151
|
Jia Y, Liu Y, Wu Y, Feng C, Zhang H, Ren F, Liu H. The regulation of glucose and lipid metabolism through the interaction of dietary polyphenols and polysaccharides via the gut microbiota pathway. Food Funct 2024; 15:8200-8216. [PMID: 39039938 DOI: 10.1039/d4fo00585f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The interaction of polyphenols-polysaccharides-gut microbiota to promote health benefits has become a hotspot and direction for precise dietary intervention strategies and foundational research in biomedicine. Both dietary polyphenols and polysaccharides possess biological activities that regulate body health. Single components, due to their inherent structure and physicochemical properties, have a low bioavailability, thus are unable to exert their optimal effects. The compound structure formed by the interaction of polyphenols and polysaccharides can enhance their functional properties, thereby more effectively promoting health benefits and preventing diseases. This review primarily focuses on the roles played by polyphenols and polysaccharides in regulating glucose and lipid metabolism, the improvement of glucose and lipid metabolism through the gut microbial pathway by polyphenols and polysaccharides, and the mechanisms by which polyphenols and polysaccharides interact to regulate glucose and lipid metabolism. A considerable amount of preliminary research has confirmed the regulatory effects of plant polyphenols and polysaccharides on glucose and lipid metabolism. However, studies on the combined effects and mechanisms of these two components are still very limited. This review aims to provide a reference for subsequent research on their interactions and changes in functional properties.
Collapse
Affiliation(s)
- Yuanqiang Jia
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yanan Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yingying Wu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Chaohui Feng
- School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Hokkaido, Japan
| | - Huijuan Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Hongzhi Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
152
|
Ribas-Latre A, Fernández-Veledo S, Vendrell J. Time-restricted eating, the clock ticking behind the scenes. Front Pharmacol 2024; 15:1428601. [PMID: 39175542 PMCID: PMC11338815 DOI: 10.3389/fphar.2024.1428601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Maintaining metabolic balance relies on accumulating nutrients during feeding periods and their subsequent release during fasting. In obesity and metabolic disorders, strategies aimed at reducing food intake while simulating fasting have garnered significant attention for weight loss. Caloric restriction (CR) diets and intermittent fasting (IF) interventions have emerged as effective approaches to improving cardiometabolic health. Although the comparative metabolic benefits of CR versus IF remain inconclusive, this review focuses on various forms of IF, particularly time-restricted eating (TRE). Methods This study employs a narrative review methodology, systematically collecting, synthesizing, and interpreting the existing literature on TRE and its metabolic effects. A comprehensive and unbiased search of relevant databases was conducted to identify pertinent studies, including pre-clinical animal studies and clinical trials in humans. Keywords such as "Obesity," "Intermittent Fasting," "Time-restricted eating," "Chronotype," and "Circadian rhythms" guided the search. The selected studies were critically appraised based on predefined inclusion and exclusion criteria, allowing for a thorough exploration and synthesis of current knowledge. Results This article synthesizes pre-clinical and clinical studies on TRE and its metabolic effects, providing a comprehensive overview of the current knowledge and identifying gaps for future research. It explores the metabolic outcomes of recent clinical trials employing different TRE protocols in individuals with overweight, obesity, or type II diabetes, emphasizing the significance of individual chronotype, which is often overlooked in practice. In contrast to human studies, animal models underscore the role of the circadian clock in mitigating metabolic disturbances induced by obesity through time-restricted feeding (TRF) interventions. Consequently, we examine pre-clinical evidence supporting the interplay between the circadian clock and TRF interventions. Additionally, we provide insights into the role of the microbiota, which TRE can modulate and its influence on circadian rhythms.
Collapse
Affiliation(s)
- Aleix Ribas-Latre
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Medicina i Cirugia, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Sonia Fernández-Veledo
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Medicina i Cirugia, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Joan Vendrell
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Medicina i Cirugia, Universitat Rovira i Virgili (URV), Tarragona, Spain
| |
Collapse
|
153
|
Li K, Xiao X, Li Y, Lu S, Zi J, Sun X, Xu J, Liu HY, Li X, Song T, Cai D. Insights into the interplay between gut microbiota and lipid metabolism in the obesity management of canines and felines. J Anim Sci Biotechnol 2024; 15:114. [PMID: 39118186 PMCID: PMC11308499 DOI: 10.1186/s40104-024-01073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Obesity is a prevalent chronic disease that has significant negative impacts on humans and our companion animals, including dogs and cats. Obesity occurs with multiple comorbidities, such as diabetes, hypertension, heart disease and osteoarthritis in dogs and cats. A direct link between lipid metabolism dysregulation and obesity-associated diseases has been implicated. However, the understanding of such pathophysiology in companion animals is limited. This review aims to address the role of lipid metabolism in various metabolic disorders associated with obesity, emphasizing the involvement of the gut microbiota. Furthermore, we also discuss the management of obesity, including approaches like nutritional interventions, thus providing novel insights into obesity prevention and treatment for canines and felines.
Collapse
Affiliation(s)
- Kaiqi Li
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiangyu Xiao
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuling Li
- School of Life Science and Engineering, Foshan University, Foshan, 528231, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, People's Republic of China
| | - Sichen Lu
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jianghang Zi
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoqiang Sun
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia Xu
- College of Agriculture, Jinhua Polytechnic, Jinhua, 321017, China
| | - Hao-Yu Liu
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, People's Republic of China.
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Demin Cai
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
154
|
Gray SM, Moss AD, Herzog JW, Kashiwagi S, Liu B, Young JB, Sun S, Bhatt AP, Fodor AA, Balfour Sartor R. Mouse adaptation of human inflammatory bowel diseases microbiota enhances colonization efficiency and alters microbiome aggressiveness depending on the recipient colonic inflammatory environment. MICROBIOME 2024; 12:147. [PMID: 39113097 PMCID: PMC11304999 DOI: 10.1186/s40168-024-01857-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Understanding the cause vs consequence relationship of gut inflammation and microbial dysbiosis in inflammatory bowel diseases (IBD) requires a reproducible mouse model of human-microbiota-driven experimental colitis. RESULTS Our study demonstrated that human fecal microbiota transplant (FMT) transfer efficiency is an underappreciated source of experimental variability in human microbiota-associated (HMA) mice. Pooled human IBD patient fecal microbiota engrafted germ-free (GF) mice with low amplicon sequence variant (ASV)-level transfer efficiency, resulting in high recipient-to-recipient variation of microbiota composition and colitis severity in HMA Il-10-/- mice. In contrast, mouse-to-mouse transfer of mouse-adapted human IBD patient microbiota transferred with high efficiency and low compositional variability resulting in highly consistent and reproducible colitis phenotypes in recipient Il-10-/- mice. Engraftment of human-to-mouse FMT stochastically varied with individual transplantation events more than mouse-adapted FMT. Human-to-mouse FMT caused a population bottleneck with reassembly of microbiota composition that was host inflammatory environment specific. Mouse-adaptation in the inflamed Il-10-/- host reassembled a more aggressive microbiota that induced more severe colitis in serial transplant to Il-10-/- mice than the distinct microbiota reassembled in non-inflamed WT hosts. CONCLUSIONS Our findings support a model of IBD pathogenesis in which host inflammation promotes aggressive resident bacteria, which further drives a feed-forward process of dysbiosis exacerbated by gut inflammation. This model implies that effective management of IBD requires treating both the dysregulated host immune response and aggressive inflammation-driven microbiota. We propose that our mouse-adapted human microbiota model is an optimized, reproducible, and rigorous system to study human microbiome-driven disease phenotypes, which may be generalized to mouse models of other human microbiota-modulated diseases, including metabolic syndrome/obesity, diabetes, autoimmune diseases, and cancer. Video Abstract.
Collapse
Affiliation(s)
- Simon M Gray
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anh D Moss
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Jeremy W Herzog
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Saori Kashiwagi
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Bo Liu
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jacqueline B Young
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Shan Sun
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Aadra P Bhatt
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony A Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- National Gnotobiotic Rodent Resource Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
155
|
Yang T, Chen S, Qiu L, Guo Q, Wang Z, Jiang Y, Bai H, Bi Y, Chang G. Effect of High Dietary Iron on Fat Deposition and Gut Microbiota in Chickens. Animals (Basel) 2024; 14:2254. [PMID: 39123780 PMCID: PMC11310990 DOI: 10.3390/ani14152254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
To meet the demand of consumers for chicken products, poultry breeders have made improvements to chickens. However, this has led to a new problem in the modern poultry industry, namely excessive fat deposition. This study aims to understand the effects of dietary iron supplementation on fat deposition and gut microbiota in chickens. In this study, we investigated the effects of iron on the growth performance, fat deposition, and gut microbiota of silky fowl black-bone chickens. A total of 75 7-week-old silky fowl black-bone chickens were randomly divided into three groups (five replicates per group, five chickens per replicate) and fed them for 28 days using a growing diet (control group), a growing diet + 10% tallow (high-fat diet group, HFD group), and a growing diet + 10% tallow + 500 mg/kg iron (HFDFe500 group), respectively. We detected the effects of iron on the growth performance, fat deposition, and gut microbiota of silky fowl black-bone chickens using the growth performance index test, oil red O staining, and HE staining, and found that the high-fat diet significantly increased liver and serum fat deposition and liver injury, while the addition of iron to the diet could reduce the fat deposition caused by the high-fat diet and alleviate liver injury. In addition, 16S rDNA sequencing was used to compare the relative abundance of gut microbiota in the cecal contents in different feeding groups. The results showed that the high-fat diet could induce gut microbiota imbalance in chickens, while the high-iron diet reversed the gut microbiota imbalance. PICRUSt functional prediction analysis showed that dietary iron supplementation affected amino acid metabolism, energy metabolism, cofactors, and vitamin metabolism pathways. In addition, correlation analysis showed that TG was significantly associated with Firmicutes and Actinobacteriota (p < 0.05). Overall, these results revealed high dietary iron (500 mg/kg) could reduce fat deposition and affect the gut microbiota of silky fowl black-bone chickens, suggesting that iron may regulate fat deposition by influencing the gut microbiota of chickens and provides a potential avenue that prevents excessive fat deposition in chickens by adding iron to the diet.
Collapse
Affiliation(s)
- Ting Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Shihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Lingling Qiu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qixin Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Zhixiu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Yong Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Hao Bai
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yulin Bi
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
156
|
Adolph TE, Tilg H. Western diets and chronic diseases. Nat Med 2024; 30:2133-2147. [PMID: 39085420 DOI: 10.1038/s41591-024-03165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
'Westernization', which incorporates industrial, cultural and dietary trends, has paralleled the rise of noncommunicable diseases across the globe. Today, the Western-style diet emerges as a key stimulus for gut microbial vulnerability, chronic inflammation and chronic diseases, affecting mainly the cardiovascular system, systemic metabolism and the gut. Here we review the diet of modern times and evaluate the threat it poses for human health by summarizing recent epidemiological, translational and clinical studies. We discuss the links between diet and disease in the context of obesity and type 2 diabetes, cardiovascular diseases, gut and liver diseases and solid malignancies. We collectively interpret the evidence and its limitations and discuss future challenges and strategies to overcome these. We argue that healthcare professionals and societies must react today to the detrimental effects of the Western diet to bring about sustainable change and improved outcomes in the future.
Collapse
Affiliation(s)
- Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
157
|
Angelini G, Russo S, Mingrone G. Incretin hormones, obesity and gut microbiota. Peptides 2024; 178:171216. [PMID: 38636809 DOI: 10.1016/j.peptides.2024.171216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Over the past 40 years, the prevalence of obesity has risen dramatically, reaching epidemic proportions. By 2030 the number of people affected by obesity will reach 1.12 billion worldwide. Gastrointestinal hormones, namely incretins, play a vital role in the pathogenesis of obesity and its comorbidities. GIP (glucose-dependent insulinotropic polypeptide) and GLP-1 (glucagon-like peptide-1), which are secreted from the intestine after nutrient intake and stimulate insulin secretion from pancreatic β cells, influence lipid metabolism, gastric empting, appetite and body weight. The gut microbiota plays an important role in various metabolic conditions, including obesity and type 2 diabetes and influences host metabolism through the interaction with enteroendocrine cells that modulate incretins secretion. Gut microbiota metabolites, such as short-chain fatty acids (SCFAs) and indole, directly stimulate the release of incretins from colonic enteroendocrine cells influencing host satiety and food intake. Moreover, bariatric surgery and incretin-based therapies are associated with increase gut bacterial richness and diversity. Understanding the role of incretins, gut microbiota, and their metabolites in regulating metabolic processes is crucial to develop effective strategies for the management of obesity and its associated comorbidities.
