. This has led to growing interest in these properties in the development of fluorophores. In this mini-review, we focus on the development of photostable and photoswitching fluorescent dyes for super-resolution microscopy. We introduce recent efforts, including improvement of fluorophore photostability and control of photoswitching behaviors of fluorophores based on photochemical and photophysical processes. Understanding and manipulation of chemical reactions in excited fluorophores can develop highly photostable and efficiently photoswitchable fluorophores that are suitable for super-resolution imaging applications.
Collapse
Affiliation(s)
- Masafumi Minoshima
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan. .,Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
163
|
Hauser M, Wojcik M, Kim D, Mahmoudi M, Li W, Xu K. Correlative Super-Resolution Microscopy: New Dimensions and New Opportunities. Chem Rev 2017; 117:7428-7456. [PMID: 28045508 DOI: 10.1021/acs.chemrev.6b00604] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Correlative microscopy, the integration of two or more microscopy techniques performed on the same sample, produces results that emphasize the strengths of each technique while offsetting their individual weaknesses. Light microscopy has historically been a central method in correlative microscopy due to its widespread availability, compatibility with hydrated and live biological samples, and excellent molecular specificity through fluorescence labeling. However, conventional light microscopy can only achieve a resolution of ∼300 nm, undercutting its advantages in correlations with higher-resolution methods. The rise of super-resolution microscopy (SRM) over the past decade has drastically improved the resolution of light microscopy to ∼10 nm, thus creating exciting new opportunities and challenges for correlative microscopy. Here we review how these challenges are addressed to effectively correlate SRM with other microscopy techniques, including light microscopy, electron microscopy, cryomicroscopy, atomic force microscopy, and various forms of spectroscopy. Though we emphasize biological studies, we also discuss the application of correlative SRM to materials characterization and single-molecule reactions. Finally, we point out current limitations and discuss possible future improvements and advances. We thus demonstrate how a correlative approach adds new dimensions of information and provides new opportunities in the fast-growing field of SRM.
Collapse
Affiliation(s)
- Meghan Hauser
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Michal Wojcik
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Doory Kim
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Morteza Mahmoudi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Wan Li
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Ke Xu
- Department of Chemistry, University of California , Berkeley, California 94720, United States.,Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| |
Collapse
|
164
|
Zhang H, Jia T, Chen L, Zhang Y, Zhang S, Feng D, Sun Z, Qiu J. Depleted upconversion luminescence in NaYF4:Yb3+,Tm3+ nanoparticles via simultaneous two-wavelength excitation. Phys Chem Chem Phys 2017; 19:17756-17764. [DOI: 10.1039/c7cp00099e] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Depleted UCL in NaYF4:Yb3+,Tm3+ UCNPs upon simultaneous excitation at 980 nm and 1550 nm is attributed to the STED process.
Collapse
Affiliation(s)
- Hongxin Zhang
- State Key Laboratory of Precision Spectroscopy
- East China Normal University
- Shanghai 200062
- China
| | - Tianqing Jia
- State Key Laboratory of Precision Spectroscopy
- East China Normal University
- Shanghai 200062
- China
| | - Long Chen
- State Key Laboratory of Precision Spectroscopy
- East China Normal University
- Shanghai 200062
- China
| | - Yuchan Zhang
- State Key Laboratory of Precision Spectroscopy
- East China Normal University
- Shanghai 200062
- China
| | - Shian Zhang
- State Key Laboratory of Precision Spectroscopy
- East China Normal University
- Shanghai 200062
- China
| | - Donghai Feng
- State Key Laboratory of Precision Spectroscopy
- East China Normal University
- Shanghai 200062
- China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy
- East China Normal University
- Shanghai 200062
- China
| | - Jianrong Qiu
- Department of Materials Science and Technology
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
165
|
STED Imaging of Golgi Dynamics with Cer-SiR: A Two-Component, Photostable, High-Density Lipid Probe for Live Cells. Methods Mol Biol 2017; 1663:65-78. [PMID: 28924659 DOI: 10.1007/978-1-4939-7265-4_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Long time-lapse super-resolution imaging in live cells requires a labeling strategy that combines a bright, photostable fluorophore with a high-density localization probe. Lipids are ideal high-density localization probes, as they are >100 times more abundant than most membrane-bound proteins and simultaneously demark the boundaries of cellular organelles. Here, we describe Cer-SiR, a two-component, high-density lipid probe that is exceptionally photostable. Cer-SiR is generated in cells via a bioorthogonal reaction of two components: a ceramide lipid tagged with trans-cyclooctene (Cer-TCO) and a reactive, photostable Si-rhodamine dye (SiR-Tz). These components assemble within the Golgi apparatus of live cells to form Cer-SiR. Cer-SiR is benign to cellular function, localizes within the Golgi at a high density, and is sufficiently photostable to enable visualization of Golgi structure and dynamics by 3D confocal or long time-lapse STED microscopy.
Collapse
|
166
|
Ter Veer MJT, Pfeiffer T, Nägerl UV. Two-Photon STED Microscopy for Nanoscale Imaging of Neural Morphology In Vivo. Methods Mol Biol 2017; 1663:45-64. [PMID: 28924658 DOI: 10.1007/978-1-4939-7265-4_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The advent of super-resolution microscopy offers to bridge the gap between electron and light microscopy. It has opened up the possibility of visualizing cellular structures and dynamic signaling events on the "mesoscale" well below the classic diffraction barrier of light microscopy (10-200 nm), while essentially retaining the advantages of fluorescence microscopy concerning multicolor labeling, detection sensitivity, signal contrast, live-cell imaging, and temporal resolution.From among the new super-resolution techniques, STED microscopy stands out as a laser-scanning imaging modality, which enables nanoscale volume-metric imaging of cellular morphology. In combination with two-photon (2P) excitation, STED microscopy facilitates the visualization of the highly complex and dynamic morphology of neurons and glia cells deep inside living brain slices and in the intact brain in vivo.Here, we present an overview of the principles and implementation of 2P-STED microscopy in vivo, providing the neurobiological context and motivation for this technique, and illustrating its capacity by showing images of dendritic spines and microglial processes obtained from living brain tissue.
Collapse
Affiliation(s)
- Mirelle J T Ter Veer
- Interdisciplinary Institute for Neuroscience, UMR 5297 CNRS, 146 rue Leo Saignat, 33077, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Thomas Pfeiffer
- Interdisciplinary Institute for Neuroscience, UMR 5297 CNRS, 146 rue Leo Saignat, 33077, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - U Valentin Nägerl
- Interdisciplinary Institute for Neuroscience, UMR 5297 CNRS, 146 rue Leo Saignat, 33077, Bordeaux, France.
