151
|
Wang Z, Li Z, Wu D, Tian Q, Su S, Cheng C, Nie J, Yuan Y, Wang Y, Xu X. DNA methylation variation is crucial to restore adventitious rooting ability during in vitro shoot culture-induced rejuvenation in apple rootstock. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:554-569. [PMID: 36799443 DOI: 10.1111/tpj.16153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 05/10/2023]
Abstract
In vitro shoot culture has been widely used for restoring adventitious rooting ability in rooting recalcitrant woody perennial species for the past few decades, but its molecular mechanism is largely uncovered. DNA methylation is an essential epigenetic mark that participates in many biological processes. Recent reports suggested a role of DNA methylation in vitro culture in plants. In this study, we characterized the single-base resolution DNA methylome and transcriptome of adult and in vitro shoot culture-induced rejuvenation cuttings of apple rootstock M9T337. We found a global decrease in DNA methylation during rejuvenation, which may be correlated with increased expression of DNA demethylase genes and decreased expression of DNA methyltransferase genes. We additionally documented DNA hypomethylation in 'T337'_R in gene protomer associated with higher transcript levels of several adventitious rooting-related genes. The application of a DNA methylation inhibitor (5-azacytidine) enhanced the adventitious rooting ability and the expression level of adventitious rooting-related genes, such as, MdANT, MdMPK3, MdABCB21, MdCDC48, MdKIN8B, pri-MdMIR156a5 and pri-MdMIR156a12. Together, the DNA hypomethylation is critical for the rejuvenation-dependent adventitious rooting ability in apple rootstock. In addition, increased DNA methylation was also found in thousands of genes in 'T337'_R. We additionally documented that DNA hypermethylation is required for inhibition of adventitious rooting-repressed genes, such as MdGAD5a, encoding glutamate decarboxylase, which can catalyze glutamate decarboxylated to form γ-aminobutyric acid (GABA). Our results revealed that in vitro shoot culture-dependent DNA methylation variation plays important roles in adventitious rooting in apple rootstock.
Collapse
Affiliation(s)
- Zhe Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhengnan Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Dongchen Wu
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiuye Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shenghui Su
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chenxia Cheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiyun Nie
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yongbing Yuan
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yongzhang Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaozhao Xu
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
152
|
Liu F, Wang Y, Gu H, Wang X. Technologies and applications of single-cell DNA methylation sequencing. Theranostics 2023; 13:2439-2454. [PMID: 37215576 PMCID: PMC10196823 DOI: 10.7150/thno.82582] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/09/2023] [Indexed: 05/24/2023] Open
Abstract
DNA methylation is the most stable epigenetic modification. In mammals, it usually occurs at the cytosine of CpG dinucleotides. DNA methylation is essential for many physiological and pathological processes. Aberrant DNA methylation has been observed in human diseases, particularly cancer. Notably, conventional DNA methylation profiling technologies require a large amount of DNA, often from a heterogeneous cell population, and provide an average methylation level of many cells. It is often not realistic to collect sufficient numbers of cells, such as rare cells and circulating tumor cells in peripheral blood, for bulk sequencing assays. It is therefore essential to develop sequencing technologies that can accurately profile DNA methylation using small numbers of cells or even single cells. Excitingly, many single-cell DNA methylation sequencing and single-cell omics sequencing technologies have been developed, and applications of these methods have greatly expanded our understanding of the molecular mechanism of DNA methylation. Here, we summaries single-cell DNA methylation and multi-omics sequencing methods, delineate their applications in biomedical sciences, discuss technical challenges, and present our perspective on future research directions.
Collapse
Affiliation(s)
- Fang Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yunfei Wang
- Zhejiang ShengTing Biotech. Ltd, Hangzhou, 310000, China
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xiaoxue Wang
- Department of Hematology, the First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
153
|
Sapozhnikov DM, Szyf M. Increasing Specificity of Targeted DNA Methylation Editing by Non-Enzymatic CRISPR/dCas9-Based Steric Hindrance. Biomedicines 2023; 11:biomedicines11051238. [PMID: 37238909 DOI: 10.3390/biomedicines11051238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
As advances in genome engineering inch the technology towards wider clinical use-slowed by technical and ethical hurdles-a newer offshoot, termed "epigenome engineering", offers the ability to correct disease-causing changes in the DNA without changing its sequence and, thus, without some of the unfavorable correlates of doing so. In this review, we note some of the shortcomings of epigenetic editing technology-specifically the risks involved in the introduction of epigenetic enzymes-and highlight an alternative epigenetic editing strategy using physical occlusion to modify epigenetic marks at target sites without a requirement for any epigenetic enzyme. This may prove to be a safer alternative for more specific epigenetic editing.
Collapse
Affiliation(s)
- Daniel M Sapozhnikov
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
154
|
Martin S, Poppe D, Olova N, O'Leary C, Ivanova E, Pflueger J, Dechka J, Simmons RK, Cooper HM, Reik W, Lister R, Wolvetang EJ. Embryonic Stem Cell-Derived Neurons as a Model System for Epigenome Maturation during Development. Genes (Basel) 2023; 14:genes14050957. [PMID: 37239317 DOI: 10.3390/genes14050957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
DNA methylation in neurons is directly linked to neuronal genome regulation and maturation. Unlike other tissues, vertebrate neurons accumulate high levels of atypical DNA methylation in the CH sequence context (mCH) during early postnatal brain development. Here, we investigate to what extent neurons derived in vitro from both mouse and human pluripotent stem cells recapitulate in vivo DNA methylation patterns. While human ESC-derived neurons did not accumulate mCH in either 2D culture or 3D organoid models even after prolonged culture, cortical neurons derived from mouse ESCs acquired in vivo levels of mCH over a similar time period in both primary neuron cultures and in vivo development. mESC-derived neuron mCH deposition was coincident with a transient increase in Dnmt3a, preceded by the postmitotic marker Rbfox3 (NeuN), was enriched at the nuclear lamina, and negatively correlated with gene expression. We further found that methylation patterning subtly differed between in vitro mES-derived and in vivo neurons, suggesting the involvement of additional noncell autonomous processes. Our findings show that mouse ESC-derived neurons, in contrast to those of humans, can recapitulate the unique DNA methylation landscape of adult neurons in vitro over experimentally tractable timeframes, which allows their use as a model system to study epigenome maturation over development.
Collapse
Affiliation(s)
- Sally Martin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel Poppe
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Nelly Olova
- Epigenetics ISP, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Conor O'Leary
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Elena Ivanova
- Epigenetics ISP, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Jahnvi Pflueger
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Jennifer Dechka
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rebecca K Simmons
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Helen M Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Wolf Reik
- Epigenetics ISP, The Babraham Institute, Cambridge CB22 3AT, UK
- The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
155
|
Rajado AT, Silva N, Esteves F, Brito D, Binnie A, Araújo IM, Nóbrega C, Bragança J, Castelo-Branco P. How can we modulate aging through nutrition and physical exercise? An epigenetic approach. Aging (Albany NY) 2023. [DOI: https:/doi.org/10.18632/aging.204668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Ana Teresa Rajado
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | | | - Nádia Silva
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - David Brito
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Alexandra Binnie
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, Ontario, Canada
| | - Inês M. Araújo
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
156
|
Rajado AT, Silva N, Esteves F, Brito D, Binnie A, Araújo IM, Nóbrega C, Bragança J, Castelo-Branco P. How can we modulate aging through nutrition and physical exercise? An epigenetic approach. Aging (Albany NY) 2023; 15:3191-3217. [PMID: 37086262 PMCID: PMC10188329 DOI: 10.18632/aging.204668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/11/2023] [Indexed: 04/23/2023]
Abstract
The World Health Organization predicts that by 2050, 2.1 billion people worldwide will be over 60 years old, a drastic increase from only 1 billion in 2019. Considering these numbers, strategies to ensure an extended "healthspan" or healthy longevity are urgently needed. The present study approaches the promotion of healthspan from an epigenetic perspective. Epigenetic phenomena are modifiable in response to an individual's environmental exposures, and therefore link an individual's environment to their gene expression pattern. Epigenetic studies demonstrate that aging is associated with decondensation of the chromatin, leading to an altered heterochromatin structure, which promotes the accumulation of errors. In this review, we describe how aging impacts epigenetics and how nutrition and physical exercise can positively impact the aging process, from an epigenetic point of view. Canonical histones are replaced by histone variants, concomitant with an increase in histone post-translational modifications. A slight increase in DNA methylation at promoters has been observed, which represses transcription of previously active genes, in parallel with global genome hypomethylation. Aging is also associated with deregulation of gene expression - usually provided by non-coding RNAs - leading to both the repression of previously transcribed genes and to the transcription of previously repressed genes. Age-associated epigenetic events are less common in individuals with a healthy lifestyle, including balanced nutrition, caloric restriction and physical exercise. Healthy aging is associated with more tightly condensed chromatin, fewer PTMs and greater regulation by ncRNAs.
Collapse
Affiliation(s)
- Ana Teresa Rajado
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Nádia Silva
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - David Brito
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Alexandra Binnie
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, Ontario, Canada
| | - Inês M. Araújo
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | |
Collapse
|
157
|
Liu H, Zeng Q, Zhou J, Bartlett A, Wang BA, Berube P, Tian W, Kenworthy M, Altshul J, Nery JR, Chen H, Castanon RG, Zu S, Li YE, Lucero J, Osteen JK, Pinto-Duarte A, Lee J, Rink J, Cho S, Emerson N, Nunn M, O'Connor C, Yao Z, Smith KA, Tasic B, Zeng H, Luo C, Dixon JR, Ren B, Behrens MM, Ecker JR. Single-cell DNA Methylome and 3D Multi-omic Atlas of the Adult Mouse Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.16.536509. [PMID: 37131654 PMCID: PMC10153407 DOI: 10.1101/2023.04.16.536509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cytosine DNA methylation is essential in brain development and has been implicated in various neurological disorders. A comprehensive understanding of DNA methylation diversity across the entire brain in the context of the brain's 3D spatial organization is essential for building a complete molecular atlas of brain cell types and understanding their gene regulatory landscapes. To this end, we employed optimized single-nucleus methylome (snmC-seq3) and multi-omic (snm3C-seq1) sequencing technologies to generate 301,626 methylomes and 176,003 chromatin conformation/methylome joint profiles from 117 dissected regions throughout the adult mouse brain. Using iterative clustering and integrating with companion whole-brain transcriptome and chromatin accessibility datasets, we constructed a methylation-based cell type taxonomy that contains 4,673 cell groups and 261 cross-modality-annotated subclasses. We identified millions of differentially methylated regions (DMRs) across the genome, representing potential gene regulation elements. Notably, we observed spatial cytosine methylation patterns on both genes and regulatory elements in cell types within and across brain regions. Brain-wide multiplexed error-robust fluorescence in situ hybridization (MERFISH2) data validated the association of this spatial epigenetic diversity with transcription and allowed the mapping of the DNA methylation and topology information into anatomical structures more precisely than our dissections. Furthermore, multi-scale chromatin conformation diversities occur in important neuronal genes, highly associated with DNA methylation and transcription changes. Brain-wide cell type comparison allowed us to build a regulatory model for each gene, linking transcription factors, DMRs, chromatin contacts, and downstream genes to establish regulatory networks. Finally, intragenic DNA methylation and chromatin conformation patterns predicted alternative gene isoform expression observed in a companion whole-brain SMART-seq3 dataset. Our study establishes the first brain-wide, single-cell resolution DNA methylome and 3D multi-omic atlas, providing an unparalleled resource for comprehending the mouse brain's cellular-spatial and regulatory genome diversity.