Collapse
Affiliation(s)
| | - Sara Russo
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Geltrude Mingrone
- Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
158
|
Lan J, Zhang Y, Jin C, Chen H, Su Z, Wu J, Ma N, Zhang X, Lu Y, Chen Y, Zeng X, Zhang H, Zheng G, Sun Y, Wang C, Hu Y, Wang Y, Liu Y, Zeng Z, Shi L, He J, Cao A, Wang Y, Pan X, Jin G, Wang Y, Jiang X, Shen H, Tang Q, Xie X, Xiao Y, Zhong X, Zhang X, Zeng L, Ye L, Xie J, Geng L, Li Z, Wu X, Wang Y, Mao R, Zhang S, Huang S, Liu S, Zeng H, Xu W, Gong S, Guo Y, Yang M. Gut Dysbiosis Drives Inflammatory Bowel Disease Through the CCL4L2-VSIR Axis in Glycogen Storage Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309471. [PMID: 38889269 PMCID: PMC11321658 DOI: 10.1002/advs.202309471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/04/2024] [Indexed: 06/20/2024]
Abstract
Patients with glycogen storage disease type Ib (GSD-Ib) frequently have inflammatory bowel disease (IBD). however, the underlying etiology remains unclear. Herein, this study finds that digestive symptoms are commonly observed in patients with GSD-Ib, presenting as single or multiple scattered deep round ulcers, inflammatory pseudo-polyps, obstructions, and strictures, which differ substantially from those in typical IBD. Distinct microbiota profiling and single-cell clustering of colonic mucosae in patients with GSD are conducted. Heterogeneous oral pathogenic enteric outgrowth induced by GSD is a potent inducer of gut microbiota immaturity and colonic macrophage accumulation. Specifically, a unique population of macrophages with high CCL4L2 expression is identified in response to pathogenic bacteria in the intestine. Hyper-activation of the CCL4L2-VSIR axis leads to increased expression of AGR2 and ZG16 in epithelial cells, which mediates the unique progression of IBD in GSD-Ib. Collectively, the microbiota-driven pathomechanism of IBD is demonstrated in GSD-Ib and revealed the active role of the CCL4L2-VSIR axis in the interaction between the microbiota and colonic mucosal immunity. Thus, targeting gut dysbiosis and/or the CCL4L2-VISR axis may represent a potential therapy for GSD-associated IBD.
Collapse
|
159
|
Ko G, Unno T, Kim Y, Kim J. Dietary Polycan, a β-glucan originating from Aureobasidium pullulansSM-2001, attenuates high-fat-diet-induced intestinal barrier damage in obese mice by modulating gut microbiota dysbiosis. Food Sci Nutr 2024; 12:5824-5835. [PMID: 39139941 PMCID: PMC11317661 DOI: 10.1002/fsn3.4235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 08/15/2024] Open
Abstract
Various metabolic diseases caused by a high-fat diet (HFD) are closely related to gut microbiota dysbiosis and epithelial barrier dysfunction. Polycan, a type of β-glucan, is effective in treating anti-obesity and metabolic diseases caused by HFD. However, the effect of Polycan on dysbiosis and epithelial barrier damage is still unknown. In this study, the effects of Polycan on dysbiosis and intestinal barrier damage were investigated using HFD-induced obese model mice. C57BL/6 mice were fed a HFD for 12 weeks and treated with two different doses of Polycan (250 and 500 mg/kg) orally administered during weeks 9 to 12. Polycan supplementation increased the expression of tight junction genes (zonula occludens-1, occludin, and claudin-3) and short-chain fatty acid (SCFA) content while reducing toxic substances (phenol, p-cresol, and skatole). Most significantly, Polycan enriched SCFA-producing bacteria (i.e., Phocaeicola, Bacteroides, Faecalibaculum, Oscillibacter, Lachnospiraceae, and Muribaculaceae), and decreased the Firmicutes/Bacteroidetes ratio and toxic substances-producing bacteria (i.e., Olsenella, Clostridium XVIII, and Schaedlerella). Furthermore, microbial functional capacity prediction of the gut microbiota revealed that Polycan enriched many SCFA-related KEGG enzymes while toxic substance-related KEGG enzymes were depleted. These findings indicated that Polycan has the potential to alleviate HFD-induced intestinal barrier damage by modulating the function and composition of the gut microbiota.
Collapse
Affiliation(s)
- Gwang‐Pyo Ko
- Faculty of Biotechnology, School of Life SciencesSARI Jeju National UniversityJejuKorea
| | - Tatsuya Unno
- Department of MicrobiologyChungbuk National UniversityCheongjuKorea
| | | | - Jungman Kim
- Subtropical/Tropical Organism Gene Bank Jeju National UniversityJejuKorea
- Jeju Institute of Korean MedicineJejuKorea
| |
Collapse
|
160
|
Ma Y, Nenkov M, Chen Y, Gaßler N. The Role of Adipocytes Recruited as Part of Tumor Microenvironment in Promoting Colorectal Cancer Metastases. Int J Mol Sci 2024; 25:8352. [PMID: 39125923 PMCID: PMC11313311 DOI: 10.3390/ijms25158352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue dysfunction, which is associated with an increased risk of colorectal cancer (CRC), is a significant factor in the pathophysiology of obesity. Obesity-related inflammation and extracellular matrix (ECM) remodeling promote colorectal cancer metastasis (CRCM) by shaping the tumor microenvironment (TME). When CRC occurs, the metabolic symbiosis of tumor cells recruits adjacent adipocytes into the TME to supply energy. Meanwhile, abundant immune cells, from adipose tissue and blood, are recruited into the TME, which is stimulated by pro-inflammatory factors and triggers a chronic local pro-inflammatory TME. Dysregulated ECM proteins and cell surface adhesion molecules enhance ECM remodeling and further increase contractibility between tumor and stromal cells, which promotes epithelial-mesenchymal transition (EMT). EMT increases tumor migration and invasion into surrounding tissues or vessels and accelerates CRCM. Colorectal symbiotic microbiota also plays an important role in the promotion of CRCM. In this review, we provide adipose tissue and its contributions to CRC, with a special emphasis on the role of adipocytes, macrophages, neutrophils, T cells, ECM, and symbiotic gut microbiota in the progression of CRC and their contributions to the CRC microenvironment. We highlight the interactions between adipocytes and tumor cells, and potential therapeutic approaches to target these interactions.
Collapse
Affiliation(s)
| | | | | | - Nikolaus Gaßler
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (M.N.)
| |
Collapse
|
161
|
Carmody RN, Varady K, Turnbaugh PJ. Digesting the complex metabolic effects of diet on the host and microbiome. Cell 2024; 187:3857-3876. [PMID: 39059362 PMCID: PMC11309583 DOI: 10.1016/j.cell.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
The past 50 years of interdisciplinary research in humans and model organisms has delivered unprecedented insights into the mechanisms through which diet affects energy balance. However, translating these results to prevent and treat obesity and its associated diseases remains challenging. Given the vast scope of this literature, we focus this Review on recent conceptual advances in molecular nutrition targeting the management of energy balance, including emerging dietary and pharmaceutical interventions and their interactions with the human gut microbiome. Notably, multiple current dietary patterns of interest embrace moderate-to-high fat intake or prioritize the timing of eating over macronutrient intake. Furthermore, the rapid expansion of microbiome research findings has complicated multiple longstanding tenets of nutrition while also providing new opportunities for intervention. Continued progress promises more precise and reliable dietary recommendations that leverage our growing knowledge of the microbiome, the changing landscape of clinical interventions, and our molecular understanding of human biology.
Collapse
Affiliation(s)
- Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Krista Varady
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
162
|
Ren Y, Huang P, Zhang L, Tang YF, Luo SL, She Z, Peng H, Chen YQ, Luo JW, Duan WX, Liu LJ, Liu LQ. Dual Regulation Mechanism of Obesity: DNA Methylation and Intestinal Flora. Biomedicines 2024; 12:1633. [PMID: 39200098 PMCID: PMC11351752 DOI: 10.3390/biomedicines12081633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Obesity is a multifactorial chronic inflammatory metabolic disorder, with pathogenesis influenced by genetic and non-genetic factors such as environment and diet. Intestinal microbes and their metabolites play significant roles in the occurrence and development of obesity by regulating energy metabolism, inducing chronic inflammation, and impacting intestinal hormone secretion. Epigenetics, which involves the regulation of host gene expression without changing the nucleotide sequence, provides an exact direction for us to understand how the environment, lifestyle factors, and other risk factors contribute to obesity. DNA methylation, as the most common epigenetic modification, is involved in the pathogenesis of various metabolic diseases. The epigenetic modification of the host is induced or regulated by the intestinal microbiota and their metabolites, linking the dynamic interaction between the microbiota and the host genome. In this review, we examined recent advancements in research, focusing on the involvement of intestinal microbiota and DNA methylation in the etiology and progression of obesity, as well as potential interactions between the two factors, providing novel perspectives and avenues for further elucidating the pathogenesis, prevention, and treatment of obesity.
Collapse
Affiliation(s)
- Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Department of Pediatrics, Haikou Hospital of the Maternal and Child Health, Haikou 570100, China
- Department of Children’s Healthcare, Hainan Modern Women and Children’s Medical, Haikou 570100, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Fen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Sen-Lin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Qiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jin-Wen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Wang-Xin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Ling-Juan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Li-Qun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
163
|
Baba Y, Azuma N, Saito Y, Takahashi K, Matsui R, Takara T. Effect of Intake of Bifidobacteria and Dietary Fiber on Resting Energy Expenditure: A Randomized, Placebo-Controlled, Double-Blind, Parallel-Group Comparison Study. Nutrients 2024; 16:2345. [PMID: 39064788 PMCID: PMC11279889 DOI: 10.3390/nu16142345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Bifidobacterium animalis subsp. lactis GCL2505 in combination with inulin has been shown to have several health benefits, including an improvement in the intestinal microbiota and a reduction in human visceral fat. Previous studies have suggested that the visceral fat reduction of GCL2505 and inulin may be achieved by improving daily energy expenditure. This parallel, placebo-controlled, randomized, double-blind study was conducted to evaluate the effects of GCL2505 and inulin on resting energy expenditure (REE) in overweight or mildly obese Japanese adults (n = 44). Participants ingested 1 × 1010 colony forming units of GCL2505 and 5.0 g of inulin daily for 4 weeks. REE score at week 4 was set as the primary endpoint. At week 4, the REE score of the GCL2505 and inulin group was significantly higher than that of the placebo group, with a difference of 84.4 kcal/day. In addition, fecal bifidobacteria counts were significantly increased in the GCL2505 and inulin group. Our results indicated that the intake of GCL2505 and inulin improves energy balance, which is known to be a major factor of obesity, by modulating the microbiota in the gut. This is the first report to demonstrate the effects of probiotics and dietary fiber on REE in humans.
Collapse
Affiliation(s)
- Yuhei Baba
- Dairy Business Division, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan
| | - Naoki Azuma
- R&D Laboratory, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan; (N.A.); (Y.S.); (K.T.); (R.M.)
| | - Yasuo Saito
- R&D Laboratory, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan; (N.A.); (Y.S.); (K.T.); (R.M.)
| | - Kazuma Takahashi
- R&D Laboratory, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan; (N.A.); (Y.S.); (K.T.); (R.M.)
| | - Risa Matsui
- R&D Laboratory, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan; (N.A.); (Y.S.); (K.T.); (R.M.)
| | - Tsuyoshi Takara
- Medical Corporation Seishinkai Takara Clinic, 9F Taisei Bldg., 2-3-2 Higashi-gotanda, Shinagawa-ku, Tokyo 142-0022, Japan;
| |
Collapse
|
164
|
Huang C, Liu D, Yang S, Huang Y, Wei X, Zhang P, Lin J, Xu B, Liu Y, Guo D, Li Y, Li J, Zhang H. Effect of time-restricted eating regimen on weight loss is mediated by gut microbiome. iScience 2024; 27:110202. [PMID: 38993674 PMCID: PMC11238135 DOI: 10.1016/j.isci.2024.110202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/16/2024] [Accepted: 06/01/2024] [Indexed: 07/13/2024] Open
Abstract
Time-restricted eating (TRE) is a promising obesity management strategy, but weight-loss efficacy varies among participants, and the underlying mechanism is unclear. The study aimed to investigate the role of gut microbiota in weight-loss response during long-term TRE intervention. We analyzed data from 51 obese adults in a 12-month TRE program, categorizing them into distinct weight loss groups (DG) and moderate weight loss groups (MG) based on their TRE responses. Shotgun metagenomic sequencing analysis revealed a significant increase in species closely associated with weight loss effectiveness and metabolic parameter changes in the DG group. Pathways related to fatty acid biosynthesis, glycogen biosynthesis, and nucleotide metabolism were reduced in the DG group and enhanced in the MG group. Next, we identified nine specific species at baseline that contributed better responses to TRE intervention and significant weight loss. Collectively, gut microbiota contributes to responsiveness heterogeneity in TRE and can predict weight-loss effectiveness.
Collapse
Affiliation(s)
- Chensihan Huang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Deying Liu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shunyu Yang
- Department of Nutrition, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yan Huang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xueyun Wei
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Peizhen Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Jiayang Lin
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Bingyan Xu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yating Liu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Dan Guo
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan 030000, Shanxi, China
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University; Taiyuan, China
- Academy of Microbial Ecology, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Jin Li
- Department of Endocrinology and Metabolism, Shan Xi Medical University Second Hospital, Shan Xi Medical University, Taiyuan 030000, Shanxi, China
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|
165
|
Bui TPN. The Human Microbiome as a Therapeutic Target for Metabolic Diseases. Nutrients 2024; 16:2322. [PMID: 39064765 PMCID: PMC11280041 DOI: 10.3390/nu16142322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The human microbiome functions as a separate organ in a symbiotic relationship with the host. Disruption of this host-microbe symbiosis can lead to serious health problems. Modifications to the composition and function of the microbiome have been linked to changes in host metabolic outcomes. Industrial lifestyles with high consumption of processed foods, alcoholic beverages and antibiotic use have significantly altered the gut microbiome in unfavorable ways. Therefore, understanding the causal relationship between the human microbiome and host metabolism will provide important insights into how we can better intervene in metabolic health. In this review, I will discuss the potential use of the human microbiome as a therapeutic target to improve host metabolism.
