151
|
Santos LH, Ferreira RS, Caffarena ER. Computational drug design strategies applied to the modelling of human immunodeficiency virus-1 reverse transcriptase inhibitors. Mem Inst Oswaldo Cruz 2016; 110:847-64. [PMID: 26560977 PMCID: PMC4660614 DOI: 10.1590/0074-02760150239] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/08/2015] [Indexed: 01/05/2023] Open
Abstract
Reverse transcriptase (RT) is a multifunctional enzyme in the human immunodeficiency
virus (HIV)-1 life cycle and represents a primary target for drug discovery efforts
against HIV-1 infection. Two classes of RT inhibitors, the nucleoside RT inhibitors
(NRTIs) and the nonnucleoside transcriptase inhibitors are prominently used in the
highly active antiretroviral therapy in combination with other anti-HIV drugs.
However, the rapid emergence of drug-resistant viral strains has limited the
successful rate of the anti-HIV agents. Computational methods are a significant part
of the drug design process and indispensable to study drug resistance. In this
review, recent advances in computer-aided drug design for the rational design of new
compounds against HIV-1 RT using methods such as molecular docking, molecular
dynamics, free energy calculations, quantitative structure-activity relationships,
pharmacophore modelling and absorption, distribution, metabolism, excretion and
toxicity prediction are discussed. Successful applications of these methodologies are
also highlighted.
Collapse
Affiliation(s)
| | - Rafaela Salgado Ferreira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | |
Collapse
|
152
|
Shirian J, Sharabi O, Shifman JM. Cold Spots in Protein Binding. Trends Biochem Sci 2016; 41:739-745. [PMID: 27477052 DOI: 10.1016/j.tibs.2016.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/22/2016] [Accepted: 07/01/2016] [Indexed: 11/19/2022]
Abstract
Understanding the energetics and architecture of protein-binding interfaces is important for basic research and could potentially facilitate the design of novel binding domains for biotechnological applications. It is well accepted that a few key residues at binding interfaces (binding hot spots) are responsible for contributing most to the free energy of binding. In this opinion article, we introduce a new concept of 'binding cold spots', or interface positions occupied by suboptimal amino acids. Such positions exhibit a potential for affinity enhancement through various mutations. We give several examples of cold spots from different protein-engineering studies and argue that identification of such positions is crucial for studies of protein evolution and protein design.
Collapse
Affiliation(s)
- Jason Shirian
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Oz Sharabi
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Julia M Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
153
|
Chen D, He X, Ye J, Zhao P, Zeng Y, Feng X. Genetic and Phenotypic Analysis of CRF01_AE HIV-1 env Clones from Patients Residing in Beijing, China. AIDS Res Hum Retroviruses 2016; 32:1113-1124. [PMID: 27066910 DOI: 10.1089/aid.2015.0377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CRF01_AE is one of the four dominant HIV-1 strains circulating in China. In this study, we performed genetic and phenotypic analyses using a total of 60 full-length envelope gene clones from 14 HIV-1-infected individuals in the Beijing area. Among the 60 sequences analyzed, 32 have a complete open reading frame (ORF), whereas the others contain premature stop codons. The phylogenetic tree analysis suggested that all of the sequences maintained a close relationship with the CRF01_AE strain. Most of the potential N-linked glycosylation sites (PNGS) were located within the V1/V2, V4, C2, or C3 regions. In relation to gp41, the majority of the glycosylation sites were located in the ectodomain. The 32 env genes that contained intact ORFs were used to construct Env-pseudotyped viruses, and eight strains that resulted in high titers were further studied. All the eight strains used CCR5 as the co-receptor for infection, and they were sensitive to neutralization by the broadly neutralizing monoclonal antibodies, including VRC_01, PG9, PG16, and NIH45-46, but they were insensitive to 2G12. Notably, seven of these eight strains lacked a glycan at residues 295 or 332 (or both), suggesting that these two PNGSs play an important role in 2G12 binding and neutralization. In addition, the pseudoviruses were more sensitive to neutralization by plasma isolated from individuals infected with subtypes CRF01_AE and CRF07/08_BC, suggesting the occurrence of a cross-neutralizing antibody profile between these two strains. These findings are likely to have important implications for the design of an effective HIV vaccine and relevant therapeutic drugs.
Collapse
Affiliation(s)
- Danying Chen
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaozhou He
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Jingrong Ye
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Pengxiang Zhao
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Yi Zeng
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Xia Feng
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| |
Collapse
|
154
|
Liang Y, Guttman M, Davenport TM, Hu SL, Lee KK. Probing the Impact of Local Structural Dynamics of Conformational Epitopes on Antibody Recognition. Biochemistry 2016; 55:2197-213. [PMID: 27003615 PMCID: PMC5479570 DOI: 10.1021/acs.biochem.5b01354] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Antibody-antigen interactions are governed by recognition of specific residues and structural complementarity between the antigen epitope and antibody paratope. While X-ray crystallography has provided detailed insights into static conformations of antibody-antigen complexes, factors such as conformational flexibility and dynamics, which are not readily apparent in the structures, can also have an impact on the binding event. Here we investigate the contribution of dynamics in the HIV-1 gp120 glycoprotein to antibody recognition of conserved conformational epitopes, including the CD4- and coreceptor-binding sites, and an inner domain site that is targeted by ADCC-active antibodies. Hydrogen/deuterium-exchange mass spectrometry (HDX-MS) was used to measure local structural dynamics across a panel of variable loop truncation mutants of HIV-1 gp120, including full-length gp120, ΔV3, ΔV1/V2, and extended core, which includes ΔV1/V2 and V3 loop truncations. CD4-bound full-length gp120 was also examined as a reference state. HDX-MS revealed a clear trend toward an increased level of order of the conserved subunit core resulting from loop truncation. Combined with biolayer interferometry and enzyme-linked immunosorbent assay measurements of antibody-antigen binding, we demonstrate that an increased level of ordering of the subunit core was associated with better recognition by an array of antibodies targeting complex conformational epitopes. These results provide detailed insight into the influence of structural dynamics on antibody-antigen interactions and suggest the importance of characterizing the structural stability of vaccine candidates to improve antibody recognition of complex epitopes.
Collapse
Affiliation(s)
- Yu Liang
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Thaddeus M. Davenport
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Shiu-Lok Hu
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
155
|
Key gp120 Glycans Pose Roadblocks to the Rapid Development of VRC01-Class Antibodies in an HIV-1-Infected Chinese Donor. Immunity 2016; 44:939-50. [PMID: 27067056 DOI: 10.1016/j.immuni.2016.03.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 11/18/2022]
Abstract
VRC01-class antibodies neutralize diverse HIV-1 strains by targeting the conserved CD4-binding site. Despite extensive investigations, crucial events in the early stage of VRC01 development remain elusive. We demonstrated how VRC01-class antibodies emerged in a Chinese donor by antigen-specific single B cell sorting, structural and functional studies, and longitudinal antibody and virus repertoire analyses. A monoclonal antibody DRVIA7 with modest neutralizing breadth was isolated that displayed a subset of VRC01 signatures. X-ray and EM structures revealed a VRC01-like angle of approach, but less favorable interactions between the DRVIA7 light-chain CDR1 and the N terminus with N276 and V5 glycans of gp120. Although the DRVIA7 lineage was unable to acquire broad neutralization, longitudinal analysis revealed a repertoire-encoded VRC01 light-chain CDR3 signature and VRC01-like neutralizing heavy-chain precursors that rapidly matured within 2 years. Thus, light chain accommodation of the glycan shield should be taken into account in vaccine design targeting this conserved site of vulnerability.
Collapse
|
156
|
Jardine JG, Kulp DW, Havenar-Daughton C, Sarkar A, Briney B, Sok D, Sesterhenn F, Ereño-Orbea J, Kalyuzhniy O, Deresa I, Hu X, Spencer S, Jones M, Georgeson E, Adachi Y, Kubitz M, deCamp AC, Julien JP, Wilson IA, Burton DR, Crotty S, Schief WR. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen. Science 2016; 351:1458-63. [PMID: 27013733 DOI: 10.1126/science.aad9195] [Citation(s) in RCA: 351] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 02/24/2016] [Indexed: 12/13/2022]
Abstract
Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. Using deep mutational scanning and multitarget optimization, we developed a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen as a candidate human vaccine prime. These methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.
Collapse
Affiliation(s)
- Joseph G Jardine
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel W Kulp
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Colin Havenar-Daughton
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Anita Sarkar
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bryan Briney
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Devin Sok
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fabian Sesterhenn
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - June Ereño-Orbea
- Program in Molecular Structure and Function, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Oleksandr Kalyuzhniy
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Isaiah Deresa
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Xiaozhen Hu
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Skye Spencer
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meaghan Jones
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Erik Georgeson
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yumiko Adachi
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael Kubitz
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Allan C deCamp
- Vaccine and Infectious Disease Division, Statistical Center for HIV/AIDS Research and Prevention (SCHARP), Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jean-Philippe Julien
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. Program in Molecular Structure and Function, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada. Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ian A Wilson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA
| | - Shane Crotty
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA.
| | - William R Schief
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA.
| |
Collapse
|
157
|
Rangasamy SP, Menon V, Dhopeshwarkar P, Pal R, Vaniambadi KS, Mahalingam S. Membrane bound Indian clade C HIV-1 envelope antigen induces antibodies to diverse and conserved epitopes upon DNA prime/protein boost in rabbits. Vaccine 2016; 34:2444-2452. [PMID: 27032514 DOI: 10.1016/j.vaccine.2016.03.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 11/17/2022]
Abstract
The partial success of RV144 human clinical trial demonstrated that ALVAC prime/envelope protein boost vaccine regimen may represent a promising strategy for the development of an effective HIV-1 vaccine. Our earlier study demonstrated that a trimeric HIV-1 envelope gp145 from an Indian clade C isolate elicited cross clade neutralizing antibodies primarily towards Tier 1 isolates. In the present study, we examined the immunogenicity of DNA prime/envelope protein boost vaccine in rabbits using gp160 DNA of the Indian clade C isolate with various cytoplasmic tail truncations and trimeric gp145 protein. Cytoplasmic tail mutants of gp160 exposed epitopes that reacted strongly with a number of broadly neutralizing human monoclonal antibodies against HIV-1. Overall, envelope specific titers were found to be similar in all rabbit groups with higher pseudovirus neutralization in protein only immunized rabbits. The complete linear epitope mapping of rabbit immune sera revealed strong binding to C1, C2, V3, C3 and C4 domains of gp145. Importantly, reactivity of gp41 ecto-domain peptides was observed in DNA prime/protein boost sera but not in the sera of rabbits immunized with protein alone. Moreover, membrane anchored but not soluble envelope encoding DNA immunization elicited antibodies against linear epitopes on the conserved gp41 ecto-domain. Together, these results suggest that priming with DNA encoding cytoplasmic domains of Env alters the quality of antibodies elicited following protein boost and hence may be utilized to generate protective immunity by HIV-1 vaccine.