- Université de Bordeaux, Bordeaux, France.
| |
Collapse
|
167
|
Live cell single molecule-guided Bayesian localization super resolution microscopy. Cell Res 2016. [DOI: 10.1038/cr.2015.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
168
|
|
169
|
Wang F, Liu L, Yu H, Wen Y, Yu P, Liu Z, Wang Y, Li WJ. Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging. Nat Commun 2016; 7:13748. [PMID: 27934860 PMCID: PMC5476830 DOI: 10.1038/ncomms13748] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 10/31/2016] [Indexed: 12/19/2022] Open
Abstract
Nanoscale correlation of structural information acquisition with specific-molecule identification provides new insight for studying rare subcellular events. To achieve this correlation, scanning electron microscopy has been combined with super-resolution fluorescent microscopy, despite its destructivity when acquiring biological structure information. Here we propose time-efficient non-invasive microsphere-based scanning superlens microscopy that enables the large-area observation of live-cell morphology or sub-membrane structures with sub-diffraction-limited resolution and is demonstrated by observing biological and non-biological objects. This microscopy operates in both non-invasive and contact modes with ∼200 times the acquisition efficiency of atomic force microscopy, which is achieved by replacing the point of an atomic force microscope tip with an imaging area of microspheres and stitching the areas recorded during scanning, enabling sub-diffraction-limited resolution. Our method marks a possible path to non-invasive cell imaging and simultaneous tracking of specific molecules with nanoscale resolution, facilitating the study of subcellular events over a total cell period.
Collapse
Affiliation(s)
- Feifei Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yangdong Wen
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhu Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yuechao Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| | - Wen Jung Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.,Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong 999077, Hong Kong
| |
Collapse
|
170
|
Herrera C, Mantis NJ, Cole R. Applications in Stimulated Emission Depletion Microscopy: Localization of a Protein Toxin in the Endoplasmic Reticulum Following Retrograde Transport. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:1113-1119. [PMID: 27804914 DOI: 10.1017/s1431927616011879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Retrograde transport is a process in which proteins are trafficked from the plasma membrane and endosomes to biosynthetic and secretory organelles, namely the Golgi apparatus and endoplasmic reticulum (ER). A number of plant and bacterial toxins, including cholera toxin and ricin toxin, exploit retrograde transport to gain entry into host cells, although the specifics of this process have remained difficult to probe by laser scanning confocal microscopy (LSCM). Here we demonstrate the use of super-resolution and live-cell imaging [stimulated emission depletion (STED)] to visualize exogenously applied ricin toxin within the ER. The improved resolution obtained by STED, as compared with LSCM (0.09 versus 0.19 μm), provides a more accurate determination of the amount of ricin that had trafficked to the ER.
Collapse
Affiliation(s)
- Cristina Herrera
- 1Wadsworth Center,Division of Infectious Disease,New York State Department of Health,Albany,NY 12208,USA
| | - Nicholas J Mantis
- 1Wadsworth Center,Division of Infectious Disease,New York State Department of Health,Albany,NY 12208,USA
| | - Richard Cole
- 2Department of Biomedical Sciences,University at Albany School of Public Health,Albany,NY 12201,USA
| |
Collapse
|
171
|
Ruan H, Yu J, Yuan J, Li N, Fang X. Nanoscale Distribution of Transforming Growth Factor Receptor on Post-Golgi Vesicle Revealed by Super-resolution Microscopy. Chem Asian J 2016; 11:3359-3364. [DOI: 10.1002/asia.201600436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/13/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Hefei Ruan
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Molecular Nanostructures and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; 2 ZhongGuanCun North First Street Beijing 100190 P.R. China), Fax: (+86) 10-62653083
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Jianqiang Yu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Molecular Nanostructures and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; 2 ZhongGuanCun North First Street Beijing 100190 P.R. China), Fax: (+86) 10-62653083
| | - Jinghe Yuan
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Molecular Nanostructures and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; 2 ZhongGuanCun North First Street Beijing 100190 P.R. China), Fax: (+86) 10-62653083
| | - Nan Li
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Molecular Nanostructures and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; 2 ZhongGuanCun North First Street Beijing 100190 P.R. China), Fax: (+86) 10-62653083
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Xiaohong Fang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Molecular Nanostructures and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; 2 ZhongGuanCun North First Street Beijing 100190 P.R. China), Fax: (+86) 10-62653083
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| |
Collapse
|
172
|
Joensuu M, Padmanabhan P, Durisic N, Bademosi ATD, Cooper-Williams E, Morrow IC, Harper CB, Jung W, Parton RG, Goodhill GJ, Papadopulos A, Meunier FA. Subdiffractional tracking of internalized molecules reveals heterogeneous motion states of synaptic vesicles. J Cell Biol 2016; 215:277-292. [PMID: 27810917 PMCID: PMC5080683 DOI: 10.1083/jcb.201604001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/30/2016] [Indexed: 11/23/2022] Open
Abstract
Joensuu et al. describe a tool for subdiffractional tracking of internalized molecules. They reveal that synaptic vesicles exhibit stochastic switching between heterogeneous diffusive and transport states in live hippocampal nerve terminals. Our understanding of endocytic pathway dynamics is severely restricted by the diffraction limit of light microscopy. To address this, we implemented a novel technique based on the subdiffractional tracking of internalized molecules (sdTIM). This allowed us to image anti–green fluorescent protein Atto647N-tagged nanobodies trapped in synaptic vesicles (SVs) from live hippocampal nerve terminals expressing vesicle-associated membrane protein 2 (VAMP2)–pHluorin with 36-nm localization precision. Our results showed that, once internalized, VAMP2–pHluorin/Atto647N–tagged nanobodies exhibited a markedly lower mobility than on the plasma membrane, an effect that was reversed upon restimulation in presynapses but not in neighboring axons. Using Bayesian model selection applied to hidden Markov modeling, we found that SVs oscillated between diffusive states or a combination of diffusive and transport states with opposite directionality. Importantly, SVs exhibiting diffusive motion were relatively less likely to switch to the transport motion. These results highlight the potential of the sdTIM technique to provide new insights into the dynamics of endocytic pathways in a wide variety of cellular settings.