Collapse
Affiliation(s)
- Thi Phuong Nam Bui
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
166
|
Zhang Y, Wang C, Lang H, Yu H, Zhou M, Rao X, Zhang Q, Yi L, Zhu J, Mi M. The Contrasting Effects of Two Distinct Exercise Training Modalities on Exhaustive Exercise-Induced Muscle Damage in Mice May Be Associated with Alterations in the Gut Microbiota. Int J Mol Sci 2024; 25:7837. [PMID: 39063080 PMCID: PMC11277320 DOI: 10.3390/ijms25147837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Exhaustive exercise is known to induce muscle damage characterized by inflammation and oxidative stress. Although "regular" and "weekend warrior" exercise regimens have been shown to confer comparable health benefits in human studies, such as reduced risks of all-cause, cardiovascular disease (CVD), and cancer mortality, their differential impacts on muscle damage post-exhaustive exercise remain unclear. This study aimed to compare the effects of long-term, moderate-intensity (LTMI) and short-term, high-intensity (STHI) training modalities, matched for total exercise volume, on gut microbiota, short-chain fatty acids (SCFAs), and exhaustive exercise-induced muscle damage in mice, as well as to evaluate the correlation between these factors. LTMI is considered a regular exercise regimen, while STHI shares some similarities with the "weekend warrior" pattern, such as promoting exercise intensity and condensing training sessions into a short period. Our findings indicate that LTMI training significantly enhanced the abundance of SCFA-producing bacteria, including Akkermansia, Prevotellaceae_NK3B31_group, Odoribacter, Alistipes, and Lactobacillus, thereby increasing SCFA levels and attenuating muscle damage following exhaustive swimming. In contrast, STHI training increased the abundance of opportunistic pathogens such as Staphylococcus and Bilophila, without altering SCFA levels, and was associated with exacerbated muscle damage. Moreover, we observed a significant negative correlation between the abundance of SCFA-producing bacteria and SCFA levels with the expression of inflammatory cytokines in the muscle of mice post-exhaustive exercise. Conversely, the abundance of Staphylococcus and Bilophila showed a notable positive correlation with these cytokines. Additionally, the effects of LTMI and STHI on exhaustive exercise-induced muscle damage were transmissible to untrained mice via fecal microbiota transplantation, suggesting that gut microbiota changes induced by these training modalities may contribute to their contrasting impacts on muscle damage. These results underscore the significance of selecting an appropriate training modality prior to engaging in exhaustive exercise, with implications for athletic training and injury prevention.
Collapse
|
167
|
Vallès Y, Arshad M, Abdalbaqi M, Inman CK, Ahmad A, Drou N, Gunsalus KC, Ali R, Tahlak M, Abdulle A. The infants' gut microbiome: setting the stage for the early onset of obesity. Front Microbiol 2024; 15:1371292. [PMID: 39081889 PMCID: PMC11287775 DOI: 10.3389/fmicb.2024.1371292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/30/2024] [Indexed: 08/02/2024] Open
Abstract
In the past three decades, dietary and lifestyle changes worldwide have resulted in a global increase in the prevalence of obesity in both adults and children. Known to be highly influenced by genetic, environmental and lifestyle factors, obesity is characterized by a low-grade chronic inflammation that contributes to the development of other metabolic diseases such as diabetes and cardiovascular disease. Recently, the gut microbiome has been added as a cause/contributor to the development of obesity. As differences in the microbiome between obese and normoweight individuals have been observed, we set out to determine whether infants harbor an obesogenic microbiome early on and whether the pre-pregnancy status of the mother (obese or normoweight) is correlated to their infant's microbiome composition. Using shotgun sequencing, we analyzed stool samples throughout the first year of life from infants born to obese (n = 23 participants, m = 104 samples) and normoweight (n = 23 participants, m = 99 samples) mothers. We found that the infants' microbiome diversity at taxonomic and functional levels was significantly influenced by time (ANOVA p < 0.001) but not by the mother's pre-pregnancy status. Overall, no deterministic succession of taxa or functions was observed. However, infants born to obese mothers were found to have a significantly higher Bacillota/Bacteroidota ratio (p = 0.02) at six months, were significantly depleted from six months old of the well-established obesity biomarkers Akkermansia municiphila and Faecalibacterium prausnitzii (p < 0.01), and were at one week old, significantly enriched in pathways such as the UDP-N-acetyl-D-glucosamine biosynthesis II (p = 0.02) involved in leptin production, suggesting perhaps that there may exist some underlying mechanisms that dictate the development of an obesogenic microbiota early on.
Collapse
Affiliation(s)
- Yvonne Vallès
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Muhammad Arshad
- Core Bioinformatics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mamoun Abdalbaqi
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Claire K. Inman
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amar Ahmad
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Nizar Drou
- Core Bioinformatics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kristin C. Gunsalus
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY, United States
| | - Raghib Ali
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Muna Tahlak
- Latifa Women and Children Hospital, Dubai, United Arab Emirates
| | - Abdishakur Abdulle
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
168
|
Li Y, B Gowda SG, Gowda D, Ikeda A, Ait Bamai Y, Ketema RM, Kishi R, Chiba H, Hui SP. Alterations in plasma short-chain fatty acids in preadolescence children: The Hokkaido study. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1242:124191. [PMID: 38870605 DOI: 10.1016/j.jchromb.2024.124191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
The purpose of this study is to explore the plasma short-chain fatty acid (SCFA) concentrations in 9-12-year-old Japanese children collected in the Hokkaido study, focusing on how factors such as age, sex, and body mass index (BMI) correlate with these levels. The Hokkaido Study on Children's Health is an ongoing longitudinal study since 2002, encompassing 20,926 pregnant women in Hokkaido Prefecture, Japan, between 2003 and 2012. We contacted 1881 children aged 9-12 born between April 2006 and January 2010, and 342 non-fasting plasma samples (boys = 181, girls = 161) were obtained from this cohort, alongside assessments of their height and weight. Plasma SCFA concentrations were determined using N,N-dimethylethylenediamine derivatization method coupled with liquid chromatography-mass spectrometry. Ethyl acetate was used to extract SCFAs from plasma, and the recovery ranged from 83 % to 108 %. Our findings indicate that acetic acid had the highest concentration across all age groups and sexes. The concentrations of butyric acid, valeric acid, and hexanoic acid increased with age, peaking in 12-year-old children. Conversely, the level of 4-hydroxy valeric acid showed a decreasing trend with increasing age groups. This study also explored the correlation between BMI and SCFA concentrations, comparatively higher level of propionic acid was observed in the overweight group. The results obtained in this study enhance our understanding of the role of SCFAs in the growth and development of children and provide a foundation for future nutritional intervention and health promotion strategies.
Collapse
Affiliation(s)
- Yonghan Li
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Siddabasave Gowda B Gowda
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan; Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Atsuko Ikeda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan
| | - Rahel Mesfin Ketema
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi-ku, Sapporo 070-0894, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
169
|
Lee J, Wellenstein K, Rahnavard A, Nelson AT, Holter MM, Cummings BP, Yeliseyev V, Castoldi A, Clish CB, Bry L, Siegel D, Kahn BB. Beneficial metabolic effects of PAHSAs depend on the gut microbiota in diet-induced obese mice but not in chow-fed mice. Proc Natl Acad Sci U S A 2024; 121:e2318691121. [PMID: 38968121 PMCID: PMC11252816 DOI: 10.1073/pnas.2318691121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024] Open
Abstract
Dietary lipids play an essential role in regulating the function of the gut microbiota and gastrointestinal tract, and these luminal interactions contribute to mediating host metabolism. Palmitic Acid Hydroxy Stearic Acids (PAHSAs) are a family of lipids with antidiabetic and anti-inflammatory properties, but whether the gut microbiota contributes to their beneficial effects on host metabolism is unknown. Here, we report that treating chow-fed female and male germ-free (GF) mice with PAHSAs improves glucose tolerance, but these effects are lost upon high fat diet (HFD) feeding. However, transfer of feces from PAHSA-treated, but not vehicle-treated, chow-fed conventional mice increases insulin sensitivity in HFD-fed GF mice. Thus, the gut microbiota is necessary for, and can transmit, the insulin-sensitizing effects of PAHSAs in HFD-fed GF male mice. Analyses of the cecal metagenome and lipidome of PAHSA-treated mice identified multiple lipid species that associate with the gut commensal Bacteroides thetaiotaomicron (Bt) and with insulin sensitivity resulting from PAHSA treatment. Supplementing live, and to some degree, heat-killed Bt to HFD-fed female mice prevented weight gain, reduced adiposity, improved glucose tolerance, fortified the colonic mucus barrier and reduced systemic inflammation compared to HFD-fed controls. These effects were not observed in HFD-fed male mice. Furthermore, ovariectomy partially reversed the beneficial Bt effects on host metabolism, indicating a role for sex hormones in mediating the Bt probiotic effects. Altogether, these studies highlight the fact that PAHSAs can modulate the gut microbiota and that the microbiota is necessary for the beneficial metabolic effects of PAHSAs in HFD-fed mice.
Collapse
Affiliation(s)
- Jennifer Lee
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA02215
| | - Kerry Wellenstein
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA02215
| | - Ali Rahnavard
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC20052
| | - Andrew T. Nelson
- Division of Pharmaceutical Chemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA92093
| | - Marlena M. Holter
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Cornell University, Ithaca, NY14850
| | - Bethany P. Cummings
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA95817
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis School of Veterinary Medicine, Davis, CA95616
| | - Vladimir Yeliseyev
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA02115
| | - Angela Castoldi
- Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Recife50670-901, Brazil
| | - Clary B. Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA02115
| | - Dionicio Siegel
- Division of Pharmaceutical Chemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA92093
| | - Barbara B. Kahn
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA02215
| |
Collapse
|
170
|
Qadri H, Shah AH, Almilaibary A, Mir MA. Microbiota, natural products, and human health: exploring interactions for therapeutic insights. Front Cell Infect Microbiol 2024; 14:1371312. [PMID: 39035357 PMCID: PMC11257994 DOI: 10.3389/fcimb.2024.1371312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/03/2024] [Indexed: 07/23/2024] Open
Abstract
The symbiotic relationship between the human digestive system and its intricate microbiota is a captivating field of study that continues to unfold. Comprising predominantly anaerobic bacteria, this complex microbial ecosystem, teeming with trillions of organisms, plays a crucial role in various physiological processes. Beyond its primary function in breaking down indigestible dietary components, this microbial community significantly influences immune system modulation, central nervous system function, and disease prevention. Despite the strides made in microbiome research, the precise mechanisms underlying how bacterial effector functions impact mammalian and microbiome physiology remain elusive. Unlike the traditional DNA-RNA-protein paradigm, bacteria often communicate through small molecules, underscoring the imperative to identify compounds produced by human-associated bacteria. The gut microbiome emerges as a linchpin in the transformation of natural products, generating metabolites with distinct physiological functions. Unraveling these microbial transformations holds the key to understanding the pharmacological activities and metabolic mechanisms of natural products. Notably, the potential to leverage gut microorganisms for large-scale synthesis of bioactive compounds remains an underexplored frontier with promising implications. This review serves as a synthesis of current knowledge, shedding light on the dynamic interplay between natural products, bacteria, and human health. In doing so, it contributes to our evolving comprehension of microbiome dynamics, opening avenues for innovative applications in medicine and therapeutics. As we delve deeper into this intricate web of interactions, the prospect of harnessing the power of the gut microbiome for transformative medical interventions becomes increasingly tantalizing.
Collapse
Affiliation(s)
- Hafsa Qadri
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Abdul Haseeb Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Abdullah Almilaibary
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Al Bahah, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
171
|
Wang X, Sun Z, Wang X, Li M, Zhou B, Zhang X. Solanum nigrum L. berries extract ameliorated the alcoholic liver injury by regulating gut microbiota, lipid metabolism, inflammation, and oxidative stress. Food Res Int 2024; 188:114489. [PMID: 38823872 DOI: 10.1016/j.foodres.2024.114489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Solanum nigrum L. (SN) berry is an edible berry containing abundant polyphenols and bioactive compounds, which possess antioxidant and antiinflammatory properties. However, the effects of SN on alcohol-induced biochemical changes in the enterohepatic axis remain unclear. In the current study, a chronic ethanol-fed mice ALD model was used to test the protective mechanisms of SN berries. Microbiota composition was determined via 16S rRNA sequencing, we found that SN berries extract (SNE) improved intestinal imbalance by reducing the Firmicutes to Bacteroides ratio, restoring the abundance of Akkermansia microbiota, and reducing the abundance of Allobaculum and Shigella. SNE restored the intestinal short-chain fatty acids content. In addition, liver transcriptome data analysis revealed that SNE primarily affected the genes involved in lipid metabolism and inflammatory responses. Furthermore, SNE ameliorated hepatic steatosis in alcohol-fed mice by activating AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), peroxisome proliferator-activated receptor α (PPAR-α). SNE reduced the expression of toll-like receptor 4 (TLR4), myeloid differentiation factor-88 (MyD88) nuclear factor kappa-B (NF-κB), which can indicate that SNE mainly adjusted LPS/TLR4/MyD88/NF-κB pathway to reduce liver inflammation. SNE enhanced hepatic antioxidant capacity by regulating NRF2-related protein expression. SNE alleviates alcoholic liver injury by regulating of gut microbiota, lipid metabolism, inflammation, and oxidative stress. This study may provide a reference for the development and utilization of SN resources.
