151
|
Altemeier WA, Schlesinger SY, Buell CA, Parks WC, Chen P. Syndecan-1 controls cell migration by activating Rap1 to regulate focal adhesion disassembly. J Cell Sci 2012; 125:5188-95. [PMID: 22899717 DOI: 10.1242/jcs.109884] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After injury, residual epithelial cells coordinate contextual clues from cell-cell and cell-matrix interactions to polarize and migrate over the wound bed. Protrusion formation, cell body translocation and rear retraction is a repetitive process that allows the cell to move across the substratum. Fundamental to this process is the assembly and disassembly of focal adhesions that facilitate cell adhesion and protrusion formation. Here, we identified syndecan-1 as a regulator of focal adhesion disassembly in migrating lung epithelial cells. Syndecan-1 altered the dynamic exchange of adhesion complex proteins, which in turn regulates migration speed. Moreover, we provide evidence that syndecan-1 controls this entire process through Rap1. Thus, syndecan-1 restrains migration in lung epithelium by activating Rap1 to slow focal adhesion disassembly.
Collapse
Affiliation(s)
- William A Altemeier
- Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
152
|
Becker SF, Langhe R, Huang C, Wedlich D, Kashef J. Giving the right tug for migration: Cadherins in tissue movements. Arch Biochem Biophys 2012; 524:30-42. [DOI: 10.1016/j.abb.2012.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/16/2012] [Accepted: 02/17/2012] [Indexed: 01/01/2023]
|
153
|
Kshitiz, Hubbi ME, Ahn EH, Downey J, Afzal J, Kim DH, Rey S, Chang C, Kundu A, Semenza GL, Abraham RM, Levchenko A. Matrix rigidity controls endothelial differentiation and morphogenesis of cardiac precursors. Sci Signal 2012; 5:ra41. [PMID: 22669846 PMCID: PMC11055637 DOI: 10.1126/scisignal.2003002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Tissue development and regeneration involve tightly coordinated and integrated processes: selective proliferation of resident stem and precursor cells, differentiation into target somatic cell type, and spatial morphological organization. The role of the mechanical environment in the coordination of these processes is poorly understood. We show that multipotent cells derived from native cardiac tissue continually monitored cell substratum rigidity and showed enhanced proliferation, endothelial differentiation, and morphogenesis when the cell substratum rigidity closely matched that of myocardium. Mechanoregulation of these diverse processes required p190RhoGAP, a guanosine triphosphatase-activating protein for RhoA, acting through RhoA-dependent and -independent mechanisms. Natural or induced decreases in the abundance of p190RhoGAP triggered a series of developmental events by coupling cell-cell and cell-substratum interactions to genetic circuits controlling differentiation.
Collapse
Affiliation(s)
- Kshitiz
- Department of Biomedical Engineering, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
- Vascular Biology, Institute for Cell Engineering, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Maimon E. Hubbi
- Vascular Biology, Institute for Cell Engineering, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Eun Hyun Ahn
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - John Downey
- Department of Biomedical Engineering, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Junaid Afzal
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sergio Rey
- Vascular Biology, Institute for Cell Engineering, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Connie Chang
- Department of Biomedical Engineering, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Arnab Kundu
- Department of Biomedical Engineering, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
- Vascular Biology, Institute for Cell Engineering, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Gregg L. Semenza
- Vascular Biology, Institute for Cell Engineering, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
- Departments of Pediatrics, Oncology, Radiation Oncology, and Biological Chemistry, The Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Roselle M. Abraham
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Andre Levchenko
- Department of Biomedical Engineering, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
- Vascular Biology, Institute for Cell Engineering, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
154
|
Abstract
The development of multicellular organisms relies on a small set of construction techniques-assembly, sculpting, and folding-that are spatially and temporally regulated in a combinatorial manner to produce the diversity of tissues within the body. These basic processes are well conserved across tissue types and species at the level of both genes and mechanisms. Here we review the signaling, patterning, and biomechanical transformations that occur in two well-studied model systems of epithelial folding to illustrate both the complexity and modularity of tissue development. In particular, we discuss the possibility of a spatial code specifying morphogenesis. To decipher this code, engineers and scientists need to establish quantitative experimental systems and to develop models that address mechanisms at multiple levels of organization, from gene sequence to tissue biomechanics. In turn, quantitative models of embryogenesis can inspire novel methods for creating synthetic organs and treating degenerative tissue diseases.
Collapse
Affiliation(s)
- Jeremiah J Zartman
- Department of Chemical Engineering, Carl Icahn Laboratory, Princeton University, Princeton, NJ 08544, USA.
| | | |
Collapse
|
155
|
Abstract
The local microenvironment, or niche, of a cancer cell plays important roles in cancer development. A major component of the niche is the extracellular matrix (ECM), a complex network of macromolecules with distinctive physical, biochemical, and biomechanical properties. Although tightly controlled during embryonic development and organ homeostasis, the ECM is commonly deregulated and becomes disorganized in diseases such as cancer. Abnormal ECM affects cancer progression by directly promoting cellular transformation and metastasis. Importantly, however, ECM anomalies also deregulate behavior of stromal cells, facilitate tumor-associated angiogenesis and inflammation, and thus lead to generation of a tumorigenic microenvironment. Understanding how ECM composition and topography are maintained and how their deregulation influences cancer progression may help develop new therapeutic interventions by targeting the tumor niche.
Collapse
Affiliation(s)
- Pengfei Lu
- Breakthrough Breast Cancer Research Unit, University of Manchester, Manchester M20 4BX, England, UK
| | | | | |
Collapse
|
156
|
Nowak RB, Fowler VM. Tropomodulin 1 constrains fiber cell geometry during elongation and maturation in the lens cortex. J Histochem Cytochem 2012; 60:414-27. [PMID: 22473940 DOI: 10.1369/0022155412440881] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lens fiber cells exhibit a high degree of hexagonal packing geometry, determined partly by tropomodulin 1 (Tmod1), which stabilizes the spectrin-actin network on lens fiber cell membranes. To ascertain whether Tmod1 is required during epithelial cell differentiation to fiber cells or during fiber cell elongation and maturation, the authors quantified the extent of fiber cell disorder in the Tmod1-null lens and determined locations of disorder by confocal microscopy and computational image analysis. First, nearest neighbor analysis of fiber cell geometry in Tmod1-null lenses showed that disorder is confined to focal patches. Second, differentiating epithelial cells at the equator aligned into ordered meridional rows in Tmod1-null lenses, with disordered patches first observed in elongating fiber cells. Third, as fiber cells were displaced inward in Tmod1-null lenses, total disordered area increased due to increased sizes (but not numbers) of individual disordered patches. The authors conclude that Tmod1 is required first to coordinate fiber cell shapes and interactions during tip migration and elongation and second to stabilize ordered fiber cell geometry during maturation in the lens cortex. An unstable spectrin-actin network without Tmod1 may result in imbalanced forces along membranes, leading to fiber cell rearrangements during elongation, followed by propagation of disorder as fiber cells mature.
Collapse
|
157
|
Tang VW, Brieher WM. α-Actinin-4/FSGS1 is required for Arp2/3-dependent actin assembly at the adherens junction. ACTA ACUST UNITED AC 2012; 196:115-30. [PMID: 22232703 PMCID: PMC3255975 DOI: 10.1083/jcb.201103116] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have developed an in vitro assay to study actin assembly at cadherin-enriched cell junctions. Using this assay, we demonstrate that cadherin-enriched junctions can polymerize new actin filaments but cannot capture preexisting filaments, suggesting a mechanism involving de novo synthesis. In agreement with this hypothesis, inhibition of Arp2/3-dependent nucleation abolished actin assembly at cell-cell junctions. Reconstitution biochemistry using the in vitro actin assembly assay identified α-actinin-4/focal segmental glomerulosclerosis 1 (FSGS1) as an essential factor. α-Actinin-4 specifically localized to sites of actin incorporation on purified membranes and at apical junctions in Madin-Darby canine kidney cells. Knockdown of α-actinin-4 decreased total junctional actin and inhibited actin assembly at the apical junction. Furthermore, a point mutation of α-actinin-4 (K255E) associated with FSGS failed to support actin assembly and acted as a dominant negative to disrupt actin dynamics at junctional complexes. These findings demonstrate that α-actinin-4 plays an important role in coupling actin nucleation to assembly at cadherin-based cell-cell adhesive contacts.