Collapse
Affiliation(s)
- Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pranesh Padmanabhan
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nela Durisic
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Adekunle T D Bademosi
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Isabel C Morrow
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Callista B Harper
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - WooRam Jung
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Geoffrey J Goodhill
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.,School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andreas Papadopulos
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia .,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia .,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
173
|
|
174
|
Li J, Liu W, Li T, Rozen I, Zhao J, Bahari B, Kante B, Wang J. Swimming Microrobot Optical Nanoscopy. NANO LETTERS 2016; 16:6604-6609. [PMID: 27608508 DOI: 10.1021/acs.nanolett.6b03303] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Optical imaging plays a fundamental role in science and technology but is limited by the ability of lenses to resolve small features below the fundamental diffraction limit. A variety of nanophotonic devices, such as metamaterial superlenses and hyperlenses, as well as microsphere lenses, have been proposed recently for subdiffraction imaging. The implementation of these micro/nanostructured lenses as practical and efficient imaging approaches requires locomotive capabilities to probe specific sites and scan large areas. However, directed motion of nanoscale objects in liquids must overcome low Reynolds number viscous flow and Brownian fluctuations, which impede stable and controllable scanning. Here we introduce a new imaging method, named swimming microrobot optical nanoscopy, based on untethered chemically powered microrobots as autonomous probes for subdiffraction optical scanning and imaging. The microrobots are made of high-refractive-index microsphere lenses and powered by local catalytic reactions to swim and scan over the sample surface. Autonomous motion and magnetic guidance of microrobots enable large-area, parallel and nondestructive scanning with subdiffraction resolution, as illustrated using soft biological samples such as neuron axons, protein microtubulin, and DNA nanotubes. Incorporating such imaging capacities in emerging nanorobotics technology represents a major step toward ubiquitous nanoscopy and smart nanorobots for spectroscopy and imaging.
Collapse
Affiliation(s)
- Jinxing Li
- Department of Nanoengineering, University of California San Diego , La Jolla, California 92093, United States
| | - Wenjuan Liu
- Department of Nanoengineering, University of California San Diego , La Jolla, California 92093, United States
| | - Tianlong Li
- Department of Nanoengineering, University of California San Diego , La Jolla, California 92093, United States
| | - Isaac Rozen
- Department of Nanoengineering, University of California San Diego , La Jolla, California 92093, United States
| | - Jason Zhao
- Department of Nanoengineering, University of California San Diego , La Jolla, California 92093, United States
| | - Babak Bahari
- Department of Electrical and Computer Engineering, University of California San Diego , La Jolla, California 92093, United States
| | - Boubacar Kante
- Department of Electrical and Computer Engineering, University of California San Diego , La Jolla, California 92093, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego , La Jolla, California 92093, United States
| |
Collapse
|
175
|
Lauterbach MA, Guillon M, Desnos C, Khamsing D, Jaffal Z, Darchen F, Emiliani V. Superresolving dendritic spine morphology with STED microscopy under holographic photostimulation. NEUROPHOTONICS 2016; 3:041806. [PMID: 27413766 PMCID: PMC4916265 DOI: 10.1117/1.nph.3.4.041806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
Emerging all-optical methods provide unique possibilities for noninvasive studies of physiological processes at the cellular and subcellular scale. On the one hand, superresolution microscopy enables observation of living samples with nanometer resolution. On the other hand, light can be used to stimulate cells due to the advent of optogenetics and photolyzable neurotransmitters. To exploit the full potential of optical stimulation, light must be delivered to specific cells or even parts of cells such as dendritic spines. This can be achieved with computer generated holography (CGH), which shapes light to arbitrary patterns by phase-only modulation. We demonstrate here in detail how CGH can be incorporated into a stimulated emission depletion (STED) microscope for photostimulation of neurons and monitoring of nanoscale morphological changes. We implement an original optical system to allow simultaneous holographic photostimulation and superresolution STED imaging. We present how synapses can be clearly visualized in live cells using membrane stains either with lipophilic organic dyes or with fluorescent proteins. We demonstrate the capabilities of this microscope to precisely monitor morphological changes of dendritic spines after stimulation. These all-optical methods for cell stimulation and monitoring are expected to spread to various fields of biological research in neuroscience and beyond.
Collapse
Affiliation(s)
- Marcel Andreas Lauterbach
- University Paris Descartes, Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR8250, Sorbonne Paris Cité, 45, rue des Saints Pères, Paris 75006, France
| | - Marc Guillon
- University Paris Descartes, Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR8250, Sorbonne Paris Cité, 45, rue des Saints Pères, Paris 75006, France
| | - Claire Desnos
- University Paris Descartes, Synapic Trafficking Group, Neurophotonics Laboratory, CNRS UMR8250, Sorbonne Paris Cité, 45, rue des Saints Pères, Paris 75006, France
| | - Dany Khamsing
- University Paris Descartes, Synapic Trafficking Group, Neurophotonics Laboratory, CNRS UMR8250, Sorbonne Paris Cité, 45, rue des Saints Pères, Paris 75006, France
| | - Zahra Jaffal
- University Paris Descartes, Synapic Trafficking Group, Neurophotonics Laboratory, CNRS UMR8250, Sorbonne Paris Cité, 45, rue des Saints Pères, Paris 75006, France
| | - François Darchen
- University Paris Descartes, Synapic Trafficking Group, Neurophotonics Laboratory, CNRS UMR8250, Sorbonne Paris Cité, 45, rue des Saints Pères, Paris 75006, France
| | - Valentina Emiliani
- University Paris Descartes, Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR8250, Sorbonne Paris Cité, 45, rue des Saints Pères, Paris 75006, France
| |
Collapse
|
176
|
Dudenkova VV, Zakharov YN. Multimodal combinational holographic and fluorescence fluctuation microscopy to obtain spatial super-resolution. ACTA ACUST UNITED AC 2016. [DOI: 10.1088/1742-6596/737/1/012069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
177
|
Ashley TT, Gan EL, Pan J, Andersson SB. Tracking single fluorescent particles in three dimensions via extremum seeking. BIOMEDICAL OPTICS EXPRESS 2016; 7:3355-3376. [PMID: 27699104 PMCID: PMC5030016 DOI: 10.1364/boe.7.003355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 05/27/2023]
Abstract
The ability to track single fluorescent particles in three-dimensions with sub-diffraction limit precision as well as sub-millisecond temporal resolution has enabled the understanding of many biophysical phenomena at the nanometer scale. While there are several techniques for achieving this, most require complicated experimental setups that are expensive to implement. These methods can offer superb performance but their complexity may be overwhelming to the end-user whose aim is only to understand the feature being imaged. In this work, we describe a method for tracking a single fluorescent particle using a standard confocal or multi-photon microscope configuration. It relies only on the assumption that the relative position of the measurement point and the particle can be actuated and that the point spread function has a global maximum that coincides with the particle's position. The method uses intensity feedback to calculate real-time position commands that "seek" the extremum of the point spread function as the particle moves through its environment. We demonstrate the method by tracking a diffusing quantum dot in a hydrogel on a standard epifluorescent confocal microscope.