Collapse
Affiliation(s)
- Hanqing Liu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Qiurui Zeng
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jingtian Zhou
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Anna Bartlett
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bang-An Wang
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Peter Berube
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Wei Tian
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mia Kenworthy
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jordan Altshul
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Huaming Chen
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rosa G Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Songpeng Zu
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Yang Eric Li
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Jacinta Lucero
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Julia K Osteen
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Antonio Pinto-Duarte
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jasper Lee
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jon Rink
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Silvia Cho
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nora Emerson
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michael Nunn
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Carolyn O'Connor
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Chongyuan Luo
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Jesse R Dixon
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - M Margarita Behrens
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
158
|
Kumar A, Kos MZ, Roybal D, Carless MA. A pilot investigation of differential hydroxymethylation levels in patient-derived neural stem cells implicates altered cortical development in bipolar disorder. Front Psychiatry 2023; 14:1077415. [PMID: 37139321 PMCID: PMC10150707 DOI: 10.3389/fpsyt.2023.1077415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/24/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Bipolar disorder (BD) is a chronic mental illness characterized by recurrent episodes of mania and depression and associated with social and cognitive disturbances. Environmental factors, such as maternal smoking and childhood trauma, are believed to modulate risk genotypes and contribute to the pathogenesis of BD, suggesting a key role in epigenetic regulation during neurodevelopment. 5-hydroxymethylcytosine (5hmC) is an epigenetic variant of particular interest, as it is highly expressed in the brain and is implicated in neurodevelopment, and psychiatric and neurological disorders. Methods Induced pluripotent stem cells (iPSCs) were generated from the white blood cells of two adolescent patients with bipolar disorder and their same-sex age-matched unaffected siblings (n = 4). Further, iPSCs were differentiated into neuronal stem cells (NSCs) and characterized for purity using immuno-fluorescence. We used reduced representation hydroxymethylation profiling (RRHP) to perform genome-wide 5hmC profiling of iPSCs and NSCs, to model 5hmC changes during neuronal differentiation and assess their impact on BD risk. Functional annotation and enrichment testing of genes harboring differentiated 5hmC loci were performed with the online tool DAVID. Results Approximately 2 million sites were mapped and quantified, with the majority (68.8%) located in genic regions, with elevated 5hmC levels per site observed for 3' UTRs, exons, and 2-kb shorelines of CpG islands. Paired t-tests of normalized 5hmC counts between iPSC and NSC cell lines revealed global hypo-hydroxymethylation in NSCs and enrichment of differentially hydroxymethylated sites within genes associated with plasma membrane (FDR = 9.1 × 10-12) and axon guidance (FDR = 2.1 × 10-6), among other neuronal processes. The most significant difference was observed for a transcription factor binding site for the KCNK9 gene (p = 8.8 × 10-6), encoding a potassium channel protein involved in neuronal activity and migration. Protein-protein-interaction (PPI) networking showed significant connectivity (p = 3.2 × 10-10) between proteins encoded by genes harboring highly differentiated 5hmC sites, with genes involved in axon guidance and ion transmembrane transport forming distinct sub-clusters. Comparison of NSCs of BD cases and unaffected siblings revealed additional patterns of differentiation in hydroxymethylation levels, including sites in genes with functions related to synapse formation and regulation, such as CUX2 (p = 2.4 × 10-5) and DOK-7 (p = 3.6 × 10-3), as well as an enrichment of genes involved in the extracellular matrix (FDR = 1.0 × 10-8). Discussion Together, these preliminary results lend evidence toward a potential role for 5hmC in both early neuronal differentiation and BD risk, with validation and more comprehensive characterization to be achieved through follow-up study.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Mark Z. Kos
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, The University of Texas Rio Grande Valley School of Medicine, San Antonio, TX, United States
| | - Donna Roybal
- Traditions Behavioral Health, Larkspur, CA, United States
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Melanie A. Carless
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
159
|
Li J, Han F, Yuan T, Li W, Li Y, Wu HX, Wei H, Niu S. The methylation landscape of giga-genome and the epigenetic timer of age in Chinese pine. Nat Commun 2023; 14:1947. [PMID: 37029142 PMCID: PMC10082083 DOI: 10.1038/s41467-023-37684-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
Epigenetics has been revealed to play a crucial role in the long-term memory in plants. However, little is known about whether the epigenetic modifications occur with age progressively in conifers. Here, we present the single-base resolution DNA methylation landscapes of the 25-gigabase Chinese pine (Pinus tabuliformis) genome at different ages. The result shows that DNA methylation is closely coupled with the regulation of gene transcription. The age-dependent methylation profile with a linearly increasing trend is the most significant pattern of DMRs between ages. Two segments at the five-prime end of the first ultra-long intron in DAL1, a conservative age biomarker in conifers, shows a gradual decline of CHG methylation as the age increased, which is highly correlated with its expression profile. Similar high correlation is also observed in nine other age marker genes. Our results suggest that DNA methylation serves as an important epigenetic signature of developmental age in conifers.
Collapse
Affiliation(s)
- Jiang Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Fangxu Han
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Tongqi Yuan
- College of Material Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Wei Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Yue Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Harry X Wu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus väg 6, SE-901 83, Umeå, Sweden
- CSIRO National Research Collection Australia, Black Mountain Laboratory, Canberra, ACT, 2601, Australia
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Shihui Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, PR China.
| |
Collapse
|
160
|
Rodrigues DC, Mufteev M, Yuki KE, Narula A, Wei W, Piekna A, Liu J, Pasceri P, Rissland OS, Wilson MD, Ellis J. Buffering of transcription rate by mRNA half-life is a conserved feature of Rett syndrome models. Nat Commun 2023; 14:1896. [PMID: 37019888 PMCID: PMC10076348 DOI: 10.1038/s41467-023-37339-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
Transcriptional changes in Rett syndrome (RTT) are assumed to directly correlate with steady-state mRNA levels, but limited evidence in mice suggests that changes in transcription can be compensated by post-transcriptional regulation. We measure transcription rate and mRNA half-life changes in RTT patient neurons using RATEseq, and re-interpret nuclear and whole-cell RNAseq from Mecp2 mice. Genes are dysregulated by changing transcription rate or half-life and are buffered when both change. We utilized classifier models to predict the direction of transcription rate changes and find that combined frequencies of three dinucleotides are better predictors than CA and CG. MicroRNA and RNA-binding Protein (RBP) motifs are enriched in 3'UTRs of genes with half-life changes. Nuclear RBP motifs are enriched on buffered genes with increased transcription rate. We identify post-transcriptional mechanisms in humans and mice that alter half-life or buffer transcription rate changes when a transcriptional modulator gene is mutated in a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Deivid C Rodrigues
- Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Marat Mufteev
- Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Kyoko E Yuki
- Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Ashrut Narula
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Molecular Medicine, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Wei Wei
- Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Alina Piekna
- Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Jiajie Liu
- Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Peter Pasceri
- Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Olivia S Rissland
- Molecular Medicine, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- RNA Bioscience Initiative and Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - James Ellis
- Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
161
|
PerezGrovas-Saltijeral A, Rajkumar AP, Knight HM. Differential expression of m 5C RNA methyltransferase genes NSUN6 and NSUN7 in Alzheimer's disease and traumatic brain injury. Mol Neurobiol 2023; 60:2223-2235. [PMID: 36646969 PMCID: PMC9984329 DOI: 10.1007/s12035-022-03195-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023]
Abstract
Epigenetic processes have become increasingly relevant in understanding disease-modifying mechanisms. 5-Methylcytosine methylations of DNA (5mC) and RNA (m5C) have functional transcriptional and RNA translational consequences and are tightly regulated by writer, reader and eraser effector proteins. To investigate the involvement of 5mC/5hmC and m5C effector proteins contributing to the development of dementia neuropathology, RNA sequencing data of 31 effector proteins across four brain regions was examined in 56 aged non-affected and 51 Alzheimer's disease (AD) individuals obtained from the Aging, Dementia and Traumatic Brain Injury Study. Gene expression profiles were compared between AD and controls, between neuropathological Braak and CERAD scores and in individuals with a history of traumatic brain injury (TBI). We found an increase in the DNA methylation writers DNMT1, DNMT3A and DNMT3B messenger RNA (mRNA) and a decrease in the reader UHRF1 mRNA in AD samples across three brain regions whilst the DNA erasers GADD45B and AICDA showed changes in mRNA abundance within neuropathological load groupings. RNA methylation writers NSUN6 and NSUN7 showed significant expression differences with AD and, along with the reader ALYREF, differences in expression for neuropathologic ranking. A history of TBI was associated with a significant increase in the DNA readers ZBTB4 and MeCP2 (p < 0.05) and a decrease in NSUN6 (p < 0.001) mRNA. These findings implicate regulation of protein pathways disrupted in AD and TBI via multiple pre- and post-transcriptional mechanisms including potentially acting upon transfer RNAs, enhancer RNAs as well as nuclear-cytoplasmic shuttling and cytoplasmic translational control. The targeting of such processes provides new therapeutic avenues for neurodegenerative brain conditions.
Collapse
Affiliation(s)
| | - Anto P Rajkumar
- Institute of Mental Health, Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK.,Mental Health Services for Older People, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, UK
| | - Helen Miranda Knight
- Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
162
|
Cheng Y, Song H, Ming GL, Weng YL. Epigenetic and epitranscriptomic regulation of axon regeneration. Mol Psychiatry 2023; 28:1440-1450. [PMID: 36922674 PMCID: PMC10650481 DOI: 10.1038/s41380-023-02028-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
Effective axonal regeneration in the adult mammalian nervous system requires coordination of elevated intrinsic growth capacity and decreased responses to the inhibitory environment. Intrinsic regenerative capacity largely depends on the gene regulatory network and protein translation machinery. A failure to activate these pathways upon injury is underlying a lack of robust axon regeneration in the mature mammalian central nervous system. Epigenetics and epitranscriptomics are key regulatory mechanisms that shape gene expression and protein translation. Here, we provide an overview of different types of modifications on DNA, histones, and RNA, underpinning the regenerative competence of axons in the mature mammalian peripheral and central nervous systems. We highlight other non-neuronal cells and their epigenetic changes in determining the microenvironment for tissue repair and axon regeneration. We also address advancements of single-cell technology in charting transcriptomic and epigenetic landscapes that may further facilitate the mechanistic understanding of differential regenerative capacity in neuronal subtypes. Finally, as epigenetic and epitranscriptomic processes are commonly affected by brain injuries and psychiatric disorders, understanding their alterations upon brain injury would provide unprecedented mechanistic insights into etiology of injury-associated-psychiatric disorders and facilitate the development of therapeutic interventions to restore brain function.
Collapse
Affiliation(s)
- Yating Cheng
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, 77030, USA
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Hongjun Song
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Yi-Lan Weng
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, 77030, USA.
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, 77030, USA.
| |
Collapse
|
163
|
Zhu W, Xie Z, Chu Z, Ding Y, Shi G, Chen W, Wei X, Yuan Y, Wei F, Tian B. The Chromatin Remodeling Factor BrCHR39 Targets DNA Methylation to Positively Regulate Apical Dominance in Brassica rapa. PLANTS (BASEL, SWITZERLAND) 2023; 12:1384. [PMID: 36987072 PMCID: PMC10051476 DOI: 10.3390/plants12061384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
The SHPRH (SNF2, histone linker, PHD, RING, helicase) subfamily belonging to ATP-dependent chromatin remodeling factor is the effective tumor-suppressor, which can polyubiquitinate PCNA (proliferating cell nuclear antigen) and participate in post-replication repair in human. However, little is known about the functions of SHPRH proteins in plants. In this study, we identified a novel SHPRH member BrCHR39 and obtained BrCHR39-silenced transgenic Brassica rapa. In contrast to wild-type plants, transgenic Brassica plants exhibited a released apical dominance phenotype with semi-dwarfism and multiple lateral branches. Furthermore, a global alteration of DNA methylation in the main stem and bud appeared after silencing of BrCHR39. Based on the GO (gene ontology) functional annotation and KEGG (Kyoto encyclopedia of genes and genomes) pathway analysis, the plant hormone signal transduction pathway was clearly enriched. In particular, we found a significant increase in the methylation level of auxin-related genes in the stem, whereas auxin- and cytokinin-related genes were hypomethylated in the bud of transgenic plants. In addition, further qRT-PCR (quantitative real-time PCR) analysis revealed that DNA methylation level always had an opposite trend with gene expression level. Considered together, our findings indicated that suppression of BrCHR39 expression triggered the methylation divergence of hormone-related genes and subsequently affected transcription levels to regulate the apical dominance in Brassica rapa.