Collapse
Affiliation(s)
- Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
158
|
Tworzydlo W, Kisiel E. A very simple mode of follicular cell diversification in Euborellia fulviceps (Dermaptera, Anisolabididae) involves actively migrating cells. Zoolog Sci 2012; 28:802-8. [PMID: 22035302 DOI: 10.2108/zsj.28.802] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ovaries of Euborellia fulviceps are composed of five elongated ovarioles of meroistic-polytrophic type. The individual ovariole has three discernible regions: the terminal filament, germarium, and vitellarium. The terminal filament is a stalk of flattened, disc-shaped somatic cells. In the germarium, germline cells in subsequent stages of differentiation are located, and the vitellarium comprises numerous ovarian follicles arranged linearly. The individual ovarian follicles within the vitellarium are separated by prominent interfollicular stalks. The follicles are composed by two germline cells only: an oocyte and a single, polyploid nurse cell, which are surrounded by a monolayer of somatic follicular cells (FCs). During subsequent stages of oogenesis, initially uniform follicular epithelium begins to diversify into morphologically and physiologically distinct subpopulations. In E. fulviceps, the FC diversification mode is rather simple and leads to the formation of only three different FC subpopulations: (1) cuboidal FCs covering the oocyte, (2) stretched FCs surrounding the nurse cell and (3) FCs actively migrating between oocyte and a nurse cell. We found that FCs from the latter subpopulation send long and thin filopodium-like and microtubule-rich processes penetrating between the oocyte and nurse cell membranes. This suggests that, in E. fulviceps, cells from at least one FCs subpopulation show the ability to change position within an ovarian follicle by means of active migration.
Collapse
Affiliation(s)
- Waclaw Tworzydlo
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| | | |
Collapse
|
159
|
Omelchenko T, Hall A. Myosin-IXA regulates collective epithelial cell migration by targeting RhoGAP activity to cell-cell junctions. Curr Biol 2012; 22:278-88. [PMID: 22305756 DOI: 10.1016/j.cub.2012.01.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 12/02/2011] [Accepted: 01/06/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND Epithelial tissues undergo extensive collective movements during morphogenesis, repair, and renewal. Collective epithelial cell migration requires the intercellular coordination of cell-cell adhesions and the establishment of anterior-posterior polarity, while maintaining apical-basal polarity, but how this is achieved at the molecular level is not well understood. RESULTS Using an RNA interference-based screen to identify Rho family GTPase regulators required for the collective migration of human bronchial epithelial cells, we identified myosin-IXA (gene name: Myo9a). Depletion of myosin-IXA, a RhoGAP and actin motor protein, in collectively migrating cells led to altered organization of the actin cytoskeleton and tension-dependent disruption of cell-cell adhesions, followed by an inability to form new adhesions resulting in cell scattering. Closer examination revealed that myosin-IXA is required during the formation of junction-associated actin bundles soon after cell-cell contact. Structure-function analysis of myosin-IXA revealed that the motor domain is necessary and sufficient for binding to actin filaments, whereas expression of the RhoGAP domain partially rescued the cell scattering phenotype induced by myosin-IXA depletion. Finally, a fluorescence resonance energy transfer biosensor revealed a significant increase in Rho activity at nascent cell-cell contacts in myosin-IXA depleted cells compared to controls. CONCLUSION We propose that myosin-IXA locally regulates Rho and the assembly of thin actin bundles associated with nascent cell-cell adhesions and that this is required to sustain the collective migration of epithelial cells.
Collapse
Affiliation(s)
- Tatiana Omelchenko
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | |
Collapse
|
160
|
Tissue architecture in the Caenorhabditis elegans gonad depends on interactions among fibulin-1, type IV collagen and the ADAMTS extracellular protease. Genetics 2012; 190:1379-88. [PMID: 22298704 DOI: 10.1534/genetics.111.133173] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecules in the extracellular matrix (ECM) regulate cellular behavior in both development and pathology. Fibulin-1 is a conserved ECM protein. The Caenorhabditis elegans ortholog, FBL-1, regulates gonad-arm elongation and expansion by acting antagonistically to GON-1, an ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family protease. The elongation of gonad arms is directed by gonadal distal tip cells (DTCs). Here we report that a dominant mutation in the EMB-9/type IV collagen α1 subunit can compensate for loss of FBL-1 activity in gonadogenesis. A specific amino acid substitution in the noncollagenous 1 (NC1) domain of EMB-9 suppressed the fbl-1 null mutant. FBL-1 was required to maintain wild-type EMB-9 in the basement membrane (BM), whereas mutant EMB-9 was retained in the absence of FBL-1. EMB-9 (either wild type or mutant) localization in the BM enhanced PAT-3/β-integrin expression in DTCs. In addition, overexpression of PAT-3 partially rescued the DTC migration defects in fbl-1 mutants, suggesting that EMB-9 acts in part through PAT-3 to control DTC migration. In contrast to the suppression of fbl-1(tk45), mutant EMB-9 enhanced the gonadal defects of gon-1(e1254), suggesting that it gained a function similar to that of wild-type FBL-1, which promotes DTC migration by inhibiting GON-1. We propose that FBL-1 and GON-1 control EMB-9 accumulation in the BM and promote PAT-3 expression to control DTC migration.
Collapse
|
161
|
Hurd TR, DeGennaro M, Lehmann R. Redox regulation of cell migration and adhesion. Trends Cell Biol 2011; 22:107-15. [PMID: 22209517 DOI: 10.1016/j.tcb.2011.11.002] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/08/2011] [Accepted: 11/08/2011] [Indexed: 01/11/2023]
Abstract
Reactive oxygen species (ROS), particularly hydrogen peroxide, and the proteins that regulate them play important roles in the migration and adhesion of cells. Stimulation of cell surface receptors with growth factors and chemoattractants generates ROS, which relay signals from the cell surface to key signaling proteins inside the cell. ROS act within cells to promote migration and also in nonmigrating cells to influence the behavior of migrating cells. Hydrogen peroxide has also been suggested to act as a chemoattractant in its own right, drawing immune cells to wounds. We discuss recent progress made towards understanding how organisms use ROS, and to what degree they depend on them, during the related processes of cell migration and adhesion.
Collapse
Affiliation(s)
- Thomas Ryan Hurd
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
162
|
Carmona-Fontaine C, Theveneau E, Tzekou A, Tada M, Woods M, Page K, Parsons M, Lambris J, Mayor R. Complement fragment C3a controls mutual cell attraction during collective cell migration. Dev Cell 2011; 21:1026-37. [PMID: 22118769 PMCID: PMC3272547 DOI: 10.1016/j.devcel.2011.10.012] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 10/03/2011] [Accepted: 10/14/2011] [Indexed: 12/16/2022]
Abstract
Collective cell migration is a mode of movement crucial for morphogenesis and cancer metastasis. However, little is known about how migratory cells coordinate collectively. Here we show that mutual cell-cell attraction (named here coattraction) is required to maintain cohesive clusters of migrating mesenchymal cells. Coattraction can counterbalance the natural tendency of cells to disperse via mechanisms such as contact inhibition and epithelial-to-mesenchymal transition. Neural crest cells are coattracted via the complement fragment C3a and its receptor C3aR, revealing an unexpected role of complement proteins in early vertebrate development. Loss of coattraction disrupts collective and coordinated movements of these cells. We propose that coattraction and contact inhibition act in concert to allow cell collectives to self-organize and respond efficiently to external signals, such as chemoattractants and repellents.
Collapse
Affiliation(s)
- Carlos Carmona-Fontaine
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Eric Theveneau
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Apostolia Tzekou
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-6055, USA
| | - Masazumi Tada
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Mae Woods
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
- Department of Mathematics and CoMPLEX, University College London, Gower Street, London WC1E 6BT, UK
| | - Karen M. Page
- Department of Mathematics and CoMPLEX, University College London, Gower Street, London WC1E 6BT, UK
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, King's College London, London WC2R 2LS, UK
| | - John D. Lambris
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-6055, USA
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
163
|
Abstract
Intercellular surface tension is a key variable in understanding cellular mechanics. However, conventional methods are not well suited for measuring the absolute magnitude of intercellular surface tension because these methods require determination of the effective viscosity of the whole cell, a quantity that is difficult to measure. In this study, we present a novel method for estimating the intercellular surface tension at single-cell resolution. This method exploits the cytoplasmic flow that accompanies laser-induced cell fusion when the pressure difference between cells is large. Because the cytoplasmic viscosity can be measured using well-established technology, this method can be used to estimate the absolute magnitudes of tension. We applied this method to two-cell-stage embryos of the nematode Caenorhabditis elegans and estimated the intercellular surface tension to be in the 30-90 µN m(-1) range. Our estimate was in close agreement with cell-medium surface tensions measured at single-cell resolution.