Collapse
Affiliation(s)
- Trevor T. Ashley
- Department of Mechanical Engineering, Boston University, Boston, MA 02215,
USA
| | - Eric L. Gan
- Dougherty Valley High School, San Ramon, California, 94582,
USA
| | - Jane Pan
- Medfield High School, Medfield, MA, 02052,
USA
| | - Sean B. Andersson
- Department of Mechanical Engineering, Boston University, Boston, MA 02215,
USA
- Division of Systems Engineering, Boston University, Boston, MA, 02215,
USA
| |
Collapse
|
178
|
Wolff G, Hagen C, Grünewald K, Kaufmann R. Towards correlative super-resolution fluorescence and electron cryo-microscopy. Biol Cell 2016; 108:245-58. [PMID: 27225383 PMCID: PMC5524168 DOI: 10.1111/boc.201600008] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 12/31/2022]
Abstract
Correlative light and electron microscopy (CLEM) has become a powerful tool in life sciences. Particularly cryo-CLEM, the combination of fluorescence cryo-microscopy (cryo-FM) permitting for non-invasive specific multi-colour labelling, with electron cryo-microscopy (cryo-EM) providing the undisturbed structural context at a resolution down to the Ångstrom range, has enabled a broad range of new biological applications. Imaging rare structures or events in crowded environments, such as inside a cell, requires specific fluorescence-based information for guiding cryo-EM data acquisition and/or to verify the identity of the structure of interest. Furthermore, cryo-CLEM can provide information about the arrangement of specific proteins in the wider structural context of their native nano-environment. However, a major obstacle of cryo-CLEM currently hindering many biological applications is the large resolution gap between cryo-FM (typically in the range of ∼400 nm) and cryo-EM (single nanometre to the Ångstrom range). Very recently, first proof of concept experiments demonstrated the feasibility of super-resolution cryo-FM imaging and the correlation with cryo-EM. This opened the door towards super-resolution cryo-CLEM, and thus towards direct correlation of structural details from both imaging modalities.
Collapse
Affiliation(s)
- Georg Wolff
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Christoph Hagen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kay Grünewald
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Rainer Kaufmann
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
179
|
Wang Y, Guo Q, Chen H, Chen M, Yang S, Xie S. Time-encoded structured illumination microscopy: toward ultrafast superresolution imaging. OPTICS LETTERS 2016; 41:3755-3758. [PMID: 27519081 DOI: 10.1364/ol.41.003755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An imaging strategy based on optical time-encoded structured illumination microscopy (TE-SIM) opens the way toward ultrafast superresolution imaging. A proof-of-principle experiment is conducted and the introduced TE-SIM accelerates the generation rate of sinusoidal fringe patterns to an unprecedented speed (dozens of megahertz). At such a high speed, superresolution imaging that surpasses the diffraction limit by a factor of 1.4 is demonstrated. This imaging strategy with high temporal and spatial resolution has great potential in many exciting applications, such as dynamic live cell imaging or high-throughput screening.
Collapse
|
180
|
STED imaging of tau filaments in Alzheimer's disease cortical grey matter. J Struct Biol 2016; 195:345-352. [PMID: 27402534 DOI: 10.1016/j.jsb.2016.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 11/20/2022]
Abstract
Alzheimer's disease (AD) involves the propagation of filaments of tau protein throughout the cerebral cortex. Imaging tau filaments and oligomers in human brain at high resolution would help contribute insight into the mechanism and progression of tauopathic diseases. STED microscopy is a nano-scale imaging technique and we aimed to test the abilities of this method for resolving tau structures within human brain. Using autopsied 50μm AD brain sections, we demonstrate that STED microscopy can resolve immunolabelled tau filaments at 77nm resolution. Ribbon-like tau filaments imaged by STED appeared smooth along their axis with limited axial undulations. STED also resolved 70-80nm wide tau puncta. Of the fluorophores tested, STAR635p was optimal for STED imaging in this tissue. This was in part due to brain tissue autofluorescence within the lower wavelength ranges (488-590nm). Further, the stability and minimal photobleaching of STAR635p allowed STED z-stacks of neurons packed with tau filaments (neurofibrillary tangles) to be collated. There was no loss of x-y image resolution of individual tau filaments through the 20μm z-stack. This demonstrates that STED can contribute to nano-scale analysis and characterisation of pathologies within banked human autopsied brain tissue. Resolving tau structures at this level of resolution provides promising avenues for understanding mechanisms of pathology propagation in the different tauopathies as well as illuminating what contributes to disease heterogeneity.
Collapse
|
181
|
Laine RF, Kaminski Schierle GS, van de Linde S, Kaminski CF. From single-molecule spectroscopy to super-resolution imaging of the neuron: a review. Methods Appl Fluoresc 2016; 4:022004. [PMID: 28809165 PMCID: PMC5390958 DOI: 10.1088/2050-6120/4/2/022004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/09/2016] [Accepted: 05/19/2016] [Indexed: 12/03/2022]
Abstract
For more than 20 years, single-molecule spectroscopy has been providing invaluable insights into nature at the molecular level. The field has received a powerful boost with the development of the technique into super-resolution imaging methods, ca. 10 years ago, which overcome the limitations imposed by optical diffraction. Today, single molecule super-resolution imaging is routinely used in the study of macromolecular function and structure in the cell. Concomitantly, computational methods have been developed that provide information on numbers and positions of molecules at the nanometer-scale. In this overview, we outline the technical developments that have led to the emergence of localization microscopy techniques from single-molecule spectroscopy. We then provide a comprehensive review on the application of the technique in the field of neuroscience research.
Collapse
Affiliation(s)
- Romain F Laine
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, Cambridge University, Pembroke Street, Cambridge, CB2 3RA, UK
| | - Gabriele S Kaminski Schierle
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, Cambridge University, Pembroke Street, Cambridge, CB2 3RA, UK
| | - Sebastian van de Linde
- Department of Biotechnology and Biophysics, Julius-Maximilians-University, Am Hubland, D-97074 Würzburg, Germany
| | - Clemens F Kaminski
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, Cambridge University, Pembroke Street, Cambridge, CB2 3RA, UK
| |
Collapse
|
182
|
Shuvaev AN, Salmin VV, Kuvacheva NV, Pozhilenkova EA, Morgun AV, Lopatina OL, Salmina AB, Illarioshkin SN. Current advances in cell electrophysiology: applications for the analysis of intercellular communications within the neurovascular unit. Rev Neurosci 2016; 27:365-76. [PMID: 26641963 DOI: 10.1515/revneuro-2015-0047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/21/2015] [Indexed: 01/09/2023]
Abstract
Patch clamp is a golden standard for studying (patho)physiological processes affecting membranes of excitable cells. This method is rather labor-intensive and requires well-trained professionals and long-lasting experimental procedures; therefore, accurate designing of the experiments with patch clamp methodology as well as collecting and analyzing the data obtained are essential for the widely spread implementation of this method into the routine research practice. Recently, the method became very prospective not only for the characterization of single excitable cells but also for the detailed assessment of intercellular communication, i.e. within the neurovascular unit. Here, we analyze the main advantages and disadvantages of patch clamp method, with special focus on the tendencies in clamping technique improvement with the help of patch electrodes for the assessment of intercellular communication in the brain.