Collapse
Affiliation(s)
- Wei Zhu
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenni Chu
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China
| | - Yakun Ding
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Gongyao Shi
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Weiwei Chen
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China
| | - Fang Wei
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Baoming Tian
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
164
|
Khazaei S, Chen CCL, Andrade AF, Kabir N, Azarafshar P, Morcos SM, França JA, Lopes M, Lund PJ, Danieau G, Worme S, Adnani L, Nzirorera N, Chen X, Yogarajah G, Russo C, Zeinieh M, Wong CJ, Bryant L, Hébert S, Tong B, Sihota TS, Faury D, Puligandla E, Jawhar W, Sandy V, Cowan M, Nakada EM, Jerome-Majewska LA, Ellezam B, Gomes CC, Denecke J, Lessel D, McDonald MT, Pizoli CE, Taylor K, Cocanougher BT, Bhoj EJ, Gingras AC, Garcia BA, Lu C, Campos EI, Kleinman CL, Garzia L, Jabado N. Single substitution in H3.3G34 alters DNMT3A recruitment to cause progressive neurodegeneration. Cell 2023; 186:1162-1178.e20. [PMID: 36931244 PMCID: PMC10112048 DOI: 10.1016/j.cell.2023.02.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/04/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
Germline histone H3.3 amino acid substitutions, including H3.3G34R/V, cause severe neurodevelopmental syndromes. To understand how these mutations impact brain development, we generated H3.3G34R/V/W knock-in mice and identified strikingly distinct developmental defects for each mutation. H3.3G34R-mutants exhibited progressive microcephaly and neurodegeneration, with abnormal accumulation of disease-associated microglia and concurrent neuronal depletion. G34R severely decreased H3K36me2 on the mutant H3.3 tail, impairing recruitment of DNA methyltransferase DNMT3A and its redistribution on chromatin. These changes were concurrent with sustained expression of complement and other innate immune genes possibly through loss of non-CG (CH) methylation and silencing of neuronal gene promoters through aberrant CG methylation. Complement expression in G34R brains may lead to neuroinflammation possibly accounting for progressive neurodegeneration. Our study reveals that H3.3G34-substitutions have differential impact on the epigenome, which underlie the diverse phenotypes observed, and uncovers potential roles for H3K36me2 and DNMT3A-dependent CH-methylation in modulating synaptic pruning and neuroinflammation in post-natal brains.
Collapse
Affiliation(s)
- Sima Khazaei
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Carol C L Chen
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | | | - Nisha Kabir
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Pariya Azarafshar
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Shahir M Morcos
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Josiane Alves França
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Lopes
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Peder J Lund
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Geoffroy Danieau
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Division of Orthopedic Surgery, Faculty of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Samantha Worme
- Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Lata Adnani
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Nadine Nzirorera
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Xiao Chen
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Marine College, Shandong University, Weihai 264209, China
| | - Gayathri Yogarajah
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Department of Biochemistry and Molecular Medicine, Université de Montreal, Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Caterina Russo
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Michele Zeinieh
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Cassandra J Wong
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Laura Bryant
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Steven Hébert
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Bethany Tong
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
| | - Tianna S Sihota
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Damien Faury
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Evan Puligandla
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Wajih Jawhar
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Child Health and Human Development, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Veronica Sandy
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Mitra Cowan
- McGill Integrated Core for Animal Modeling (MICAM), McGill University, Montreal, QC, Canada
| | - Emily M Nakada
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Loydie A Jerome-Majewska
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Benjamin Ellezam
- Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Carolina Cavalieri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Human Genetics, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Marie T McDonald
- Division of Medical Genetics, Duke University Hospital, Durham, NC, USA
| | - Carolyn E Pizoli
- Division of Pediatric Neurology, Duke University Hospital, Durham, NC, USA
| | - Kathryn Taylor
- Division of Medical Genetics, Duke University Hospital, Durham, NC, USA
| | | | | | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Eric I Campos
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Livia Garzia
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Division of Orthopedic Surgery, Faculty of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
165
|
Strathmann EA, Hölker I, Tschernoster N, Hosseinibarkooie S, Come J, Martinat C, Altmüller J, Wirth B. Epigenetic regulation of plastin 3 expression by the macrosatellite DXZ4 and the transcriptional regulator CHD4. Am J Hum Genet 2023; 110:442-459. [PMID: 36812914 PMCID: PMC10027515 DOI: 10.1016/j.ajhg.2023.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/03/2023] [Indexed: 02/23/2023] Open
Abstract
Dysregulated Plastin 3 (PLS3) levels associate with a wide range of skeletal and neuromuscular disorders and the most common types of solid and hematopoietic cancer. Most importantly, PLS3 overexpression protects against spinal muscular atrophy. Despite its crucial role in F-actin dynamics in healthy cells and its involvement in many diseases, the mechanisms that regulate PLS3 expression are unknown. Interestingly, PLS3 is an X-linked gene and all asymptomatic SMN1-deleted individuals in SMA-discordant families who exhibit PLS3 upregulation are female, suggesting that PLS3 may escape X chromosome inactivation. To elucidate mechanisms contributing to PLS3 regulation, we performed a multi-omics analysis in two SMA-discordant families using lymphoblastoid cell lines and iPSC-derived spinal motor neurons originated from fibroblasts. We show that PLS3 tissue-specifically escapes X-inactivation. PLS3 is located ∼500 kb proximal to the DXZ4 macrosatellite, which is essential for X chromosome inactivation. By applying molecular combing in a total of 25 lymphoblastoid cell lines (asymptomatic individuals, individuals with SMA, control subjects) with variable PLS3 expression, we found a significant correlation between the copy number of DXZ4 monomers and PLS3 levels. Additionally, we identified chromodomain helicase DNA binding protein 4 (CHD4) as an epigenetic transcriptional regulator of PLS3 and validated co-regulation of the two genes by siRNA-mediated knock-down and overexpression of CHD4. We show that CHD4 binds the PLS3 promoter by performing chromatin immunoprecipitation and that CHD4/NuRD activates the transcription of PLS3 by dual-luciferase promoter assays. Thus, we provide evidence for a multilevel epigenetic regulation of PLS3 that may help to understand the protective or disease-associated PLS3 dysregulation.
Collapse
Affiliation(s)
- Eike A Strathmann
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, Kerpener Str. 34, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Irmgard Hölker
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, Kerpener Str. 34, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Nikolai Tschernoster
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, Kerpener Str. 34, 50931 Cologne, Germany; Cologne Center for Genomics and West German Genome Center, University of Cologne, 50931 Cologne, Germany
| | - Seyyedmohsen Hosseinibarkooie
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, Kerpener Str. 34, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Julien Come
- INSERM/ UEVE UMR 861, Université Paris Saclay, I-STEM, 91100 Corbeil-Essonnes, France
| | - Cecile Martinat
- INSERM/ UEVE UMR 861, Université Paris Saclay, I-STEM, 91100 Corbeil-Essonnes, France
| | - Janine Altmüller
- Cologne Center for Genomics and West German Genome Center, University of Cologne, 50931 Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, Kerpener Str. 34, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Center for Rare Diseases, University Hospital of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
166
|
Xia M, Yan R, Kim MH, Xu X. Tet Enzyme-Mediated Response in Environmental Stress and Stress-Related Psychiatric Diseases. Mol Neurobiol 2023; 60:1594-1608. [PMID: 36534335 DOI: 10.1007/s12035-022-03168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Mental disorders caused by stress have become a worldwide public health problem. These mental disorders are often the results of a combination of genes and environment, in which epigenetic modifications play a crucial role. At present, the genetic and epigenetic mechanisms of mental disorders such as posttraumatic stress disorder or depression caused by environmental stress are not entirely clear. Although many epigenetic modifications affect gene regulation, the most well-known modification in eukaryotic cells is the DNA methylation of CpG islands. Stress causes changes in DNA methylation in the brain to participate in the neuronal function or mood-modulating behaviors, and these epigenetic modifications can be passed on to offspring. Ten-eleven translocation (Tet) enzymes are the 5-methylcytosine (5mC) hydroxylases of DNA, which recognize 5mC on the DNA sequence and oxidize it to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Tet regulates gene expression at the transcriptional level through the demethylation of DNA. This review will elaborate on the molecular mechanism and the functions of Tet enzymes in environmental stress-related disorders and discuss future research directions.
Collapse
Affiliation(s)
- Meiling Xia
- Departments of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, 215006, China.,Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul City, 03080, Korea
| | - Rui Yan
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Myoung-Hwan Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul City, 03080, Korea.
| | - Xingshun Xu
- Departments of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, 215006, China. .,Institute of Neuroscience, Soochow University, Suzhou City, China. .,Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou City, China.
| |
Collapse
|
167
|
Roth C, Kilpinen H, Kurian MA, Barral S. Histone lysine methyltransferase-related neurodevelopmental disorders: current knowledge and saRNA future therapies. Front Cell Dev Biol 2023; 11:1090046. [PMID: 36923252 PMCID: PMC10009263 DOI: 10.3389/fcell.2023.1090046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Neurodevelopmental disorders encompass a group of debilitating diseases presenting with motor and cognitive dysfunction, with variable age of onset and disease severity. Advances in genetic diagnostic tools have facilitated the identification of several monogenic chromatin remodeling diseases that cause Neurodevelopmental disorders. Chromatin remodelers play a key role in the neuro-epigenetic landscape and regulation of brain development; it is therefore not surprising that mutations, leading to loss of protein function, result in aberrant neurodevelopment. Heterozygous, usually de novo mutations in histone lysine methyltransferases have been described in patients leading to haploinsufficiency, dysregulated protein levels and impaired protein function. Studies in animal models and patient-derived cell lines, have highlighted the role of histone lysine methyltransferases in the regulation of cell self-renewal, cell fate specification and apoptosis. To date, in depth studies of histone lysine methyltransferases in oncology have provided strong evidence of histone lysine methyltransferase dysregulation as a determinant of cancer progression and drug resistance. As a result, histone lysine methyltransferases have become an important therapeutic target for the treatment of different cancer forms. Despite recent advances, we still lack knowledge about the role of histone lysine methyltransferases in neuronal development. This has hampered both the study and development of precision therapies for histone lysine methyltransferases-related Neurodevelopmental disorders. In this review, we will discuss the current knowledge of the role of histone lysine methyltransferases in neuronal development and disease progression. We will also discuss how RNA-based technologies using small-activating RNAs could potentially provide a novel therapeutic approach for the future treatment of histone lysine methyltransferase haploinsufficiency in these Neurodevelopmental disorders, and how they could be first tested in state-of-the-art patient-derived neuronal models.
Collapse
Affiliation(s)
- Charlotte Roth
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Helena Kilpinen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Manju A. Kurian
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Serena Barral
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
168
|
Lintas C, Cassano I, Azzarà A, Stigliano MG, Gregorj C, Sacco R, Stoccoro A, Coppedè F, Gurrieri F. Maternal Epigenetic Dysregulation as a Possible Risk Factor for Neurodevelopmental Disorders. Genes (Basel) 2023; 14:genes14030585. [PMID: 36980856 PMCID: PMC10048308 DOI: 10.3390/genes14030585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Neurodevelopmental Disorders (NDs) are a heterogeneous group of disorders and are considered multifactorial diseases with both genetic and environmental components. Epigenetic dysregulation driven by adverse environmental factors has recently been documented in neurodevelopmental disorders as the possible etiological agent for their onset. However, most studies have focused on the epigenomes of the probands rather than on a possible epigenetic dysregulation arising in their mothers and influencing neurodevelopment during pregnancy. The aim of this research was to analyze the methylation profile of four well-known genes involved in neurodevelopment (BDNF, RELN, MTHFR and HTR1A) in the mothers of forty-five age-matched AS (Asperger Syndrome), ADHD (Attention Deficit Hyperactivity Disorder) and typically developing children. We found a significant increase of methylation at the promoter of the RELN and HTR1A genes in AS mothers compared to ADHD and healthy control mothers. For the MTHFR gene, promoter methylation was significantly higher in AS mothers compared to healthy control mothers only. The observed dysregulation in AS mothers could potentially contribute to the affected condition in their children deserving further investigation.