Collapse
Affiliation(s)
- Sneha Priya Rangasamy
- Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Veena Menon
- Advanced Bioscience Laboratories Inc., Rockville, MD, USA
| | | | - Ranajit Pal
- Advanced Bioscience Laboratories Inc., Rockville, MD, USA
| | | | - Sundarasamy Mahalingam
- Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
158
|
Scharf L, West AP, Sievers SA, Chen C, Jiang S, Gao H, Gray MD, McGuire AT, Scheid JF, Nussenzweig MC, Stamatatos L, Bjorkman PJ. Structural basis for germline antibody recognition of HIV-1 immunogens. eLife 2016; 5. [PMID: 26997349 PMCID: PMC4811768 DOI: 10.7554/elife.13783] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/05/2016] [Indexed: 01/16/2023] Open
Abstract
Efforts to elicit broadly neutralizing antibodies (bNAbs) against HIV-1 require understanding germline bNAb recognition of HIV-1 envelope glycoprotein (Env). The VRC01-class bNAb family derived from the VH1-2*02 germline allele arose in multiple HIV-1–infected donors, yet targets the CD4-binding site on Env with common interactions. Modified forms of the 426c Env that activate germline-reverted B cell receptors are candidate immunogens for eliciting VRC01-class bNAbs. We present structures of germline-reverted VRC01-class bNAbs alone and complexed with 426c-based gp120 immunogens. Germline bNAb–426c gp120 complexes showed preservation of VRC01-class signature residues and gp120 contacts, but detectably different binding modes compared to mature bNAb-gp120 complexes. Unlike typical antibody-antigen interactions, VRC01–class germline antibodies exhibited preformed antigen-binding conformations for recognizing immunogens. Affinity maturation introduced substitutions increasing induced-fit recognition and electropositivity, potentially to accommodate negatively-charged complex-type N-glycans on gp120. These results provide general principles relevant to the unusual evolution of VRC01–class bNAbs and guidelines for structure-based immunogen design. DOI:http://dx.doi.org/10.7554/eLife.13783.001 When human immunodeficiency virus-1 (HIV-1) infects humans it can cause a serious disease that damages the immune system. Currently there is no cure for this disease and there are no vaccines available to halt the spread of the virus. Researchers are hoping to be able to develop a single vaccine that can protect individuals against every form (or strain) of HIV-1, but this has proved difficult because many different versions of the virus exist. An effective vaccine triggers long-lasting immunity to a particular virus or microbe by activating the production of proteins called antibodies that identify and help to destroy the threat. Research has shown that most individuals infected with HIV-1 produce antibodies that can only recognize a few HIV strains. However, there are rare individuals who produce “broadly neutralizing antibodies”; that is, antibodies that can recognize and help to kill 90% or more of HIV-1 strains. Understanding how broadly neutralizing antibodies are produced in infected individuals may aid the development of a vaccine that can protect others from the many circulating strains of HIV. When an individual encounters a virus, immature antibodies are modified to generate mature antibodies that bind more effectively to specific virus proteins. Here, Scharf et al. investigated how a class of broadly neutralizing antibodies called VRC01-class antibodies, which bind to an HIV protein called gp120, are produced. The experiments used a technique called X-ray crystallography to reveal the three-dimensional structures of immature versions of these antibodies when they are bound to gp120. Scharf et al. discovered that, unlike most antibodies, the overall final structure of VRC01 antibodies is formed before the antibody matures. Instead of making large changes to the structure of these antibodies, the maturation process makes VRC01-class antibodies become more positively charged, which allows them to bind to gp120 proteins on a wider variety of HIV viruses. These findings suggest that it may be possible to use modified gp120 proteins in vaccines to trigger the production of broadly neutralizing antibodies against HIV. DOI:http://dx.doi.org/10.7554/eLife.13783.002
Collapse
Affiliation(s)
- Louise Scharf
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Stuart A Sievers
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Courtney Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Siduo Jiang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Matthew D Gray
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Johannes F Scheid
- Laboratory of Molecular Immunology, The Rockefeller University, New York, United States
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
159
|
McGuire AT, Gray MD, Dosenovic P, Gitlin AD, Freund NT, Petersen J, Correnti C, Johnsen W, Kegel R, Stuart AB, Glenn J, Seaman MS, Schief WR, Strong RK, Nussenzweig MC, Stamatatos L. Specifically modified Env immunogens activate B-cell precursors of broadly neutralizing HIV-1 antibodies in transgenic mice. Nat Commun 2016; 7:10618. [PMID: 26907590 PMCID: PMC4770077 DOI: 10.1038/ncomms10618] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/05/2016] [Indexed: 12/31/2022] Open
Abstract
VRC01-class broadly neutralizing HIV-1 antibodies protect animals from experimental infection and could contribute to an effective vaccine response. Their predicted germline forms (gl) bind Env inefficiently, which may explain why they are not elicited by HIV-1 Env-immunization. Here we show that an optimized Env immunogen can engage multiple glVRC01-class antibodies. Furthermore, this immunogen activates naive B cells expressing the human germline heavy chain of 3BNC60, paired with endogenous mouse light chains in vivo. To address whether it activates B cells expressing the fully humanized gl3BNC60 B-cell receptor (BCR), we immunized mice carrying both the heavy and light chains of gl3BNC60. B cells expressing this BCR display an autoreactive phenotype and fail to respond efficiently to soluble forms of the optimized immunogen, unless it is highly multimerized. Thus, specifically designed Env immunogens can activate naive B cells expressing human BCRs corresponding to precursors of broadly neutralizing HIV-1 antibodies even when the B cells display an autoreactive phenotype. The induction of broadly neutralizing antibodies (bNAbs) is a goal of HIV-1 vaccine research. Here the authors demonstrate the ability of an HIV Env-derived immunogen to bind germline precursors of a class of bNAbs and to activate the corresponding B cells in a knock-in mouse model
Collapse
Affiliation(s)
- Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, PO Box 19024 Seattle, Washington 98109, USA
| | - Matthew D Gray
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, PO Box 19024 Seattle, Washington 98109, USA
| | - Pia Dosenovic
- Laboratory of Molecular Immunology, New York, New York 10065, USA
| | | | - Natalia T Freund
- Laboratory of Molecular Immunology, New York, New York 10065, USA
| | - John Petersen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, PO Box 19024 Seattle, Washington 98109, USA
| | - Colin Correnti
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, PO Box 19024 Seattle, Washington 98109, USA
| | - William Johnsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, PO Box 19024 Seattle, Washington 98109, USA
| | - Robert Kegel
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, PO Box 19024 Seattle, Washington 98109, USA
| | - Andrew B Stuart
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, PO Box 19024 Seattle, Washington 98109, USA
| | - Jolene Glenn
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, PO Box 19024 Seattle, Washington 98109, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, E/CLS-1001, Boston, Massachusetts 02215, USA
| | - William R Schief
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road La Jolla, California 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, 10550 North Torrey Pines Road La Jolla, California 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, 10550 North Torrey Pines Road La Jolla, California 92037, USA.,Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square Cambridge, Massachusetts 02139, USA
| | - Roland K Strong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, PO Box 19024 Seattle, Washington 98109, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, New York, New York 10065, USA.,Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, PO Box 19024 Seattle, Washington 98109, USA.,University of Washington, Department of Global Health, 1510 San Juan Road #310e Seattle, Washington 98195, USA
| |
Collapse
|
160
|
Antigen clasping by two antigen-binding sites of an exceptionally specific antibody for histone methylation. Proc Natl Acad Sci U S A 2016; 113:2092-7. [PMID: 26862167 DOI: 10.1073/pnas.1522691113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Antibodies have a well-established modular architecture wherein the antigen-binding site residing in the antigen-binding fragment (Fab or Fv) is an autonomous and complete unit for antigen recognition. Here, we describe antibodies departing from this paradigm. We developed recombinant antibodies to trimethylated lysine residues on histone H3, important epigenetic marks and challenging targets for molecular recognition. Quantitative characterization demonstrated their exquisite specificity and high affinity, and they performed well in common epigenetics applications. Surprisingly, crystal structures and biophysical analyses revealed that two antigen-binding sites of these antibodies form a head-to-head dimer and cooperatively recognize the antigen in the dimer interface. This "antigen clasping" produced an expansive interface where trimethylated Lys bound to an unusually extensive aromatic cage in one Fab and the histone N terminus to a pocket in the other, thereby rationalizing the high specificity. A long-neck antibody format with a long linker between the antigen-binding module and the Fc region facilitated antigen clasping and achieved both high specificity and high potency. Antigen clasping substantially expands the paradigm of antibody-antigen recognition and suggests a strategy for developing extremely specific antibodies.
Collapse
|
161
|
Scheid JF. HIV-specific B cell response in patients with broadly neutralizing serum activity. Science 2016; 350:1175. [PMID: 26785466 DOI: 10.1126/science.aad7133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Johannes F Scheid
- Massachusetts General Hospital, Boston, MA 02114, USA. The Rockefeller University, New York, NY 10021, USA.
| |
Collapse
|
162
|
Conformational Epitope-Specific Broadly Neutralizing Plasma Antibodies Obtained from an HIV-1 Clade C-Infected Elite Neutralizer Mediate Autologous Virus Escape through Mutations in the V1 Loop. J Virol 2016; 90:3446-57. [PMID: 26763999 DOI: 10.1128/jvi.03090-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/07/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Broadly neutralizing antibodies isolated from infected patients who are elite neutralizers have identified targets on HIV-1 envelope (Env) glycoprotein that are vulnerable to antibody neutralization; however, it is not known whether infection established by the majority of the circulating clade C strains in Indian patients elicit neutralizing antibody responses against any of the known targets. In the present study, we examined the specificity of a broad and potent cross-neutralizing plasma obtained from an Indian elite neutralizer infected with HIV-1 clade C. This plasma neutralized 53/57 (93%) HIV pseudoviruses prepared with Env from distinct HIV clades of different geographical origins. Mapping studies using gp120 core protein, single-residue knockout mutants, and chimeric viruses revealed that G37080 broadly cross-neutralizing (BCN) plasma lacks specificities to the CD4 binding site, gp41 membrane-proximal external region, N160 and N332 glycans, and R166 and K169 in the V1-V3 region and are known predominant targets for BCN antibodies. Depletion of G37080 plasma with soluble trimeric BG505-SOSIP.664 Env (but with neither monomeric gp120 nor clade C membrane-proximal external region peptides) resulted in significant reduction of virus neutralization, suggesting that G37080 BCN antibodies mainly target epitopes on cleaved trimeric Env. Further examination of autologous circulating Envs revealed the association of mutation of residues in the V1 loop that contributed to neutralization resistance. In summary, we report the identification of plasma antibodies from a clade C-infected elite neutralizer that mediate neutralization breadth via epitopes on trimeric gp120 not yet reported and confer autologous neutralization escape via mutation of residues in the V1 loop. IMPORTANCE A preventive vaccine to protect against HIV-1 is urgently needed. HIV-1 envelope glycoproteins are targets of neutralizing antibodies and represent a key component for immunogen design. The mapping of epitopes on viral envelopes vulnerable to immune evasion will aid in defining targets of vaccine immunogens. We identified novel conformational epitopes on the viral envelope targeted by broadly cross-neutralizing antibodies elicited in natural infection in an elite neutralizer infected with HIV-1 clade C. Our data extend our knowledge on neutralizing epitopes associated with virus escape and potentially contribute to immunogen design and antibody-based prophylactic therapy.
Collapse
|
163
|
Halper-Stromberg A, Nussenzweig MC. Towards HIV-1 remission: potential roles for broadly neutralizing antibodies. J Clin Invest 2016; 126:415-23. [PMID: 26752643 DOI: 10.1172/jci80561] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Current antiretroviral drug therapies do not cure HIV-1 because they do not eliminate a pool of long-lived cells harboring immunologically silent but replication-competent proviruses - termed the latent reservoir. Eliminating this reservoir and stimulating the immune response to control infection in the absence of therapy remain important but unsolved goals of HIV-1 cure research. Recently discovered broadly neutralizing antibodies (bNAbs) exhibit remarkable breadth and potency in their ability to neutralize HIV-1 in vitro, and recent studies have demonstrated new therapeutic applications for passively administered bNAbs in vivo. This Review discusses the roles bNAbs might play in HIV-1 treatment regimens, including prevention, therapy, and cure.