Collapse
Affiliation(s)
- Xueying Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ziqi Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaoli Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Minjie Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Boru Zhou
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaoshu Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
172
|
Simões BES, Muniz MRR, Araujo TD, Magalhães Carneiro E, Simionato AVC. Evaluation of tauroursodeoxycholic acid in liver cells' cultures by MEKC: Initial hints to comprehend its role in diabetes mellitus of obese individuals. Electrophoresis 2024; 45:1252-1264. [PMID: 38775263 DOI: 10.1002/elps.202300223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 07/13/2024]
Abstract
Genetic factors, diet, lifestyle, and other factors lead to various complications in the body, such as obesity and other chronic diseases. The inflammatory state caused by excessive accumulation of body fat affects the pathways related to the control of glycemic homeostasis, leading to a high demand for insulin, to subsequent failure of stressed β cells, and development of type 2 diabetes mellitus (T2DM). The study of new endocrine signalers, such as bile acids (BAs), becomes necessary as it allows the development of alternatives for T2DM treatment. In this work, a methodology was developed to quantify tauroursodeoxycholic BA (TUDCA) in liver cells of the HepG2 strain treated in hyperlipidic medium. This BA helps to improve insulin clearance by increasing the expression of the insulin-degrading enzyme, restoring sensitivity to this hormone, and making it viable for treating T2DM. Herein, a targeted metabolomic method for TUDCA determination in extracellular medium of hepatocyte matrices by micellar electrokinetic chromatography-UV was optimized, validated, and applied. The optimized background electrolyte was composed of 40 mmol/L sodium cholate and 30 mmol/L sodium tetraborate at pH 9.0. The following figures of merit were evaluated: linearity, limit of quantification, limit of detection, accuracy, and precision. Data obtained with the validated electrophoretic method showed a self-stimulation of TUDCA production in media supplemented only with BA. On the other hand, TUDCA concentration was reduced in the hyperlipidic medium. This suggests that, in these media, the effect of TUDCA is reduced, such as self-stimulated production and consequent regulation of glycemic homeostasis. Therefore, the results reinforce the need for investigating TUDCA as a potential T2DM biomarker as well as its use to treat several comorbidities, such as obesity and diabetes mellitus.
Collapse
Affiliation(s)
- Bruna Eduarda Santos Simões
- Laboratory of Analysis of Biomolecules Tiselius, Institute of Chemistry, Universidade Estadual de Campinas, Campinas, Brazil
| | | | | | | | - Ana Valéria Colnaghi Simionato
- Laboratory of Analysis of Biomolecules Tiselius, Institute of Chemistry, Universidade Estadual de Campinas, Campinas, Brazil
- National Institute of Science and Technology for Bioanalytics, Campinas, Brazil
| |
Collapse
|
173
|
Fujisaka S, Watanabe Y, Toume K, Morinaga Y, Nawaz A, Kado T, Nishimura A, Bilal M, Aslam MR, Igarashi Y, Nakagawa Y, Tobe K. Identification of herbal drug extracts that promote growth of Akkermansia muciniphila in high-fat diet fed mice. Diabetol Int 2024; 15:495-506. [PMID: 39101187 PMCID: PMC11291798 DOI: 10.1007/s13340-024-00713-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/12/2024] [Indexed: 08/06/2024]
Abstract
Disruption of the gut microbiota causes metabolic dysfunction, and intervention in the gut microbiota has the potential to improve host glucose metabolism. Akkermanisa muciniphila is an intestinal bacterium involved in anti-obesity and insulin resistance. Developing interventions to increase A. muciniphla would be useful for new treatment strategies. In this study, we screened herbal drug extracts that promoted the growth of A. muciniphila. Among the 123 herbal drugs, five herbal drug extracts significantly increased A. muciniphila DNA levels compared with that in controls. In particular, Dioscoreae rhizoma extract increased the growth of A. muciniphila in the intestines of mice fed a high-fat diet and improved obesity. It significantly reduced body weight gain, improved glucose tolerance even when the administration was initiated after the induction of dietary obesity. These results suggest that herbal drug extracts, such as Dioscoreae rhizome, that increase A. muciniphila could be a new therapeutic strategy for metabolic syndrome. Supplementary Information The online version contains supplementary material available at 10.1007/s13340-024-00713-w.
Collapse
Affiliation(s)
- Shiho Fujisaka
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 9300194 Japan
| | - Yoshiyuki Watanabe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 9300194 Japan
| | - Kazufumi Toume
- Institute of Natural Medicine, University of Toyama, Toyama, 9300194 Japan
| | - Yoshitomo Morinaga
- Department of Microbiology, Faculty of Medicine, University of Toyama, Toyama, 9300194 Japan
| | - Allah Nawaz
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 9300194 Japan
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215 USA
| | - Tomonobu Kado
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 9300194 Japan
| | - Ayumi Nishimura
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 9300194 Japan
| | - Muhammad Bilal
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 9300194 Japan
| | - Muhammad Rahil Aslam
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 9300194 Japan
| | - Yoshiko Igarashi
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 9300194 Japan
| | - Yoshimi Nakagawa
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, 9300194 Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 9300194 Japan
| |
Collapse
|
174
|
Hu Y, Zhang L, Wen QH, Cheng XP, Zhou LQ, Chen MS, Ke DW, Tu ZC. Prebiotic saccharides polymerization improves the encapsulation efficiency, stability, bioaccessibility and gut microbiota modulation of urolithin A liposomes. Int J Biol Macromol 2024; 273:133045. [PMID: 38942666 DOI: 10.1016/j.ijbiomac.2024.133045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Abstract
This work was to investigate the effect of four prebiotic saccharides gum arabic (GA), fructooligosaccharide (FOS), konjac glucomannan (KGM), and inulin (INU) incorporation on the encapsulation efficiency (EE), physicochemical stability, and in vitro digestion of urolithin A-loaded liposomes (UroA-LPs). The regulation of liposomes on gut microbiota was also investigated by in vitro colonic fermentation. Results indicated that liposomes coated with GA showed the best EE, bioaccessibility, storage and thermal stability, the bioaccessibility was 1.67 times of that of UroA-LPs. The UroA-LPs coated with FOS showed the best freeze-thaw stability and transformation. Meanwhile, saccharides addition remarkably improved the relative abundance of Bacteroidota, reduced the abundances of Proteobacteria and Actinobacteria. The UroA-LPs coated with FOS, INU, and GA exhibited the highest beneficial bacteria abundance of Parabacteroides, Monoglobus, and Phascolarctobacterium, respectively. FOS could also decrease the abundance of harmful bacteria Collinsella and Enterococcus, and increase the levels of acetic acid, butyric acid and iso-butyric acid. Consequently, prebiotic saccharides can improve the EE, physicochemical stability, gut microbiota regulation of UroA-LPs, and promote the bioaccessibility of UroA, but the efficiency varied based on saccharides types, which can lay a foundation for the application of UroA in foods industry and for the enhancement of its bio-activities.
Collapse
Affiliation(s)
- Yue Hu
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Lu Zhang
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Qing-Hui Wen
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xin-Peng Cheng
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Li-Qiang Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ming-Shun Chen
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Dai-Wei Ke
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zong-Cai Tu
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
175
|
Liu Z, Dai J, Liu R, Shen Z, Huang A, Huang Y, Wang L, Chen P, Zhou Z, Xiao H, Chen X, Yang X. Complex insoluble dietary fiber alleviates obesity and liver steatosis, and modulates the gut microbiota in C57BL/6J mice fed a high-fat diet. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5462-5473. [PMID: 38348948 DOI: 10.1002/jsfa.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Obesity has been demonstrated as a risk factor that seriously affects health. Insoluble dietary fiber (IDF), as a major component of dietary fiber, has positive effects on obesity, inflammation and diabetes. RESULTS In this study, complex IDF was prepared using 50% enoki mushroom IDF, 40% carrot IDF, and 10% oat IDF. The effects and potential mechanism of complex IDF on obesity were investigated in C57BL/6 mice fed a high-fat diet. The results showed that feeding diets containing 5% complex IDF for 8 weeks significantly reduced mouse body weight, epididymal lipid index, and ectopic fat deposition, and improved mouse liver lipotoxicity (reduced serum levels of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase), fatty liver, and short-chain fatty acid composition. High-throughput sequencing of 16S rRNA and analysis of fecal metabolomics showed that the intervention with complex IDF reversed the high-fat-diet-induced dysbiosis of gut microbiota, which is associated with obesity and intestinal inflammation, and affected metabolic pathways, such as primary bile acid biosynthesis, related to fat digestion and absorption. CONCLUSION Composite IDF intervention can effectively inhibit high-fat-diet-induced obesity and related symptoms and affect the gut microbiota and related metabolic pathways in obesity. Complex IDF has potential value in the prevention of obesity and metabolic syndrome. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zurui Liu
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
| | - Juan Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, People's Republic of China
| | - Ruijia Liu
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
| | - Ziyi Shen
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
| | - Ai Huang
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
| | - YuKun Huang
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
| | - Lijun Wang
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
| | - Pengfei Chen
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
| | - Zheng Zhou
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu, People's Republic of China
| | - Xiao Yang
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu, People's Republic of China
| |
Collapse
|
176
|
Abdualkader AM, Karwi QG, Lopaschuk GD, Al Batran R. The role of branched-chain amino acids and their downstream metabolites in mediating insulin resistance. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13040. [PMID: 39007094 PMCID: PMC11239365 DOI: 10.3389/jpps.2024.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Elevated levels of circulating branched-chain amino acids (BCAAs) and their associated metabolites have been strongly linked to insulin resistance and type 2 diabetes. Despite extensive research, the precise mechanisms linking increased BCAA levels with these conditions remain elusive. In this review, we highlight the key organs involved in maintaining BCAA homeostasis and discuss how obesity and insulin resistance disrupt the intricate interplay among these organs, thus affecting BCAA balance. Additionally, we outline recent research shedding light on the impact of tissue-specific or systemic modulation of BCAA metabolism on circulating BCAA levels, their metabolites, and insulin sensitivity, while also identifying specific knowledge gaps and areas requiring further investigation. Finally, we summarize the effects of BCAA supplementation or restriction on obesity and insulin sensitivity.
Collapse
Affiliation(s)
- Abdualrahman Mohammed Abdualkader
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
- Montreal Diabetes Research Center, Montréal, QC, Canada
- Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, QC, Canada
| | - Qutuba G. Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Gary D. Lopaschuk
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Rami Al Batran
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
- Montreal Diabetes Research Center, Montréal, QC, Canada
- Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, QC, Canada
| |
Collapse
|
177
|
Zhou X, Ganz AB, Rayner A, Cheng TY, Oba H, Rolnik B, Lancaster S, Lu X, Li Y, Johnson JS, Hoyd R, Spakowicz DJ, Slavich GM, Snyder MP. Dynamic Human Gut Microbiome and Immune Shifts During an Immersive Psychosocial Therapeutic Program. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600881. [PMID: 38979211 PMCID: PMC11230355 DOI: 10.1101/2024.06.26.600881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Depression is a leading cause of disability worldwide yet its underlying factors, particularly microbial associations, are poorly understood. Methods We examined the longitudinal interplay between the microbiome and immune system in the context of depression during an immersive psychosocial intervention. 142 multi-omics samples were collected from 52 well-characterized participants before, during, and three months after a nine-day inquiry-based stress reduction program. Results We found that depression was associated with both an increased presence of putatively pathogenic bacteria and reduced microbial beta-diversity. Following the intervention, we observed reductions in neuroinflammatory cytokines and improvements in several mental health indicators. Interestingly, participants with a Prevotella-dominant microbiome showed milder symptoms when depressed, along with a more resilient microbiome and more favorable inflammatory cytokine profile, including reduced levels of CXCL-1. Conclusions Our findings reveal a protective link between the Prevotella-dominant microbiome and depression, associated with a less inflammatory environment and moderated symptoms. These insights, coupled with observed improvements in neuroinflammatory markers and mental health from the intervention, highlight potential avenues for microbiome-targeted therapies in depression management.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford university School of Medicine, CA, USA
- These authors contributed equally to the work
| | - Ariel B. Ganz
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Stanford Healthcare Innovation Lab, Stanford University, CA, USA
- These authors contributed equally to the work
| | - Andre Rayner
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Tess Yan Cheng
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Department of Microbiology, College of Arts and Sciences, University of Washington, WA, USA
| | - Haley Oba
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Benjamin Rolnik
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| | - Samuel Lancaster
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Xinrui Lu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Yizhou Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Jethro S. Johnson
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Rebecca Hoyd
- The Ohio State University Comprehensive Cancer Center, OH, USA
| | | | - George M. Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford university School of Medicine, CA, USA
- Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| |
Collapse
|
178
|
Parthasarathy G, Malhi H, Bajaj JS. Therapeutic manipulation of the microbiome in liver disease. Hepatology 2024:01515467-990000000-00932. [PMID: 38922826 DOI: 10.1097/hep.0000000000000987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Myriad associations between the microbiome and various facets of liver physiology and pathology have been described in the literature. Building on descriptive and correlative sequencing studies, metagenomic studies are expanding our collective understanding of the functional and mechanistic role of the microbiome as mediators of the gut-liver axis. Based on these mechanisms, the functional activity of the microbiome represents an attractive, tractable, and precision medicine therapeutic target in several liver diseases. Indeed, several therapeutics have been used in liver disease even before their description as a microbiome-dependent approach. To bring successful microbiome-targeted and microbiome-inspired therapies to the clinic, a comprehensive appreciation of the different approaches to influence, collaborate with, or engineer the gut microbiome to coopt a disease-relevant function of interest in the right patient is key. Herein, we describe the various levels at which the microbiome can be targeted-from prebiotics, probiotics, synbiotics, and antibiotics to microbiome reconstitution and precision microbiome engineering. Assimilating data from preclinical animal models, human studies as well as clinical trials, we describe the potential for and rationale behind studying such therapies across several liver diseases, including metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, cirrhosis, HE as well as liver cancer. Lastly, we discuss lessons learned from previous attempts at developing such therapies, the regulatory framework that needs to be navigated, and the challenges that remain.