Collapse
Affiliation(s)
- Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Correspondence: ; Tel.: +39-06-225419174
| | - Ilaria Cassano
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Alessia Azzarà
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Maria Grazia Stigliano
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Chiara Gregorj
- Operative Research Unit of Hematology, Stem Cell Transplantation, Transfusion Medicine and Cellular Therapy, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Roberto Sacco
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Andrea Stoccoro
- Medical Genetics Laboratory, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Fabio Coppedè
- Medical Genetics Laboratory, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Fiorella Gurrieri
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| |
Collapse
|
169
|
Hamagami N, Wu DY, Clemens AW, Nettles SA, Gabel HW. NSD1 deposits histone H3 lysine 36 dimethylation to pattern non-CG DNA methylation in neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528965. [PMID: 36824816 PMCID: PMC9949142 DOI: 10.1101/2023.02.17.528965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
During postnatal development the DNA methyltransferase DNMT3A deposits high levels of non-CG cytosine methylation in neurons. This unique methylation is critical for transcriptional regulation in the mature mammalian brain, and loss of this mark is implicated in DNMT3A-associated neurodevelopmental disorders (NDDs). The mechanisms determining genomic non-CG methylation profiles are not well defined however, and it is unknown if this pathway is disrupted in additional NDDs. Here we show that genome topology and gene expression converge to shape histone H3 lysine 36 dimethylation (H3K36me2) profiles, which in turn recruit DNMT3A and pattern neuronal non-CG methylation. We show that NSD1, the H3K36 methyltransferase mutated in the NDD, Sotos syndrome, is required for megabase-scale patterning of H3K36me2 and non-CG methylation in neurons. We find that brain-specific deletion of NSD1 causes alterations in DNA methylation that overlap with models of DNMT3A disorders and define convergent disruption in the expression of key neuronal genes in these models that may contribute to shared phenotypes in NSD1- and DNMT3A-associated NDD. Our findings indicate that H3K36me2 deposited by NSD1 is an important determinant of neuronal non-CG DNA methylation and implicates disruption of this methylation in Sotos syndrome. Highlights Topology-associated DNA methylation and gene expression independently contribute to neuronal gene body and enhancer non-CG DNA methylation patterns.Topology-associated H3K36me2 patterns and local enrichment of H3K4 methylation impact deposition of non-CG methylation by DNMT3A. Disruption of NSD1 in vivo leads to alterations in H3K36me2, DNA methylation, and gene expression that overlap with models of DNMT3A disorders.
Collapse
Affiliation(s)
- Nicole Hamagami
- Department of Neuroscience, Washington University School of Medicine, St Louis MO 63110-1093, USA
- These authors contributed equally
| | - Dennis Y Wu
- Department of Neuroscience, Washington University School of Medicine, St Louis MO 63110-1093, USA
- These authors contributed equally
| | - Adam W Clemens
- Department of Neuroscience, Washington University School of Medicine, St Louis MO 63110-1093, USA
| | - Sabin A Nettles
- Department of Neuroscience, Washington University School of Medicine, St Louis MO 63110-1093, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St Louis MO 63110-1093, USA
- Lead contact
| |
Collapse
|
170
|
Sejnowski TJ. Large Language Models and the Reverse Turing Test. Neural Comput 2023; 35:309-342. [PMID: 36746144 PMCID: PMC10177005 DOI: 10.1162/neco_a_01563] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/21/2022] [Indexed: 02/08/2023]
Abstract
Large language models (LLMs) have been transformative. They are pretrained foundational models that are self-supervised and can be adapted with fine-tuning to a wide range of natural language tasks, each of which previously would have required a separate network model. This is one step closer to the extraordinary versatility of human language. GPT-3 and, more recently, LaMDA, both of them LLMs, can carry on dialogs with humans on many topics after minimal priming with a few examples. However, there has been a wide range of reactions and debate on whether these LLMs understand what they are saying or exhibit signs of intelligence. This high variance is exhibited in three interviews with LLMs reaching wildly different conclusions. A new possibility was uncovered that could explain this divergence. What appears to be intelligence in LLMs may in fact be a mirror that reflects the intelligence of the interviewer, a remarkable twist that could be considered a reverse Turing test. If so, then by studying interviews, we may be learning more about the intelligence and beliefs of the interviewer than the intelligence of the LLMs. As LLMs become more capable, they may transform the way we interact with machines and how they interact with each other. Increasingly, LLMs are being coupled with sensorimotor devices. LLMs can talk the talk, but can they walk the walk? A road map for achieving artificial general autonomy is outlined with seven major improvements inspired by brain systems and how LLMs could in turn be used to uncover new insights into brain function.
Collapse
Affiliation(s)
- Terrence J Sejnowski
- Salk Institute for Biological Studies, La Jolla, CA 92093, U.S.A
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, U.S.A.
| |
Collapse
|
171
|
Gim JA. Integrative Approaches of DNA Methylation Patterns According to Age, Sex and Longitudinal Changes. Curr Genomics 2023; 23:385-399. [PMID: 37920553 PMCID: PMC10173416 DOI: 10.2174/1389202924666221207100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/04/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Background In humans, age-related DNA methylation has been studied in blood, tissues, buccal swabs, and fibroblasts, and changes in DNA methylation patterns according to age and sex have been detected. To date, approximately 137,000 samples have been analyzed from 14,000 studies, and the information has been uploaded to the NCBI GEO database. Methods A correlation between age and methylation level and longitudinal changes in methylation levels was revealed in both sexes. Here, 20 public datasets derived from whole blood were analyzed using the Illumina BeadChip. Batch effects with respect to the time differences were correlated. The overall change in the pattern was provided as the inverse of the coefficient of variation (COV). Results Of the 20 datasets, nine were from a longitudinal study. All data had age and sex as common variables. Comprehensive details of age-, sex-, and longitudinal change-based DNA methylation levels in the whole blood sample were elucidated in this study. ELOVL2 and FHL2 showed the maximum correlation between age and DNA methylation. The methylation patterns of genes related to mental health differed according to age. Age-correlated genes have been associated with malformations (anteverted nostril, craniofacial abnormalities, and depressed nasal bridge) and drug addiction (drug habituation and smoking). Conclusion Based on 20 public DNA methylation datasets, methylation levels according to age and longitudinal changes by sex were identified and visualized using an integrated approach. The results highlight the molecular mechanisms underlying the association of sex and biological age with changes in DNA methylation, and the importance of optimal genomic information management.
Collapse
Affiliation(s)
- Jeong-An Gim
- Medical Science Research Center, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| |
Collapse
|
172
|
Low HC, Chilian WM, Ratnam W, Karupaiah T, Md Noh MF, Mansor F, Ng ZX, Pung YF. Changes in Mitochondrial Epigenome in Type 2 Diabetes Mellitus. Br J Biomed Sci 2023; 80:10884. [PMID: 36866104 PMCID: PMC9970885 DOI: 10.3389/bjbs.2023.10884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Type 2 Diabetes Mellitus is a major chronic metabolic disorder in public health. Due to mitochondria's indispensable role in the body, its dysfunction has been implicated in the development and progression of multiple diseases, including Type 2 Diabetes mellitus. Thus, factors that can regulate mitochondrial function, like mtDNA methylation, are of significant interest in managing T2DM. In this paper, the overview of epigenetics and the mechanism of nuclear and mitochondrial DNA methylation were briefly discussed, followed by other mitochondrial epigenetics. Subsequently, the association between mtDNA methylation with T2DM and the challenges of mtDNA methylation studies were also reviewed. This review will aid in understanding the impact of mtDNA methylation on T2DM and future advancements in T2DM treatment.
Collapse
Affiliation(s)
- Hui Ching Low
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - William M. Chilian
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Wickneswari Ratnam
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Tilakavati Karupaiah
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University Lakeside Campus, Subang Jaya, Selangor, Malaysia
| | - Mohd Fairulnizal Md Noh
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institute of Health, Setia Alam, Shah Alam, Malaysia
| | - Fazliana Mansor
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institute of Health, Setia Alam, Shah Alam, Malaysia
| | - Zhi Xiang Ng
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Yuh Fen Pung
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia,*Correspondence: Yuh Fen Pung,
| |
Collapse
|
173
|
Li Y, Su L, Liu X, Guo H, Zhou S, Xiu Y. Immunity of turbot Induced by inactivated vaccine of Aeromonas salmonicida from the perspective of DNA methylation. Front Immunol 2023; 14:1124322. [PMID: 36845093 PMCID: PMC9945314 DOI: 10.3389/fimmu.2023.1124322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction DNA methylation was one of the most important modification in epigenetics and played an important role in immune response. Since the introduction of Scophthalmus maximus, the scale of breeding has continued to expand, during which diseases caused by various bacteria, viruses and parasites have become increasingly serious. Therefore, the inactivated vaccines have been widely researched and used in the field of aquatic products with its unique advantages. However, the immune mechanism that occurred in turbot after immunization with inactivated vaccine of Aeromonas salmonicida was not clear. Methods In this study, differentially methylated regions (DMRs) were screened by Whole Genome Bisulfite Sequencing (WGBS) and significantly differentially expressed genes (DEGs) were screened by Transcriptome sequencing. Double luciferase report assay and DNA pull-down assay were further verified the DNA methylation state of the gene promoter region affected genes transcriptional activity after immunization with inactivated vaccine of Aeromonas salmonicida. Results A total of 8149 differentially methylated regions (DMRs) were screened, in which there were many immune-related genes with altered DNA methylation status. Meanwhile, 386 significantly differentially expressed genes (DEGs) were identified, many of which were significantly enriched in Toll-like receptor signaling pathway, NOD-like receptor signaling pathway and C-type lectin receptor signaling pathway. Combined analysis of WGBS results and RNA-seq results, a total of 9 DMRs of negatively regulated genes are located in the promoter region, including 2 hypermethylated genes with lower expression and 7 hypomethylated genes with higher expression. Then, two immune-related genes C5a anaphylatoxin chemotactic receptor 1-like (C5ar1-Like) and Eosinophil peroxidase-like (EPX-Like), were screened to explore the regulation mechanism of DNA methylation modification on their expression level. Moreover, the DNA methylation state of the gene promoter region affected genes transcriptional activity by inhibiting the binding of transcription factors, which lead to changes in the expression level of the gene. Discussion We jointly analyzed WGBS and RNA-seq results and revealed the immune mechanism that occurred in turbot after immunized with inactivated vaccine of A. salmonicida from the perspective of DNA methylation.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunji Xiu
- Institute of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
174
|
Shchepina OA, Menshanov PN. Neuron-Glia-Ratio-Like Approach Evidenced for Limited Variability and In-Aggregate Circadian Shifts in Cortical Cell-Specific Transcriptomes. J Mol Neurosci 2023; 73:159-170. [PMID: 36745298 DOI: 10.1007/s12031-023-02103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023]
Abstract
Regardless of shifts in levels of individual transcripts, it remains elusive whether natural variability in cell-specific transcriptomes within the cerebral cortex is limited in aggregate. It is also unclear whether cortical cell-specific transcriptomes might change dynamically in absence of cell number changes. Total variation in neuron- and glia-specific in-aggregate transcriptomes could be identified in a model-free way via glia-neuron ratio approach, by univariate median-to-median ratios comparing integral levels of cell-specific transcripts within a tissue sample. When deleterious, regenerative or developmental events affecting cortical cell numbers were subtle, median-to-median ratios demonstrated within-group variability not exceeding <20-25% in most cases. These levels of total variability might be explained in part by limited (~5-10%) circadian and stress-induced shifts in cell-specific cortical transcriptomes. Relevant in-aggregate transcriptomic alterations were identified after shifts in cell numbers induced by well-validated deleterious events including ischemia, traumatic injury, microglia's activation/depletion or specific mutations. Cortical median-to-median ratios also follow naturally occurring changes in the numbers of excitatory, inhibitory neurons and glial cells during perinatal brain development. These findings characterize cortical cell-specific transcriptomes as subjects to circadian shifts and lifetime events, urging the importance of reporting full details on an origin of any transcriptomic sample collected in vivo.