Collapse
|
164
|
Abstract
Purpose of review This review highlights recent developments in HIV-1 antibody engineering and discusses the effects of increased polyreactivity on serum half-lives of engineered antibodies. Recent findings Recent studies have uncovered a wealth of information about the relationship between the sequences and efficacies of anti-HIV-1 antibodies through a combination of bioinformatics, structural characterization and in vivo studies. This knowledge has stimulated efforts to enhance antibody breadth and potency for therapeutic use. Although some engineered antibodies have shown increased polyreactivity and short half-lives, promising efforts are circumventing these problems. Summary Antibodies are desirable as therapeutics due to their ability to recognize targets with both specificity and high affinity. Furthermore, the ability of antibodies to stimulate Fc-mediated effector functions can increase their utility. Thus, mAbs have become central to strategies for the treatment of various diseases. Using both targeted and library-based approaches, antibodies can be engineered to improve their therapeutic properties. This article will discuss recent antibody engineering efforts to improve the breadth and potency of anti-HIV-1 antibodies. The polyreactivity of engineered HIV-1 bNAbs and the effect on serum half-life will be explored along with strategies to overcome problems introduced by engineering antibodies. Finally, advances in creating bispecific anti-HIV-1 reagents are discussed.
Collapse
|
165
|
Abstract
PURPOSE OF REVIEW To discuss recent progress in the use of vectors to produce antibodies in vivo as an alternative form of HIV prophylaxis or therapy. Instead of passive transfer of monoclonal antibody proteins, a transgene encoding an antibody is delivered to cells by the vector, resulting in expression and secretion by the host cell. This review will emphasize adeno-associated virus (AAV)-based strategies and summarize the evidence in support of this strategy as an alternative to traditional vaccines. We will highlight the major findings in the field and discuss the impact that this approach could have on the prevention, treatment and possibly eradication of HIV in patients. RECENT FINDINGS In this emerging field, the emphasis has been on the use of vectors delivering antibodies as an alternative to the development of an HIV vaccine. However, recent findings suggest that AAV-delivered broadly neutralizing antibodies can suppress HIV replication. As such, a single injection of AAV could mediate long-term antibody expression to act as a long-lived therapeutic in the absence of antiretroviral drugs. SUMMARY Vector-mediated antibody expression can both prevent transmission and inhibit the replication of established HIV infections. As such, it offers an alternative to immunogen-based vaccine design and a novel therapeutic intervention by enabling precise manipulation of humoral immunity. Success may enable not only the development of effective prevention against HIV but may also provide an alternative to a lifetime of antiretroviral drugs taken by those who are already infected.
Collapse
|
166
|
Lynch RM, Boritz E, Coates EE, DeZure A, Madden P, Costner P, Enama ME, Plummer S, Holman L, Hendel CS, Gordon I, Casazza J, Conan-Cibotti M, Migueles SA, Tressler R, Bailer RT, McDermott A, Narpala S, O’Dell S, Wolf G, Lifson JD, Freemire BA, Gorelick RJ, Pandey JP, Mohan S, Chomont N, Fromentin R, Chun TW, Fauci AS, Schwartz RM, Koup RA, Douek DC, Hu Z, Capparelli E, Graham BS, Mascola JR, Ledgerwood JE. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Sci Transl Med 2015; 7:319ra206. [DOI: 10.1126/scitranslmed.aad5752] [Citation(s) in RCA: 344] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
167
|
Scharf L, Wang H, Gao H, Chen S, McDowall AW, Bjorkman PJ. Broadly Neutralizing Antibody 8ANC195 Recognizes Closed and Open States of HIV-1 Env. Cell 2015; 162:1379-90. [PMID: 26359989 DOI: 10.1016/j.cell.2015.08.035] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/19/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
The HIV-1 envelope (Env) spike contains limited epitopes for broadly neutralizing antibodies (bNAbs); thus, most neutralizing antibodies are strain specific. The 8ANC195 epitope, defined by crystal and electron microscopy (EM) structures of bNAb 8ANC195 complexed with monomeric gp120 and trimeric Env, respectively, spans the gp120 and gp41 Env subunits. To investigate 8ANC195's gp41 epitope at higher resolution, we solved a 3.58 Å crystal structure of 8ANC195 complexed with fully glycosylated Env trimer, revealing 8ANC195 insertion into a glycan shield gap to contact gp120 and gp41 glycans and protein residues. To determine whether 8ANC195 recognizes the CD4-bound open Env conformation that leads to co-receptor binding and fusion, one of several known conformations of virion-associated Env, we solved EM structures of an Env/CD4/CD4-induced antibody/8ANC195 complex. 8ANC195 binding partially closed the CD4-bound trimer, confirming structural plasticity of Env by revealing a previously unseen conformation. 8ANC195's ability to bind different Env conformations suggests advantages for potential therapeutic applications.
Collapse
Affiliation(s)
- Louise Scharf
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Haoqing Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Songye Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alasdair W McDowall
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
168
|
Structure of an HIV-2 gp120 in Complex with CD4. J Virol 2015; 90:2112-8. [PMID: 26608312 DOI: 10.1128/jvi.02678-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/19/2015] [Indexed: 11/20/2022] Open
Abstract
HIV-2 is a nonpandemic form of the virus causing AIDS, and the majority of HIV-2-infected patients exhibit long-term nonprogression. The HIV-1 and HIV-2 envelope glycoproteins, the sole targets of neutralizing antibodies, share 30 to 40% identity. As a first step in understanding the reduced pathogenicity of HIV-2, we solved a 3.0-Å structure of an HIV-2 gp120 bound to the host receptor CD4, which reveals structural similarity to HIV-1 gp120 despite divergence in amino acid sequence.
Collapse
|
169
|
Coevolution Analysis of HIV-1 Envelope Glycoprotein Complex. PLoS One 2015; 10:e0143245. [PMID: 26579711 PMCID: PMC4651434 DOI: 10.1371/journal.pone.0143245] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/02/2015] [Indexed: 11/19/2022] Open
Abstract
The HIV-1 Env spike is the main protein complex that facilitates HIV-1 entry into CD4+ host cells. HIV-1 entry is a multistep process that is not yet completely understood. This process involves several protein-protein interactions between HIV-1 Env and a variety of host cell receptors along with many conformational changes within the spike. HIV-1 Env developed due to high mutation rates and plasticity escape strategies from immense immune pressure and entry inhibitors. We applied a coevolution and residue-residue contact detecting method to identify coevolution patterns within HIV-1 Env protein sequences representing all group M subtypes. We identified 424 coevolving residue pairs within HIV-1 Env. The majority of predicted pairs are residue-residue contacts and are proximal in 3D structure. Furthermore, many of the detected pairs have functional implications due to contributions in either CD4 or coreceptor binding, or variable loop, gp120-gp41, and interdomain interactions. This study provides a new dimension of information in HIV research. The identified residue couplings may not only be important in assisting gp120 and gp41 coordinate structure prediction, but also in designing new and effective entry inhibitors that incorporate mutation patterns of HIV-1 Env.
Collapse
|
170
|
Chemical Cross-Linking Stabilizes Native-Like HIV-1 Envelope Glycoprotein Trimer Antigens. J Virol 2015; 90:813-28. [PMID: 26512083 PMCID: PMC4702668 DOI: 10.1128/jvi.01942-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/21/2015] [Indexed: 01/26/2023] Open
Abstract
Major neutralizing antibody immune evasion strategies of the HIV-1 envelope glycoprotein (Env) trimer include conformational and structural instability. Stabilized soluble trimers such as BG505 SOSIP.664 mimic the structure of virion-associated Env but nevertheless sample different conformational states. Here we demonstrate that treating BG505 SOSIP.664 trimers with glutaraldehyde or a heterobifunctional cross-linker introduces additional stability with relatively modest effects on antigenicity. Thus, most broadly neutralizing antibody (bNAb) epitopes were preserved after cross-linking, whereas the binding of most weakly or nonneutralizing antibodies (non-NAb) was reduced. Cross-linking stabilized all Env conformers present within a mixed population, and individual conformers could be isolated by bNAb affinity chromatography. Both positive selection of cross-linked conformers using the quaternary epitope-specific bNAbs PGT145, PGT151, and 3BC315 and negative selection with non-NAbs against the V3 region enriched for trimer populations with improved antigenicity for bNAbs. Similar results were obtained using the clade B B41 SOSIP.664 trimer. The cross-linking method may, therefore, be useful for countering the natural conformational heterogeneity of some HIV-1 Env proteins and, by extrapolation, also vaccine immunogens from other pathogens. IMPORTANCE The development of a vaccine to induce protective antibodies against HIV-1 is of primary public health importance. Recent advances in immunogen design have provided soluble recombinant envelope glycoprotein trimers with near-native morphology and antigenicity. However, these trimers are conformationally flexible, potentially reducing B-cell recognition of neutralizing antibody epitopes. Here we show that chemical cross-linking increases trimer stability, reducing binding of nonneutralizing antibodies while largely maintaining neutralizing antibody binding. Cross-linking followed by positive or negative antibody affinity selection of individual stable conformational variants further improved the antigenic and morphological characteristics of the trimers. This approach may be generally applicable to HIV-1 Env and also to other conformationally flexible pathogen antigens.
Collapse
|
171
|
Longitudinal Antigenic Sequences and Sites from Intra-Host Evolution (LASSIE) Identifies Immune-Selected HIV Variants. Viruses 2015; 7:5443-75. [PMID: 26506369 PMCID: PMC4632389 DOI: 10.3390/v7102881] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/01/2023] Open
Abstract
Within-host genetic sequencing from samples collected over time provides a dynamic view of how viruses evade host immunity. Immune-driven mutations might stimulate neutralization breadth by selecting antibodies adapted to cycles of immune escape that generate within-subject epitope diversity. Comprehensive identification of immune-escape mutations is experimentally and computationally challenging. With current technology, many more viral sequences can readily be obtained than can be tested for binding and neutralization, making down-selection necessary. Typically, this is done manually, by picking variants that represent different time-points and branches on a phylogenetic tree. Such strategies are likely to miss many relevant mutations and combinations of mutations, and to be redundant for other mutations. Longitudinal Antigenic Sequences and Sites from Intrahost Evolution (LASSIE) uses transmitted founder loss to identify virus "hot-spots" under putative immune selection and chooses sequences that represent recurrent mutations in selected sites. LASSIE favors earliest sequences in which mutations arise. With well-characterized longitudinal Env sequences, we confirmed selected sites were concentrated in antibody contacts and selected sequences represented diverse antigenic phenotypes. Practical applications include rapidly identifying immune targets under selective pressure within a subject, selecting minimal sets of reagents for immunological assays that characterize evolving antibody responses, and for immunogens in polyvalent "cocktail" vaccines.