Collapse
|
183
|
Meyer SA, Ozbay BN, Potcoava M, Salcedo E, Restrepo D, Gibson EA. Super-resolution imaging of ciliary microdomains in isolated olfactory sensory neurons using a custom two-color stimulated emission depletion microscope. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:66017. [PMID: 27367253 PMCID: PMC4923803 DOI: 10.1117/1.jbo.21.6.066017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/03/2016] [Indexed: 06/06/2023]
Abstract
We performed stimulated emission depletion (STED) imaging of isolated olfactory sensory neurons (OSNs) using a custom-built microscope. The STED microscope uses a single pulsed laser to excite two separate fluorophores, Atto 590 and Atto 647N. A gated timing circuit combined with temporal interleaving of the different color excitation/STED laser pulses filters the two channel detection and greatly minimizes crosstalk. We quantified the instrument resolution to be ∼81 and ∼44 nm, for the Atto 590 and Atto 647N channels. The spatial separation between the two channels was measured to be under 10 nm, well below the resolution limit. The custom-STED microscope is incorporated onto a commercial research microscope allowing brightfield, differential interference contrast, and epifluorescence imaging on the same field of view. We performed immunolabeling of OSNs in mice to image localization of ciliary membrane proteins involved in olfactory transduction. We imaged Ca2+-permeable cyclic nucleotide gated (CNG) channel (Atto 594) and adenylyl cyclase type III (ACIII) (Atto 647N) in distinct cilia. STED imaging resolved well-separated subdiffraction limited clusters for each protein. We quantified the size of each cluster to have a mean value of 88±48 nm and 124±43 nm, for CNG and ACIII, respectively. STED imaging showed separated clusters that were not resolvable in confocal images.
Collapse
Affiliation(s)
- Stephanie A. Meyer
- University of Colorado Denver Anschutz Medical Campus, Department of Bioengineering, MS 8607, 12700 East 19th Avenue, Aurora, Colorado 80045-2560, United States
| | - Baris N. Ozbay
- University of Colorado Denver Anschutz Medical Campus, Department of Bioengineering, MS 8607, 12700 East 19th Avenue, Aurora, Colorado 80045-2560, United States
| | - Mariana Potcoava
- University of Colorado Denver Anschutz Medical Campus, Department of Bioengineering, MS 8607, 12700 East 19th Avenue, Aurora, Colorado 80045-2560, United States
| | - Ernesto Salcedo
- University of Colorado Denver Anschutz Medical Campus, Department of Cell and Developmental Biology, MS 8108, 12801 East 17th Avenue, Aurora, Colorado 80045-2560, United States
| | - Diego Restrepo
- University of Colorado Denver Anschutz Medical Campus, Department of Cell and Developmental Biology, MS 8108, 12801 East 17th Avenue, Aurora, Colorado 80045-2560, United States
| | - Emily A. Gibson
- University of Colorado Denver Anschutz Medical Campus, Department of Bioengineering, MS 8607, 12700 East 19th Avenue, Aurora, Colorado 80045-2560, United States
| |
Collapse
|
184
|
Young LJ, Ströhl F, Kaminski CF. A Guide to Structured Illumination TIRF Microscopy at High Speed with Multiple Colors. J Vis Exp 2016. [PMID: 27285848 PMCID: PMC4927749 DOI: 10.3791/53988] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Optical super-resolution imaging with structured illumination microscopy (SIM) is a key technology for the visualization of processes at the molecular level in the chemical and biomedical sciences. Although commercial SIM systems are available, systems that are custom designed in the laboratory can outperform commercial systems, the latter typically designed for ease of use and general purpose applications, both in terms of imaging fidelity and speed. This article presents an in-depth guide to building a SIM system that uses total internal reflection (TIR) illumination and is capable of imaging at up to 10 Hz in three colors at a resolution reaching 100 nm. Due to the combination of SIM and TIRF, the system provides better image contrast than rival technologies. To achieve these specifications, several optical elements are used to enable automated control over the polarization state and spatial structure of the illumination light for all available excitation wavelengths. Full details on hardware implementation and control are given to achieve synchronization between excitation light pattern generation, wavelength, polarization state, and camera control with an emphasis on achieving maximum acquisition frame rate. A step-by-step protocol for system alignment and calibration is presented and the achievable resolution improvement is validated on ideal test samples. The capability for video-rate super-resolution imaging is demonstrated with living cells.
Collapse
Affiliation(s)
- Laurence J Young
- Department of Chemical Engineering and Biotechnology, University of Cambridge;
| | - Florian Ströhl
- Department of Chemical Engineering and Biotechnology, University of Cambridge
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge
| |
Collapse
|
185
|
Abstract
Super resolution imaging is becoming an increasingly important tool in the arsenal of methods available to cell biologists. In recognition of its potential, the Nobel Prize for chemistry was awarded to three investigators involved in the development of super resolution imaging methods in 2014. The availability of commercial instruments for super resolution imaging has further spurred the development of new methods and reagents designed to take advantage of super resolution techniques. Super resolution offers the advantages traditionally associated with light microscopy, including the use of gentle fixation and specimen preparation methods, the ability to visualize multiple elements within a single specimen, and the potential to visualize dynamic changes in living specimens over time. However, imaging of living cells over time is difficult and super resolution imaging is computationally demanding. In this review, we discuss the advantages/disadvantages of different super resolution systems for imaging fixed live specimens, with particular regard to cytoskeleton structures.
Collapse
Affiliation(s)
- Eric A Shelden
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Zachary T Colburn
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Jonathan C R Jones
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
186
|
Chin LK, Lee CH, Chen BC. Imaging live cells at high spatiotemporal resolution for lab-on-a-chip applications. LAB ON A CHIP 2016; 16:2014-24. [PMID: 27121367 DOI: 10.1039/c5lc01556a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Conventional optical imaging techniques are limited by the diffraction limit and difficult-to-image biomolecular and sub-cellular processes in living specimens. Novel optical imaging techniques are constantly evolving with the desire to innovate an imaging tool that is capable of seeing sub-cellular processes in a biological system, especially in three dimensions (3D) over time, i.e. 4D imaging. For fluorescence imaging on live cells, the trade-offs among imaging depth, spatial resolution, temporal resolution and photo-damage are constrained based on the limited photons of the emitters. The fundamental solution to solve this dilemma is to enlarge the photon bank such as the development of photostable and bright fluorophores, leading to the innovation in optical imaging techniques such as super-resolution microscopy and light sheet microscopy. With the synergy of microfluidic technology that is capable of manipulating biological cells and controlling their microenvironments to mimic in vivo physiological environments, studies of sub-cellular processes in various biological systems can be simplified and investigated systematically. In this review, we provide an overview of current state-of-the-art super-resolution and 3D live cell imaging techniques and their lab-on-a-chip applications, and finally discuss future research trends in new and breakthrough research areas of live specimen 4D imaging in controlled 3D microenvironments.