Collapse
Affiliation(s)
- Olesya A Shchepina
- Ermine Educational Center, Novosibirsk State University, Novosibirsk, Novosibirsk Region, 630117, Russian Federation.,Higher College of Informatics, Novosibirsk State University, Novosibirsk, Novosibirsk Region, 630058, Russian Federation
| | - Petr N Menshanov
- Physiology Department, Novosibirsk State University, Novosibirsk, Novosibirsk Region, 630090, Russian Federation. .,Laser Systems Department, Novosibirsk State Technical University, Novosibirsk, Novosibirsk Region, 630073, Russian Federation. .,AI Tech Department, Novosibirsk State University, Novosibirsk, Novosibirsk Region, 630090, Russian Federation.
| |
Collapse
|
175
|
Wu X, Choi JM. The impact of spatial correlation on methylation entropy with application to mouse brain methylome. Epigenetics Chromatin 2023; 16:5. [PMID: 36739438 PMCID: PMC9898941 DOI: 10.1186/s13072-023-00479-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/20/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND With the advance of bisulfite sequencing technologies, massive amount of methylation data have been generated, which provide unprecedented opportunities to study the epigenetic mechanism and its relationship to other biological processes. A commonly seen feature of the methylation data is the correlation between nearby CpG sites. Although such a spatial correlation was utilized in several epigenetic studies, its interaction to other characteristics of the methylation data has not been fully investigated. RESULTS We filled this research gap from an information theoretic perspective, by exploring the impact of the spatial correlation on the methylation entropy (ME). With the spatial correlation taken into account, we derived the analytical relation between the ME and another key parameter, the methylation probability. By comparing it to the empirical relation between the two corresponding statistics, the observed ME and the mean methylation level, genomic loci under strong epigenetic control can be identified, which may serve as potential markers for cell-type specific methylation. The proposed method was validated by simulation studies, and applied to analyze a published dataset of mouse brain methylome. CONCLUSIONS Compared to other sophisticated methods developed in literature, the proposed method provides a simple but effective way to detect CpG segments under strong epigenetic control (e.g., with bipolar methylation pattern). Findings from this study shed light on the identification of cell-type specific genes/pathways based on methylation data from a mixed cell population.
Collapse
Affiliation(s)
- Xiaowei Wu
- grid.438526.e0000 0001 0694 4940Department of Statistics, Virginia Tech, 250 Drillfield Drive, Blacksburg, VA 24061 USA
| | - Joung Min Choi
- grid.438526.e0000 0001 0694 4940Department of Computer Science, Virginia Tech, 620 Drillfield Drive, Blacksburg, VA 24061 USA
| |
Collapse
|
176
|
Yu Z, Ueno K, Funayama R, Sakai M, Nariai N, Kojima K, Kikuchi Y, Li X, Ono C, Kanatani J, Ono J, Iwamoto K, Hashimoto K, Kinoshita K, Nakayama K, Nagasaki M, Tomita H. Sex-Specific Differences in the Transcriptome of the Human Dorsolateral Prefrontal Cortex in Schizophrenia. Mol Neurobiol 2023; 60:1083-1098. [PMID: 36414910 DOI: 10.1007/s12035-022-03109-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022]
Abstract
Schizophrenia presents clinical and biological differences between males and females. This study investigated transcriptional profiles in the dorsolateral prefrontal cortex (DLPFC) using postmortem data from the largest RNA-sequencing (RNA-seq) database on schizophrenic cases and controls. Data for 154 male and 113 female controls and 160 male and 93 female schizophrenic cases were obtained from the CommonMind Consortium. In the RNA-seq database, the principal component analysis showed that sex effects were small in schizophrenia. After we analyzed the impact of sex-specific differences on gene expression, the female group showed more significantly changed genes compared with the male group. Based on the gene ontology analysis, the female sex-specific genes that changed were overrepresented in the mitochondrion, ATP (phosphocreatine and adenosine triphosphate)-, and metal ion-binding relevant biological processes. An ingenuity pathway analysis revealed that the differentially expressed genes related to schizophrenia in the female group were involved in midbrain dopaminergic and γ-aminobutyric acid (GABA)-ergic neurons and microglia. We used methylated DNA-binding domain-sequencing analyses and microarray to investigate the DNA methylation that potentially impacts the sex differences in gene transcription using a maternal immune activation (MIA) murine model. Among the sex-specific positional genes related to schizophrenia in the PFC of female offspring from MIA, the changes in the methylation and transcriptional expression of loci ACSBG1 were validated in the females with schizophrenia in independent postmortem samples by real-time PCR and pyrosequencing. Our results reveal potential genetic risks in the DLPFC for the sex-dependent prevalence and symptomology of schizophrenia.
Collapse
Affiliation(s)
- Zhiqian Yu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan.
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.
| | - Kazuko Ueno
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ryo Funayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Mai Sakai
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Naoki Nariai
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kaname Kojima
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yoshie Kikuchi
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Xue Li
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Chiaki Ono
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Junpei Kanatani
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Jiro Ono
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Center for Forensic Mental Health, Chiba University, Chiba, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masao Nagasaki
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Disaster Psychiatry, International Research Institute for Disaster Science, Tohoku University, Sendai, Japan
| |
Collapse
|
177
|
Liu F, Zhang P, Liang Z, Yuan Y, Liu Y, Wu Y. The global dynamic of DNA methylation in response to heat stress revealed epigenetic mechanism of heat acclimation in Saccharina japonica. JOURNAL OF PHYCOLOGY 2023; 59:249-263. [PMID: 36453855 DOI: 10.1111/jpy.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Saccharina japonica is an ecologically and economically important kelp in cold-temperate regions. When it is cultivated on a large scale in the temperate and even subtropical zones, heat stress is a frequent abiotic stress. This study is the first attempt to reveal the regulatory mechanism of the response to heat stress from the perspective of DNA methylation in S. japonica. We firstly obtained the characteristics of variation in the methylome under heat stress, and observed that heat stress caused a slight increase in the overall methylation level and methylation rate, especially in the non-coding regions of the genome. Secondly, we noted that methylation was probably one of factors affecting the expression of genes, and that methylation within the gene body was positively correlated with the gene expression (rho = 0.0784). Moreover, it was found that among the differentially expressed genes regulated by methylation, many genes were related to heat stress response, such as HSP gene family, genes of antioxidant enzymes, genes related to proteasome-ubiquitination pathway, and plant cell signaling pathways. This study demonstrated that DNA methylation is involved in regulating the response to heat stress, laying a foundation for studying the acclimation and adaptation of S. japonica to heat stress from an epigenetic perspective.
Collapse
Affiliation(s)
- Fuli Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education; College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Pengyan Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Zhourui Liang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yanmin Yuan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yi Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yukun Wu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| |
Collapse
|
178
|
Poon CH, Liu Y, Pak S, Zhao RC, Aquili L, Tipoe GL, Leung GKK, Chan YS, Yang S, Fung ML, Wu EX, Lim LW. Prelimbic Cortical Stimulation with L-methionine Enhances Cognition through Hippocampal DNA Methylation and Neuroplasticity Mechanisms. Aging Dis 2023; 14:112-135. [PMID: 36818556 PMCID: PMC9937711 DOI: 10.14336/ad.2022.0706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Declining global DNA methylation and cognitive impairment are reported to occur in the normal aging process. It is not known if DNA methylation plays a role in the efficacy of memory-enhancing therapies. In this study, aged animals were administered prelimbic cortical deep brain stimulation (PrL DBS) and/or L-methionine (MET) treatment. We found that PrL DBS and MET (MET-PrL DBS) co-administration resulted in hippocampal-dependent spatial memory enhancements in aged animals. Molecular data suggested MET-PrL DBS induced DNA methyltransferase DNMT3a-dependent methylation, robust synergistic upregulation of neuroplasticity-related genes, and simultaneous inhibition of the memory-suppressing gene calcineurin in the hippocampus. We further found that MET-PrL DBS also activated the PKA-CaMKIIα-BDNF pathway, increased hippocampal neurogenesis, and enhanced dopaminergic and serotonergic neurotransmission. We next inhibited the activity of DNA methyltransferase (DNMT) by RG108 infusion in the hippocampus of young animals to establish a causal relationship between DNMT activity and the effects of PrL DBS. Hippocampal DNMT inhibition in young animals was sufficient to recapitulate the behavioral deficits observed in aged animals and abolished the memory-enhancing and molecular effects of PrL DBS. Our findings implicate hippocampal DNMT as a therapeutic target for PrL DBS and pave way for the potential use of non-invasive neuromodulation modalities against dementia.
Collapse
Affiliation(s)
- Chi Him Poon
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Yanzhi Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Sojeong Pak
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong, China.
| | | | - Luca Aquili
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,College of Science, Health, Engineering and Education, Discipline of Psychology, Murdoch University, Perth, Australia.
| | - George Lim Tipoe
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Gilberto Ka-Kit Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Sungchil Yang
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Man-Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Ed Xuekui Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China.
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Correspondence should be addressed to: Dr. Lee Wei LIM, Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China. .
| |
Collapse
|
179
|
Park K, Keleş S. Joint tensor modeling of single cell 3D genome and epigenetic data with Muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525871. [PMID: 36747701 PMCID: PMC9900892 DOI: 10.1101/2023.01.27.525871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Emerging single cell technologies that simultaneously capture long-range interactions of genomic loci together with their DNA methylation levels are advancing our understanding of three-dimensional genome structure and its interplay with the epigenome at the single cell level. While methods to analyze data from single cell high throughput chromatin conformation capture (scHi-C) experiments are maturing, methods that can jointly analyze multiple single cell modalities with scHi-C data are lacking. Here, we introduce Muscle, a semi-nonnegative joint decomposition of Multiple single cell tensors, to jointly analyze 3D conformation and DNA methylation data at the single cell level. Muscle takes advantage of the inherent tensor structure of the scHi-C data, and integrates this modality with DNA methylation. We developed an alternating least squares algorithm for estimating Muscle parameters and established its optimality properties. Parameters estimated by Muscle directly align with the key components of the downstream analysis of scHi-C data in a cell type specific manner. Evaluations with data-driven experiments and simulations demonstrate the advantages of the joint modeling framework of Muscle over single modality modeling or a baseline multi modality modeling for cell type delineation and elucidating associations between modalities. Muscle is publicly available at https://github.com/keleslab/muscle.