Collapse
Affiliation(s)
- Masashi Fujita
- Laboratory for Developmental Dynamics, RIKEN Quantitative Biology Center, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | | |
Collapse
|
164
|
Zubler F, Hauri A, Pfister S, Whatley AM, Cook M, Douglas R. An instruction language for self-construction in the context of neural networks. Front Comput Neurosci 2011; 5:57. [PMID: 22163218 PMCID: PMC3233694 DOI: 10.3389/fncom.2011.00057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 11/14/2011] [Indexed: 11/13/2022] Open
Abstract
Biological systems are based on an entirely different concept of construction than human artifacts. They construct themselves by a process of self-organization that is a systematic spatio-temporal generation of, and interaction between, various specialized cell types. We propose a framework for designing gene-like codes for guiding the self-construction of neural networks. The description of neural development is formalized by defining a set of primitive actions taken locally by neural precursors during corticogenesis. These primitives can be combined into networks of instructions similar to biochemical pathways, capable of reproducing complex developmental sequences in a biologically plausible way. Moreover, the conditional activation and deactivation of these instruction networks can also be controlled by these primitives, allowing for the design of a "genetic code" containing both coding and regulating elements. We demonstrate in a simulation of physical cell development how this code can be incorporated into a single progenitor, which then by replication and differentiation, reproduces important aspects of corticogenesis.
Collapse
Affiliation(s)
- Frederic Zubler
- Institute of Neuroinformatics, University of Zürich / Swiss Federal Institute of Technology Zürich Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
165
|
Arima S, Nishiyama K, Ko T, Arima Y, Hakozaki Y, Sugihara K, Koseki H, Uchijima Y, Kurihara Y, Kurihara H. Angiogenic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement. Development 2011; 138:4763-76. [DOI: 10.1242/dev.068023] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Angiogenesis is a complex process, which is accomplished by reiteration of modules such as sprouting, elongation and bifurcation, that configures branching vascular networks. However, details of the individual and collective behaviors of vascular endothelial cells (ECs) during angiogenic morphogenesis remain largely unknown. Herein, we established a time-lapse imaging and computer-assisted analysis system that quantitatively characterizes behaviors in sprouting angiogenesis. Surprisingly, ECs moved backwards and forwards, overtaking each other even at the tip, showing an unknown mode of collective cell movement with dynamic ‘cell-mixing’. Mosaic analysis, which enabled us to monitor the behavior of individual cells in a multicellular structure, confirmed the ‘cell-mixing’ phenomenon of ECs that occurs at the whole-cell level. Furthermore, an in vivo EC-tracking analysis revealed evidence of cell-mixing and overtaking at the tip in developing murine retinal vessels. In parametrical analysis, VEGF enhanced tip cell behavior and directed EC migration at the stalk during branch elongation. These movements were counter-regulated by EC-EC interplay via γ-secretase-dependent Dll4-Notch signaling, and might be promoted by EC-mural cell interplay. Finally, multiple regression analysis showed that these molecule-mediated tip cell behaviors and directed EC migration contributed to effective branch elongation. Taken together, our findings provide new insights into the individual and collective EC movements driving angiogenic morphogenesis. The methodology used for this analysis might serve to bridge the gap in our understanding between individual cell behavior and branching morphogenesis.
Collapse
Affiliation(s)
- Satoshi Arima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koichi Nishiyama
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Toshiyuki Ko
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuichiro Arima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuji Hakozaki
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kei Sugihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Koseki
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasunobu Uchijima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yukiko Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
166
|
Migeotte I, Grego-Bessa J, Anderson KV. Rac1 mediates morphogenetic responses to intercellular signals in the gastrulating mouse embryo. Development 2011; 138:3011-20. [PMID: 21693517 DOI: 10.1242/dev.059766] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The establishment of the mammalian body plan depends on signal-regulated cell migration and adhesion, processes that are controlled by the Rho family of GTPases. Here we use a conditional allele of Rac1, the only Rac gene expressed early in development, to define its roles in the gastrulating mouse embryo. Embryos that lack Rac1 in the epiblast (Rac1Δepi) initiate development normally: the signaling pathways required for gastrulation are active, definitive endoderm and all classes of mesoderm are specified, and the neural plate is formed. After the initiation of gastrulation, Rac1Δepi embryos have an enlarged primitive streak, make only a small amount of paraxial mesoderm, and the lateral anlage of the heart do not fuse at the midline. Because these phenotypes are also seen in Nap1 mutants, we conclude that Rac1 acts upstream of the Nap1/WAVE complex to promote migration of the nascent mesoderm. In addition to migration phenotypes, Rac1Δepi cells fail to adhere to matrix, which leads to extensive cell death. Cell death is largely rescued in Rac1Δepi mutants that are heterozygous for a null mutation in Pten, providing evidence that Rac1 is required to link signals from the basement membrane to activation of the PI3K-Akt pathway in vivo. Surprisingly, the frequency of apoptosis is greater in the anterior half of the embryo, suggesting that cell survival can be promoted either by matrix adhesion or by signals from the posterior primitive streak. Rac1 also has essential roles in morphogenesis of the posterior notochordal plate (the node) and the midline.
Collapse
Affiliation(s)
- Isabelle Migeotte
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | |
Collapse
|
167
|
Abstract
Large-scale cancer genomics, proteomics and RNA-sequencing efforts are currently mapping in fine detail the genetic and biochemical alterations that occur in cancer. However, it is becoming clear that it is difficult to integrate and interpret these data and to translate them into treatments. This difficulty is compounded by the recognition that cancer cells evolve, and that initiation, progression and metastasis are influenced by a wide variety of factors. To help tackle this challenge, the US National Cancer Institute Physical Sciences-Oncology Centers initiative is bringing together physicists, cancer biologists, chemists, mathematicians and engineers. How are we beginning to address cancer from the perspective of the physical sciences?
Collapse
Affiliation(s)
- Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA. michor@jimmy. harvard.edu
| | | | | | | |
Collapse
|
168
|
Taguchi K, Ishiuchi T, Takeichi M. Mechanosensitive EPLIN-dependent remodeling of adherens junctions regulates epithelial reshaping. ACTA ACUST UNITED AC 2011; 194:643-56. [PMID: 21844208 PMCID: PMC3160587 DOI: 10.1083/jcb.201104124] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The F-actin–stabilizing protein EPLIN is a mechanosensitive regulator of adherens junction remodeling in epithelial cells. The zonula adherens (ZA), a type of adherens junction (AJ), plays a major role in epithelial cell–cell adhesions. It remains unknown how the ZA is remodeled during epithelial reorganization. Here we found that the ZA was converted to another type of AJ with punctate morphology (pAJ) at the margins of epithelial colonies. The F-actin–stabilizing protein EPLIN (epithelial protein lost in neoplasm), which functions to maintain the ZA via its association with αE-catenin, was lost in the pAJs. Consistently, a fusion of αE-catenin and EPLIN contributed to the formation of ZA but not pAJs. We show that junctional tension was important for retaining EPLIN at AJs, and another force derived from actin fibers laterally attached to the pAJs inhibited EPLIN–AJ association. Vinculin was required for general AJ formation, and it cooperated with EPLIN to maintain the ZA. These findings suggest that epithelial cells remodel their junctional architecture by responding to mechanical forces, and the αE-catenin–bound EPLIN acts as a mechanosensitive regulator for this process.