Collapse
Affiliation(s)
- Lip Ket Chin
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Chau-Hwang Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan. and Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan and Department of Physics, National Taiwan University, Taipei 10671, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
187
|
|
188
|
Hanne J, Zila V, Heilemann M, Müller B, Kräusslich HG. Super-resolved insights into human immunodeficiency virus biology. FEBS Lett 2016; 590:1858-76. [PMID: 27117435 DOI: 10.1002/1873-3468.12186] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/13/2016] [Accepted: 04/21/2016] [Indexed: 11/06/2022]
Abstract
The recent development of fluorescence microscopy approaches overcoming the diffraction limit of light microscopy opened possibilities for studying small-scale cellular processes. The spatial resolution achieved by these novel techniques, together with the possibility to perform live-cell and multicolor imaging, make them ideally suited for visualization of native viruses and subviral structures within the complex environment of a host cell or organ, thus providing fundamentally new possibilities for investigating virus-cell interactions. Here, we review the use of super-resolution microscopy approaches to study virus-cell interactions, and discuss recent insights into human immunodeficiency virus biology obtained by exploiting these novel techniques.
Collapse
Affiliation(s)
- Janina Hanne
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Germany.,Optical Nanoscopy Division, German Cancer Research Center, Heidelberg, Germany
| | - Vojtech Zila
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Germany
| |
Collapse
|
189
|
Sergé A. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy. Front Cell Dev Biol 2016; 4:36. [PMID: 27200348 PMCID: PMC4854873 DOI: 10.3389/fcell.2016.00036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022] Open
Abstract
The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis.
Collapse
Affiliation(s)
- Arnauld Sergé
- Centre de Cancérologie de Marseille, Équipe "Interactions Leuco/Stromales", Institut Paoli-Calmettes, Institut National de la Santé et de la Recherche Médicale U1068, Centre National de la Recherche Scientifique UMR7258, Aix-Marseille Université UM105 Marseille, France
| |
Collapse
|
190
|
Li Z, Fang C, Su Y, Liu H, Lang F, Li X, Chen G, Lu D, Zhou J. Visualizing the replicating HSV-1 virus using STED super-resolution microscopy. Virol J 2016; 13:65. [PMID: 27062411 PMCID: PMC4826541 DOI: 10.1186/s12985-016-0521-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/03/2016] [Indexed: 01/27/2023] Open
Abstract
Background Replication of viral genome is the central event during the lytic infectious cycle of herpes simplex virus 1 (HSV-1). However, the details of HSV-1 replication process are still elusive due to the limitations of current molecular and conventional fluorescent microscopy methods. Stimulated emission depletion (STED) microscopy is one of the recently available super-resolution techniques allowing observation at sub-diffraction resolution. Methods To gain new insight into HSV-1 replication, we used a combination of stimulated emission depletion microscopy, fluorescence in situ hybridization (FISH) and immunofluorescence (IF) to observe the HSV-1 replication process. Results Using two colored probes labeling the same region of HSV-1 genome, the two probes highly correlated in both pre-replication and replicating genomes. In comparison, when probes from different regions were used, the average distance between the two probes increased after the virus enters replication, suggesting that the HSV-1 genome undergoes dynamic structure changes from a compact to a relaxed formation and occupies larger space as it enters replication. Using FISH and IF, viral single strand binding protein ICP8 was seen closely positioned with HSV-1 genome. In contrast, ICP8 and host RNA polymerase II were less related. This result suggests that ICP8 marked regions of DNA replication are spatially separated from regions of active transcription, represented by the elongating form of RNA polymerase II within the viral replication compartments. Comparing HSV-1 genomes at early stage of replication with that in later stage, we also noted overall increases among different values. These results suggest stimulated emission depletion microscopy is capable of investigating events during HSV-1 replication. Conclusion 1) Replicating HSV-1 genome could be observed by super-resolution microscopy; 2) Viral genome expands spatially during replication; 3) Viral replication and transcription are partitioned into different sub-structures within the replication compartments.
Collapse
Affiliation(s)
- Zhuoran Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, NO. 32 Jiaochang Donglu, Kunming, Yunnan, 650223, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ce Fang
- Leica Microsystems Trading Limited, Shanghai, 201206, People's Republic of China
| | - Yuanyuan Su
- Leica Microsystems Trading Limited, Shanghai, 201206, People's Republic of China
| | - Hongmei Liu
- Leica Microsystems Trading Limited, Shanghai, 201206, People's Republic of China
| | - Fengchao Lang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, NO. 32 Jiaochang Donglu, Kunming, Yunnan, 650223, People's Republic of China
| | - Xin Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, NO. 32 Jiaochang Donglu, Kunming, Yunnan, 650223, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guijun Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, NO. 32 Jiaochang Donglu, Kunming, Yunnan, 650223, People's Republic of China
| | - Danfeng Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, NO. 32 Jiaochang Donglu, Kunming, Yunnan, 650223, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jumin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, NO. 32 Jiaochang Donglu, Kunming, Yunnan, 650223, People's Republic of China.
| |
Collapse
|
191
|
Franek M, Suchánková J, Sehnalová P, Krejčí J, Legartová S, Kozubek S, Večeřa J, Sorokin DV, Bártová E. Advanced Image Acquisition and Analytical Techniques for Studies of Living Cells and Tissue Sections. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:326-341. [PMID: 26903193 DOI: 10.1017/s1431927616000052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Studies on fixed samples or genome-wide analyses of nuclear processes are useful for generating snapshots of a cell population at a particular time point. However, these experimental approaches do not provide information at the single-cell level. Genome-wide studies cannot assess variability between individual cells that are cultured in vitro or originate from different pathological stages. Immunohistochemistry and immunofluorescence are fundamental experimental approaches in clinical laboratories and are also widely used in basic research. However, the fixation procedure may generate artifacts and prevents monitoring of the dynamics of nuclear processes. Therefore, live-cell imaging is critical for studying the kinetics of basic nuclear events, such as DNA replication, transcription, splicing, and DNA repair. This review is focused on the advanced microscopy analyses of the cells, with a particular focus on live cells. We note some methodological innovations and new options for microscope systems that can also be used to study tissue sections. Cornerstone methods for the biophysical research of living cells, such as fluorescence recovery after photobleaching and fluorescence resonance energy transfer, are also discussed, as are studies on the effects of radiation at the individual cellular level.