Collapse
Affiliation(s)
- Kwangmoon Park
- Department of Statistics, University of Wisconsin, Madison, WI, USA, 53706
| | - Sündüz Keleş
- Department of Statistics, University of Wisconsin, Madison, WI, USA, 53706
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA, 53726
| |
Collapse
|
180
|
Xie J, Xie L, Wei H, Li XJ, Lin L. Dynamic Regulation of DNA Methylation and Brain Functions. BIOLOGY 2023; 12:152. [PMID: 36829430 PMCID: PMC9952911 DOI: 10.3390/biology12020152] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
DNA cytosine methylation is a principal epigenetic mechanism underlying transcription during development and aging. Growing evidence suggests that DNA methylation plays a critical role in brain function, including neurogenesis, neuronal differentiation, synaptogenesis, learning, and memory. However, the mechanisms underlying aberrant DNA methylation in neurodegenerative diseases remain unclear. In this review, we provide an overview of the contribution of 5-methycytosine (5mC) and 5-hydroxylcytosine (5hmC) to brain development and aging, with a focus on the roles of dynamic 5mC and 5hmC changes in the pathogenesis of neurodegenerative diseases, particularly Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Identification of aberrant DNA methylation sites could provide potential candidates for epigenetic-based diagnostic and therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Li Lin
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| |
Collapse
|
181
|
Devall M, Soanes DM, Smith AR, Dempster EL, Smith RG, Burrage J, Iatrou A, Hannon E, Troakes C, Moore K, O'Neill P, Al-Sarraj S, Schalkwyk L, Mill J, Weedon M, Lunnon K. Genome-wide characterization of mitochondrial DNA methylation in human brain. Front Endocrinol (Lausanne) 2023; 13:1059120. [PMID: 36726473 PMCID: PMC9885148 DOI: 10.3389/fendo.2022.1059120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 01/17/2023] Open
Abstract
Background There is growing interest in the role of DNA methylation in regulating the transcription of mitochondrial genes, particularly in brain disorders characterized by mitochondrial dysfunction. Here, we present a novel approach to interrogate the mitochondrial DNA methylome at single base resolution using targeted bisulfite sequencing. We applied this method to investigate mitochondrial DNA methylation patterns in post-mortem superior temporal gyrus and cerebellum brain tissue from seven human donors. Results We show that mitochondrial DNA methylation patterns are relatively low but conserved, with peaks in DNA methylation at several sites, such as within the D-LOOP and the genes MT-ND2, MT-ATP6, MT-ND4, MT-ND5 and MT-ND6, predominantly in a non-CpG context. The elevated DNA methylation we observe in the D-LOOP we validate using pyrosequencing. We identify loci that show differential DNA methylation patterns associated with age, sex and brain region. Finally, we replicate previously reported differentially methylated regions between brain regions from a methylated DNA immunoprecipitation sequencing study. Conclusions We have annotated patterns of DNA methylation at single base resolution across the mitochondrial genome in human brain samples. Looking to the future this approach could be utilized to investigate the role of mitochondrial epigenetic mechanisms in disorders that display mitochondrial dysfunction.
Collapse
Affiliation(s)
- Matthew Devall
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Darren M Soanes
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Adam R Smith
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Emma L Dempster
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Rebecca G Smith
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Joe Burrage
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Artemis Iatrou
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Eilis Hannon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Claire Troakes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Karen Moore
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Paul O'Neill
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Safa Al-Sarraj
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Leonard Schalkwyk
- School of Biological Sciences, University of Essex, Essex, United Kingdom
| | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Michael Weedon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Katie Lunnon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
182
|
Liang D, Aygün N, Matoba N, Ideraabdullah FY, Love MI, Stein JL. Inference of putative cell-type-specific imprinted regulatory elements and genes during human neuronal differentiation. Hum Mol Genet 2023; 32:402-416. [PMID: 35994039 PMCID: PMC9851749 DOI: 10.1093/hmg/ddac207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023] Open
Abstract
Genomic imprinting results in gene expression bias caused by parental chromosome of origin and occurs in genes with important roles during human brain development. However, the cell-type and temporal specificity of imprinting during human neurogenesis is generally unknown. By detecting within-donor allelic biases in chromatin accessibility and gene expression that are unrelated to cross-donor genotype, we inferred imprinting in both primary human neural progenitor cells and their differentiated neuronal progeny from up to 85 donors. We identified 43/20 putatively imprinted regulatory elements (IREs) in neurons/progenitors, and 133/79 putatively imprinted genes in neurons/progenitors. Although 10 IREs and 42 genes were shared between neurons and progenitors, most putative imprinting was only detected within specific cell types. In addition to well-known imprinted genes and their promoters, we inferred novel putative IREs and imprinted genes. Consistent with both DNA methylation-based and H3K27me3-based regulation of imprinted expression, some putative IREs also overlapped with differentially methylated or histone-marked regions. Finally, we identified a progenitor-specific putatively imprinted gene overlapping with copy number variation that is associated with uniparental disomy-like phenotypes. Our results can therefore be useful in interpreting the function of variants identified in future parent-of-origin association studies.
Collapse
Affiliation(s)
- Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Folami Y Ideraabdullah
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
183
|
Genes and pathways associated with fear discrimination identified by genome-wide DNA methylation and RNA-seq analyses in nucleus accumbens in mice. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110643. [PMID: 36152737 DOI: 10.1016/j.pnpbp.2022.110643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022]
Abstract
Fear memory is critical for individual survival. However, the maladaptive fear response is one of the hallmarks of fear-related disorders, which is characterized by the failure to discriminate threatening signals from neutral or safe cues. The biological mechanisms of fear discrimination remain to be clarified. In this study, we found that the nucleus accumbens (NAc) was indispensable for the formation of cued fear memory in mice, during which the expression of DNA methyltransferase 3a gene (DNMT3a) increased. Injection of Zebularine, a nonspecific DNMT inhibitor, into NAc immediately after conditioning induced a maladaptive fear response to neutral cue (CS-). Using whole-genome bisulfite sequencing (WGBS), differentially methylated sites and methylated regions (DMRs) were investigated. 16,226 DMRs in the genenome were identified, in which, 214 genes with significant differences in their methylation levels and mRNA expression profiles were identified through correlation analysis. Notably, 15 genes were synaptic function-related and 8 genes were enriched in the cGMP-PKG signaling pathway. Moreover, inhibition of PKG impaired fear discrimination. Together, our results revealed the profile and role of genome-wide DNA methylation in NAc in the regulation of fear discrimination.
Collapse
|
184
|
Raus AM, Fuller TD, Nelson NE, Valientes DA, Bayat A, Ivy AS. Early-life exercise primes the murine neural epigenome to facilitate gene expression and hippocampal memory consolidation. Commun Biol 2023; 6:18. [PMID: 36611093 PMCID: PMC9825372 DOI: 10.1038/s42003-022-04393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
Aerobic exercise is well known to promote neuroplasticity and hippocampal memory. In the developing brain, early-life exercise (ELE) can lead to persistent improvements in hippocampal function, yet molecular mechanisms underlying this phenomenon have not been fully explored. In this study, transgenic mice harboring the "NuTRAP" (Nuclear tagging and Translating Ribosome Affinity Purification) cassette in Emx1 expressing neurons ("Emx1-NuTRAP" mice) undergo ELE during adolescence. We then simultaneously isolate and sequence translating mRNA and nuclear chromatin from single hippocampal homogenates containing Emx1-expressing neurons. This approach allowed us to couple translatomic with epigenomic sequencing data to evaluate the influence of histone modifications H4K8ac and H3K27me3 on translating mRNA after ELE. A subset of ELE mice underwent a hippocampal learning task to determine the gene expression and epigenetic underpinnings of ELE's contribution to improved hippocampal memory performance. From this experiment, we discover gene expression - histone modification relationships that may play a critical role in facilitated memory after ELE. Our data reveal candidate gene-histone modification interactions and implicate gene regulatory pathways involved in ELE's impact on hippocampal memory.
Collapse
Affiliation(s)
- Anthony M Raus
- Physiology/Biophysics, Anatomy/Neurobiology, University of California- Irvine School of Medicine, Irvine, CA, USA
| | - Tyson D Fuller
- Pediatrics, University of California- Irvine School of Medicine, Irvine, CA, USA
| | - Nellie E Nelson
- Physiology/Biophysics, Anatomy/Neurobiology, University of California- Irvine School of Medicine, Irvine, CA, USA
| | - David A Valientes
- Pediatrics, University of California- Irvine School of Medicine, Irvine, CA, USA
| | - Anita Bayat
- Pediatrics, University of California- Irvine School of Medicine, Irvine, CA, USA
| | - Autumn S Ivy
- Physiology/Biophysics, Anatomy/Neurobiology, University of California- Irvine School of Medicine, Irvine, CA, USA.
- Pediatrics, University of California- Irvine School of Medicine, Irvine, CA, USA.
- Neurobiology/Behavior, University of California- Irvine School of Biological Sciences, Irvine, CA, USA.
- Anatomy/Neurobiology, University of California- Irvine School of Medicine, Irvine, CA, USA.
- Division of Neurology, Children's Hospital Orange County, Orange, CA, USA.
| |
Collapse
|
185
|
Jin Y, Su K, Kong HE, Ma W, Wang Z, Li Y, Li R, Allen EG, Wu H, Jin P. Cell type-specific DNA methylome signatures reveal epigenetic mechanisms for neuronal diversity and neurodevelopmental disorder. Hum Mol Genet 2023; 32:218-230. [PMID: 35947991 PMCID: PMC9840206 DOI: 10.1093/hmg/ddac189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 01/19/2023] Open
Abstract
DNA methylation plays a critical function in establishing and maintaining cell identity in brain. Disruption of DNA methylation-related processes leads to diverse neurological disorders. However, the role of DNA methylation characteristics in neuronal diversity remains underexplored. Here, we report detailed context-specific DNA methylation maps for GABAergic, glutamatergic (Glu) and Purkinje neurons, together with matched transcriptome profiles. Genome-wide mCH levels are distinguishable, while the mCG levels are similar among the three cell types. Substantial CG-differentially methylated regions (DMRs) are also seen, with Glu neurons experiencing substantial hypomethylation events. The relationship between mCG levels and gene expression displays cell type-specific patterns, while genic CH methylation exhibits a negative effect on transcriptional abundance. We found that cell type-specific CG-DMRs are informative in terms of represented neuronal function. Furthermore, we observed that the identified Glu-specific hypo-DMRs have a high level of consistency with the chromatin accessibility of excitatory neurons and the regions enriched for histone modifications (H3K27ac and H3K4me1) of active enhancers, suggesting their regulatory potential. Hypomethylation regions specific to each cell type are predicted to bind neuron type-specific transcription factors. Finally, we show that the DNA methylation changes in a mouse model of Rett syndrome, a neurodevelopmental disorder caused by the de novo mutations in MECP2, are cell type- and brain region-specific. Our results suggest that cell type-specific DNA methylation signatures are associated with the functional characteristics of the neuronal subtypes. The presented results emphasize the importance of DNA methylation-mediated epigenetic regulation in neuronal diversity and disease.
Collapse
Affiliation(s)
- Yulin Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kenong Su
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Ha Eun Kong
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wenjing Ma
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Zhiqin Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ronghua Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Emily G Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
186
|
Ferrari M, Muto A, Bruno L, Cozza R. DNA Methylation in Algae and Its Impact on Abiotic Stress Responses. PLANTS (BASEL, SWITZERLAND) 2023; 12:241. [PMID: 36678953 PMCID: PMC9861306 DOI: 10.3390/plants12020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Epigenetics, referring to heritable gene regulatory information that is independent of changes in DNA sequences, is an important mechanism involved both in organism development and in the response to environmental events. About the epigenetic marks, DNA methylation is one of the most conserved mechanisms, playing a pivotal role in organism response to several biotic and abiotic stressors. Indeed, stress can induce changes in gene expression through hypo- or hyper-methylation of DNA at specific loci and/or in DNA methylation at the genome-wide level, which has an adaptive significance and can direct genome evolution. Exploring DNA methylation in responses to abiotic stress could have important implications for improving stress tolerance in algae. This article summarises the DNA methylation pattern in algae and its impact on abiotic stress, such as heavy metals, nutrients and temperature. Our discussion provides information for further research in algae for a better comprehension of the epigenetic response under abiotic stress, which could favour important implications to sustain algae growth under abiotic stress conditions, often related to high biosynthesis of interesting metabolites.
Collapse
|
187
|
Chatterton Z, Lamichhane P, Ahmadi Rastegar D, Fitzpatrick L, Lebhar H, Marquis C, Halliday G, Kwok JB. Single-cell DNA methylation sequencing by combinatorial indexing and enzymatic DNA methylation conversion. Cell Biosci 2023; 13:2. [PMID: 36600255 PMCID: PMC9811750 DOI: 10.1186/s13578-022-00938-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND DNA methylation is a critical molecular mark involved in cellular differentiation and cell-specific processes. Single-cell whole genome DNA methylation profiling methods hold great potential to resolve the DNA methylation profiles of individual cell-types. Here we present a method that couples single-cell combinatorial indexing (sci) with enzymatic conversion (sciEM) of unmethylated cytosines. RESULTS The sciEM method facilitates DNA methylation profiling of single-cells that is highly correlated with single-cell bisulfite-based workflows (r2 > 0.99) whilst improving sequencing alignment rates, reducing adapter contamination and over-estimation of DNA methylation levels (CpG and non-CpG). As proof-of-concept we perform sciEM analysis of the temporal lobe, motor cortex, hippocampus and cerebellum of the human brain to resolve single-cell DNA methylation of all major cell-types. CONCLUSION To our knowledge sciEM represents the first non-bisulfite single-cell DNA methylation sequencing approach with single-base resolution.