Collapse
Affiliation(s)
- Katsutoshi Taguchi
- RIKEN Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | |
Collapse
|
169
|
Tavana H, Kaylan K, Bersano-Begey T, Luker KE, Luker GD, Takayama S. Polymeric Aqueous Biphasic System Rehydration Facilitates High Throughput Cell Exclusion Patterning For Cell Migration Studies. ADVANCED FUNCTIONAL MATERIALS 2011; 21:2920-2926. [PMID: 23519702 PMCID: PMC3601801 DOI: 10.1002/adfm.201002559] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This paper describes a cell-exclusion patterning method facilitated by a polymeric aqueous two-phase system. The immersion aqueous phase (polyethylene glycol) containing cells rehydrates a dried disk of the denser phase (dextran) on the substrate to form a dextran droplet. With the right properties of the phase-forming polymers, the rehydrating droplet remains immiscible with the immersion phase. Proper formulation of the two-phase system ensures that the interfacial tension between the rehydrating droplet and the surrounding aqueous phase prevents cells from crossing the interface so that cells only adhere to the regions of the substrate around the dextran phase droplet. Washing out the patterning two-phase reagents reveals a cell monolayer containing a well-defined circular gap that serves as the migration niche for cells of the monolayer. Migration of cells into the cell-excluded area is readily visualized and quantified over time. A 96-well plate format of this "gap healing" migration assay demonstrates the ability to detect inhibition of cell migration by known cytoskeleton targeting agents. This straightforward method, which only requires a conventional liquid handler and readily prepared polymer solutions, opens new opportunities for high throughput cell migration assays.
Collapse
Affiliation(s)
- Hossein Tavana
- Department of Biomedical Engineering, University of Akron, Akron, OH 44325 ; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | | | | | | | | | | |
Collapse
|
170
|
Abstract
All cells exist within the context of a three-dimensional microenvironment in which they are exposed to mechanical and physical cues. These cues can be disrupted through perturbations to mechanotransduction, from the nanoscale-level to the tissue-level, which compromises tensional homeostasis to promote pathologies such as cardiovascular disease and cancer. The mechanisms of such perturbations suggest that a complex interplay exists between the extracellular microenvironment and cellular function. Furthermore, sustained disruptions in tensional homeostasis can be caused by alterations in the extracellular matrix, allowing it to serve as a mechanically based memory-storage device that can perpetuate a disease or restore normal tissue behaviour.
Collapse
|
171
|
Lecuit T, Lenne PF, Munro E. Force generation, transmission, and integration during cell and tissue morphogenesis. Annu Rev Cell Dev Biol 2011; 27:157-84. [PMID: 21740231 DOI: 10.1146/annurev-cellbio-100109-104027] [Citation(s) in RCA: 404] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell shape changes underlie a large set of biological processes ranging from cell division to cell motility. Stereotyped patterns of cell shape changes also determine tissue remodeling events such as extension or invagination. In vitro and cell culture systems have been essential to understanding the fundamental physical principles of subcellular mechanics. These are now complemented by studies in developing organisms that emphasize how cell and tissue morphogenesis emerge from the interplay between force-generating machines, such as actomyosin networks, and adhesive clusters that transmit tensile forces at the cell cortex and stabilize cell-cell and cell-substrate interfaces. Both force production and transmission are self-organizing phenomena whose adaptive features are essential during tissue morphogenesis. A new era is opening that emphasizes the similarities of and allows comparisons between distant dynamic biological phenomena because they rely on core machineries that control universal features of cytomechanics.
Collapse
Affiliation(s)
- Thomas Lecuit
- Developmental Biology Institute of Marseilles-Luminy, Centre National de la Recherche Scientifique, Université de la Méditerranée, 13288 Marseille Cedex 9, France.
| | | | | |
Collapse
|
172
|
Metastasis Update: Human Prostate Carcinoma Invasion via Tubulogenesis. Prostate Cancer 2011; 2011:249290. [PMID: 21949592 PMCID: PMC3177701 DOI: 10.1155/2011/249290] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/25/2011] [Indexed: 01/08/2023] Open
Abstract
This paper proposes that human prostate carcinoma primarily invades as a cohesive cell collective through a mechanism similar to embryonic tubulogenesis, instead of the popular epithelial-mesenchymal transformation (EMT) model. Evidence supporting a tubulogenesis model is presented, along with suggestions for additional research. Additionally, observations documenting cell adhesion molecule changes in tissue and stromal components are reviewed, allowing for comparisons between the current branching morphogenesis models and the tubulogenesis model. Finally, the implications of this model on prevailing views of therapeutic and diagnostic strategies for aggressive prostatic disease are considered.
Collapse
|
173
|
Tambe DT, Hardin CC, Angelini TE, Rajendran K, Park CY, Serra-Picamal X, Zhou EH, Zaman MH, Butler JP, Weitz DA, Fredberg JJ, Trepat X. Collective cell guidance by cooperative intercellular forces. NATURE MATERIALS 2011; 10:469-75. [PMID: 21602808 PMCID: PMC3135682 DOI: 10.1038/nmat3025] [Citation(s) in RCA: 625] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Accepted: 04/12/2011] [Indexed: 05/17/2023]
Abstract
Cells comprising a tissue migrate as part of a collective. How collective processes are coordinated over large multi-cellular assemblies has remained unclear, however, because mechanical stresses exerted at cell-cell junctions have not been accessible experimentally. We report here maps of these stresses within and between cells comprising a monolayer. Within the cell sheet there arise unanticipated fluctuations of mechanical stress that are severe, emerge spontaneously, and ripple across the monolayer. Within that stress landscape, local cellular migrations follow local orientations of maximal principal stress. Migrations of both endothelial and epithelial monolayers conform to this behaviour, as do breast cancer cell lines before but not after the epithelial-mesenchymal transition. Collective migration in these diverse systems is seen to be governed by a simple but unifying physiological principle: neighbouring cells join forces to transmit appreciable normal stress across the cell-cell junction, but migrate along orientations of minimal intercellular shear stress.
Collapse
Affiliation(s)
- Dhananjay T Tambe
- Program in Molecular and Integrative Physiological Sciences, School of Public Health, Harvard University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Badyaev AV. Origin of the fittest: link between emergent variation and evolutionary change as a critical question in evolutionary biology. Proc Biol Sci 2011; 278:1921-9. [PMID: 21490021 DOI: 10.1098/rspb.2011.0548] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In complex organisms, neutral evolution of genomic architecture, associated compensatory interactions in protein networks and emergent developmental processes can delineate the directions of evolutionary change, including the opportunity for natural selection. These effects are reflected in the evolution of developmental programmes that link genomic architecture with a corresponding functioning phenotype. Two recent findings call for closer examination of the rules by which these links are constructed. First is the realization that high dimensionality of genotypes and emergent properties of autonomous developmental processes (such as capacity for self-organization) result in the vast areas of fitness neutrality at both the phenotypic and genetic levels. Second is the ubiquity of context- and taxa-specific regulation of deeply conserved gene networks, such that exceptional phenotypic diversification coexists with remarkably conserved generative processes. Establishing the causal reciprocal links between ongoing neutral expansion of genomic architecture, emergent features of organisms' functionality, and often precisely adaptive phenotypic diversification therefore becomes an important goal of evolutionary biology and is the latest reincarnation of the search for a framework that links development, functioning and evolution of phenotypes. Here I examine, in the light of recent empirical advances, two evolutionary concepts that are central to this framework-natural selection and inheritance-the general rules by which they become associated with emergent developmental and homeostatic processes and the role that they play in descent with modification.
Collapse
Affiliation(s)
- Alexander V Badyaev
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
175
|
Vicente-Manzanares M, Newell-Litwa K, Bachir AI, Whitmore LA, Horwitz AR. Myosin IIA/IIB restrict adhesive and protrusive signaling to generate front-back polarity in migrating cells. ACTA ACUST UNITED AC 2011; 193:381-96. [PMID: 21482721 PMCID: PMC3080254 DOI: 10.1083/jcb.201012159] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Migratory front-back polarity emerges from the cooperative effect of myosin IIA (MIIA) and IIB (MIIB) on adhesive signaling. We demonstrate here that, during polarization, MIIA and MIIB coordinately promote localized actomyosin bundling, which generates large, stable adhesions that do not signal to Rac and thereby form the cell rear. MIIA formed dynamic actomyosin proto-bundles that mark the cell rear during spreading; it also bound to actin filament bundles associated with initial adhesion maturation in protrusions. Subsequent incorporation of MIIB stabilized the adhesions and actomyosin filaments with which it associated and formed a stable, extended rear. These adhesions did not turn over and no longer signal to Rac. Microtubules fine-tuned the polarity by positioning the front opposite the MIIA/MIIB-specified rear. Decreased Rac signaling in the vicinity of the MIIA/MIIB-stabilized proto-bundles and adhesions was accompanied by the loss of Rac guanine nucleotide exchange factor (GEFs), like βPIX and DOCK180, and by inhibited phosphorylation of key residues on adhesion proteins that recruit and activate Rac GEFs. These observations lead to a model for front-back polarity through local GEF depletion.