Collapse
Affiliation(s)
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| |
Collapse
|
179
|
Lim JJ, Goedken M, Jin Y, Gu H, Cui JY. Single-cell transcriptomics unveiled that early life BDE-99 exposure reprogrammed the gut-liver axis to promote a proinflammatory metabolic signature in male mice at late adulthood. Toxicol Sci 2024; 200:114-136. [PMID: 38648751 PMCID: PMC11199921 DOI: 10.1093/toxsci/kfae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are legacy flame retardants that bioaccumulate in the environment. The gut microbiome is an important regulator of liver functions including xenobiotic biotransformation and immune regulation. We recently showed that neonatal exposure to polybrominated diphenyl ether-99 (BDE-99), a human breast milk-enriched PBDE congener, up-regulated proinflammation-related and down-regulated drug metabolism-related genes predominantly in males in young adulthood. However, the persistence of this dysregulation into late adulthood, differential impact among hepatic cell types, and the involvement of the gut microbiome from neonatal BDE-99 exposure remain unknown. To address these knowledge gaps, male C57BL/6 mouse pups were orally exposed to corn oil (10 ml/kg) or BDE-99 (57 mg/kg) once daily from postnatal days 2-4. At 15 months of age, neonatal BDE-99 exposure down-regulated xenobiotic and lipid-metabolizing enzymes and up-regulated genes involved in microbial influx in hepatocytes. Neonatal BDE-99 exposure also increased the hepatic proportion of neutrophils and led to a predicted increase of macrophage migration inhibitory factor signaling. This was associated with decreased intestinal tight junction protein (Tjp) transcripts, altered gut environment, and dysregulation of inflammation-related metabolites. ScRNA-seq using germ-free (GF) mice demonstrated the necessity of a normal gut microbiome in maintaining hepatic immune tolerance. Microbiota transplant to GF mice using large intestinal microbiome from adults neonatally exposed to BDE-99 down-regulated Tjp transcripts and up-regulated several cytokines in large intestine. In conclusion, neonatal BDE-99 exposure reprogrammed cell type-specific gene expression and cell-cell communication in liver towards proinflammation, and this may be partly due to the dysregulated gut environment.
Collapse
Affiliation(s)
- Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA
- Environmental Health and Microbiome Research Center (EHMBRACE), Seattle, Washington 98105, USA
| | - Michael Goedken
- Rutgers Research Pathology Services, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St Lucie, Florida 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St Lucie, Florida 34987, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA
- Environmental Health and Microbiome Research Center (EHMBRACE), Seattle, Washington 98105, USA
| |
Collapse
|
180
|
Florkowski M, Abiona E, Frank KM, Brichacek AL. Obesity-associated inflammation countered by a Mediterranean diet: the role of gut-derived metabolites. Front Nutr 2024; 11:1392666. [PMID: 38978699 PMCID: PMC11229823 DOI: 10.3389/fnut.2024.1392666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
The prevalence of obesity has increased dramatically worldwide and has become a critical public health priority. Obesity is associated with many co-morbid conditions, including hypertension, diabetes, and cardiovascular disease. Although the physiology of obesity is complex, a healthy diet and sufficient exercise are two elements known to be critical to combating this condition. Years of research on the Mediterranean diet, which is high in fresh fruits and vegetables, nuts, fish, and olive oil, have demonstrated a reduction in numerous non-communicable chronic diseases associated with this diet. There is strong evidence to support an anti-inflammatory effect of the diet, and inflammation is a key driver of obesity. Changes in diet alter the gut microbiota which are intricately intertwined with human physiology, as gut microbiota-derived metabolites play a key role in biological pathways throughout the body. This review will summarize recent published studies that examine the potential role of gut metabolites, including short-chain fatty acids, bile acids, trimethylamine-N-oxide, and lipopolysaccharide, in modulating inflammation after consumption of a Mediterranean-like diet. These metabolites modulate pathways of inflammation through the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, toll-like receptor 4 signaling, and macrophage driven effects in adipocytes, among other mechanisms.
Collapse
Affiliation(s)
- Melanie Florkowski
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Esther Abiona
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Karen M Frank
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Allison L Brichacek
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| |
Collapse
|
181
|
Yadegar A, Bar-Yoseph H, Monaghan TM, Pakpour S, Severino A, Kuijper EJ, Smits WK, Terveer EM, Neupane S, Nabavi-Rad A, Sadeghi J, Cammarota G, Ianiro G, Nap-Hill E, Leung D, Wong K, Kao D. Fecal microbiota transplantation: current challenges and future landscapes. Clin Microbiol Rev 2024; 37:e0006022. [PMID: 38717124 PMCID: PMC11325845 DOI: 10.1128/cmr.00060-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYGiven the importance of gut microbial homeostasis in maintaining health, there has been considerable interest in developing innovative therapeutic strategies for restoring gut microbiota. One such approach, fecal microbiota transplantation (FMT), is the main "whole gut microbiome replacement" strategy and has been integrated into clinical practice guidelines for treating recurrent Clostridioides difficile infection (rCDI). Furthermore, the potential application of FMT in other indications such as inflammatory bowel disease (IBD), metabolic syndrome, and solid tumor malignancies is an area of intense interest and active research. However, the complex and variable nature of FMT makes it challenging to address its precise functionality and to assess clinical efficacy and safety in different disease contexts. In this review, we outline clinical applications, efficacy, durability, and safety of FMT and provide a comprehensive assessment of its procedural and administration aspects. The clinical applications of FMT in children and cancer immunotherapy are also described. We focus on data from human studies in IBD in contrast with rCDI to delineate the putative mechanisms of this treatment in IBD as a model, including colonization resistance and functional restoration through bacterial engraftment, modulating effects of virome/phageome, gut metabolome and host interactions, and immunoregulatory actions of FMT. Furthermore, we comprehensively review omics technologies, metagenomic approaches, and bioinformatics pipelines to characterize complex microbial communities and discuss their limitations. FMT regulatory challenges, ethical considerations, and pharmacomicrobiomics are also highlighted to shed light on future development of tailored microbiome-based therapeutics.
Collapse
Affiliation(s)
- Abbas Yadegar
- Foodborne and
Waterborne Diseases Research Center, Research Institute for
Gastroenterology and Liver Diseases, Shahid Beheshti University of
Medical Sciences, Tehran,
Iran
| | - Haggai Bar-Yoseph
- Department of
Gastroenterology, Rambam Health Care
Campus, Haifa,
Israel
- Rappaport Faculty of
Medicine, Technion-Israel Institute of
Technology, Haifa,
Israel
| | - Tanya Marie Monaghan
- National Institute for
Health Research Nottingham Biomedical Research Centre, University of
Nottingham, Nottingham,
United Kingdom
- Nottingham Digestive
Diseases Centre, School of Medicine, University of
Nottingham, Nottingham,
United Kingdom
| | - Sepideh Pakpour
- School of Engineering,
Faculty of Applied Sciences, UBC, Okanagan
Campus, Kelowna,
British Columbia, Canada
| | - Andrea Severino
- Department of
Translational Medicine and Surgery, Università Cattolica del
Sacro Cuore, Rome,
Italy
- Department of Medical
and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato
Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico
Universitario Gemelli IRCCS,
Rome, Italy
- Department of Medical
and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico
Universitario Agostino Gemelli IRCCS,
Rome, Italy
| | - Ed J. Kuijper
- Center for
Microbiota Analysis and Therapeutics (CMAT), Leiden University Center
for Infectious Diseases, Leiden University Medical
Center, Leiden, The
Netherlands
| | - Wiep Klaas Smits
- Center for
Microbiota Analysis and Therapeutics (CMAT), Leiden University Center
for Infectious Diseases, Leiden University Medical
Center, Leiden, The
Netherlands
| | - Elisabeth M. Terveer
- Center for
Microbiota Analysis and Therapeutics (CMAT), Leiden University Center
for Infectious Diseases, Leiden University Medical
Center, Leiden, The
Netherlands
| | - Sukanya Neupane
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| | - Ali Nabavi-Rad
- Foodborne and
Waterborne Diseases Research Center, Research Institute for
Gastroenterology and Liver Diseases, Shahid Beheshti University of
Medical Sciences, Tehran,
Iran
| | - Javad Sadeghi
- School of Engineering,
Faculty of Applied Sciences, UBC, Okanagan
Campus, Kelowna,
British Columbia, Canada
| | - Giovanni Cammarota
- Department of
Translational Medicine and Surgery, Università Cattolica del
Sacro Cuore, Rome,
Italy
- Department of Medical
and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato
Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico
Universitario Gemelli IRCCS,
Rome, Italy
- Department of Medical
and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico
Universitario Agostino Gemelli IRCCS,
Rome, Italy
| | - Gianluca Ianiro
- Department of
Translational Medicine and Surgery, Università Cattolica del
Sacro Cuore, Rome,
Italy
- Department of Medical
and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato
Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico
Universitario Gemelli IRCCS,
Rome, Italy
- Department of Medical
and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico
Universitario Agostino Gemelli IRCCS,
Rome, Italy
| | - Estello Nap-Hill
- Department of
Medicine, Division of Gastroenterology, St Paul’s Hospital,
University of British Columbia,
Vancouver, British Columbia, Canada
| | - Dickson Leung
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| | - Karen Wong
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| | - Dina Kao
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| |
Collapse
|
182
|
Huang P, Dong Q, Wang Y, Tian Y, Wang S, Zhang C, Yu L, Tian F, Gao X, Guo H, Yi S, Li M, Liu Y, Zhang Q, Lu W, Wang G, Yang B, Cui S, Hua D, Wang X, Jiao Y, Liu L, Deng Q, Ma B, Wu T, Zou H, Shi J, Zhang H, Fan D, Sheng Y, Zhao J, Tang L, Zhang H, Sun W, Chen W, Kong X, Chen L, Zhai Q. Gut microbial genomes with paired isolates from China illustrate probiotic and cardiometabolic effects. CELL GENOMICS 2024; 4:100559. [PMID: 38740021 PMCID: PMC11228888 DOI: 10.1016/j.xgen.2024.100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/04/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
The gut microbiome displays genetic differences among populations, and characterization of the genomic landscape of the gut microbiome in China remains limited. Here, we present the Chinese Gut Microbial Reference (CGMR) set, comprising 101,060 high-quality metagenomic assembled genomes (MAGs) of 3,707 nonredundant species from 3,234 fecal samples across primarily rural Chinese locations, 1,376 live isolates mainly from lactic acid bacteria, and 987 novel species relative to worldwide databases. We observed region-specific coexisting MAGs and MAGs with probiotic and cardiometabolic functionalities. Preliminary mouse experiments suggest a probiotic effect of two Faecalibacillus intestinalis isolates in alleviating constipation, cardiometabolic influences of three Bacteroides fragilis_A isolates in obesity, and isolates from the genera Parabacteroides and Lactobacillus in host lipid metabolism. Our study expands the current microbial genomes with paired isolates and demonstrates potential host effects, contributing to the mechanistic understanding of host-microbe interactions.
Collapse
Affiliation(s)
- Pan Huang
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Quanbin Dong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; Department of Gastroenterology, Changzhou Medical Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, China
| | - Yifeng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yunfan Tian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Shunhe Wang
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoxiang Gao
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hang Guo
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shanrong Yi
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mingyang Li
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yang Liu
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingsong Zhang
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Dongxu Hua
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiuchao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yuwen Jiao
- Department of Gastroenterology, Changzhou Medical Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, China
| | - Lu Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qiufeng Deng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Beining Ma
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Tingting Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Huayiyang Zou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jing Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Haifeng Zhang
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yanhui Sheng
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liming Tang
- Department of Gastroenterology, Changzhou Medical Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Lianmin Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; Department of Gastroenterology, Changzhou Medical Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, China.