Collapse
|
172
|
Pegu A, Asokan M, Wu L, Wang K, Hataye J, Casazza JP, Guo X, Shi W, Georgiev I, Zhou T, Chen X, O'Dell S, Todd JP, Kwong PD, Rao SS, Yang ZY, Koup RA, Mascola JR, Nabel GJ. Activation and lysis of human CD4 cells latently infected with HIV-1. Nat Commun 2015; 6:8447. [PMID: 26485194 PMCID: PMC4633990 DOI: 10.1038/ncomms9447] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/21/2015] [Indexed: 12/18/2022] Open
Abstract
The treatment of AIDS with combination antiretroviral therapy (cART) remains lifelong largely because the virus persists in latent reservoirs. Elimination of latently infected cells could therefore reduce treatment duration and facilitate immune reconstitution. Here we report an approach to reduce the viral reservoir by activating dormant viral gene expression and directing T lymphocytes to lyse previously latent, HIV-1-infected cells. An immunomodulatory protein was created that combines the specificity of a HIV-1 broadly neutralizing antibody with that of an antibody to the CD3 component of the T-cell receptor. CD3 engagement by the protein can stimulate T-cell activation that induces proviral gene expression in latently infected T cells. It further stimulates CD8 T-cell effector function and redirects T cells to lyse these previously latent-infected cells through recognition of newly expressed Env. This immunomodulatory protein could potentially help to eliminate latently infected cells and deplete the viral reservoir in HIV-1-infected individuals. The elimination of latently infected cells is a sought after goal in the treatment of HIV-1 infections. Here the authors develop an approach to eliminate latently HIV-1 infected cells by using an immunomodulatory protein, which can activate viral gene expression in these cells and direct T lymphocytes to lyse them in vitro.
Collapse
Affiliation(s)
- Amarendra Pegu
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Mangaiarkarasi Asokan
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Lan Wu
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Keyun Wang
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Jason Hataye
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Joseph P Casazza
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Xiaoti Guo
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Wei Shi
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Ivelin Georgiev
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Tongqing Zhou
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Xuejun Chen
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Sijy O'Dell
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - John-Paul Todd
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Peter D Kwong
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Srinivas S Rao
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Zhi-yong Yang
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Richard A Koup
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - John R Mascola
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Gary J Nabel
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| |
Collapse
|
173
|
Habte HH, Banerjee S, Shi H, Qin Y, Cho MW. Immunogenic properties of a trimeric gp41-based immunogen containing an exposed membrane-proximal external region. Virology 2015; 486:187-97. [PMID: 26454663 DOI: 10.1016/j.virol.2015.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/09/2015] [Accepted: 09/22/2015] [Indexed: 01/15/2023]
Abstract
The membrane-proximal external region (MPER) of HIV-1 gp41 is an attractive target for vaccine development. Thus, better understanding of its immunogenic properties in various structural contexts is important. We previously described the crystal structure of a trimeric protein complex named gp41-HR1-54Q, which consists of the heptad repeat regions 1 and 2 and the MPER. The protein was efficiently recognized by broadly neutralizing antibodies. Here, we describe its immunogenic properties in rabbits. The protein was highly immunogenic, especially the C-terminal end of the MPER containing 4E10 and 10E8 epitopes ((671)NWFDITNWLWYIK(683)). Although antibodies exhibited strong competition activity against 4E10 and 10E8, neutralizing activity was not detected. Detailed mapping analyses indicated that amino acid residues critical for recognition resided on faces of the alpha helix that are either opposite of or perpendicular to the epitopes recognized by 4E10 and 10E8. These results provide critical information for designing the next generation of MPER-based immunogens.
Collapse
Affiliation(s)
- Habtom H Habte
- College of Veterinary Medicine, Department of Biomedical Sciences, Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, 1600 S 16th Street, Ames, IA 50011-1250, USA
| | - Saikat Banerjee
- College of Veterinary Medicine, Department of Biomedical Sciences, Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, 1600 S 16th Street, Ames, IA 50011-1250, USA
| | - Heliang Shi
- College of Veterinary Medicine, Department of Biomedical Sciences, Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, 1600 S 16th Street, Ames, IA 50011-1250, USA
| | - Yali Qin
- College of Veterinary Medicine, Department of Biomedical Sciences, Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, 1600 S 16th Street, Ames, IA 50011-1250, USA
| | - Michael W Cho
- College of Veterinary Medicine, Department of Biomedical Sciences, Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, 1600 S 16th Street, Ames, IA 50011-1250, USA.
| |
Collapse
|
174
|
N463 Glycosylation Site on V5 Loop of a Mutant gp120 Regulates the Sensitivity of HIV-1 to Neutralizing Monoclonal Antibodies VRC01/03. J Acquir Immune Defic Syndr 2015; 69:270-7. [PMID: 25751231 DOI: 10.1097/qai.0000000000000595] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND HIV-1 gp120/gp41 is heavily modified by n-linked carbohydrates that play important roles either in correct folding or in shielding vulnerable viral protein surfaces from antibody recognition. METHODS In our previous work, 25 potential N-linked glycosylation sites (PNGS) of a CRF07_BC isolate of HIV-1 were individually mutated, and the resulting effects on infectivity and antibody-mediated neutralization were evaluated. To further understand the functional role of these PNGS, we generated double and multiple mutants from selected individual PNGS mutants. The effects were then evaluated by examining infectivity and sensitivity to antibody-mediated neutralization by neutralizing monoclonal antibodies (nMAbs) and serum antibodies from HIV-1 positive donors. RESULTS Infectivity results showed that, among the 12 combined PNGS mutants, only 197M.1 (N197D/N301Q) lost infectivity completely, whereas all others (except for 197M.6) showed reduced viral infectivity. In terms of neutralization sensitivity to known nMAbs, we found that adding N463Q mutation to all the gp120 mutants containing N197D significantly increased neutralization sensitivity to VRC01 and VRC03, suggesting N197 and N463 have a strong synergistic effect in regulating the neutralizing sensitivity of HIV-1 to the anti-CD4bs nMAbs VRC01/VRC03. Structural analysis based on the available structures of gp120 alone and in complex with CD4 and various nMAbs elucidates a molecular rationale for this experimental observation. CONCLUSIONS The data indicate that N463 plays an important role in regulating the CD4bs MAbs VRC01/VRC03 sensitivity in the genetic background of N197D mutation of gp120, which should provide valuable information for a better understanding of the interplay between HIV-1 and VRC01/03.
Collapse
|
175
|
Shcherbakov DN, Bakulina AY, Karpenko LI, Ilyichev AA. Broadly Neutralizing Antibodies against HIV-1 As a Novel Aspect of the Immune Response. Acta Naturae 2015; 7:11-21. [PMID: 26798488 PMCID: PMC4717246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The human immunodeficiency virus-1 (HIV-1) has the ability to evade the adaptive immune response due to high mutation rates. Soon after the discovery of HIV-1, it was originally proposed that neutralizing of antibodies to the virus occurs rarely or cannot be elicited at all. In the 1990s, there appeared reports that sera of select HIV-1-infected individuals contained antibodies capable of neutralizing different virus subtypes. Such antibodies were named broadly neutralizing antibodies (bNAbs). Since 2009, the development of new cell technologies has intensified research efforts directed at identifying new bNAbs with a neutralization potency of over 90% of primary HIV-1 isolates. These antibodies have unique characteristics which include high levels of somatic mutations and unusually long variable loops that penetrate through the glycan shield of HIV-1 Env to contact the protein surface. In this review, we will attempt to summarize the latest data on bNAbs against HIV-1 in terms of their interactions with the sites of vulnerability on HIV-1 glycoproteins.
Collapse
Affiliation(s)
- D. N. Shcherbakov
- State research center of virology and biotechnology “Vector”, Koltsovo, 630559, Novosibirsk region, Russia
- Altai State University, 61 Lenin St., 656049, Barnaul, Russia
| | - A. Y. Bakulina
- State research center of virology and biotechnology “Vector”, Koltsovo, 630559, Novosibirsk region, Russia
- Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - L. I. Karpenko
- State research center of virology and biotechnology “Vector”, Koltsovo, 630559, Novosibirsk region, Russia
| | - A. A. Ilyichev
- State research center of virology and biotechnology “Vector”, Koltsovo, 630559, Novosibirsk region, Russia
| |
Collapse
|
176
|
Andrianov AM, Kashyn IA, Tuzikov AV. Computational discovery of novel HIV-1 entry inhibitors based on potent and broad neutralizing antibody VRC01. J Mol Graph Model 2015; 61:262-71. [DOI: 10.1016/j.jmgm.2015.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/05/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
|
177
|
A broadly neutralizing human monoclonal antibody is effective against H7N9. Proc Natl Acad Sci U S A 2015; 112:10890-5. [PMID: 26283346 DOI: 10.1073/pnas.1502374112] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Emerging strains of influenza represent a significant public health threat with potential pandemic consequences. Of particular concern are the recently emerged H7N9 strains which cause pneumonia with acute respiratory distress syndrome. Estimates are that nearly 80% of hospitalized patients with H7N9 have received intensive care unit support. VIS410, a human antibody, targets a unique conserved epitope on influenza A. We evaluated the efficacy of VIS410 for neutralization of group 2 influenza strains, including H3N2 and H7N9 strains in vitro and in vivo. VIS410, administered at 50 mg/kg, protected DBA mice infected with A/Anhui/2013 (H7N9), resulting in significant survival benefit upon single-dose (-24 h) or double-dose (-12 h, +48 h) administration (P < 0.001). A single dose of VIS410 at 50 mg/kg (-12 h) combined with oseltamivir at 50 mg/kg (-12 h, twice daily for 7 d) in C57BL/6 mice infected with A/Shanghai 2/2013 (H7N9) resulted in significant decreased lung viral load (P = 0.002) and decreased lung cytokine responses for nine of the 11 cytokines measured. Based on these results, we find that VIS410 may be effective either as monotherapy or combined with antivirals in treating H7N9 disease, as well as disease from other influenza strains.
Collapse
|
178
|
Almighty antibodies? A new wave of antibody-based approaches aims to combat HIV. Nat Med 2015; 21:657-9. [DOI: 10.1038/nm0715-657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
179
|
Cortez V, Wang B, Dingens A, Chen MM, Ronen K, Georgiev IS, McClelland RS, Overbaugh J. The Broad Neutralizing Antibody Responses after HIV-1 Superinfection Are Not Dominated by Antibodies Directed to Epitopes Common in Single Infection. PLoS Pathog 2015; 11:e1004973. [PMID: 26158467 PMCID: PMC4497680 DOI: 10.1371/journal.ppat.1004973] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/22/2015] [Indexed: 12/18/2022] Open
Abstract
HIV-1 vaccines designed to date have failed to elicit neutralizing antibodies (Nabs) that are capable of protecting against globally diverse HIV-1 subtypes. One relevant setting to study the development of a strong, cross-reactive Nab response is HIV-1 superinfection (SI), defined as sequential infections from different source partners. SI has previously been shown to lead to a broader and more potent Nab response when compared to single infection, but it is unclear whether SI also impacts epitope specificity and if the epitopes targeted after SI differ from those targeted after single infection. Here the post-SI Nab responses were examined from 21 Kenyan women collectively exposed to subtypes A, C, and D and superinfected after a median time of ~1.07 years following initial infection. Plasma samples chosen for analysis were collected at a median time point ~2.72 years post-SI. Because previous studies of singly infected populations with broad and potent Nab responses have shown that the majority of their neutralizing activity can be mapped to 4 main epitopes on the HIV-1 Envelope, we focused on these targets, which include the CD4-binding site, a V1/V2 glycan, the N332 supersite in V3, and the membrane proximal external region of gp41. Using standard epitope mapping techniques that were applied to the previous cohorts, the present study demonstrates that SI did not induce a dominant Nab response to any one of these epitopes in the 21 women. Computational sera delineation analyses also suggested that 20 of the 21 superinfected women's Nab responses could not be ascribed a single specificity with high confidence. These data are consistent with a model in which SI with diverse subtypes promotes the development of a broad polyclonal Nab response, and thus would provide support for vaccine designs using multivalent HIV immunogens to elicit a diverse repertoire of Nabs.