Collapse
Affiliation(s)
- Miguel Vicente-Manzanares
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | | | | | | | | |
Collapse
|
176
|
Hočevar A, Ziherl P. Periodic three-dimensional assemblies of polyhedral lipid vesicles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:041917. [PMID: 21599210 DOI: 10.1103/physreve.83.041917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Indexed: 05/30/2023]
Abstract
We theoretically study the structure of periodic bulk assemblies of identical lipid vesicles. In our model, each vesicle is represented as a convex polyhedron with flat faces, rounded edges, and rounded vertices. Each vesicle carries an elastic and an adhesion energy and in the limit of strong adhesion, the minimal-energy shape of cells minimizes the weighted total edge length. We calculate exactly the shape of the rounded edge and show that it can be well described by a cylindrical surface. By comparing several candidate space-filling polyhedra, we find that the oblate shapes are preferred over prolate shapes for all volume-to-surface ratios. We also study periodic assemblies of vesicles whose adhesion strength on lateral faces is different from that on basal or apical faces. The anisotropy needed to stabilize prolate shapes is determined and it is shown that, at any volume-to-surface ratio, the transition between oblate and prolate shapes is very sharp. The geometry of the model vesicle assemblies reproduces the shapes of cells in certain simple animal tissues.
Collapse
Affiliation(s)
- A Hočevar
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | | |
Collapse
|
177
|
Ohgushi M, Sasai Y. Lonely death dance of human pluripotent stem cells: ROCKing between metastable cell states. Trends Cell Biol 2011; 21:274-82. [PMID: 21444207 DOI: 10.1016/j.tcb.2011.02.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/21/2011] [Accepted: 02/23/2011] [Indexed: 11/26/2022]
Abstract
Two kinds of human pluripotent cells, human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), promise new avenues for medical innovation. These human cells share many similarities with mouse counterparts, including pluripotency, and they exhibit several unique properties. This review examines the diversity of mammalian pluripotent cells from a perspective of metastable pluripotency states. An intriguing phenomenon unique to human pluripotent stem cells is dissociation-induced apoptosis, which has been a technical problem for various cellular manipulations. The discovery that this apoptosis is suppressed by ROCK inhibitors brought revolutionary change to this troublesome situation. We discuss possible links of the metastable pluripotent state to ROCK-dependent human embryonic stem cell apoptosis and summarize recent progress in molecular understandings of this phenomenon.
Collapse
Affiliation(s)
- Masatoshi Ohgushi
- Unit for Human Stem Cell Technology, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| | | |
Collapse
|
178
|
Baum B, Georgiou M. Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J Cell Biol 2011; 192:907-17. [PMID: 21422226 PMCID: PMC3063136 DOI: 10.1083/jcb.201009141] [Citation(s) in RCA: 375] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 03/01/2011] [Indexed: 01/12/2023] Open
Abstract
The epithelial cadherin (E-cadherin)-catenin complex binds to cytoskeletal components and regulatory and signaling molecules to form a mature adherens junction (AJ). This dynamic structure physically connects neighboring epithelial cells, couples intercellular adhesive contacts to the cytoskeleton, and helps define each cell's apical-basal axis. Together these activities coordinate the form, polarity, and function of all cells in an epithelium. Several molecules regulate AJ formation and integrity, including Rho family GTPases and Par polarity proteins. However, only recently, with the development of live-cell imaging, has the extent to which E-cadherin is actively turned over at junctions begun to be appreciated. This turnover contributes to junction formation and to the maintenance of epithelial integrity during tissue homeostasis and remodeling.
Collapse
Affiliation(s)
- Buzz Baum
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, England, UK
| | - Marios Georgiou
- School of Biomedical Sciences, University of Nottingham Medical School, Queen’s Medical Centre, Nottingham NG7 2UH, England, UK
| |
Collapse
|
179
|
Keefer CL, Desai JP. Mechanical phenotyping of stem cells. Theriogenology 2011; 75:1426-30. [PMID: 21295841 DOI: 10.1016/j.theriogenology.2010.11.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/17/2010] [Accepted: 11/18/2010] [Indexed: 01/08/2023]
Abstract
Elasticity and visco-elasticity are mechanical properties of cells which directly reflect cellular composition, internal structure (cytoskeleton), and external interactions (cell-cell and/or cell-surface). A variety of techniques involving probing, pulling, or deforming cells have been used to characterize these mechanical properties. With continuing advances in the technology, it may be possible to establish mechanical phenotypes that can be used to identify cells at specific points of differentiation and dedifferentiation with direct applications to regenerative medicine, therapeutics, and diagnostics.
Collapse
Affiliation(s)
- Carol L Keefer
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
180
|
Young JL, Engler AJ. Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials 2011; 32:1002-9. [PMID: 21071078 PMCID: PMC3000555 DOI: 10.1016/j.biomaterials.2010.10.020] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 10/12/2010] [Indexed: 12/22/2022]
Abstract
Tissue-specific elastic modulus (E), or 'stiffness,' arises from developmental changes in the extracellular matrix (ECM) and suggests that progenitor cell differentiation may be optimal when physical conditions mimic tissue progression. For cardiomyocytes, maturing from mesoderm to adult myocardium results in a 9-fold stiffening originating in part from a change in collagen expression and localization. To mimic this temporal stiffness change in vitro, thiolated-hyaluronic acid (HA) hydrogels were crosslinked with poly(ethylene glycol) diacrylate, and their dynamics were modulated by changing crosslinker molecular weight. With the hydrogel appropriately tuned to stiffen as heart muscle does during development, pre-cardiac cells grown on collagen-coated HA hydrogels exhibit a 3-fold increase in mature cardiac specific markers and form up to 60% more maturing muscle fibers than they do when grown on compliant but static polyacrylamide hydrogels over 2 weeks. Though ester hydrolysis does not substantially alter hydrogel stiffening over 2 weeks in vitro, model predictions indicate that ester hydrolysis will eventually degrade the material with additional time, implying that this hydrogel may be appropriate for in vivo applications where temporally changing material properties enhance cell maturation prior to its replacement with host tissue.
Collapse
Affiliation(s)
- Jennifer L. Young
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093
| | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093
| |
Collapse
|
181
|
Clark AG, Paluch E. Mechanics and regulation of cell shape during the cell cycle. Results Probl Cell Differ 2011; 53:31-73. [PMID: 21630140 DOI: 10.1007/978-3-642-19065-0_3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many cell types undergo dramatic changes in shape throughout the cell cycle. For individual cells, a tight control of cell shape is crucial during cell division, but also in interphase, for example during cell migration. Moreover, cell cycle-related cell shape changes have been shown to be important for tissue morphogenesis in a number of developmental contexts. Cell shape is the physical result of cellular mechanical properties and of the forces exerted on the cell. An understanding of the causes and repercussions of cell shape changes thus requires knowledge of both the molecular regulation of cellular mechanics and how specific changes in cell mechanics in turn effect global shape changes. In this chapter, we provide an overview of the current knowledge on the control of cell morphology, both in terms of general cell mechanics and specifically during the cell cycle.