Collapse
Affiliation(s)
- Zac Chatterton
- grid.1013.30000 0004 1936 834XBrain and Mind Centre, The University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XSchool of Medical Science, The University of Sydney, Camperdown, Australia
| | - Praves Lamichhane
- grid.1013.30000 0004 1936 834XBrain and Mind Centre, The University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XSchool of Medical Science, The University of Sydney, Camperdown, Australia
| | - Diba Ahmadi Rastegar
- grid.1013.30000 0004 1936 834XBrain and Mind Centre, The University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XSchool of Medical Science, The University of Sydney, Camperdown, Australia
| | - Lauren Fitzpatrick
- grid.1013.30000 0004 1936 834XBrain and Mind Centre, The University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XSchool of Medical Science, The University of Sydney, Camperdown, Australia
| | - Hélène Lebhar
- grid.1005.40000 0004 4902 0432Recombinant Products Facility, University of New South Wales, Kensington, Australia
| | - Christopher Marquis
- grid.1005.40000 0004 4902 0432School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, Australia
| | - Glenda Halliday
- grid.1013.30000 0004 1936 834XBrain and Mind Centre, The University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XSchool of Medical Science, The University of Sydney, Camperdown, Australia
| | - John B. Kwok
- grid.1013.30000 0004 1936 834XBrain and Mind Centre, The University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XSchool of Medical Science, The University of Sydney, Camperdown, Australia
| |
Collapse
|
188
|
Chow CN, Yang CW, Chang WC. Databases and prospects of dynamic gene regulation in eukaryotes: A mini review. Comput Struct Biotechnol J 2023; 21:2147-2159. [PMID: 37013004 PMCID: PMC10066511 DOI: 10.1016/j.csbj.2023.03.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/18/2023] [Accepted: 03/19/2023] [Indexed: 04/05/2023] Open
Abstract
In eukaryotes, dynamic regulation enables DNA polymerases to catalyze a variety of RNA products in spatial and temporal patterns. Dynamic gene expression is regulated by transcription factors (TFs) and epigenetics (DNA methylation and histone modification). The applications of biochemical technology and high-throughput sequencing enhance the understanding of mechanisms of these regulations and affected genomic regions. To provide a searchable platform for retrieving such metadata, numerous databases have been developed based on the integration of genome-wide maps (e.g., ChIP-seq, whole-genome bisulfite sequencing, RNA-seq, ATAC-seq, DNase-seq, and MNase-seq data) and functionally genomic annotation. In this mini review, we summarize the main functions of TF-related databases and outline the prevalent approaches used in inferring epigenetic regulations, their associated genes, and functions. We review the literature on crosstalk between TF and epigenetic regulation and the properties of non-coding RNA regulation, which are challenging topics that promise to pave the way for advances in database development.
Collapse
|
189
|
Zhao J, Huai J. Role of primary aging hallmarks in Alzheimer´s disease. Theranostics 2023; 13:197-230. [PMID: 36593969 PMCID: PMC9800733 DOI: 10.7150/thno.79535] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which severely threatens the health of the elderly and causes significant economic and social burdens. The causes of AD are complex and include heritable but mostly aging-related factors. The primary aging hallmarks include genomic instability, telomere wear, epigenetic changes, and loss of protein stability, which play a dominant role in the aging process. Although AD is closely associated with the aging process, the underlying mechanisms involved in AD pathogenesis have not been well characterized. This review summarizes the available literature about primary aging hallmarks and their roles in AD pathogenesis. By analyzing published literature, we attempted to uncover the possible mechanisms of aberrant epigenetic markers with related enzymes, transcription factors, and loss of proteostasis in AD. In particular, the importance of oxidative stress-induced DNA methylation and DNA methylation-directed histone modifications and proteostasis are highlighted. A molecular network of gene regulatory elements that undergoes a dynamic change with age may underlie age-dependent AD pathogenesis, and can be used as a new drug target to treat AD.
Collapse
|
190
|
Xing X, Karlow JA, Li D, Jang HS, Lee HJ, Wang T. Capture Methylation-Sensitive Restriction Enzyme Sequencing (Capture MRE-Seq) for Methylation Analysis of Highly Degraded DNA Samples. Methods Mol Biol 2023; 2621:73-89. [PMID: 37041441 DOI: 10.1007/978-1-0716-2950-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Understanding the impact of DNA methylation within different disease contexts often requires accurate assessment of these modifications in a genome-wide fashion. Frequently, patient-derived tissues stored in long-term hospital tissue banks have been preserved using formalin-fixation paraffin-embedding (FFPE). While these samples can comprise valuable resources for studying disease, the fixation process ultimately compromises the DNA's integrity and leads to degradation. Degraded DNA can complicate CpG methylome profiling using traditional techniques, particularly when performing methylation-sensitive restriction enzyme sequencing (MRE-seq), yielding high backgrounds and resulting in lowered library complexity. Here, we describe Capture MRE-seq, a new MRE-seq protocol tailored to preserving unmethylated CpG information when using samples with highly degraded DNA. The results using Capture MRE-seq correlate well (0.92) with traditional MRE-seq calls when profiling non-degraded samples, and can recover unmethylated regions in highly degraded samples when traditional MRE-seq fails, which we validate using bisulfite sequencing-based data (WGBS) as well as methylated DNA immunoprecipitation followed by sequencing (MeDIP-seq).
Collapse
Affiliation(s)
- Xiaoyun Xing
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer A Karlow
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Daofeng Li
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Hyo Sik Jang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Hyung Joo Lee
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Pin Pharmaceuticals, South San Francisco, CA, USA
| | - Ting Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
191
|
Sattarov R, Toresson H, Orbjörn C, Mattsson-Carlgren N. Direct Conversion of Fibroblast into Neurons for Alzheimer's Disease Research: A Systematic Review. J Alzheimers Dis 2023; 95:805-828. [PMID: 37661882 PMCID: PMC10578293 DOI: 10.3233/jad-230119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a prevalent neurodegenerative disorder without a cure. Innovative disease models, such as induced neurons (iNs), could enhance our understanding of AD mechanisms and accelerate treatment development. However, a review of AD human iN studies is necessary to consolidate knowledge. OBJECTIVE The objective of this review is to examine the current body of literature on AD human iN cells and provide an overview of the findings to date. METHODS We searched two databases for relevant studies published between 2010 and 2023, identifying nine studies meeting our criteria. RESULTS Reviewed studies indicate the feasibility of generating iNs directly from AD patients' fibroblasts using chemical induction or viral vectors. These cells express mature neuronal markers, including MAP-2, NeuN, synapsin, and tau. However, most studies were limited in sample size and primarily focused on autosomal dominant familial AD (FAD) rather than the more common sporadic forms of AD. Several studies indicated that iNs derived from FAD fibroblasts exhibited abnormal amyloid-β metabolism, a characteristic feature of AD in humans. Additionally, elevated levels of hyperphosphorylated tau, another hallmark of AD, were reported in some studies. CONCLUSION Although only a limited number of small-scale studies are currently available, AD patient-derived iNs hold promise as a valuable model for investigating AD pathogenesis. Future research should aim to conduct larger studies, particularly focusing on sporadic AD cases, to enhance the clinical relevance of the findings for the broader AD patient population. Moreover, these cells can be utilized in screening potential novel treatments for AD.
Collapse
Affiliation(s)
- Roman Sattarov
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Håkan Toresson
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Camilla Orbjörn
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
192
|
Martins-Ferreira R, Leal B, Chaves J, Ciudad L, Samões R, Martins da Silva A, Pinho Costa P, Ballestar E. Circulating cell-free DNA methylation mirrors alterations in cerebral patterns in epilepsy. Clin Epigenetics 2022; 14:188. [PMID: 36575526 PMCID: PMC9795776 DOI: 10.1186/s13148-022-01416-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND DNA methylation profiling of circulating cell-free DNA (cfDNA) has rapidly become a promising strategy for biomarker identification and development. The cell-type-specific nature of DNA methylation patterns and the direct relationship between cfDNA and apoptosis can potentially be used non-invasively to predict local alterations. In addition, direct detection of altered DNA methylation patterns performs well as a biomarker. In a previous study, we demonstrated marked DNA methylation alterations in brain tissue from patients with mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS). RESULTS We performed DNA methylation profiling in cfDNA isolated from the serum of MTLE patients and healthy controls using BeadChip arrays followed by systematic bioinformatic analysis including deconvolution analysis and integration with DNase accessibility data sets. Differential cfDNA methylation analysis showed an overrepresentation of gene ontology terms and transcription factors related to central nervous system function and regulation. Deconvolution analysis of the DNA methylation data sets ruled out the possibility that the observed differences were due to changes in the proportional contribution of cortical neurons in cfDNA. Moreover, we found no overrepresentation of neuron- or glia-specific patterns in the described cfDNA methylation patterns. However, the MTLE-HS cfDNA methylation patterns featured a significant overrepresentation of the epileptic DNA methylation alterations previously observed in the hippocampus. CONCLUSIONS Our results support the use of cfDNA methylation profiling as a rational approach to seeking non-invasive and reproducible epilepsy biomarkers.
Collapse
Affiliation(s)
- Ricardo Martins-Ferreira
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona Spain ,grid.5808.50000 0001 1503 7226Immunogenetics Laboratory, Molecular Pathology and Immunology Instituto de Ciências Biomédicas Abel Salazar – Universidade do Porto (ICBAS-UPorto), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,grid.5808.50000 0001 1503 7226Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Bárbara Leal
- grid.5808.50000 0001 1503 7226Immunogenetics Laboratory, Molecular Pathology and Immunology Instituto de Ciências Biomédicas Abel Salazar – Universidade do Porto (ICBAS-UPorto), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,grid.5808.50000 0001 1503 7226Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - João Chaves
- Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,grid.5808.50000 0001 1503 7226Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal ,grid.413438.90000 0004 0574 5247Neurology Service, Hospital de Santo António - Centro Hospitalar Universitário do Porto (HSA-CHUP), Porto, Portugal
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona Spain
| | - Raquel Samões
- grid.413438.90000 0004 0574 5247Neurology Service, Hospital de Santo António - Centro Hospitalar Universitário do Porto (HSA-CHUP), Porto, Portugal
| | - António Martins da Silva
- Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,grid.5808.50000 0001 1503 7226Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal ,Neurophysiology Service, HSA-CHUP, Porto, Portugal
| | - Paulo Pinho Costa
- grid.5808.50000 0001 1503 7226Immunogenetics Laboratory, Molecular Pathology and Immunology Instituto de Ciências Biomédicas Abel Salazar – Universidade do Porto (ICBAS-UPorto), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,grid.5808.50000 0001 1503 7226Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal ,grid.422270.10000 0001 2287 695XDepartment of Human Genetics, Instituto Nacional de Saúde Dr. Ricardo Jorge, Porto, Portugal
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona Spain ,grid.22069.3f0000 0004 0369 6365Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, 200241 China
| |
Collapse
|
193
|
Aversano S, Caiazza C, Caiazzo M. Induced pluripotent stem cell-derived and directly reprogrammed neurons to study neurodegenerative diseases: The impact of aging signatures. Front Aging Neurosci 2022; 14:1069482. [PMID: 36620769 PMCID: PMC9810544 DOI: 10.3389/fnagi.2022.1069482] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Many diseases of the central nervous system are age-associated and do not directly result from genetic mutations. These include late-onset neurodegenerative diseases (NDDs), which represent a challenge for biomedical research and drug development due to the impossibility to access to viable human brain specimens. Advancements in reprogramming technologies have allowed to obtain neurons from induced pluripotent stem cells (iPSCs) or directly from somatic cells (iNs), leading to the generation of better models to understand the molecular mechanisms and design of new drugs. Nevertheless, iPSC technology faces some limitations due to reprogramming-associated cellular rejuvenation which resets the aging hallmarks of donor cells. Given the prominent role of aging for the development and manifestation of late-onset NDDs, this suggests that this approach is not the most suitable to accurately model age-related diseases. Direct neuronal reprogramming, by which a neuron is formed via direct conversion from a somatic cell without going through a pluripotent intermediate stage, allows the possibility to generate patient-derived neurons that maintain aging and epigenetic signatures of the donor. This aspect may be advantageous for investigating the role of aging in neurodegeneration and for finely dissecting underlying pathological mechanisms. Here, we will compare iPSC and iN models as regards the aging status and explore how this difference is reported to affect the phenotype of NDD in vitro models.