Collapse
Affiliation(s)
- Michal Franek
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | - Jana Suchánková
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | - Petra Sehnalová
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | - Jana Krejčí
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | - Soňa Legartová
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | | | | | - Eva Bártová
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| |
Collapse
|
192
|
Luo N, Yan A, Yang Z. Measuring Exocytosis Rate Using Corrected Fluorescence Recovery After Photoconversion. Traffic 2016; 17:554-64. [PMID: 26822068 DOI: 10.1111/tra.12380] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 12/31/2022]
Abstract
Exocytosis plays crucial roles in regulating the distribution and function of plasma membrane (PM) and extracellular matrix proteins. However, measuring the exocytosis rate of a specific protein by conventional methods is very difficult because of exocytosis-independent trafficking such as endocytosis, which also affects membrane protein distribution. Here, we describe a novel method, corrected fluorescence recovery after photoconversion, in which exocytosis-dependent and -independent trafficking events are measured simultaneously to accurately determine exocytosis rate. In this method, the protein-of-interest is tagged with Dendra2, a green-to-red photoconvertible fluorescent protein. Following the photoconversion of PM-localized Dendra2, both the recovery of the green signal and the changes in the photoconverted red signal are measured, and the rate of exocytosis is calculated from the changing rates of these two signals.
Collapse
Affiliation(s)
- Nan Luo
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, University of California, Riverside, CA, USA.,Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - An Yan
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, University of California, Riverside, CA, USA.,Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA.,Current address: Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, University of California, Riverside, CA, USA.,Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
193
|
Two-colour live-cell nanoscale imaging of intracellular targets. Nat Commun 2016; 7:10778. [PMID: 26940217 PMCID: PMC4785223 DOI: 10.1038/ncomms10778] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 01/19/2016] [Indexed: 12/18/2022] Open
Abstract
Stimulated emission depletion (STED) nanoscopy allows observations of subcellular dynamics at the nanoscale. Applications have, however, been severely limited by the lack of a versatile STED-compatible two-colour labelling strategy for intracellular targets in living cells. Here we demonstrate a universal labelling method based on the organic, membrane-permeable dyes SiR and ATTO590 as Halo and SNAP substrates. SiR and ATTO590 constitute the first suitable dye pair for two-colour STED imaging in living cells below 50 nm resolution. We show applications with mitochondria, endoplasmic reticulum, plasma membrane and Golgi-localized proteins, and demonstrate continuous acquisition for up to 3 min at 2-s time resolution.
Collapse
|
194
|
Li D, Shao L, Chen BC, Zhang X, Zhang M, Moses B, Milkie DE, Beach JR, Hammer JA, Pasham M, Kirchhausen T, Baird MA, Davidson MW, Xu P, Betzig E. ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 2016; 349:aab3500. [PMID: 26315442 DOI: 10.1126/science.aab3500] [Citation(s) in RCA: 430] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Super-resolution fluorescence microscopy is distinct among nanoscale imaging tools in its ability to image protein dynamics in living cells. Structured illumination microscopy (SIM) stands out in this regard because of its high speed and low illumination intensities, but typically offers only a twofold resolution gain. We extended the resolution of live-cell SIM through two approaches: ultrahigh numerical aperture SIM at 84-nanometer lateral resolution for more than 100 multicolor frames, and nonlinear SIM with patterned activation at 45- to 62-nanometer resolution for approximately 20 to 40 frames. We applied these approaches to image dynamics near the plasma membrane of spatially resolved assemblies of clathrin and caveolin, Rab5a in early endosomes, and α-actinin, often in relationship to cortical actin. In addition, we examined mitochondria, actin, and the Golgi apparatus dynamics in three dimensions.
Collapse
Affiliation(s)
- Dong Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Lin Shao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Bi-Chang Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Xi Zhang
- Key Laboratory of RNA Biology and Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. College of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Mingshu Zhang
- Key Laboratory of RNA Biology and Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Brian Moses
- Coleman Technologies, 5131 West Chester Pike, Newtown Square, PA 19073, USA
| | - Daniel E Milkie
- Coleman Technologies, 5131 West Chester Pike, Newtown Square, PA 19073, USA
| | - Jordan R Beach
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John A Hammer
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mithun Pasham
- Department of Cell Biology and Pediatrics, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Tomas Kirchhausen
- Department of Cell Biology and Pediatrics, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Michelle A Baird
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA. National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, FL 32310, USA
| | - Michael W Davidson
- National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, FL 32310, USA
| | - Pingyong Xu
- Key Laboratory of RNA Biology and Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
195
|
Abstract
The majority of studies of the living cell rely on capturing images using fluorescence microscopy. Unfortunately, for centuries, diffraction of light was limiting the spatial resolution in the optical microscope: structural and molecular details much finer than about half the wavelength of visible light (~200 nm) could not be visualized, imposing significant limitations on this otherwise so promising method. The surpassing of this resolution limit in far-field microscopy is currently one of the most momentous developments for studying the living cell, as the move from microscopy to super-resolution microscopy or 'nanoscopy' offers opportunities to study problems in biophysical and biomedical research at a new level of detail. This review describes the principles and modalities of present fluorescence nanoscopes, as well as their potential for biophysical and cellular experiments. All the existing nanoscopy variants separate neighboring features by transiently preparing their fluorescent molecules in states of different emission characteristics in order to make the features discernible. Usually these are fluorescent 'on' and 'off' states causing the adjacent molecules to emit sequentially in time. Each of the variants can in principle reach molecular spatial resolution and has its own advantages and disadvantages. Some require specific transitions and states that can be found only in certain fluorophore subfamilies, such as photoswitchable fluorophores, while other variants can be realized with standard fluorescent labels. Similar to conventional far-field microscopy, nanoscopy can be utilized for dynamical, multi-color and three-dimensional imaging of fixed and live cells, tissues or organisms. Lens-based fluorescence nanoscopy is poised for a high impact on future developments in the life sciences, with the potential to help solve long-standing quests in different areas of scientific research.
Collapse
|
196
|
Coto Hernández I, Castello M, Lanzanò L, d'Amora M, Bianchini P, Diaspro A, Vicidomini G. Two-Photon Excitation STED Microscopy with Time-Gated Detection. Sci Rep 2016; 6:19419. [PMID: 26757892 PMCID: PMC4725939 DOI: 10.1038/srep19419] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/10/2015] [Indexed: 11/24/2022] Open
Abstract
We report on a novel two-photon excitation stimulated emission depletion (2PE-STED) microscope based on time-gated detection. The time-gated detection allows for the effective silencing of the fluorophores using moderate stimulated emission beam intensity. This opens the possibility of implementing an efficient 2PE-STED microscope with a stimulated emission beam running in a continuous-wave. The continuous-wave stimulated emission beam tempers the laser architecture's complexity and cost, but the time-gated detection degrades the signal-to-noise ratio (SNR) and signal-to-background ratio (SBR) of the image. We recover the SNR and the SBR through a multi-image deconvolution algorithm. Indeed, the algorithm simultaneously reassigns early-photons (normally discarded by the time-gated detection) to their original positions and removes the background induced by the stimulated emission beam. We exemplify the benefits of this implementation by imaging sub-cellular structures. Finally, we discuss of the extension of this algorithm to future all-pulsed 2PE-STED implementationd based on time-gated detection and a nanosecond laser source.