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
183
|
Li Q, Gao X, Jia R, Deng J, Wan C. Establishment of a novel obesity mouse model: the induction of intestinal microbiota dysbiosis. Sci Rep 2024; 14:13381. [PMID: 38862570 PMCID: PMC11166941 DOI: 10.1038/s41598-024-63964-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
To establish and evaluate an intestinal microbiota dysbiosis-induced obesity mouse model. 50 C57BL/6 J male healthy mice were randomly divided into an obesity model group and the control group. The body weight, body length, and Lee's index of the two groups of mice at week 1 and week 10 were compared. Serum glucose (GLU), total cholesterol (TC) and triglyceride (TG) were measured by enzyme-labeled colorimetric methods. Illumina HiSeq 16S rDNA high-throughput sequencing technology was used to characterize intestinal microbiota in feces. The success rate of model establishment in obese mice was 52%. The body weight, body length, Lee's index, and abdominal fat (wet weight) in the obese model group were all higher than those in the control group, and the differences were statistically significant (P < 0.01). Serum GLU and TC levels in the obesity model group were higher than those in the control group (P < 0.05), and there was no difference in TG levels between the two groups (P > 0.05). The control group contained more abundant intestinal microbiota phyla and genera than did the obesity model group; the differences between the two groups were significant (FDR ≤ 0.05, P ≤ 0.05). Intestinal microbiota dysbiosis can be used to generate an obesity model in mice.
Collapse
Affiliation(s)
- Qiuju Li
- Department of Paediatrics, West China Second University Hospital of Sichuan University, Number 20, 3rd Section, People's South Road, Chengdu, 610041, Sichuan, China
| | - Xiaolin Gao
- Department of Paediatrics, West China Second University Hospital of Sichuan University, Number 20, 3rd Section, People's South Road, Chengdu, 610041, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (West China Second University Hospital of Sichuan University), Ministry of Education, Chengdu, China.
| | - Ruizhen Jia
- Open Laboratory, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianjun Deng
- Department of Paediatrics, West China Second University Hospital of Sichuan University, Number 20, 3rd Section, People's South Road, Chengdu, 610041, Sichuan, China
| | - Chaomin Wan
- Department of Paediatrics, West China Second University Hospital of Sichuan University, Number 20, 3rd Section, People's South Road, Chengdu, 610041, Sichuan, China
| |
Collapse
|
184
|
Rold LS, Guldbæk JM, Lindegaard CS, Kirk S, Nygaard LD, Bundgaard-Nielsen C, Holm-Jacobsen JN, Leutscher P, Viuff ACF, Hagstrøm S, Sørensen S. A comparison of the breast milk microbiota from women diagnosed with gestational diabetes mellitus and women without gestational diabetes mellitus. BMC Pregnancy Childbirth 2024; 24:412. [PMID: 38849751 PMCID: PMC11157733 DOI: 10.1186/s12884-024-06604-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Human breast milk (HBM) is a contributing factor in modulating the infant's gut microbiota, as it contains bacteria that are directly transferred to the infant during breastfeeding. It has been shown that children of women diagnosed with gestational diabetes mellitus (GDM) have a different gut microbiota compared to children of women without GDM. Our hypothesis is therefore that women with GDM have a different HBM microbiota, which may influence the metabolic function and capacity of the child later in life. The aim of this study was to investigate whether women with GDM have a different breast milk microbiota 1-3 weeks postpartum compared to women without GDM. METHODS In this case-control study, a total of 45 women were included: 18 women with GDM and 27 women without GDM. A milk sample was collected from each participant 1 to 3 weeks postpartum and the bacterial composition was examined by 16 S rRNA gene sequencing targeting the V4 region. RESULTS High relative abundances of Streptococcus and Staphylococcus were present in samples from both women with and without GDM. No difference could be seen in either alpha diversity, beta diversity, or specific taxa between groups. CONCLUSION Our results did not support the existence of a GDM-associated breast milk microbiota at 1-3 weeks postpartum. Further research is needed to fully understand the development of the gut microbiota of infants born to mothers with GDM.
Collapse
Affiliation(s)
- Louise Søndergaard Rold
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Aalborg, Denmark
| | | | | | - Stine Kirk
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | | | | | - Peter Leutscher
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Søren Hagstrøm
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Aalborg, Denmark
- Department of Pediatrics and Adolescents, Aalborg University Hospital, Aalborg, Denmark
| | - Suzette Sørensen
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark.
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
- Steno Diabetes Center North Denmark, Aalborg, Denmark.
| |
Collapse
|
185
|
Romaní-Pérez M, López-Almela I, Bullich-Vilarrubias C, Evtoski Z, Benítez-Páez A, Sanz Y. Bacteroides uniformis CECT 7771 requires adaptive immunity to improve glucose tolerance but not to prevent body weight gain in diet-induced obese mice. MICROBIOME 2024; 12:103. [PMID: 38845049 PMCID: PMC11155119 DOI: 10.1186/s40168-024-01810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 04/05/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND The metabolic disturbances of obesity can be mitigated by strategies modulating the gut microbiota. In this study, we sought to identify whether innate or adaptive immunity mediates the beneficial metabolic effects of the human intestinal bacterium Bacteroides uniformis CECT 7771 in obesity. METHODS We evaluated the effects of orally administered B. uniformis on energy homeostasis, intestinal immunity, hormone levels, and gut microbiota in wild-type and Rag1-deficient mice with diet-induced obesity. We also assessed whether B. uniformis needed to be viable to exert its beneficial effects in obesity and to directly induce immunoregulatory effects. RESULTS The administration of B. uniformis to obese mice improved glucose tolerance and insulin secretion, restored the caloric intake suppression after an oral glucose challenge, and reduced hyperglycemia. The pre- and post-prandial glucose-related benefits were associated with restoration of the anti-inflammatory tone mediated by type 2 macrophages and regulatory T cells (Tregs) in the lamina propria of the small intestine. Contrastingly, B. uniformis administration failed to improve glucose tolerance in obese Rag1-/- mice, but prevented the increased body weight gain and adiposity. Overall, the beneficial effects seemed to be independent of enteroendocrine effects and of major changes in gut microbiota composition. B. uniformis directly induced Tregs generation from naïve CD4+ T cells in vitro and was not required to be viable to improve glucose homeostasis but its viability was necessary to prevent body weight gain in diet-induced obese wild-type mice. CONCLUSIONS Here we demonstrate that B. uniformis modulates the energy homeostasis in diet-induced obese mice through different mechanisms. The bacterium improves oral glucose tolerance by adaptive immunity-dependent mechanisms that do not require cell viability and prevents body weight gain by adaptive immunity-independent mechanisms which require cell viability. Video Abstract.
Collapse
Affiliation(s)
- Marina Romaní-Pérez
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Valencia, Spain.
| | - Inmaculada López-Almela
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Valencia, Spain
- Present Address: Research Group Intracellular Pathogens: Biology and Infection, Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, Valencia, Spain
| | - Clara Bullich-Vilarrubias
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Valencia, Spain
| | - Zoran Evtoski
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Valencia, Spain
| | - Alfonso Benítez-Páez
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Valencia, Spain
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Valencia, Spain.
| |
Collapse
|
186
|
Yang X, Huang J, Peng J, Wang P, Wong FS, Wang R, Wang D, Wen L. Gut microbiota from B-cell-specific TLR9-deficient NOD mice promote IL-10 + Breg cells and protect against T1D. Front Immunol 2024; 15:1413177. [PMID: 38903498 PMCID: PMC11187306 DOI: 10.3389/fimmu.2024.1413177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of insulin-producing β cells. Toll-like receptor 9 (TLR9) plays a role in autoimmune diseases, and B cell-specific TLR9 deficiency delays T1D development. Gut microbiota are implicated in T1D, although the relationship is complex. However, the impact of B cell-specific deficiency of TLR9 on intestinal microbiota and the impact of altered intestinal microbiota on the development of T1D are unclear. Objectives This study investigated how gut microbiota and the intestinal barrier contribute to T1D development in B cell-specific TLR9-deficient NOD mice. Additionally, this study explored the role of microbiota in immune regulation and T1D onset. Methods The study assessed gut permeability, gene expression related to gut barrier integrity, and gut microbiota composition. Antibiotics depleted gut microbiota, and fecal samples were transferred to germ-free mice. The study also examined IL-10 production, Breg cell differentiation, and their impact on T1D development. Results B cell-specific TLR9-deficient NOD mice exhibited increased gut permeability and downregulated gut barrier-related gene expression. Antibiotics restored gut permeability, suggesting microbiota influence. Altered microbiota were enriched in Lachnospiraceae, known for mucin degradation. Transferring this microbiota to germ-free mice increased gut permeability and promoted IL-10-expressing Breg cells. Rag-/- mice transplanted with fecal samples from Tlr9 fl/fl Cd19-Cre+ mice showed delayed diabetes onset, indicating microbiota's impact. Conclusion B cell-specific TLR9 deficiency alters gut microbiota, increasing gut permeability and promoting IL-10-expressing Breg cells, which delay T1D. This study uncovers a link between TLR9, gut microbiota, and immune regulation in T1D, with implications for microbiota-targeted T1D therapies.
Collapse
Affiliation(s)
- Xin Yang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Juan Huang
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Jian Peng
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Pai Wang
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - F. Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Ruirui Wang
- Shanghai Innovation Center of Traditional Chinese Medicine (TCM) Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dapeng Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Wen
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
187
|
Luzzi A, Briata IM, Di Napoli I, Giugliano S, Di Sabatino A, Rescigno M, Cena H. Prebiotics, probiotics, synbiotics and postbiotics to adolescents in metabolic syndrome. Clin Nutr 2024; 43:1433-1446. [PMID: 38704983 DOI: 10.1016/j.clnu.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/06/2023] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
The prevalence of childhood and adolescent obesity has globally reached alarming dimensions and many adolescents affected by obesity already present one or more obesity-related comorbidities. In recent years, emerging evidence supporting the role of gut microbiota in the pathophysiology of metabolic diseases has been reported and the use of prebiotics, probiotics, synbiotics and postbiotics as a strategy to manipulate gut microbiota has become popular. The aim of this review is to explore the relationship between gut microbiota and metabolic syndrome in adolescents and to discuss the potential use of prebiotics, probiotics, synbiotics and postbiotics for the prevention and treatment of this clinical picture in adolescence. According to the most recent literature, prebiotics, probiotics and synbiotics have no clear effect on MetS, but a possible modulation of anthropometric parameters has been observed after synbiotic supplementation. Only one study has examined the role of postbiotics in alleviating metabolic complications in children with obesity but not in adolescents. More extensive research is needed to support the conclusions drawn so far and to develop effective microbiome-based interventions that may help improving the quality of life of children and adolescents exposed to the increasing prevalence of MetS.
Collapse
Affiliation(s)
- Alessia Luzzi
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; Post Graduate Course in Food Science and Human Nutrition, Università Statale di Milano, 20122 Milan, Italy; Clinical Nutrition Unit, Department of General Medicine, ICS Maugeri IRCCS, 27100 Pavia, Italy.
| | - Irene Maria Briata
- Post Graduate Course in Food Science and Human Nutrition, Università Statale di Milano, 20122 Milan, Italy; Division of Medical Oncology, E.O. Ospedali Galliera, Genoa, Italy.
| | - Ilaria Di Napoli
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy.
| | - Silvia Giugliano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, 20072, Italy.
| | - Antonio Di Sabatino
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; First Department of Internal Medicine, Fondazione IRCCS San Matteo, 27100 Pavia, Italy.
| | - Maria Rescigno
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, 20072, Italy; IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy.
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; Clinical Nutrition Unit, Department of General Medicine, ICS Maugeri IRCCS, 27100 Pavia, Italy.
| |
Collapse
|
188
|
Guo X, Han J, Hong L, Huang Y, Li S, Zhang L, Yan W, Dong P, Yang Y, Cao Y. Associations of Early Gut Microbiome and Metabolome with Growth and Body Composition of Preterm Infants Within the First 6 Months. Breastfeed Med 2024; 19:435-444. [PMID: 38501370 DOI: 10.1089/bfm.2023.0258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Objectives: This study aimed to explore the associations of growth and body composition with gut microbiome and metabolome in preterm infants. Materials and Methods: A prospective cohort study including 73 human milk-fed very preterm infants was conducted. During hospitalization, fecal samples were collected to detect microbes and metabolites using 16S rRNA gene sequencing and liquid chromatography-mass spectrometry. Growth and body composition indices were measured at term equivalent age (TEA) and 6 months of corrected age (CA). Associations of the fecal microbiome and metabolome profiles with growth and body composition indices, as well as their changes, were analyzed. Results: A higher abundance of Streptococcus was associated with a lower fat-free mass (FFM) z-score at 6 months of CA (p = 0.002) and a smaller increase in FFM z-score from TEA to 6 months of CA (p = 0.018). Higher levels of 3'-sialyllactose and 6'-sialyllactose (6'-SL) in feces were correlated with a lower z-score of percentage body fat (PBF) (p = 0.018 and 0.020, respectively) and a lower z-score of fat mass (p = 0.044 and 0.043, respectively) at 6 months of CA. A higher level of 6'-SL in feces was correlated with a greater increase in FFM z-score from TEA to 6 months of CA (p = 0.021). Conclusions: This study sheds light on the role of specific microbial-host interactions in metabolic changes in preterm infants, indicating the potential role of sialylated human milk oligosaccharides in optimizing body composition.