Collapse
Affiliation(s)
- Valerie Cortez
- Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Bingjie Wang
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Adam Dingens
- Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Mitchell M. Chen
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Keshet Ronen
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Ivelin S. Georgiev
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - R. Scott McClelland
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
180
|
Caskey M, Klein F, Lorenzi JCC, Seaman MS, West AP, Buckley N, Kremer G, Nogueira L, Braunschweig M, Scheid JF, Horwitz JA, Shimeliovich I, Ben-Avraham S, Witmer-Pack M, Platten M, Lehmann C, Burke LA, Hawthorne T, Gorelick RJ, Walker BD, Keler T, Gulick RM, Fätkenheuer G, Schlesinger SJ, Nussenzweig MC. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature 2015; 522:487-91. [PMID: 25855300 PMCID: PMC4890714 DOI: 10.1038/nature14411] [Citation(s) in RCA: 624] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/19/2015] [Indexed: 02/07/2023]
Abstract
HIV-1 immunotherapy with a combination of first generation monoclonal antibodies was largely ineffective in pre-clinical and clinical settings and was therefore abandoned. However, recently developed single-cell-based antibody cloning methods have uncovered a new generation of far more potent broadly neutralizing antibodies to HIV-1 (refs 4, 5). These antibodies can prevent infection and suppress viraemia in humanized mice and nonhuman primates, but their potential for human HIV-1 immunotherapy has not been evaluated. Here we report the results of a first-in-man dose escalation phase 1 clinical trial of 3BNC117, a potent human CD4 binding site antibody, in uninfected and HIV-1-infected individuals. 3BNC117 infusion was well tolerated and demonstrated favourable pharmacokinetics. A single 30 mg kg(-1) infusion of 3BNC117 reduced the viral load in HIV-1-infected individuals by 0.8-2.5 log10 and viraemia remained significantly reduced for 28 days. Emergence of resistant viral strains was variable, with some individuals remaining sensitive to 3BNC117 for a period of 28 days. We conclude that, as a single agent, 3BNC117 is safe and effective in reducing HIV-1 viraemia, and that immunotherapy should be explored as a new modality for HIV-1 prevention, therapy and cure.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/adverse effects
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Antibodies, Neutralizing/therapeutic use
- Binding Sites
- Broadly Neutralizing Antibodies
- CD4 Antigens/metabolism
- Case-Control Studies
- Evolution, Molecular
- Female
- HIV Antibodies/administration & dosage
- HIV Antibodies/adverse effects
- HIV Antibodies/immunology
- HIV Antibodies/pharmacology
- HIV Antibodies/therapeutic use
- HIV Envelope Protein gp120/chemistry
- HIV Envelope Protein gp120/immunology
- HIV Infections/immunology
- HIV Infections/therapy
- HIV Infections/virology
- HIV-1/chemistry
- HIV-1/drug effects
- HIV-1/immunology
- Humans
- Immunization, Passive/methods
- Male
- Middle Aged
- Molecular Sequence Data
- Time Factors
- Viral Load/drug effects
- Viral Load/immunology
- Viremia/immunology
- Viremia/therapy
- Viremia/virology
- Young Adult
Collapse
Affiliation(s)
- Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | - Florian Klein
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | - Julio C C Lorenzi
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Anthony P West
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Noreen Buckley
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | - Gisela Kremer
- 1] First Department of Internal Medicine, University Hospital of Cologne, D-50924 Cologne, Germany [2] Clinical Trials Center Cologne, ZKS Köln, BMBF 01KN1106, University of Cologne, Cologne, Germany
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | - Malte Braunschweig
- 1] Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA [2] Albert Ludwigs University of Freiburg, 79085 Freiburg, Germany
| | - Johannes F Scheid
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | - Joshua A Horwitz
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | - Irina Shimeliovich
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | - Sivan Ben-Avraham
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | - Maggi Witmer-Pack
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | - Martin Platten
- 1] First Department of Internal Medicine, University Hospital of Cologne, D-50924 Cologne, Germany [2] German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Clara Lehmann
- 1] First Department of Internal Medicine, University Hospital of Cologne, D-50924 Cologne, Germany [2] German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Leah A Burke
- 1] Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA [2] Division of Infectious Diseases, Weill Medical College of Cornell University, New York, New York 10065, USA
| | | | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Howard Hughes Medical Institute, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Tibor Keler
- Celldex Therapeutics, Inc., Hampton, New Jersey 08827, USA
| | - Roy M Gulick
- Division of Infectious Diseases, Weill Medical College of Cornell University, New York, New York 10065, USA
| | - Gerd Fätkenheuer
- 1] First Department of Internal Medicine, University Hospital of Cologne, D-50924 Cologne, Germany [2] German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Sarah J Schlesinger
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | - Michel C Nussenzweig
- 1] Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA [2] Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
181
|
Functional and Structural Characterization of Human V3-Specific Monoclonal Antibody 2424 with Neutralizing Activity against HIV-1 JRFL. J Virol 2015; 89:9090-102. [PMID: 26109728 PMCID: PMC4524078 DOI: 10.1128/jvi.01280-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/06/2015] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The V3 region of HIV-1 gp120 is important for virus-coreceptor interaction and highly immunogenic. Although most anti-V3 antibodies neutralize only the sensitive tier 1 viruses, anti-V3 antibodies effective against the more resistant viruses exist, and a better understanding of these antibodies and their epitopes would be beneficial for the development of novel vaccine immunogens against HIV. The HIV-1 isolate JRFL with its cryptic V3 is resistant to most V3-specific monoclonal antibodies (MAbs). However, the V3 MAb 2424 achieves 100% neutralization against JRFL. 2424 is encoded by IGHV3-53 and IGLV2-28 genes, a pairing rarely used by the other V3 MAbs. 2424 also has distinct binding and neutralization profiles. Studies of 2424-mediated neutralization of JRFL produced with a mannosidase inhibitor further revealed that its neutralizing activity is unaffected by the glycan composition of the virus envelope. To understand the distinct activity of 2424, we determined the crystal structure of 2424 Fab in complex with a JRFL V3 peptide and showed that the 2424 epitope is located at the tip of the V3 crown ((307)IHIGPGRAFYT(319)), dominated by interactions with His(P308), Pro(P313), and Arg(P315). The binding mode of 2424 is similar to that of the well-characterized MAb 447-52D, although 2424 is more side chain dependent. The 2424 epitope is focused on the very apex of V3, away from nearby glycans, facilitating antibody access. This feature distinguishes the 2424 epitope from the other V3 crown epitopes and indicates that the tip of V3 is a potential site to target and incorporate into HIV vaccine immunogens. IMPORTANCE HIV/AIDS vaccines are crucial for controlling the HIV epidemics that continue to afflict millions of people worldwide. However, HIV vaccine development has been hampered by significant scientific challenges, one of which is the inability of HIV vaccine candidates evaluated thus far to elicit production of potent and broadly neutralizing antibodies. The V3 loop is one of the few immunogenic targets on the virus envelope glycoprotein that can induce neutralizing antibodies, but in many viruses, parts of V3 are inaccessible for antibody recognition. This study examined a V3-specific monoclonal antibody that can completely neutralize HIV-1 JRFL, a virus isolate resistant to most V3 antibodies. Our data reveal that this antibody recognizes the most distal tip of V3, which is not as occluded as other parts of V3. Hence, the epitope of 2424 is in one of the vulnerable sites on the virus that may be exploited in designing HIV vaccine immunogens.
Collapse
|
182
|
Reiche S, Dwai Y, Bussmann BM, Horn S, Sieg M, Jassoy C. High Inter-Individual Diversity of Point Mutations, Insertions, and Deletions in Human Influenza Virus Nucleoprotein-Specific Memory B Cells. PLoS One 2015; 10:e0128684. [PMID: 26086076 PMCID: PMC4472751 DOI: 10.1371/journal.pone.0128684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/29/2015] [Indexed: 11/19/2022] Open
Abstract
The diversity of virus-specific antibodies and of B cells among different individuals is unknown. Using single-cell cloning of antibody genes, we generated recombinant human monoclonal antibodies from influenza nucleoprotein-specific memory B cells in four adult humans with and without preceding influenza vaccination. We examined the diversity of the antibody repertoires and found that NP-specific B cells used numerous immunoglobulin genes. The heavy chains (HCs) originated from 26 and the kappa light chains (LCs) from 19 different germ line genes. Matching HC and LC chains gave rise to 43 genetically distinct antibodies that bound influenza NP. The median lengths of the CDR3 of the HC, kappa and lambda LC were 14, 9 and 11 amino acids, respectively. We identified changes at 13.6% of the amino acid positions in the V gene of the antibody heavy chain, at 8.4% in the kappa and at 10.6 % in the lambda V gene. We identified somatic insertions or deletions in 8.1% of the variable genes. We also found several small groups of clonal relatives that were highly diversified. Our findings demonstrate broadly diverse memory B cell repertoires for the influenza nucleoprotein. We found extensive variation within individuals with a high number of point mutations, insertions, and deletions, and extensive clonal diversification. Thus, structurally conserved proteins can elicit broadly diverse and highly mutated B-cell responses.
Collapse
Affiliation(s)
- Sven Reiche
- Institute of Virology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Yamen Dwai
- Institute of Virology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Department of Biology, Faculty of Natural Sciences, Tishreen University, Latakia, Syria
| | - Bianca M. Bussmann
- Institute of Virology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Susanne Horn
- Institute of Virology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Michael Sieg
- Institute of Virology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Department of Biology, Faculty of Natural Sciences, Tishreen University, Latakia, Syria
| | - Christian Jassoy
- Institute of Virology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
183
|
Jardine JG, Ota T, Sok D, Pauthner M, Kulp DW, Kalyuzhniy O, Skog PD, Thinnes TC, Bhullar D, Briney B, Menis S, Jones M, Kubitz M, Spencer S, Adachi Y, Burton DR, Schief WR, Nemazee D. HIV-1 VACCINES. Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science 2015; 349:156-61. [PMID: 26089355 DOI: 10.1126/science.aac5894] [Citation(s) in RCA: 335] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 06/11/2015] [Indexed: 12/19/2022]
Abstract
A major goal of HIV-1 vaccine research is the design of immunogens capable of inducing broadly neutralizing antibodies (bnAbs) that bind to the viral envelope glycoprotein (Env). Poor binding of Env to unmutated precursors of bnAbs, including those of the VRC01 class, appears to be a major problem for bnAb induction. We engineered an immunogen that binds to VRC01-class bnAb precursors and immunized knock-in mice expressing germline-reverted VRC01 heavy chains. Induced antibodies showed characteristics of VRC01-class bnAbs, including a short CDRL3 (light-chain complementarity-determining region 3) and mutations that favored binding to near-native HIV-1 gp120 constructs. In contrast, native-like immunogens failed to activate VRC01-class precursors. The results suggest that rational epitope design can prime rare B cell precursors for affinity maturation to desired targets.
Collapse
Affiliation(s)
- Joseph G Jardine
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center (NAC), The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Takayuki Ota
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Devin Sok
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center (NAC), The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Matthias Pauthner
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center (NAC), The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel W Kulp
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center (NAC), The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Oleksandr Kalyuzhniy
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center (NAC), The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Patrick D Skog
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Theresa C Thinnes
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Deepika Bhullar
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bryan Briney
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center (NAC), The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sergey Menis
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center (NAC), The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meaghan Jones
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center (NAC), The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mike Kubitz
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center (NAC), The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Skye Spencer
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center (NAC), The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yumiko Adachi
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center (NAC), The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center (NAC), The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA.
| | - William R Schief
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center (NAC), The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA.
| | - David Nemazee
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
184
|
Menon V, Priya RS, Labranche C, Montefiori D, Mahalingam S, Kalyanaraman VS, Pal R. Characterization of protective immune response elicited by a trimeric envelope protein from an Indian clade C HIV-1 isolate in rhesus macaques. J Med Primatol 2015; 44:275-85. [PMID: 26075700 DOI: 10.1111/jmp.12178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Recent preclinical studies have demonstrated the use of properly folded trimeric HIV-1 envelope proteins as immunogen for eliciting protecting immune response in macaques. METHODS Trimeric gp145 protein of Indian clade C HIV-1 (93IN101) was characterized for antigenicity by evaluating its binding to sCD4, and several monoclonal antibodies to HIV-1 by bio-layer interferometry. Ten macaques were immunized four times with purified gp145 in adjuplex adjuvant, and serum antibodies were characterized for binding to gp145 and neutralization. Immunized macaques were subjected to weekly low-dose vaginal challenge with SHIV1157-ipEL-p for 8 weeks. RESULTS Env protein elicited strong antibody response in macaques. Following challenge, seven of ten immunized macaques resisted challenge, while six of eight control animals were infected. CONCLUSIONS Env proteins from a clade C Indian isolate can elicit protective immune response and therefore may be a candidate for inclusion in a multiclade-based HIV-1 vaccine.