Collapse
Affiliation(s)
- Andrew G Clark
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | | |
Collapse
|
182
|
Greenberg L, Hatini V. Systematic expression and loss-of-function analysis defines spatially restricted requirements for Drosophila RhoGEFs and RhoGAPs in leg morphogenesis. Mech Dev 2011; 128:5-17. [PMID: 20851182 PMCID: PMC3029487 DOI: 10.1016/j.mod.2010.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 09/10/2010] [Accepted: 09/13/2010] [Indexed: 01/13/2023]
Abstract
The Drosophila leg imaginal disc consists of a peripheral region that contributes to adult body wall, and a central region that forms the leg proper. While the patterning signals and transcription factors that determine the identity of adult structures have been identified, the mechanisms that determine the shape of these structures remain largely unknown. The family of Rho GTPases, which consists of seven members in flies, modulates cell adhesion, actomyosin contractility, protrusive membrane activity, and cell-matrix adhesion to generate mechanical forces that shape adult structures. The Rho GTPases are ubiquitously expressed and it remains unclear how they orchestrate morphogenetic events. The Rho guanine nucleotide exchange factors (RhoGEFs) and Rho GTPase activating proteins (RhoGAPs), which respectively activate and deactivate corresponding Rho GTPases, have been proposed to regulate the activity of Rho signaling cascades in specific spatiotemporal patterns to orchestrate morphogenetic events. Here we identify restricted expression of 12 of the 20 RhoGEFs and 10 of the 22 Rho RhoGAPs encoded in Drosophila during metamorphosis. Expression of a subset of each family of RhoGTPase regulators was restricted to motile cell populations including tendon, muscle, trachea, and peripodial stalk cells. A second subset was restricted either to all presumptive joints or only to presumptive tarsal joints. Depletion of individual RhoGEFs and RhoGAPs in the epithelium of the disc proper identified several joint-specific genes, which act downstream of segmental patterning signals to control epithelial morphogenesis. Our studies provide a framework with which to understand how Rho signaling cascades orchestrate complex morphogenetic events in multi-cellular organisms, and evidence that patterning signals regulate these cascades to control apical constriction and epithelial invagination at presumptive joints.
Collapse
Affiliation(s)
- Lina Greenberg
- Department of Anatomy and Cellular Biology, Program in Cell, Molecular and Developmental Biology
| | - Victor Hatini
- Department of Anatomy and Cellular Biology, Program in Cell, Molecular and Developmental Biology
- Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston MA 02111
| |
Collapse
|
183
|
Abstract
During morphogenesis, tissues are shaped by cell behaviors such as apical cell constriction and cell intercalation, which are the result of cell intrinsic forces, but are also shaped passively by forces acting on the cells. The latter extrinsic forces can be produced either within the deforming tissue by the tissue-scale integration of intrinsic forces, or outside the tissue by other tissue movements or by fluid flows. Here we review the intrinsic and extrinsic forces that sculpt the epithelium of early Drosophila embryos, focusing on three conserved morphogenetic processes: tissue internalization, axis extension, and segment boundary formation. Finally, we look at how the actomyosin cytoskeleton forms force-generating structures that power these three morphogenetic events at the cell and the tissue scales.
Collapse
|
184
|
Spatial restriction of receptor tyrosine kinase activity through a polarized endocytic cycle controls border cell migration. Proc Natl Acad Sci U S A 2010; 107:22558-63. [PMID: 21149700 DOI: 10.1073/pnas.1010795108] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Border cell migration is a stereotyped migration occurring during the development of the Drosophila egg chamber. During this process, a cluster composed of six to eight follicle cells migrates between nurse cells toward the oocyte. Receptor tyrosine kinases (RTKs) are enriched at the leading edge of the follicle cells and establish the directionality of their migration. Endocytosis has been shown to play a role in the maintenance of this polarization; however, the mechanisms involved are largely unknown. In this study, we show that border cell migration requires the function of the small GTPases Rab5 and Rab11 that regulate trafficking through the early and the recycling endosome, respectively. Expression of a dominant negative form of rab11 induces a loss of the polarization of RTK activity, which correlates with a severe migration phenotype. In addition, we demonstrate that the exocyst component Sec15 is distributed in structures that are polarized during the migration process in a Rab11-dependent manner and that the down-regulation of different subunits of the exocyst also affects migration. Together, our data demonstrate a fundamental role for a plasma membrane-endosome trafficking cycle in the maintenance of active RTK at the leading edge of border cells during their migration.
Collapse
|
185
|
Oleinik NV, Krupenko NI, Krupenko SA. ALDH1L1 inhibits cell motility via dephosphorylation of cofilin by PP1 and PP2A. Oncogene 2010; 29:6233-44. [PMID: 20729910 PMCID: PMC2992098 DOI: 10.1038/onc.2010.356] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 06/30/2010] [Accepted: 07/08/2010] [Indexed: 01/23/2023]
Abstract
Here we report that ALDH1L1 (FDH, a folate enzyme with tumor suppressor-like properties) inhibits cell motility. The underlying mechanism involves F-actin stabilization, re-distribution of cytoplasmic actin toward strong preponderance of filamentous actin and formation of actin stress fibers. A549 cells expressing FDH showed a much slower recovery of green fluorescent protein-actin fluorescence in a fluorescence recovery after photobleaching assay, as well as an increase in G-actin polymerization and a decrease in F-actin depolymerization rates in pyren-actin fluorescence assays indicating the inhibition of actin dynamics. These effects were associated with robust dephosphorylation of the actin depolymerizing factor cofilin by PP1 and PP2A serine/threonine protein phosphatases, but not the cofilin-specific phosphatases slingshot and chronophin. In fact, the PP1/PP2A inhibitor calyculin prevented cofilin dephosphorylation and restored motility. Inhibition of FDH-induced apoptosis by the Jun N-terminal kinase inhibitor SP600125 or the pan-caspase inhibitor zVAD-fmk did not restore motility or levels of phosphor-cofilin, indicating that the observed effects are independent of FDH function in apoptosis. Interestingly, cofilin small interfering RNA or expression of phosphorylation-deficient S3A cofilin mutant resulted in a decrease of G-actin and the actin stress fiber formation, the effects seen upon FDH expression. In contrast, the expression of S3D mutant, mimicking constitutive phosphorylation, prevented these effects further supporting the cofilin-dependent mechanism. Dephosphorylation of cofilin and inhibition of motility in response to FDH can also be prevented by the increased folate in media. Furthermore, folate depletion itself, in the absence of FDH, resulted in cofilin dephosphorylation and inhibition of motility in several cell lines. Our experiments showed that these effects were folate specific and not a general response to nutrient starvation. Overall, this study shows the presence of distinct intracellular signaling pathways regulating motility in response to folate status and points toward mechanisms involving folates in promoting a malignant phenotype.
Collapse
Affiliation(s)
- N V Oleinik
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|
186
|
Virta VC, Cooper MS. Structural components and morphogenetic mechanics of the zebrafish yolk extension, a developmental module. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 316:76-92. [PMID: 21154526 DOI: 10.1002/jez.b.21381] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 09/01/2010] [Accepted: 09/16/2010] [Indexed: 11/06/2022]
Abstract
The yolk extension (YE) appears to be a novel developmental module that has been inserted into the phylotypic period of teleostean development, specifically in the order Cypriniformes. The zebrafish YE informs the study of morphogenetic movements reshaping ventral tissues because (1) this trait is easily visible, so disruptions are easy to score; (2) its ontogenesis occurs quickly; and (3) the yolk cell isolates the tissues elongating the ventrum from the rest of the embryo, serving as a three-dimensional in vivo "tissue culture." We determined that three histological compartments comprise the structural components of the YE: (1) the internal yolk cell; (2) the mesendodermal mantle external to the yolk cell; and (3) the external embryonic integument, consisting of an embryonic epidermis plus enveloping layer cells. These structural components interact with one another in a hierarchical manner, resulting in the morphogenesis of the elongated and tubular embryonic zebrafish ventrum as the cylindrical YE forms. Time-lapse videomicroscopy and experimental manipulation show that the yolk mass is a cohesive, viscoelastic foam, which resists compression. Moreover, as the mesodermal mantle participates in tubulation of the posterior trunk, Kupffer's Vesicle, the organ of laterality in teleosts, separates from the posterior pole of the yolk syncytial layer. Additionally, the embryonic integument becomes contractile over the posterior yolk cell, constricting the yolk mass to form the YE. These findings constitute an initial assessment of the morphogenetic mechanics underlying formation of the YE developmental module in zebrafish.
Collapse
|
187
|
Abstract
Collective cell motility is an important aspect of several developmental and pathophysiological processes. Despite its importance, the mechanisms that allow cells to be both motile and adhere to one another are poorly understood. In this study we establish statistical properties of the random streaming behavior of endothelial monolayer cultures. To understand the reported empirical findings, we expand the widely used cellular Potts model to include active cell motility. For spontaneous directed motility we assume a positive feedback between cell displacements and cell polarity. The resulting model is studied with computer simulations and is shown to exhibit behavior compatible with experimental findings. In particular, in monolayer cultures both the speed and persistence of cell motion decreases, transient cell chains move together as groups and velocity correlations extend over several cell diameters. As active cell motility is ubiquitous both in vitro and in vivo, our model is expected to be a generally applicable representation of cellular behavior.