Collapse
Affiliation(s)
- Iván Coto Hernández
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
- Department of Physics, University of Genoa, Via Dodecaneso 33, 16146, Genoa, Italy
| | - Marco Castello
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via Opera Pia 13, 16145, Genoa, Italy
| | - Luca Lanzanò
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Marta d'Amora
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Paolo Bianchini
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Alberto Diaspro
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
- Department of Physics, University of Genoa, Via Dodecaneso 33, 16146, Genoa, Italy
- Nikon Imaging Center, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Giuseppe Vicidomini
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
197
|
Follain G, Mercier L, Osmani N, Harlepp S, Goetz JG. Seeing is believing: multi-scale spatio-temporal imaging towards in vivo cell biology. J Cell Sci 2016; 130:23-38. [DOI: 10.1242/jcs.189001] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT
Life is driven by a set of biological events that are naturally dynamic and tightly orchestrated from the single molecule to entire organisms. Although biochemistry and molecular biology have been essential in deciphering signaling at a cellular and organismal level, biological imaging has been instrumental for unraveling life processes across multiple scales. Imaging methods have considerably improved over the past decades and now allow to grasp the inner workings of proteins, organelles, cells, organs and whole organisms. Not only do they allow us to visualize these events in their most-relevant context but also to accurately quantify underlying biomechanical features and, so, provide essential information for their understanding. In this Commentary, we review a palette of imaging (and biophysical) methods that are available to the scientific community for elucidating a wide array of biological events. We cover the most-recent developments in intravital imaging, light-sheet microscopy, super-resolution imaging, and correlative light and electron microscopy. In addition, we illustrate how these technologies have led to important insights in cell biology, from the molecular to the whole-organism resolution. Altogether, this review offers a snapshot of the current and state-of-the-art imaging methods that will contribute to the understanding of life and disease.
Collapse
Affiliation(s)
- Gautier Follain
- Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Inserm U1109, MN3T, Strasbourg F-67200, France
- Université de Strasbourg, Strasbourg F-67000, France
- LabEx Medalis, Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg F-67000, France
| | - Luc Mercier
- Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Inserm U1109, MN3T, Strasbourg F-67200, France
- Université de Strasbourg, Strasbourg F-67000, France
- LabEx Medalis, Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg F-67000, France
| | - Naël Osmani
- Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Inserm U1109, MN3T, Strasbourg F-67200, France
- Université de Strasbourg, Strasbourg F-67000, France
- LabEx Medalis, Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg F-67000, France
| | - Sébastien Harlepp
- Université de Strasbourg, Strasbourg F-67000, France
- DON: Optique ultrarapide et nanophotonique, IPCMS UMR7504, Strasbourg 67000, France
- LabEx NIE, Université de Strasbourg, Strasbourg F-67000, France
| | - Jacky G. Goetz
- Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Inserm U1109, MN3T, Strasbourg F-67200, France
- Université de Strasbourg, Strasbourg F-67000, France
- LabEx Medalis, Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg F-67000, France
| |
Collapse
|
198
|
Abstract
The characteristic lengths of molecular arrangement in primary cilia are below the diffraction limit of light, challenging structural and functional studies of ciliary proteins. Superresolution microscopy can reach up to a 20 nm resolution, significantly improving the ability to map molecules in primary cilia. Here we describe detailed experimental procedure of STED microscopy imaging and dSTORM imaging, two of the most powerful superresolution imaging techniques. Specifically, we emphasize the use of these two methods on imaging proteins in primary cilia.
Collapse
Affiliation(s)
- T Tony Yang
- Institute of Atomic and Molecular Sciences, Academia Sinica, No 1, Roosevelt Rd. Sec 4, Taipei, 10617, Taiwan
| | - Weng Man Chong
- Institute of Atomic and Molecular Sciences, Academia Sinica, No 1, Roosevelt Rd. Sec 4, Taipei, 10617, Taiwan
| | - Jung-Chi Liao
- Institute of Atomic and Molecular Sciences, Academia Sinica, No 1, Roosevelt Rd. Sec 4, Taipei, 10617, Taiwan.
| |
Collapse
|
199
|
Tønnesen J, Nägerl UV. Dendritic Spines as Tunable Regulators of Synaptic Signals. Front Psychiatry 2016; 7:101. [PMID: 27340393 PMCID: PMC4899469 DOI: 10.3389/fpsyt.2016.00101] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/27/2016] [Indexed: 01/17/2023] Open
Abstract
Neurons are perpetually receiving vast amounts of information in the form of synaptic input from surrounding cells. The majority of input occurs at thousands of dendritic spines, which mediate excitatory synaptic transmission in the brain, and is integrated by the dendritic and somatic compartments of the postsynaptic neuron. The functional role of dendritic spines in shaping biochemical and electrical signals transmitted via synapses has long been intensely studied. Yet, many basic questions remain unanswered, in particular regarding the impact of their nanoscale morphology on electrical signals. Here, we review our current understanding of the structure and function relationship of dendritic spines, focusing on the controversy of electrical compartmentalization and the potential role of spine structural changes in synaptic plasticity.
Collapse
Affiliation(s)
- Jan Tønnesen
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France; CNRS UMR 5297, Bordeaux, France
| | - U Valentin Nägerl
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France; CNRS UMR 5297, Bordeaux, France
| |
Collapse
|
200
|
Wu R, Zhan Q, Liu H, Wen X, Wang B, He S. Optical depletion mechanism of upconverting luminescence and its potential for multi-photon STED-like microscopy. OPTICS EXPRESS 2015; 23:32401-32412. [PMID: 26699029 DOI: 10.1364/oe.23.032401] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Simulated emission depletion (STED) microscopy is very powerful, but still suffers from small tissue penetration depth, photobleaching of fluorescent probes and complicated imaging systems. Here, we propose an optical luminescence depletion mechanism employing upconverting nanoparticles (UCNPs) and explore its potential for multi-photon STED-like microscopy. With the addition of Yb³⁺ ions in NaYF₄:Er³⁺ UCNPs, the two-photon green emission of Er³⁺ under 795-nm excitation was successfully depleted by 1140-nm laser through the synergetic effect of the excited state absorption and the interionic energy transfer. This STED-like depletion mechanism was systematically investigated using steady-state rate equations, evidenced by the surprising emerging of 478-nm emission. The green emission depletion efficiency was about 30%, limited by the current laser source. Our work indicates that NaYF₄:Yb³⁺/Er³⁺ UCNPs will be potential probes for multi-photon super-resolution microscopy with many advantages, including long-wavelength-induced large penetration, non-photobleaching and non-photoblinking properties, cost-effective and simplified imaging systems.
Collapse
|