Collapse
Affiliation(s)
- Xinhui Guo
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, People's Republic of China
| | - Junyan Han
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, People's Republic of China
| | - Luyang Hong
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, People's Republic of China
| | - Yihuang Huang
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, People's Republic of China
| | - Shujuan Li
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, People's Republic of China
| | - Lan Zhang
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, People's Republic of China
| | - Weili Yan
- Department of Clinical Epidemiology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, People's Republic of China
| | - Ping Dong
- Department of Child Healthcare, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, People's Republic of China
| | - Yi Yang
- NHC Key Laboratory of Neonatal Diseases, Fudan University, Children's Hospital of Fudan University, Shanghai, People's Republic of China
| | - Yun Cao
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, People's Republic of China
- NHC Key Laboratory of Neonatal Diseases, Fudan University, Children's Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
189
|
Tan S, Santolaya JL, Wright TF, Liu Q, Fujikawa T, Chi S, Bergstrom CP, Lopez A, Chen Q, Vale G, McDonald JG, Schmidt A, Vo N, Kim J, Baniasadi H, Li L, Zhu G, He TC, Zhan X, Obata Y, Jin A, Jia D, Elmquist JK, Sifuentes-Dominguez L, Burstein E. Interaction between the gut microbiota and colonic enteroendocrine cells regulates host metabolism. Nat Metab 2024; 6:1076-1091. [PMID: 38777856 PMCID: PMC12001959 DOI: 10.1038/s42255-024-01044-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
Nutrient handling is an essential function of the gastrointestinal tract. Hormonal responses of small intestinal enteroendocrine cells (EECs) have been extensively studied but much less is known about the role of colonic EECs in metabolic regulation. To address this core question, we investigated a mouse model deficient in colonic EECs. Here we show that colonic EEC deficiency leads to hyperphagia and obesity. Furthermore, colonic EEC deficiency results in altered microbiota composition and metabolism, which we found through antibiotic treatment, germ-free rederivation and transfer to germ-free recipients, to be both necessary and sufficient for the development of obesity. Moreover, studying stool and blood metabolomes, we show that differential glutamate production by intestinal microbiota corresponds to increased appetite and that colonic glutamate administration can directly increase food intake. These observations shed light on an unanticipated host-microbiota axis in the colon, part of a larger gut-brain axis, that regulates host metabolism and body weight.
Collapse
Affiliation(s)
- Shuai Tan
- Department of Endocrinology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, P. R. China.
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Jacobo L Santolaya
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tiffany Freeney Wright
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qi Liu
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Teppei Fujikawa
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sensen Chi
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Colin P Bergstrom
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adam Lopez
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qing Chen
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Goncalo Vale
- Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew Schmidt
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nguyen Vo
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hamid Baniasadi
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Li Li
- Department of Endocrinology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, P. R. China
| | - Gaohui Zhu
- Department of Endocrinology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, P. R. China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Xiaowei Zhan
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuuki Obata
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aishun Jin
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Joel K Elmquist
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Ezra Burstein
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
190
|
Zhang M, Liu M, Zhang L, Chen Z, Zhou YB, Li HT, Liu JM. Impact of cesarean section on metabolic syndrome components in offspring rats. Pediatr Res 2024; 95:1775-1782. [PMID: 38347169 DOI: 10.1038/s41390-024-03079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 07/14/2024]
Abstract
INTRODUCTION Epidemiological evidence suggests an association between CS and offspring metabolic syndrome (MetS), but whether a causal relationship exists is unknown. METHODS In this study, timed-mated Wistar rat dams were randomly assigned to cesarean section (CS), vaginal delivery (VD), and surrogate groups. The offspring from both CS and VD groups were reared by surrogate dams until weaning, and weaned male offspring from both groups were randomly assigned to receive normal diet (ND) or high-fat/high-fructose diet (HFF) ad libitum for 39 weeks. RESULTS By the end of study, CS-ND offspring gained 17.8% more weight than VD-ND offspring, while CS-HFF offspring gained 36.4% more weight than VD-HFF offspring. Compared with VD-ND offspring, CS-ND offspring tended to have increased triglycerides (0.27 mmol/l, 95% CI, 0.05 to 0.50), total cholesterol (0.30 mmol/l, -0.08 to 0.68), and fasting plasma glucose (FPG) (0.30 mmol/l, -0.01 to 0.60); more pronounced differences were observed between CS-HFF and VD-HFF offspring in these indicators (triglyceride, 0.66 mmol/l, 0.35 to 0.97; total cholesterol, 0.46 mmol/l, 0.13 to 0.79; and FPG, 0.55 mmol/l, 0.13 to 0.98). CONCLUSIONS CS offspring were more prone to adverse metabolic profile and HFF might exacerbate this condition, indicating the association between CS and MetS is likely to be causal. IMPACT Whether the observed associations between CS and MetS in non-randomized human studies are causally relevant remains undetermined. Compared with vaginally born offspring rats, CS born offspring gained more body weight and tended to have compromised lipid profiles and abnormal insulin sensitivity, suggesting a causal relationship between CS and MetS that may be further amplified by a high-fat/high-fructose diet. Due to the high prevalence of CS births globally, greater clinical consideration must be given to the potential adverse effects of CS, and whether these risks should be made known to patients in clinical practice merits evaluation.
Collapse
Affiliation(s)
- Mingxuan Zhang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, School of Public Health, Peking University Health Science Center, 100191, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, 100191, Beijing, China
| | - Mengjiao Liu
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Long Zhang
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University Health Science Center, 100191, Beijing, China
| | - Yu-Bo Zhou
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, School of Public Health, Peking University Health Science Center, 100191, Beijing, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, 100191, Beijing, China.
| | - Hong-Tian Li
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, School of Public Health, Peking University Health Science Center, 100191, Beijing, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, 100191, Beijing, China.
- Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, 100191, Beijing, China.
| | - Jian-Meng Liu
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, School of Public Health, Peking University Health Science Center, 100191, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, 100191, Beijing, China
- Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, 100191, Beijing, China
| |
Collapse
|
191
|
Aliyu M, Zohora FT, Ceylan A, Hossain F, Yazdani R, Azizi G. Immunopathogenesis of multiple sclerosis: molecular and cellular mechanisms and new immunotherapeutic approaches. Immunopharmacol Immunotoxicol 2024; 46:355-377. [PMID: 38634438 DOI: 10.1080/08923973.2024.2330642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/09/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a central nervous system (CNS) demyelinating autoimmune disease with increasing global prevalence. It predominantly affects females, especially those of European descent. The interplay between environmental factors and genetic predisposition plays a crucial role in MS etiopathogenesis. METHODS We searched recent relevant literature on reputable databases, which include, PubMed, Embase, Web of Science, Scopus, and ScienceDirect using the following keywords: multiple sclerosis, pathogenesis, autoimmunity, demyelination, therapy, and immunotherapy. RESULTS Various animal models have been employed to investigate the MS etiopathogenesis and therapeutics. Autoreactive T cells within the CNS recruit myeloid cells through chemokine expression, leading to the secretion of inflammatory cytokines driving the MS pathogenesis, resulting in demyelination, gliosis, and axonal loss. Key players include T cell lymphocytes (CD4+ and CD8+), B cells, and neutrophils. Signaling dysregulation in inflammatory pathways and the immunogenetic basis of MS are essential considerations for any successful therapy to MS. Data indicates that B cells and neutrophils also have significant roles in MS, despite the common belief that T cells are essential. High neutrophil-to-lymphocyte ratios correlate with MS severity, indicating their contribution to disease progression. Dysregulated signaling pathways further exacerbate MS progression. CONCLUSION MS remains incurable, but disease-modifying therapies, monoclonal antibodies, and immunomodulatory drugs offer hope for patients. Research on the immunogenetics and immunoregulatory functions of gut microbiota is continuing to provide light on possible treatment avenues. Understanding the complex interplay between genetic predisposition, environmental factors, and immune dysregulation is critical for developing effective treatments for MS.
Collapse
Affiliation(s)
- Mansur Aliyu
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran
- Department of Medical Microbiology, Faculty of Clinical Science, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Fatema Tuz Zohora
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Ayca Ceylan
- Medical Faculty, Department of Pediatrics, Division of Immunology and Allergy, Selcuk University, Konya, Turkey
| | - Fariha Hossain
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Reza Yazdani
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gholamreza Azizi
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
192
|
Cantarutti A, Rescigno P, Da Borso C, Gutierrez de Rubalcava Doblas J, Bressan S, Barbieri E, Giaquinto C, Canova C. Association Between Early-Life Exposure to Antibiotics and Development of Child Obesity: Population-Based Study in Italy. JMIR Public Health Surveill 2024; 10:e51734. [PMID: 38820573 PMCID: PMC11179038 DOI: 10.2196/51734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Childhood obesity is a significant public health problem representing the most severe challenge in the world. Antibiotic exposure in early life has been identified as a potential factor that can disrupt the development of the gut microbiome, which may have implications for obesity. OBJECTIVE This study aims to evaluate the risk of developing obesity among children exposed to antibiotics early in life. METHODS An Italian retrospective pediatric population-based cohort study of children born between 2004 and 2018 was adopted using the Pedianet database. Children were required to be born at term, with normal weight, and without genetic diseases or congenital anomalies. We assessed the timing of the first antibiotic prescription from birth to 6, 12, and 24 months of life and the dose-response relationship via the number of antibiotic prescriptions recorded in the first year of life (none, 1, 2, and ≥3 prescriptions). Obesity was defined as a BMI z score >3 for children aged ≤5 years and >2 for children aged >5 years, using the World Health Organization growth references. The obese incidence rate (IR) × 100 person-years and the relative 95% CI were computed using infant sex, area of residence, preschool and school age, and area deprivation index, which are the covariates of interest. A mixed-effect Cox proportional hazards model was used to estimate the hazard ratio and 95% CI for the association between antibiotic exposure in early life and child obesity between 24 months and 14 years of age, considering the family pediatricians as a random factor. Several subgroup and sensitivity analyses were performed to assess the robustness of our results. RESULTS Among 121,540 children identified, 54,698 were prescribed at least an antibiotic within the first year of life and 26,990 were classified as obese during follow-up with an incidence rate of 4.05 cases (95% CI 4.01-4.10) × 100 person-year. The risk of obesity remained consistent across different timings of antibiotic prescriptions at 6 months, 1 year, and 2 years (fully adjusted hazard ratio [aHR] 1.07, 95% CI 1.04-1.10; aHR 1.06, 95% CI 1.03-1.09; and aHR 1.07, 95% CI 1.04-1.10, respectively). Increasing the number of antibiotic exposures increases the risk of obesity significantly (P trend<.001). The individual-specific age analysis showed that starting antibiotic therapy very early (between 0 and 5 months) had the greatest impact (aHR 1.12, 95% CI 1.08-1.17) on childhood obesity with respect to what was observed among those who were first prescribed antibiotics after the fifth month of life. These results were consistent across subgroup and sensitivity analyses. CONCLUSIONS The results from this large population-based study support the association between early exposure to antibiotics and an increased risk of childhood obesity. This association becomes progressively stronger with both increasing numbers of antibiotic prescriptions and younger age at the time of the first prescription.