Collapse
Affiliation(s)
- A. Szabó
- Department of Biological Physics, Eotvos University, Budapest, Hungary
| | - R. Ünnep
- Department of Biological Physics, Eotvos University, Budapest, Hungary
| | - E. Méhes
- Department of Biological Physics, Eotvos University, Budapest, Hungary
| | - W. O. Twal
- Department of Cell Biology & Anatomy, Medical Univ. of South Carolina, Charleston, SC, USA
| | - S. W. Argraves
- Department of Cell Biology & Anatomy, Medical Univ. of South Carolina, Charleston, SC, USA
| | - Y. Cao
- Karolinska Institute, Stockholm, Sweden
| | - A. Czirók
- Department of Biological Physics, Eotvos University, Budapest, Hungary
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
188
|
Rauzi M, Lenne PF, Lecuit T. Planar polarized actomyosin contractile flows control epithelial junction remodelling. Nature 2010; 468:1110-4. [PMID: 21068726 DOI: 10.1038/nature09566] [Citation(s) in RCA: 484] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 10/08/2010] [Indexed: 01/01/2023]
Abstract
Force generation by Myosin-II motors on actin filaments drives cell and tissue morphogenesis. In epithelia, contractile forces are resisted at apical junctions by adhesive forces dependent on E-cadherin, which also transmits tension. During Drosophila embryonic germband extension, tissue elongation is driven by cell intercalation, which requires an irreversible and planar polarized remodelling of epithelial cell junctions. We investigate how cell deformations emerge from the interplay between force generation and cortical force transmission during this remodelling in Drosophila melanogaster. The shrinkage of dorsal-ventral-oriented ('vertical') junctions during this process is known to require planar polarized junctional contractility by Myosin II (refs 4, 5, 7, 12). Here we show that this shrinkage is not produced by junctional Myosin II itself, but by the polarized flow of medial actomyosin pulses towards 'vertical' junctions. This anisotropic flow is oriented by the planar polarized distribution of E-cadherin complexes, in that medial Myosin II flows towards 'vertical' junctions, which have relatively less E-cadherin than transverse junctions. Our evidence suggests that the medial flow pattern reflects equilibrium properties of force transmission and coupling to E-cadherin by α-Catenin. Thus, epithelial morphogenesis is not properly reflected by Myosin II steady state distribution but by polarized contractile actomyosin flows that emerge from interactions between E-cadherin and actomyosin networks.
Collapse
Affiliation(s)
- Matteo Rauzi
- IBDML, UMR6216 CNRS-Université de la Méditerranée, Campus de Luminy, case 907, 13288 Marseille Cedex 09, France
| | | | | |
Collapse
|
189
|
Li L, Wang BH, Wang S, Moalim-Nour L, Mohib K, Lohnes D, Wang L. Individual cell movement, asymmetric colony expansion, rho-associated kinase, and E-cadherin impact the clonogenicity of human embryonic stem cells. Biophys J 2010; 98:2442-51. [PMID: 20513387 DOI: 10.1016/j.bpj.2010.02.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/11/2010] [Accepted: 02/12/2010] [Indexed: 02/07/2023] Open
Abstract
Clonality is, at present, the only means by which the self-renewal potential of a given stem cell can be determined. To assess the clonality of human embryonic stem cells (hESC), a protocol involving seeding wells at low cell densities is commonly used to surmount poor cloning efficiencies. However, factors influencing the accuracy of such an assay have not been fully elucidated. Using clonogenic assays together with time-lapse microscopy, numerical analyses, and regulated gene expression strategies, we found that individual and collective cell movements are inherent properties of hESCs and that they markedly impact the accuracy of clonogenic assays. Analyses of cell motility using mean-square displacement and paired migration correlation indicated that cell movements become more straight-line or ballistic and less random-walk as separation distance decreases. Such motility-induced reaggregation (rather than a true clone) occurs approximately 70% of the time if the distance between two hESCs is <6.4 mum, and is not observed if the distance is >150 mum. Furthermore, newly formed small hESC colonies have a predisposition toward the formation of larger colonies through asymmetric colony expansion and movement, which would not accurately reflect self-renewal and proliferative activity of a true hESC clone. Notably, inhibition of Rho-associated kinase markedly upregulated hESC migration and reaggregation, producing considerable numbers of false-positive colonies. Conversely, E-cadherin upregulation significantly augmented hESC clonogenicity via improved survival of single hESCs without influencing cell motility. This work reveals that individual cell movement, asymmetric colony expansion, Rho-associated kinase, and E-cadherin all work together to influence hESC clonogenicity, and provides additional guidance for improvement of clonogenic assays in the analysis of hESC self-renewal.
Collapse
Affiliation(s)
- Li Li
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
190
|
Chen G, Hou Z, Gulbranson D, Thomson JA. Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells. Cell Stem Cell 2010; 7:240-8. [PMID: 20682449 PMCID: PMC2916864 DOI: 10.1016/j.stem.2010.06.017] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 03/26/2010] [Accepted: 06/07/2010] [Indexed: 02/07/2023]
Abstract
Human ESCs are the pluripotent precursor of the three embryonic germ layers. Human ESCs exhibit basal-apical polarity, junctional complexes, integrin-dependent matrix adhesion, and E-cadherin-dependent cell-cell adhesion, all characteristics shared by the epiblast epithelium of the intact mammalian embryo. After disruption of epithelial structures, programmed cell death is commonly observed. If individualized human ESCs are prevented from reattaching and forming colonies, their viability is significantly reduced. Here, we show that actin-myosin contraction is a critical effector of the cell death response to human ESC dissociation. Inhibition of myosin heavy chain ATPase, downregulation of myosin heavy chain, and downregulation of myosin light chain all increase survival and cloning efficiency of individualized human ESCs. ROCK inhibition decreases phosphorylation of myosin light chain, suggesting that inhibition of actin-myosin contraction is also the mechanism through which ROCK inhibitors increase cloning efficiency of human ESCs.
Collapse
Affiliation(s)
- Guokai Chen
- Morgridge Institute for Research, Madison, WI 53707-7365, USA
- Genome Center of Wisconsin, University of Wisconsin, Madison, WI 53706-1580, USA
| | - Zhonggang Hou
- Morgridge Institute for Research, Madison, WI 53707-7365, USA
- Genome Center of Wisconsin, University of Wisconsin, Madison, WI 53706-1580, USA
| | - Daniel Gulbranson
- Morgridge Institute for Research, Madison, WI 53707-7365, USA
- Genome Center of Wisconsin, University of Wisconsin, Madison, WI 53706-1580, USA
| | - James A. Thomson
- Morgridge Institute for Research, Madison, WI 53707-7365, USA
- Genome Center of Wisconsin, University of Wisconsin, Madison, WI 53706-1580, USA
| |
Collapse
|
191
|
Lotz MK, Otsuki S, Grogan SP, Sah R, Terkeltaub R, D'Lima D. Cartilage cell clusters. ARTHRITIS AND RHEUMATISM 2010; 62:2206-18. [PMID: 20506158 PMCID: PMC2921934 DOI: 10.1002/art.27528] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The formation of new cell clusters is a histological hallmark of arthritic cartilage but the biology of clusters and their role in disease are poorly understood. This is the first comprehensive review of clinical and experimental conditions associated with cluster formation. Genes and proteins that are expressed in cluster cells, the cellular origin of the clusters, mechanisms that lead to cluster formation and the role of cluster cells in pathogenesis are discussed.