Collapse
Affiliation(s)
- Simona Aversano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Carmen Caiazza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Massimiliano Caiazzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, Netherlands,*Correspondence: Massimiliano Caiazzo,
| |
Collapse
|
194
|
Abstract
DNA methylation is a highly conserved epigenetic modification that plays essential roles in mammalian gene regulation, genome stability and development. Despite being primarily considered a stable and heritable epigenetic silencing mechanism at heterochromatic and repetitive regions, whole genome methylome analysis reveals that DNA methylation can be highly cell-type specific and dynamic within proximal and distal gene regulatory elements during early embryonic development, stem cell differentiation and reprogramming, and tissue maturation. In this Review, we focus on the mechanisms and functions of regulated DNA methylation and demethylation, highlighting how these dynamics, together with crosstalk between DNA methylation and histone modifications at distinct regulatory regions, contribute to mammalian development and tissue maturation. We also discuss how recent technological advances in single-cell and long-read methylome sequencing, along with targeted epigenome-editing, are enabling unprecedented high-resolution and mechanistic dissection of DNA methylome dynamics.
Collapse
Affiliation(s)
- Alex Wei
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hao Wu
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
195
|
Shevkoplyas D, Vuu YM, Davie JR, Rastegar M. The Chromatin Structure at the MECP2 Gene and In Silico Prediction of Potential Coding and Non-Coding MECP2 Splice Variants. Int J Mol Sci 2022; 23:ijms232415643. [PMID: 36555295 PMCID: PMC9779294 DOI: 10.3390/ijms232415643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Methyl CpG binding protein 2 (MeCP2) is an epigenetic reader that binds to methylated CpG dinucleotides and regulates gene transcription. Mecp2/MECP2 gene has 4 exons, encoding for protein isoforms MeCP2E1 and MeCP2E2. MeCP2 plays key roles in neurodevelopment, therefore, its gain- and loss-of-function mutations lead to neurodevelopmental disorders including Rett Syndrome. Here, we describe the structure, functional domains, and evidence support for potential additional alternatively spliced MECP2 transcripts and protein isoforms. We conclude that NCBI MeCP2 isoforms 3 and 4 contain certain MeCP2 functional domains. Our in silico analysis led to identification of histone modification and accessibility profiles at the MECP2 gene and its cis-regulatory elements. We conclude that the human MECP2 gene associated histone post-translational modifications exhibit high similarity between males and females. Between brain regions, histone modifications were found to be less conserved and enriched within larger genomic segments named as "S1-S11". We also identified highly conserved DNA accessibility regions in different tissues and brain regions, named as "A1-A9" and "B1-B9". DNA methylation profile was similar between mid-frontal gyrus of donors 35 days-25 years of age. Based on ATAC-seq data, the identified hypomethylated regions "H1-H8" intersected with most regions of the accessible chromatin (A regions).
Collapse
|
196
|
Adami R, Bottai D. NSC Physiological Features in Spinal Muscular Atrophy: SMN Deficiency Effects on Neurogenesis. Int J Mol Sci 2022; 23:ijms232315209. [PMID: 36499528 PMCID: PMC9736802 DOI: 10.3390/ijms232315209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/08/2022] Open
Abstract
While the U.S. Food and Drug Administration and the European Medicines Evaluation Agency have recently approved new drugs to treat spinal muscular atrophy 1 (SMA1) in young patients, they are mostly ineffective in older patients since many motor neurons have already been lost. Therefore, understanding nervous system (NS) physiology in SMA patients is essential. Consequently, studying neural stem cells (NSCs) from SMA patients is of significant interest in searching for new treatment targets that will enable researchers to identify new pharmacological approaches. However, studying NSCs in these patients is challenging since their isolation damages the NS, making it impossible with living patients. Nevertheless, it is possible to study NSCs from animal models or create them by differentiating induced pluripotent stem cells obtained from SMA patient peripheral tissues. On the other hand, therapeutic interventions such as NSCs transplantation could ameliorate SMA condition. This review summarizes current knowledge on the physiological properties of NSCs from animals and human cellular models with an SMA background converging on the molecular and neuronal circuit formation alterations of SMA fetuses and is not focused on the treatment of SMA. By understanding how SMA alters NSC physiology, we can identify new and promising interventions that could help support affected patients.
Collapse
|
197
|
DNA Methylation Variation Is a Possible Mechanism in the Response of Haemaphysalis longicornis to Low-Temperature Stress. Int J Mol Sci 2022; 23:ijms232315207. [PMID: 36499526 PMCID: PMC9740864 DOI: 10.3390/ijms232315207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Ticks are notorious ectoparasites and transmit the greatest variety of pathogens than any other arthropods. Cold tolerance is a key determinant of tick abundance and distribution. While studies have shown that DNA methylation is one of the important epigenetic regulations found across many species and plays a significant role in their response to low-temperature stress, its role in the response of ticks to low-temperature stress remains unexplored. Herein, we explored the DNA methylation profile of the tick, Haemaphysalis longicornis, exposed to low-temperature stress (4 °C) using whole-genome bisulfite sequencing (WGBS). We found that approximately 0.95% and 0.94% of the genomic C sites were methylated in the control and low-temperature groups, respectively. Moreover, the methylation level under the CG context was about 3.86% and 3.85% in the control and low-temperature groups, respectively. In addition, a total of 6087 differentially methylated regions (DMRs) were identified between the low-temperature and control groups, including 3288 hypermethylated and 2799 hypomethylated DMRs. Further, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially methylated genes revealed that most of the DMGs were significantly enriched in binding and RNA transport pathways. Taken together, this research confirmed, for the first time, the whole genome DNA methylation profile of H. longicornis and provided new insights into the DNA methylation changes relating to low-temperature stress in H. longicornis, as well as provided a foundation for future studies on the epigenetic mechanism underlying the responses of ticks to abiotic stress.
Collapse
|
198
|
Chhatbar K, Connelly J, Webb S, Kriaucionis S, Bird A. A critique of the hypothesis that CA repeats are primary targets of neuronal MeCP2. Life Sci Alliance 2022; 5:5/12/e202201522. [PMID: 36122935 PMCID: PMC9485053 DOI: 10.26508/lsa.202201522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
The DNA-binding protein MeCP2 is reported to bind methylated cytosine in CG and CA motifs in genomic DNA, but it was recently proposed that arrays of tandemly repeated CA containing either methylated or hydroxymethylated cytosine are the primary targets for MeCP2 binding and function. Here we investigated the predictions of this hypothesis using a range of published datasets. We failed to detect enrichment of cytosine modification at genomic CA repeat arrays in mouse brain regions and found no evidence for preferential MeCP2 binding at CA repeats. Moreover, we did not observe a correlation between the CA repeat density near genes and their degree of transcriptional deregulation when MeCP2 was absent. Our results do not provide support for the hypothesis that CA repeats are key mediators of MeCP2 function. Instead, we found that CA repeats are subject to CAC methylation to a degree that is typical of the surrounding genome and contribute modestly to MeCP2-mediated modulation of gene expression in accordance with their content of this canonical target motif.
Collapse
Affiliation(s)
- Kashyap Chhatbar
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, Edinburgh, UK.,Informatics Forum, School of Informatics, University of Edinburgh, Edinburgh, UK
| | - John Connelly
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, Edinburgh, UK
| | - Shaun Webb
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, Edinburgh, UK
| | | | - Adrian Bird
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, Edinburgh, UK
| |
Collapse
|
199
|
Bolognesi G, Bacalini MG, Pirazzini C, Garagnani P, Giuliani C. Evolutionary Implications of Environmental Toxicant Exposure. Biomedicines 2022; 10:3090. [PMID: 36551846 PMCID: PMC9775150 DOI: 10.3390/biomedicines10123090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Homo sapiens have been exposed to various toxins and harmful compounds that change according to various phases of human evolution. Population genetics studies showed that such exposures lead to adaptive genetic changes; while observing present exposures to different toxicants, the first molecular mechanism that confers plasticity is epigenetic remodeling and, in particular, DNA methylation variation, a molecular mechanism proposed for medium-term adaptation. A large amount of scientific literature from clinical and medical studies revealed the high impact of such exposure on human biology; thus, in this review, we examine and infer the impact that different environmental toxicants may have in shaping human evolution. We first describe how environmental toxicants shape natural human variation in terms of genetic and epigenetic diversity, and then we describe how DNA methylation may influence mutation rate and, thus, genetic variability. We describe the impact of these substances on biological fitness in terms of reproduction and survival, and in conclusion, we focus on their effect on brain evolution and physiology.
Collapse
Affiliation(s)
- Giorgia Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, via San Giacomo 12, 40126 Bologna, Italy
- Laboratory of Molecular Anthropology, Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Francesco Selmi 3, 40126 Bologna, Italy
| | - Maria Giulia Bacalini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, via Altura 3, 40139 Bologna, Italy
| | - Chiara Pirazzini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, via Altura 3, 40139 Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, via San Giacomo 12, 40126 Bologna, Italy
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology, Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Francesco Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
200
|
He L, Liang X, Wang Q, Yang C, Li Y, Liao L, Zhu Z, Wang Y. Genome-wide DNA methylation reveals potential epigenetic mechanism of age-dependent viral susceptibility in grass carp. Immun Ageing 2022; 19:28. [PMID: 35655223 PMCID: PMC9161582 DOI: 10.1186/s12979-022-00285-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/14/2022] [Indexed: 11/10/2022]
Abstract
Background Grass carp are an important farmed fish in China that are infected by many pathogens, especially grass carp reovirus (GCRV). Notably, grass carp showed age-dependent susceptibility to GCRV; that is, grass carp not older than one year were sensitive to GCRV, while those over three years old were resistant to this virus. However, the underlying mechanism remains unclear. Herein, whole genome-wide DNA methylation and gene expression variations between susceptible five-month-old (FMO) and resistant three-year-old (TYO) grass carp were investigated aiming to uncover potential epigenetic mechanisms. Results Colorimetric quantification revealed that the global methylation level in TYO fish was higher than that in FMO fish. Whole-genome bisulfite sequencing (WGBS) of the two groups revealed 6214 differentially methylated regions (DMRs) and 4052 differentially methylated genes (DMGs), with most DMRs and DMGs showing hypermethylation patterns in TYO fish. Correlation analysis revealed that DNA hypomethylation in promoter regions and DNA hypermethylation in gene body regions were associated with gene expression. Enrichment analysis revealed that promoter hypo-DMGs in TYO fish were significantly enriched in typical immune response pathways, whereas gene body hyper-DMGs in TYO fish were significantly enriched in terms related to RNA transcription, biosynthesis, and energy production. RNA-seq analysis of the corresponding samples indicated that most of the genes in the above terms were upregulated in TYO fish. Moreover, gene function analysis revealed that the two genes involved in energy metabolism displayed antiviral effects. Conclusions Collectively, these results revealed genome-wide variations in DNA methylation between grass carp of different ages. DNA methylation and gene expression variations in genes involved in immune response, biosynthesis, and energy production may contribute to age-dependent susceptibility to GCRV in grass carp. Our results provide important information for disease-resistant breeding programs for grass carp and may also benefit research on age-dependent diseases in humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-022-00285-w.
Collapse
|