Collapse
Affiliation(s)
- Veena Menon
- Advanced BioScience Laboratories, Rockville, MD, USA
| | | | | | | | | | | | - Ranajit Pal
- Advanced BioScience Laboratories, Rockville, MD, USA
| |
Collapse
|
185
|
Klein JS, Jiang S, Galimidi RP, Keeffe JR, Bjorkman PJ. Design and characterization of structured protein linkers with differing flexibilities. Protein Eng Des Sel 2015; 27:325-30. [PMID: 25301959 PMCID: PMC4191447 DOI: 10.1093/protein/gzu043] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Engineered fusion proteins containing two or more functional polypeptides joined by a peptide or protein linker are important for many fields of biological research. The separation distance between functional units can impact epitope access and the ability to bind with avidity; thus the availability of a variety of linkers with different lengths and degrees of rigidity would be valuable for protein design efforts. Here, we report a series of designed structured protein linkers incorporating naturally occurring protein domains and compare their properties to commonly used Gly4Ser repeat linkers. When incorporated into the hinge region of an immunoglobulin G (IgG) molecule, flexible Gly4Ser repeats did not result in detectable extensions of the IgG antigen-binding domains, in contrast to linkers including more rigid domains such as β2-microglobulin, Zn-α2-glycoprotein and tetratricopeptide repeats. This study adds an additional set of linkers with varying lengths and rigidities to the available linker repertoire, which may be useful for the construction of antibodies with enhanced binding properties or other fusion proteins.
Collapse
Affiliation(s)
- Joshua S Klein
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Siduo Jiang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rachel P Galimidi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
186
|
Yoon H, Macke J, West AP, Foley B, Bjorkman PJ, Korber B, Yusim K. CATNAP: a tool to compile, analyze and tally neutralizing antibody panels. Nucleic Acids Res 2015; 43:W213-9. [PMID: 26044712 PMCID: PMC4489231 DOI: 10.1093/nar/gkv404] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/15/2015] [Indexed: 02/01/2023] Open
Abstract
CATNAP (Compile, Analyze and Tally NAb Panels) is a new web server at Los Alamos HIV Database, created to respond to the newest advances in HIV neutralizing antibody research. It is a comprehensive platform focusing on neutralizing antibody potencies in conjunction with viral sequences. CATNAP integrates neutralization and sequence data from published studies, and allows users to analyze that data for each HIV Envelope protein sequence position and each antibody. The tool has multiple data retrieval and analysis options. As input, the user can pick specific antibodies and viruses, choose a panel from a published study, or supply their own data. The output superimposes neutralization panel data, virus epidemiological data, and viral protein sequence alignments on one page, and provides further information and analyses. The user can highlight alignment positions, or select antibody contact residues and view position-specific information from the HIV databases. The tool calculates tallies of amino acids and N-linked glycosylation motifs, counts of antibody-sensitive and -resistant viruses in conjunction with each amino acid or N-glycosylation motif, and performs Fisher's exact test to detect potential positive or negative amino acid associations for the selected antibody. Website name: CATNAP (Compile, Analyze and Tally NAb Panels). Website address: http://hiv.lanl.gov/catnap.
Collapse
Affiliation(s)
- Hyejin Yoon
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | | | - Brian Foley
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Karina Yusim
- Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
187
|
Owens GE, New DM, West AP, Bjorkman PJ. Anti-PolyQ Antibodies Recognize a Short PolyQ Stretch in Both Normal and Mutant Huntingtin Exon 1. J Mol Biol 2015; 427:2507-2519. [PMID: 26047735 DOI: 10.1016/j.jmb.2015.05.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 11/24/2022]
Abstract
Huntington's disease is caused by expansion of a polyglutamine (polyQ) repeat in the huntingtin protein. A structural basis for the apparent transition between normal and disease-causing expanded polyQ repeats of huntingtin is unknown. The "linear lattice" model proposed random-coil structures for both normal and expanded polyQ in the preaggregation state. Consistent with this model, the affinity and stoichiometry of the anti-polyQ antibody MW1 increased with the number of glutamines. An opposing "structural toxic threshold" model proposed a conformational change above the pathogenic polyQ threshold resulting in a specific toxic conformation for expanded polyQ. Support for this model was provided by the anti-polyQ antibody 3B5H10, which was reported to specifically recognize a distinct pathologic conformation of soluble expanded polyQ. To distinguish between these models, we directly compared binding of MW1 and 3B5H10 to normal and expanded polyQ repeats within huntingtin exon 1 fusion proteins. We found similar binding characteristics for both antibodies. First, both antibodies bound to normal, as well as expanded, polyQ in huntingtin exon 1 fusion proteins. Second, an expanded polyQ tract contained multiple epitopes for fragments antigen-binding (Fabs) of both antibodies, demonstrating that 3B5H10 does not recognize a single epitope specific to expanded polyQ. Finally, small-angle X-ray scattering and dynamic light scattering revealed similar binding modes for MW1 and 3B5H10 Fab-huntingtin exon 1 complexes. Together, these results support the linear lattice model for polyQ binding proteins, suggesting that the hypothesized pathologic conformation of soluble expanded polyQ is not a valid target for drug design.
Collapse
Affiliation(s)
- Gwen E Owens
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA; Graduate Option in Biochemistry and Molecular Biophysics, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Danielle M New
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA.
| |
Collapse
|
188
|
Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors. Cell 2015; 161:1280-92. [PMID: 26004070 DOI: 10.1016/j.cell.2015.05.007] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/19/2015] [Accepted: 03/25/2015] [Indexed: 01/16/2023]
Abstract
The site on the HIV-1 gp120 glycoprotein that binds the CD4 receptor is recognized by broadly reactive antibodies, several of which neutralize over 90% of HIV-1 strains. To understand how antibodies achieve such neutralization, we isolated CD4-binding-site (CD4bs) antibodies and analyzed 16 co-crystal structures -8 determined here- of CD4bs antibodies from 14 donors. The 16 antibodies segregated by recognition mode and developmental ontogeny into two types: CDR H3-dominated and VH-gene-restricted. Both could achieve greater than 80% neutralization breadth, and both could develop in the same donor. Although paratope chemistries differed, all 16 gp120-CD4bs antibody complexes showed geometric similarity, with antibody-neutralization breadth correlating with antibody-angle of approach relative to the most effective antibody of each type. The repertoire for effective recognition of the CD4 supersite thus comprises antibodies with distinct paratopes arrayed about two optimal geometric orientations, one achieved by CDR H3 ontogenies and the other achieved by VH-gene-restricted ontogenies.
Collapse
|
189
|
Chuang GY, Zhang B, McKee K, O'Dell S, Kwon YD, Zhou T, Blinn J, Lloyd K, Parks R, Von Holle T, Ko SY, Kong WP, Pegu A, Wang K, Baruah K, Crispin M, Mascola JR, Moody MA, Haynes BF, Georgiev IS, Kwong PD. Eliminating antibody polyreactivity through addition of N-linked glycosylation. Protein Sci 2015; 24:1019-30. [PMID: 25800131 DOI: 10.1002/pro.2682] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 02/20/2015] [Accepted: 03/12/2015] [Indexed: 12/13/2022]
Abstract
Antibody polyreactivity can be an obstacle to translating a candidate antibody into a clinical product. Standard tests such as antibody binding to cardiolipin, HEp-2 cells, or nuclear antigens provide measures of polyreactivity, but its causes and the means to resolve are often unclear. Here we present a method for eliminating antibody polyreactivity through the computational design and genetic addition of N-linked glycosylation near known sites of polyreactivity. We used the HIV-1-neutralizing antibody, VRC07, as a test case, since efforts to increase VRC07 potency at three spatially distinct sites resulted in enhanced polyreactivity. The addition of N-linked glycans proximal to the polyreactivity-enhancing mutations at each of the spatially distinct sites resulted in reduced antibody polyreactivity as measured by (i) anti-cardiolipin ELISA, (ii) Luminex AtheNA Multi-Lyte ANA binding, and (iii) HEp-2 cell staining. The reduced polyreactivity trended with increased antibody concentration over time in mice, but not with improved overall protein stability as measured by differential scanning calorimetry. Moreover, glycan proximity to the site of polyreactivity appeared to be a critical factor. The results provide evidence that antibody polyreactivity can result from local, rather than global, features of an antibody and that addition of N-linked glycosylation can be an effective approach to reducing antibody polyreactivity.
Collapse
Affiliation(s)
- Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Julie Blinn
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, 103020
| | - Krissey Lloyd
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, 103020
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, 103020
| | - Tarra Von Holle
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, 103020
| | - Sung-Youl Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Keyun Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Kavitha Baruah
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1, 3QU, United Kingdom
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1, 3QU, United Kingdom
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, 103020
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, 103020
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| |
Collapse
|
190
|
Van Regenmortel MHV. Why Does the Molecular Structure of Broadly Neutralizing Monoclonal Antibodies Isolated from Individuals Infected with HIV-1 not Inform the Rational Design of an HIV-1 Vaccine? AIMS Public Health 2015; 2:183-193. [PMID: 29546103 PMCID: PMC5690275 DOI: 10.3934/publichealth.2015.2.183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/28/2015] [Indexed: 01/12/2023] Open
Abstract
It is commonly assumed that neutralizing Mabs that bind to the HIV-1 Env glycoprotein are more specific reagents than anti-HIV-1 polyclonal antisera and that knowledge of the structure of these Mabs facilitates the rational design of effective HIV-1 vaccine immunogens. However, after more than ten years of unsuccessful experimentation using the structure-based reverse vaccinology approach, it is now evident that it is not possible to infer from the structure of neutralizing Mabs which HIV immunogens induced their formation nor which vaccine immunogens will elicit similar Abs in an immunized host. The use of Mabs for developing an HIV-1 vaccine was counterproductive because it overlooked the fact that the apparent specificity of a Mab very much depends on the selection procedure used to obtain it and also did not take into account that an antibody is never monospecific for a single epitope but is always polyspecific for many epitopes. When the rationale of the proponents of the unsuccessful rational design strategy is analyzed, it appears that investigators who claim they are designing a vaccine immunogen are only improving the binding reactivity of a single epitope-paratope pair and are not actually designing an immunogen able to generate protective antibodies. The task of a designer consists in imagining what type of immunogen is likely to elicit a protective immune response but in the absence of knowledge regarding which features of the immune system are responsible for producing a functional neutralizing activity in antibodies, it is not feasible to intentionally optimize a potential immunogen candidate in order to obtain the desired outcome. The only available option is actually to test possible solutions by trial-and-error experiments until the preset goal is perhaps attained. Rational design and empirical approaches in HIV vaccine research should thus not be opposed as alternative options since empirical testing is an integral part of a so-called design strategy.