Collapse
Affiliation(s)
- Martin K Lotz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
192
|
McMahon A, Reeves GT, Supatto W, Stathopoulos A. Mesoderm migration in Drosophila is a multi-step process requiring FGF signaling and integrin activity. Development 2010; 137:2167-75. [PMID: 20530544 PMCID: PMC2882136 DOI: 10.1242/dev.051573] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2010] [Indexed: 02/02/2023]
Abstract
Migration is a complex, dynamic process that has largely been studied using qualitative or static approaches. As technology has improved, we can now take quantitative approaches towards understanding cell migration using in vivo imaging and tracking analyses. In this manner, we have established a four-step model of mesoderm migration during Drosophila gastrulation: (I) mesodermal tube formation, (II) collapse of the mesoderm, (III) dorsal migration and spreading and (IV) monolayer formation. Our data provide evidence that these steps are temporally distinct and that each might require different chemical inputs. To support this, we analyzed the role of fibroblast growth factor (FGF) signaling, in particular the function of two Drosophila FGF ligands, Pyramus and Thisbe, during mesoderm migration. We determined that FGF signaling through both ligands controls movements in the radial direction. Thisbe is required for the initial collapse of the mesoderm onto the ectoderm, whereas both Pyramus and Thisbe are required for monolayer formation. In addition, we uncovered that the GTPase Rap1 regulates radial movement of cells and localization of the beta-integrin subunit, Myospheroid, which is also required for monolayer formation. Our analyses suggest that distinct signals influence particular movements, as we found that FGF signaling is involved in controlling collapse and monolayer formation but not dorsal movement, whereas integrins are required to support monolayer formation only and not earlier movements. Our work demonstrates that complex cell migration is not necessarily a fluid process, but suggests instead that different types of movements are directed by distinct inputs in a stepwise manner.
Collapse
Affiliation(s)
- Amy McMahon
- California Institute of Technology, Division of Biology MC 114-96, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Gregory T. Reeves
- California Institute of Technology, Division of Biology MC 114-96, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | | | - Angelike Stathopoulos
- California Institute of Technology, Division of Biology MC 114-96, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
193
|
Graham TGW, Tabei SMA, Dinner AR, Rebay I. Modeling bistable cell-fate choices in the Drosophila eye: qualitative and quantitative perspectives. Development 2010; 137:2265-78. [PMID: 20570936 PMCID: PMC2889600 DOI: 10.1242/dev.044826] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A major goal of developmental biology is to understand the molecular mechanisms whereby genetic signaling networks establish and maintain distinct cell types within multicellular organisms. Here, we review cell-fate decisions in the developing eye of Drosophila melanogaster and the experimental results that have revealed the topology of the underlying signaling circuitries. We then propose that switch-like network motifs based on positive feedback play a central role in cell-fate choice, and discuss how mathematical modeling can be used to understand and predict the bistable or multistable behavior of such networks.
Collapse
Affiliation(s)
- Thomas G. W. Graham
- Ben May Department for Cancer Research, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - S. M. Ali Tabei
- James Franck Institute, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Aaron R. Dinner
- James Franck Institute, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Ben May Department for Cancer Research, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
194
|
Mayor R, Carmona-Fontaine C. Keeping in touch with contact inhibition of locomotion. Trends Cell Biol 2010; 20:319-28. [PMID: 20399659 PMCID: PMC2927909 DOI: 10.1016/j.tcb.2010.03.005] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 03/24/2010] [Accepted: 03/24/2010] [Indexed: 01/01/2023]
Abstract
Contact inhibition of locomotion (CIL) is the process by which cells in vitro change their direction of migration upon contact with another cell. Here, we revisit the concept that CIL plays a central role in the migration of single cells and in collective migration, during both health and disease. Importantly, malignant cells exhibit a diminished CIL behaviour which allows them to invade healthy tissues. Accumulating evidence indicates that CIL occurs in vivo and that regulation of small Rho GTPases is important in the collapse of cell protrusions upon cell contact, the first step of CIL. Finally, we propose possible cell surface proteins that could be involved in the initial contact that regulates Rho GTPases during CIL.
Collapse
Affiliation(s)
- Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
195
|
Ahlstrom JD, Erickson CA. New views on the neural crest epithelial-mesenchymal transition and neuroepithelial interkinetic nuclear migration. Commun Integr Biol 2010; 2:489-93. [PMID: 20195454 DOI: 10.4161/cib.2.6.9406] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 07/02/2009] [Indexed: 01/09/2023] Open
Abstract
By developing a technique for imaging the avian neural crest epithelial-mesenchymal transition (EMT), we have discovered cellular behaviors that challenge current thinking on this important developmental event, including the probability that complete disassembly of the adherens junctions may not control whether or not a neural epithelial cell undergoes an EMT. Further, neural crest cells can adopt multiple modes of cell motility in order to emigrate from the neuroepithelium. We also gained insights into interkinetic nuclear migration (INM). For example, the movement of the nucleus from the basal to apical domain may not require microtubule motors nor an intact nuclear envelope, and the nucleus does not always need to reach the apical surface in order for cytokinesis to occur. These studies illustrate the value of live-cell imaging to elucidate cellular processes.
Collapse
Affiliation(s)
- Jon D Ahlstrom
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | | |
Collapse
|
196
|
Fang X, Adler PN. Regulation of cell shape, wing hair initiation and the actin cytoskeleton by Trc/Fry and Wts/Mats complexes. Dev Biol 2010; 341:360-74. [PMID: 20211163 PMCID: PMC2862085 DOI: 10.1016/j.ydbio.2010.02.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 02/19/2010] [Accepted: 02/20/2010] [Indexed: 01/08/2023]
Abstract
The two NDR kinase family genes in Drosophila are tricornered (trc) and warts (wts). Previous studies on trc have focused on its role in the morphogenesis of extensions of epidermal cells and in dendrite branching and tiling. Studies on wts have focused on its roles as a tumor suppressor, in controlling photoreceptor type and in the maintenance of dendrites. Here we examine and compare the function of these genes in wing cells prior to their terminal differentiation. Mutations in these genes lead to changes in cell shape, cellular levels of F-actin, the timing of differentiation, and the expression of multiple wing hairs and DE-Cadherin. We showed that the effects of wts on all of these processes appear to be mediated by its regulation of the Yorkie transcription factor. We also provide evidence that trc regulates the expression of DE-cadherin and mwh. In addition, we showed that the effects on cell shape and the timing of differentiation appear to be not linked to changes in relative growth rate of cells compared to their neighbors.
Collapse
Affiliation(s)
- Xiaolan Fang
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | | |
Collapse
|
197
|
|
198
|
Marrs JA. Branching morphogenesis: Rac signaling "PIX" tubulogenesis. Focus on "Pak1 regulates branching morphogenesis in 3D MDCK cell culture by a PIX and beta1-integrin-dependent mechanism". Am J Physiol Cell Physiol 2010; 299:C7-10. [PMID: 20427711 DOI: 10.1152/ajpcell.00145.2010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
199
|
Kim JH, Dooling LJ, Asthagiri AR. Intercellular mechanotransduction during multicellular morphodynamics. J R Soc Interface 2010; 7 Suppl 3:S341-50. [PMID: 20356878 DOI: 10.1098/rsif.2010.0066.focus] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Multicellular structures are held together by cell adhesions. Forces that act upon these adhesions play an integral role in dynamically re-shaping multicellular structures during development and disease. Here, we describe different modes by which mechanical forces are transduced in a multicellular context: (i) indirect mechanosensing through compliant substratum, (ii) cytoskeletal 'tug-of-war' between cell-matrix and cell-cell adhesions, (iii) cortical contractility contributing to line tension, (iv) stresses associated with cell proliferation, and (v) forces mediating collective migration. These modes of mechanotransduction are recurring motifs as they play a key role in shaping multicellular structures in a wide range of biological contexts. Tissue morphodynamics may ultimately be understood as different spatio-temporal combinations of a select few multicellular transformations, which in turn are driven by these mechanotransduction motifs that operate at the bicellular to multicellular length scale.
Collapse
Affiliation(s)
- Jin-Hong Kim
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | | | | |
Collapse
|
200
|
Abstract
In response to injury, epithelial cells migrate across the denuded tissue to rapidly close the wound and restore barrier, thereby preventing the entry of pathogens and leakage of fluids. Efficient, proper migration requires a range of processes, acting both inside and out of the cell. Among the extracellular responses is the expression of various matrix metalloproteinases (MMPs). Though long thought to ease cell migration simply by breaking down matrix barriers, findings from various models demonstrate that MMPs facilitate (and sometimes repress) cell movement by other means, such as affecting the state of cell-matrix interactions or proliferation. In this Prospect, we review some key data indicting how specific MMPs function via their activity as proteinases to control closure of epithelial wounds.
Collapse
Affiliation(s)
- Peter Chen
- Center for Lung Biology, Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98109, USA.
| | | |
Collapse
|