Collapse
Affiliation(s)
- Marc H V Van Regenmortel
- CNRS, UMR7242 - Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), Université de Strasbourg, Illkirch 67400, France ; Tel: +27-793376766
| |
Collapse
|
191
|
Galimidi RP, Klein JS, Politzer MS, Bai S, Seaman MS, Nussenzweig MC, West AP, Bjorkman PJ. Intra-spike crosslinking overcomes antibody evasion by HIV-1. Cell 2015; 160:433-46. [PMID: 25635457 DOI: 10.1016/j.cell.2015.01.016] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/21/2014] [Accepted: 12/16/2014] [Indexed: 10/24/2022]
Abstract
Antibodies developed during HIV-1 infection lose efficacy as the viral spike mutates. We postulated that anti-HIV-1 antibodies primarily bind monovalently because HIV's low spike density impedes bivalent binding through inter-spike crosslinking, and the spike structure prohibits bivalent binding through intra-spike crosslinking. Monovalent binding reduces avidity and potency, thus expanding the range of mutations permitting antibody evasion. To test this idea, we engineered antibody-based molecules capable of bivalent binding through intra-spike crosslinking. We used DNA as a "molecular ruler" to measure intra-epitope distances on virion-bound spikes and construct intra-spike crosslinking molecules. Optimal bivalent reagents exhibited up to 2.5 orders of magnitude increased potency (>100-fold average increases across virus panels) and identified conformational states of virion-bound spikes. The demonstration that intra-spike crosslinking lowers the concentration of antibodies required for neutralization supports the hypothesis that low spike densities facilitate antibody evasion and the use of molecules capable of intra-spike crosslinking for therapy or passive protection.
Collapse
Affiliation(s)
- Rachel P Galimidi
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Joshua S Klein
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Maria S Politzer
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Shiyu Bai
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | | | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA; Howard Hughes Medical Institute.
| |
Collapse
|
192
|
Barbian HJ, Decker JM, Bibollet-Ruche F, Galimidi RP, West AP, Learn GH, Parrish NF, Iyer SS, Li Y, Pace CS, Song R, Huang Y, Denny TN, Mouquet H, Martin L, Acharya P, Zhang B, Kwong PD, Mascola JR, Verrips CT, Strokappe NM, Rutten L, McCoy LE, Weiss RA, Brown CS, Jackson R, Silvestri G, Connors M, Burton DR, Shaw GM, Nussenzweig MC, Bjorkman PJ, Ho DD, Farzan M, Hahn BH. Neutralization properties of simian immunodeficiency viruses infecting chimpanzees and gorillas. mBio 2015; 6:e00296-15. [PMID: 25900654 PMCID: PMC4453581 DOI: 10.1128/mbio.00296-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Broadly cross-reactive neutralizing antibodies (bNabs) represent powerful tools to combat human immunodeficiency virus type 1 (HIV-1) infection. Here, we examined whether HIV-1-specific bNabs are capable of cross-neutralizing distantly related simian immunodeficiency viruses (SIVs) infecting central (Pan troglodytes troglodytes) (SIVcpzPtt) and eastern (Pan troglodytes schweinfurthii) (SIVcpzPts) chimpanzees (n = 11) as well as western gorillas (Gorilla gorilla gorilla) (SIVgor) (n = 1). We found that bNabs directed against the CD4 binding site (n = 10), peptidoglycans at the base of variable loop 3 (V3) (n = 5), and epitopes at the interface of surface (gp120) and membrane-bound (gp41) envelope glycoproteins (n = 5) failed to neutralize SIVcpz and SIVgor strains. In addition, apex V2-directed bNabs (n = 3) as well as llama-derived (heavy chain only) antibodies (n = 6) recognizing both the CD4 binding site and gp41 epitopes were either completely inactive or neutralized only a fraction of SIVcpzPtt strains. In contrast, one antibody targeting the membrane-proximal external region (MPER) of gp41 (10E8), functional CD4 and CCR5 receptor mimetics (eCD4-Ig, eCD4-Ig(mim2), CD4-218.3-E51, and CD4-218.3-E51-mim2), as well as mono- and bispecific anti-human CD4 (iMab and LM52) and CCR5 (PRO140, PRO140-10E8) receptor antibodies neutralized >90% of SIVcpz and SIVgor strains with low-nanomolar (0.13 to 8.4 nM) potency. Importantly, the latter antibodies blocked virus entry not only in TZM-bl cells but also in Cf2Th cells expressing chimpanzee CD4 and CCR5 and neutralized SIVcpz in chimpanzee CD4(+) T cells, with 50% inhibitory concentrations (IC50s) ranging from 3.6 to 40.5 nM. These findings provide new insight into the protective capacity of anti-HIV-1 bNabs and identify candidates for further development to combat SIVcpz infection. IMPORTANCE SIVcpz is widespread in wild-living chimpanzees and can cause AIDS-like immunopathology and clinical disease. HIV-1 infection of humans can be controlled by antiretroviral therapy; however, treatment of wild-living African apes with current drug regimens is not feasible. Nonetheless, it may be possible to curb the spread of SIVcpz in select ape communities using vectored immunoprophylaxis and/or therapy. Here, we show that antibodies and antibody-like inhibitors developed to combat HIV-1 infection in humans are capable of neutralizing genetically diverse SIVcpz and SIVgor strains with considerable breadth and potency, including in primary chimpanzee CD4(+) T cells. These reagents provide an important first step toward translating intervention strategies currently developed to treat and prevent AIDS in humans to SIV-infected apes.
Collapse
Affiliation(s)
- Hannah J Barbian
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julie M Decker
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Frederic Bibollet-Ruche
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachel P Galimidi
- Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, USA
| | - Anthony P West
- Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, USA
| | - Gerald H Learn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicholas F Parrish
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shilpa S Iyer
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yingying Li
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Ruijiang Song
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, USA
| | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Loic Martin
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines, Gif-sur-Yvette, France
| | - Priyamvada Acharya
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Nika M Strokappe
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Lucy Rutten
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Laura E McCoy
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Robin A Weiss
- Division of Infection and Immunity, University College London, London, United Kingdom
| | | | | | - Guido Silvestri
- Yerkes Regional Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, USA
| | - Michael Farzan
- Department of Immunology and Microbial Science, The Scripps Research Institute, Jupiter, Florida, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
193
|
Wu X, Zhang Z, Schramm CA, Joyce MG, Kwon YD, Zhou T, Sheng Z, Zhang B, O'Dell S, McKee K, Georgiev IS, Chuang GY, Longo NS, Lynch RM, Saunders KO, Soto C, Srivatsan S, Yang Y, Bailer RT, Louder MK, Mullikin JC, Connors M, Kwong PD, Mascola JR, Shapiro L. Maturation and Diversity of the VRC01-Antibody Lineage over 15 Years of Chronic HIV-1 Infection. Cell 2015; 161:470-485. [PMID: 25865483 DOI: 10.1016/j.cell.2015.03.004] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/01/2014] [Accepted: 02/09/2015] [Indexed: 11/29/2022]
Abstract
HIV-1-neutralizing antibodies develop in most HIV-1-infected individuals, although highly effective antibodies are generally observed only after years of chronic infection. Here, we characterize the rate of maturation and extent of diversity for the lineage that produced the broadly neutralizing antibody VRC01 through longitudinal sampling of peripheral B cell transcripts over 15 years and co-crystal structures of lineage members. Next-generation sequencing identified VRC01-lineage transcripts, which encompassed diverse antibodies organized into distinct phylogenetic clades. Prevalent clades maintained characteristic features of antigen recognition, though each evolved binding loops and disulfides that formed distinct recognition surfaces. Over the course of the study period, VRC01-lineage clades showed continuous evolution, with rates of ∼2 substitutions per 100 nucleotides per year, comparable to that of HIV-1 evolution. This high rate of antibody evolution provides a mechanism by which antibody lineages can achieve extraordinary diversity and, over years of chronic infection, develop effective HIV-1 neutralization.
Collapse
Affiliation(s)
- Xueling Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY 10016, USA
| | - Zhenhai Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics and Department of Systems Biology, Columbia University, New York, NY 10032, USA; State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chaim A Schramm
- Department of Biochemistry and Molecular Biophysics and Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics and Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nancy S Longo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca M Lynch
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin O Saunders
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cinque Soto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sanjay Srivatsan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | -
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James C Mullikin
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics and Department of Systems Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
194
|
Sneha Priya R, Veena M, Kalisz I, Whitney S, Priyanka D, LaBranche CC, Sri Teja M, Montefiori DC, Pal R, Mahalingam S, Kalyanaraman VS. Antigenicity and immunogenicity of a trimeric envelope protein from an Indian clade C HIV-1 isolate. J Biol Chem 2015; 290:9195-208. [PMID: 25691567 PMCID: PMC4423705 DOI: 10.1074/jbc.m114.621185] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/09/2015] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) isolates from India mainly belong to clade C and are quite distinct from clade C isolates from Africa in terms of their phylogenetic makeup, serotype, and sensitivity to known human broadly neutralizing monoclonal antibodies. Because many of these properties are associated with the envelope proteins of HIV-1, it is of interest to study the envelope proteins of Indian clade C isolates as part of the ongoing efforts to develop a vaccine against HIV-1. To this end, we purified trimeric uncleaved gp145 of a CCR5 tropic Indian clade C HIV-1 (93IN101) from the conditioned medium of 293 cells. The purified protein was shown to be properly folded with stable structure by circular dichroism. Conformational integrity was further demonstrated by its high affinity binding to soluble CD4, CD4 binding site antibodies such as b12 and VRC01, quaternary epitope-specific antibody PG9, and CD4-induced epitope-specific antibody 17b. Sera from rabbits immunized with gp145 elicited high titer antibodies to various domains of gp120 and neutralized a broad spectrum of clade B and clade C HIV-1 isolates. Similar to other clade B and clade C envelope immunogens, most of the Tier 1 neutralizing activity could be absorbed with the V3-specific peptide. Subsequent boosting of these rabbits with a clade B HIV-1 Bal gp145 resulted in an expanded breadth of neutralization of HIV-1 isolates. The present study strongly supports the inclusion of envelopes from Indian isolates in a future mixture of HIV-1 vaccines.
Collapse
Affiliation(s)
- Rangasamy Sneha Priya
- From the Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Menon Veena
- Advanced Bioscience Laboratories Inc., Rockville, Maryland 20850, and
| | - Irene Kalisz
- Advanced Bioscience Laboratories Inc., Rockville, Maryland 20850, and
| | - Stephen Whitney
- Advanced Bioscience Laboratories Inc., Rockville, Maryland 20850, and
| | | | - Celia C LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710
| | - Mullapudi Sri Teja
- From the Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710
| | - Ranajit Pal
- Advanced Bioscience Laboratories Inc., Rockville, Maryland 20850, and
| | - Sundarasamy Mahalingam
- From the Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India,
| | | |
Collapse
|
195
|
Viswanathan K, Shriver Z, Babcock GJ. Amino acid interaction networks provide a new lens for therapeutic antibody discovery and anti-viral drug optimization. Curr Opin Virol 2015; 11:122-9. [DOI: 10.1016/j.coviro.2015.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/16/2015] [Accepted: 03/31/2015] [Indexed: 11/24/2022]
|
196
|
Rosenberg Y, Sack M, Montefiori D, Labranche C, Lewis M, Urban L, Mao L, Fischer R, Jiang X. Pharmacokinetics and immunogenicity of broadly neutralizing HIV monoclonal antibodies in macaques. PLoS One 2015; 10:e0120451. [PMID: 25807114 PMCID: PMC4373669 DOI: 10.1371/journal.pone.0120451] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/22/2015] [Indexed: 11/24/2022] Open
Abstract
The identification of highly potent broadly neutralizing antibodies (bnAbs) against HIV-1, and success in preventing SHIV infection following their passive administration, have increased the likelihood that immunotherapeutic strategies can be adopted to prevent and treat HIV-1 infection. However, while broad and potent neutralizing activity is an essential prerequisite, in vivo properties such as good circulatory stability and non-immunogenicity are equally critical for developing a human treatment. In the present study, glycoforms of the bnAbs 10-1074, NIH45-46G54W, 10E8, PGT121, PGT128, PGT145, PGT135, PG9, PG16, VRC01 and b12 were produced by Agrobacterium-mediated transient transfection of Nicotiana benthamiana and assessed following administration in rhesus macaques. The results indicate that (i) N-glycans within the VL domain impair plasma stability of plant-derived bnAbs and (ii) while PGT121 and b12 exhibit no immunogenicity in rhesus macaques after multiple injections, VRC01, 10-1074 and NIH45-46G54W elicit high titer anti-idiotypic antibodies following a second injection. These anti-idiotypic antibodies specifically bind the administered bnAb or a close family member, and inhibit the bnAb in neutralization assays. These findings suggest that specific mutations in certain bnAbs contribute to their immunogenicity and call attention to the prospect that these mutated bnAbs will be immunogenic in humans, potentially compromising their value for prophylaxis and therapy of HIV-1.
Collapse
Affiliation(s)
- Yvonne Rosenberg
- PlantVax Corporation, Rockville, Maryland, United States of America
| | - Markus Sack
- Institute of Molecular Biotechnology, RTWH Aachen University, Aachen, Germany
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Celia Labranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Mark Lewis
- Bioqual Inc., Rockville, Maryland, United States of America
| | - Lori Urban
- PlantVax Corporation, Rockville, Maryland, United States of America
| | - Lingjun Mao
- PlantVax Corporation, Rockville, Maryland, United States of America
| | - Rainer Fischer
- Institute of Molecular Biotechnology, RTWH Aachen University, Aachen, Germany
| | - Xiaoming Jiang
- PlantVax Corporation, Rockville, Maryland, United States of America
| |
Collapse
|
197
|
What Do Chaotrope-Based Avidity Assays for Antibodies to HIV-1 Envelope Glycoproteins Measure? J Virol 2015; 89:5981-95. [PMID: 25810537 DOI: 10.1128/jvi.00320-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/16/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED When HIV-1 vaccine candidates that include soluble envelope glycoproteins (Env) are tested in humans and other species, the resulting antibody responses to Env are sifted for correlates of protection or risk. One frequently used assay measures the reduction in antibody binding to Env antigens by an added chaotrope (such as thiocyanate). Based on that assay, an avidity index was devised for assessing the affinity maturation of antibodies of unknown concentration in polyclonal sera. Since a high avidity index was linked to protection in animal models of HIV-1 infection, it has become a criterion for evaluating antibody responses to vaccine candidates. But what does the assay measure and what does an avidity index mean? Here, we have used a panel of monoclonal antibodies to well-defined epitopes on Env (gp120, gp41, and SOSIP.664 trimers) to explore how the chaotrope acts. We conclude that the chaotrope sensitivity of antibody binding to Env depends on several properties of the epitopes (continuity versus tertiary- and quaternary-structural dependence) and that the avidity index has no simple relationship to antibody affinity for functional Env spikes on virions. We show that the binding of broadly neutralizing antibodies against quaternary-structural epitopes is particularly sensitive to chaotrope treatment, whereas antibody binding to epitopes in variable loops and to nonneutralization epitopes in gp41 is generally resistant. As a result of such biases, the avidity index may at best be a mere surrogate for undefined antibody or other immune responses that correlate weakly with protection. IMPORTANCE An effective HIV-1 vaccine is an important goal. Such a vaccine will probably need to induce antibodies that neutralize typically transmitted variants of HIV-1, preventing them from infecting target cells. Vaccine candidates have so far failed to induce such antibody responses, although some do protect weakly against infection in animals and, possibly, humans. In the search for responses associated with protection, an avidity assay based on chemical disruption is often used to measure the strength of antibody binding. We have analyzed this assay mechanistically and found that the epitope specificity of an antibody has a greater influence on the outcome than does its affinity. As a result, the avidity assay is biased toward the detection of some antibody specificities while disfavoring others. We conclude that the assay may yield merely indirect correlations with weak protection, specifically when Env vaccination has failed to induce broad neutralizing responses.
Collapse
|
198
|
Sustained Delivery of a Broadly Neutralizing Antibody in Nonhuman Primates Confers Long-Term Protection against Simian/Human Immunodeficiency Virus Infection. J Virol 2015; 89:5895-903. [PMID: 25787288 DOI: 10.1128/jvi.00210-15] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/16/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Pathogen-specific neutralizing antibodies protect against many viral infections and can potentially prevent human immunodeficiency virus (HIV) transmission in humans. However, neutralizing antibodies have so far only been shown to protect nonhuman primates (NHP) against lentiviral infection when given shortly before challenge. Thus, the clinical utility and feasibility of passive antibody transfer to confer long-term protection against HIV-1 are still debated. Here, we investigate the potential of a broadly neutralizing HIV-1 antibody to provide long-term protection in a NHP model of HIV-1 infection. A human antibody was simianized to avoid immune rejection and used to sustain therapeutic levels for ∼5 months. Two months after the final antibody administration, animals were completely protected against viral challenge. These findings demonstrate the feasibility and potential of long-term passive antibody for protection against HIV-1 in humans and provide a model to test antibody therapies for other diseases in NHP. IMPORTANCE Antibodies against HIV are potential drugs that may be able to prevent HIV infection in humans. However, the long-term protective capacity of antibodies against HIV has not been assessed. Here, we repetitively administered a macaque version of a human anti-HIV antibody to monkeys, after which the antibody persisted in the blood for >5 months. Moreover, the antibody could be sustained at protective levels for 108 days, conferring protection 52 days after the last dose in a monkey model of HIV infection. Thus, passive antibody transfer can provide durable protection against infection by viruses that cause AIDS in primates.
Collapse
|
199
|
Gardner MR, Kattenhorn LM, Kondur HR, von Schaewen M, Dorfman T, Chiang JJ, Haworth KG, Decker JM, Alpert MD, Bailey CC, Neale ES, Fellinger CH, Joshi VR, Fuchs SP, Martinez-Navio JM, Quinlan BD, Yao AY, Mouquet H, Gorman J, Zhang B, Poignard P, Nussenzweig MC, Burton DR, Kwong PD, Piatak M, Lifson JD, Gao G, Desrosiers RC, Evans DT, Hahn BH, Ploss A, Cannon PM, Seaman MS, Farzan M. AAV-expressed eCD4-Ig provides durable protection from multiple SHIV challenges. Nature 2015; 519:87-91. [PMID: 25707797 PMCID: PMC4352131 DOI: 10.1038/nature14264] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 01/27/2015] [Indexed: 12/25/2022]
Abstract
Long-term in vivo expression of a broad and potent entry inhibitor could circumvent the need for a conventional vaccine for HIV-1. Adeno-associated virus (AAV) vectors can stably express HIV-1 broadly neutralizing antibodies (bNAbs). However, even the best bNAbs neutralize 10-50% of HIV-1 isolates inefficiently (80% inhibitory concentration (IC80) > 5 μg ml(-1)), suggesting that high concentrations of these antibodies would be necessary to achieve general protection. Here we show that eCD4-Ig, a fusion of CD4-Ig with a small CCR5-mimetic sulfopeptide, binds avidly and cooperatively to the HIV-1 envelope glycoprotein (Env) and is more potent than the best bNAbs (geometric mean half-maximum inhibitory concentration (IC50) < 0.05 μg ml(-1)). Because eCD4-Ig binds only conserved regions of Env, it is also much broader than any bNAb. For example, eCD4-Ig efficiently neutralized 100% of a diverse panel of neutralization-resistant HIV-1, HIV-2 and simian immunodeficiency virus isolates, including a comprehensive set of isolates resistant to the CD4-binding site bNAbs VRC01, NIH45-46 and 3BNC117. Rhesus macaques inoculated with an AAV vector stably expressed 17-77 μg ml(-1) of fully functional rhesus eCD4-Ig for more than 40 weeks, and these macaques were protected from several infectious challenges with SHIV-AD8. Rhesus eCD4-Ig was also markedly less immunogenic than rhesus forms of four well-characterized bNAbs. Our data suggest that AAV-delivered eCD4-Ig can function like an effective HIV-1 vaccine.
Collapse
Affiliation(s)
- Matthew R. Gardner
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Lisa M. Kattenhorn
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, MA 01772, USA
| | - Hema R. Kondur
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Markus von Schaewen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Tatyana Dorfman
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jessica J. Chiang
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, MA 01772, USA
| | - Kevin G. Haworth
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Julie M. Decker
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael D. Alpert
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, MA 01772, USA
- Immunathon Inc., Cambridge, MA 02141, USA
| | - Charles C. Bailey
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ernest S. Neale
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, MA 01772, USA
| | - Christoph H. Fellinger
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Vinita R. Joshi
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Sebastian P. Fuchs
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jose M. Martinez-Navio
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Brian D. Quinlan
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Annie Y. Yao
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, MA 01772, USA
| | - Hugo Mouquet
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Department of Immunology, Institut Pasteur, Paris, 75015, France
| | - Jason Gorman
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pascal Poignard
- Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center, and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Dennis R. Burton
- Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center, and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Incorporated, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Incorporated, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Guangping Gao
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Ronald C. Desrosiers
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, MA 01772, USA
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Paula M. Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | | | - Michael Farzan
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
200
|
Acharya P, Lusvarghi S, Bewley CA, Kwong PD. HIV-1 gp120 as a therapeutic target: navigating a moving labyrinth. Expert Opin Ther Targets 2015; 19:765-83. [PMID: 25724219 DOI: 10.1517/14728222.2015.1010513] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION The HIV-1 gp120 envelope (Env) glycoprotein mediates attachment of virus to human target cells that display requisite receptors, CD4 and co-receptor, generally CCR5. Despite high-affinity interactions with host receptors and proof-of-principle by the drug maraviroc that interference with CCR5 provides therapeutic benefit, no licensed drug currently targets gp120. AREAS COVERED An overview of the role of gp120 in HIV-1 entry and of sites of potential gp120 vulnerability to therapeutic inhibition is presented. Viral defenses that protect these sites and turn gp120 into a moving labyrinth are discussed together with strategies for circumventing these defenses to allow therapeutic targeting of gp120 sites of vulnerability. EXPERT OPINION The gp120 envelope glycoprotein interacts with host proteins through multiple interfaces and has conserved structural features at these interaction sites. In spite of this, targeting gp120 for therapeutic purposes is challenging. Env mechanisms that have evolved to evade the humoral immune response also shield it from potential therapeutics. Nevertheless, substantial progress has been made in understanding HIV-1 gp120 structure and its interactions with host receptors, and in developing therapeutic leads that potently neutralize diverse HIV-1 strains. Synergies between advances in understanding, needs for therapeutics against novel viral targets and characteristics of breadth and potency for a number of gp120-targetting lead molecules bodes well for gp120 as a HIV-1 therapeutic target.
Collapse
Affiliation(s)
- Priyamvada Acharya
- National Institute of Allergy and Infectious Diseases/National Institutes of Health, Vaccine Research Center, Structural Biology Section , Room 4609B, 40 Convent Drive, Bethesda, MD 20892 , USA
| | | | | | | |
Collapse
|