Collapse
Affiliation(s)
- Anna Cantarutti
- Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milano, Italy
| | - Paola Rescigno
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Claudia Da Borso
- Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milano, Italy
| | | | - Silvia Bressan
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Elisa Barbieri
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Carlo Giaquinto
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Cristina Canova
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
193
|
Kim J, Jeon SG, Kwak MJ, Park SJ, Hong H, Choi SB, Lee JH, Kim SW, Kim AR, Park YK, Kim BK, Yang BG. Triglyceride-Catabolizing Lactiplantibacillus plantarum GBCC_F0227 Shows an Anti-Obesity Effect in a High-Fat-Diet-Induced C57BL/6 Mouse Obesity Model. Microorganisms 2024; 12:1086. [PMID: 38930468 PMCID: PMC11205564 DOI: 10.3390/microorganisms12061086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Given the recognized involvement of the gut microbiome in the development of obesity, considerable efforts are being made to discover probiotics capable of preventing and managing obesity. In this study, we report the discovery of Lactiplantibacillus plantarum GBCC_F0227, isolated from fermented food, which exhibited superior triglyceride catabolism efficacy compared to L. plantarum WCSF1. Molecular analysis showed elevated expression levels of α/β hydrolases with lipase activity (abH04, abH08_1, abH08_2, abH11_1, and abH11_2) in L. plantarum GBCC_F0227 compared to L. plantarum WCFS1, demonstrating its enhanced lipolytic activity. In a high-fat-diet (HFD)-induced mouse obesity model, the administration of L. plantarum GBCC_F0227 mitigated weight gain, reduced blood triglycerides, and diminished fat mass. Furthermore, L. plantarum GBCC_F0227 upregulated adiponectin gene expression in adipose tissue, indicative of favorable metabolic modulation, and showed robust growth and low cytotoxicity, underscoring its industrial viability. Therefore, our findings encourage the further investigation of L. plantarum GBCC_F0227's therapeutic applications for the prevention and treatment of obesity and associated metabolic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Bo-Gie Yang
- Research Institute, GI Biome Inc., Seongnam-si 13201, Republic of Korea; (J.K.); (S.-G.J.); (M.-J.K.); (S.-J.P.); (H.H.); (S.-B.C.); (J.-H.L.); (S.-W.K.); (A.-R.K.); (Y.-K.P.); (B.K.K.)
| |
Collapse
|
194
|
McKee K, Bassis CM, Golob J, Palazzolo B, Sen A, Comstock SS, Rosas-Salazar C, Stanford JB, O'Connor T, Gern JE, Paneth N, Dunlop AL. Host factors are associated with vaginal microbiome structure in pregnancy in the ECHO Cohort Consortium. Sci Rep 2024; 14:11798. [PMID: 38782975 PMCID: PMC11116393 DOI: 10.1038/s41598-024-62537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Using pooled vaginal microbiota data from pregnancy cohorts (N = 683 participants) in the Environmental influences on Child Health Outcomes (ECHO) Program, we analyzed 16S rRNA gene amplicon sequences to identify clinical and demographic host factors that associate with vaginal microbiota structure in pregnancy both within and across diverse cohorts. Using PERMANOVA models, we assessed factors associated with vaginal community structure in pregnancy, examined whether host factors were conserved across populations, and tested the independent and combined effects of host factors on vaginal community state types (CSTs) using multinomial logistic regression models. Demographic and social factors explained a larger amount of variation in the vaginal microbiome in pregnancy than clinical factors. After adjustment, lower education, rather than self-identified race, remained a robust predictor of L. iners dominant (CST III) and diverse (CST IV) (OR = 8.44, 95% CI = 4.06-17.6 and OR = 4.18, 95% CI = 1.88-9.26, respectively). In random forest models, we identified specific taxonomic features of host factors, particularly urogenital pathogens associated with pregnancy complications (Aerococcus christensenii and Gardnerella spp.) among other facultative anaerobes and key markers of community instability (L. iners). Sociodemographic factors were robustly associated with vaginal microbiota structure in pregnancy and should be considered as sources of variation in human microbiome studies.
Collapse
Grants
- P30 ES010126 NIEHS NIH HHS
- U24OD023382 Environmental influences on Child Health Outcomes (ECHO) program, Office of the Director, National Institutes of Health
- U2C OD023375 NIH HHS
- UH3 OD023271 NIH HHS
- UH3 OD023282 NIH HHS
- UH3OD023282 Environmental influences on Child Health Outcomes (ECHO) program, Office of the Director, National Institutes of Health
- UH3 OD023287 NIH HHS
- U24 OD023319 NIH HHS
- UH3 OD023305 NIH HHS
- UH3 OD023288 NIH HHS
- UH3OD023249 Environmental influences on Child Health Outcomes (ECHO) program, Office of the Director, National Institutes of Health
- U24OD023319 Environmental influences on Child Health Outcomes (ECHO) program, Office of the Director, National Institutes of Health
- UH3 OD023349 NIH HHS
- UH3 OD023268 NIH HHS
- UH3 OD023337 NIH HHS
- UH3 OD023328 NIH HHS
- U24 OD023382 NIH HHS
- UH3 OD023313 NIH HHS
- UH3 OD023289 NIH HHS
- UH3 OD023249 NIH HHS
- UH3 OD023389 NIH HHS
- UH3 OD023290 NIH HHS
- UH3OD023251 Environmental influences on Child Health Outcomes (ECHO) program, Office of the Director, National Institutes of Health
- UH3 OD023285 NIH HHS
- UH3 OD023275 NIH HHS
- P30 ES001247 NIEHS NIH HHS
- UH3 OD023318 NIH HHS
- UH3 OD023248 NIH HHS
- U2COD023375 Environmental influences on Child Health Outcomes (ECHO) program, Office of the Director, National Institutes of Health
- UH3 OD023253 NIH HHS
- UH3 OD023272 NIH HHS
- UH3 OD023347 NIH HHS
- UH3OD023318 Environmental influences on Child Health Outcomes (ECHO) program, Office of the Director, National Institutes of Health
- UH3 OD023251 NIH HHS
- UH3 OD023279 NIH HHS
- UH3OD023285 Environmental influences on Child Health Outcomes (ECHO) program, Office of the Director, National Institutes of Health
- K01 AI153558 NIAID NIH HHS
- U19 AI104317 NIAID NIH HHS
- UH3 OD023244 NIH HHS
- UH3 OD023320 NIH HHS
Collapse
Affiliation(s)
- Kimberly McKee
- Department of Family Medicine, University of Michigan, 1018 Fuller St, Ann Arbor, MI, 48104, USA.
| | - Christine M Bassis
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Golob
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Beatrice Palazzolo
- Department of Family Medicine, University of Michigan, 1018 Fuller St, Ann Arbor, MI, 48104, USA
| | - Ananda Sen
- Department of Family Medicine, University of Michigan, 1018 Fuller St, Ann Arbor, MI, 48104, USA
| | - Sarah S Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | | | - Joseph B Stanford
- Department of Family and Preventive Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Thomas O'Connor
- Departments of Neuroscience and Obstetrics & Gynecology, University of Rochester, Rochester, NY, USA
| | - James E Gern
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| | - Nigel Paneth
- Departments of Epidemiology & Biostatistics and Pediatrics & Human Development, Michigan State University, East Lansing, MI, USA
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
195
|
Meng X, Shi M, Guo G, Xing J, Liu Z, Song F, Liu S. In-depth investigation of the therapeutic effect of Tribulus terrestris L. on type 2 diabetes based on intestinal microbiota and feces metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117815. [PMID: 38309487 DOI: 10.1016/j.jep.2024.117815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruit of Tribulus terrestris L. (TT) is extensively documented in the Tibetan medical literature 'Si Bu Yi Dian', has been used to treat diabetes mellitus for more than a thousand years. However, the underlying mechanisms and comprehensive effects of TT on diabetes have yet to be investigated. AIM OF THE STUDY The aim of the study was to systemically elucidate the potential mechanisms of TT in treating diabetes mellitus, and further investigate the therapeutic effects of the water extract, small molecular components and saccharides from TT. MATERIALS AND METHODS Fecal metabolomics was employed to draw the metabolic profile based on UHPLC-Q-TOF-MS/MS. The V3-V4 hypervariable regions of the bacteria 16S rRNA gene were amplified to explore the structural changes of the intestinal microbiome after TT intervention and to analyze the differential microbiota. The microbial metabolites SCFAs were determined by GC-MS, and the BAs and tryptophan metabolites were quantified by UPLC-TQ-MS. Spearman correlation analysis was carried out to comprehensively investigate the relationship among the endogenous metabolites profile, intestinal microbiota and their metabolites. RESULTS TT exhibited remarkably therapeutic effect on T2DM rats, as evidenced by improved glucolipid metabolism and intestinal barrier integrity, ameliorated inflammation and remission in insulin resistance. A total of 24 endogenous biomarkers were screened through fecal metabolomics studies, which were mainly related to tryptophan metabolism, fatty acid metabolism, bile acid metabolism, steroid hormone biosynthesis and arachidonic acid metabolism. Investigations on microbiomics revealed that TT significantly modulated 18 differential bacterial genera and reversed the disordered gut microbial in diabetes rats. Moreover, TT notably altered the content of gut microbiota metabolites, both in serum and fecal samples. Significant correlation among microbial community, metabolites and T2DM-related indicators was revealed. CONCLUSIONS The multiple components of TT regulate the metabolic homeostasis of the organism and the balance of intestinal microbiota and its metabolites, which might mediate the anti-diabetic capacity of TT.
Collapse
Affiliation(s)
- Xin Meng
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| | - Minjie Shi
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| | - Guangpeng Guo
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| | - Junpeng Xing
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| |
Collapse
|
196
|
Kang M, Kang M, Yoo J, Lee J, Lee S, Yun B, Song M, Kim JM, Kim HW, Yang J, Kim Y, Oh S. Dietary supplementation with Lacticaseibacillus rhamnosus IDCC3201 alleviates sarcopenia by modulating the gut microbiota and metabolites in dexamethasone-induced models. Food Funct 2024; 15:4936-4953. [PMID: 38602003 DOI: 10.1039/d3fo05420a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Probiotics can exert direct or indirect influences on various aspects of health claims by altering the composition of the gut microbiome and producing bioactive metabolites. The aim of this study was to examine the effect of Lacticaseibacillus rhamnosus IDCC3201 on skeletal muscle atrophy in dexamethasone-induced C2C12 cells and a mouse animal model. Dexamethasone treatment significantly reduced C2C12 muscle cell viability, myotube diameter, and levels of muscle atrophic markers (Atrogin-1 and MuRF-1). These effects were alleviated by conditioned media (CM) and cell extract (EX) derived from L. rhamnosus IDCC3201. In addition, we assessed the in vivo therapeutic effect of L. rhamnosus IDCC3201 in a mouse model of dexamethasone (DEX)-induced muscle atrophy. Supplementation with IDCC3201 resulted in significant enhancements in body composition, particularly in lean mass, muscle strength, and myofibril size, in DEX-induced muscle atrophy mice. In comparison to the DEX-treatment group, the normal and DEX + L. rhamnosus IDCC3201 groups showed a higher transcriptional level of myosin heavy chain family genes (MHC1, MHC1b, MHC2A, 2bB, and 2X) and a reduction in atrophic muscle makers. These analyses revealed that L. rhamnosus IDCC3201 supplementation led to increased production of branched-chain amino acids (BCAAs) and improved the Allobaculum genus within the gut microbiota of muscle atrophy-induced groups. Taken together, our findings suggest that L. rhamnosus IDCC3201 represents a promising dietary supplement with the potential to alleviate sarcopenia by modulating the gut microbiome and metabolites.
Collapse
Affiliation(s)
- Minkyoung Kang
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| | - Minji Kang
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| | - Jiseon Yoo
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| | - Juyeon Lee
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| | - Sujeong Lee
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| | - Bohyun Yun
- Honam National Institute of Biological Resources, Mokpo 58762, Republic of Korea
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Republic of Korea
| | - Hyung Wook Kim
- College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Jungwoo Yang
- Department of Microbiology, College of Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangnam Oh
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| |
Collapse
|
197
|
Hutchison ER, Yen MI, Peng HW, Davis CR, Vivas EI, Tallon MM, Bui TPN, de Vos WM, Yen CLE, Nieuwdorp M, Rey FE. The gut microbiome modulates the impact of Anaerobutyricum soehngenii supplementation on glucose homeostasis in mice. RESEARCH SQUARE 2024:rs.3.rs-4324489. [PMID: 38746233 PMCID: PMC11092834 DOI: 10.21203/rs.3.rs-4324489/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background There is growing interest in the development of next-generation probiotics to prevent or treat metabolic syndrome. Previous studies suggested that Anaerobutyricum soehngenii may represent a promising probiotic candidate. A recent human study showed that while A. soehngenii supplementation is well tolerated and safe, it resulted in variable responses among individuals with a subset of the subjects significantly benefiting from the treatment. We hypothesized that gut microbiome variation is linked to the heterogeneous responses to A. soehngenii treatment observed in humans. Results We colonized germ-free mice with fecal microbiota from human subjects that responded to A. soehngenii treatment (R65 and R55) and non-responder subjects (N96 and N40). Colonized mice were fed a high-fat diet (45% kcal from fat) to induce insulin resistance, and orally treated with either live A. soehngenii culture or heat-killed culture. We found that R65-colonized mice received a benefit in glycemic control with live A. soehngenii treatment while mice colonized with microbiota from the other donors did not. The glucose homeostasis improvements observed in R65-colonized mice were positively correlated with levels of cecal propionate, an association that was reversed in N40-colonized mice. To test whether the microbiome modulates the effects of propionate, R65- or N40-colonized mice were treated with tripropionin (TP, glycerol tripropionate), a pro-drug of propionate, or glycerol (control). TP supplementation showed a similar response pattern as that observed in live A. soehngenii treatment, suggesting that propionate may mediate the effects of A. soehngenii. We also found that TP supplementation to conventional mice reduces adiposity, improves glycemic control, and reduces plasma insulin compared to control animals supplemented with glycerol. Conclusions These findings highlight the importance of the microbiome on glycemic control and underscore the need to better understand personal microbiome-by-therapeutic interactions to develop more effective treatment strategies.
Collapse
|
198
|
Goswami M, Bose PD. Gut microbial dysbiosis in the pathogenesis of leukemia: an immune-based perspective. Exp Hematol 2024; 133:104211. [PMID: 38527589 DOI: 10.1016/j.exphem.2024.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 03/27/2024]
Abstract
Leukemias are a set of clonal hematopoietic malignant diseases that develop in the bone marrow. Several factors influence leukemia development and progression. Among these, the gut microbiota is a major factor influencing a wide array of its processes. The gut microbial composition is linked to the risk of tumor development and the host's ability to respond to treatment, mostly due to the immune-modulatory effects of their metabolites. Despite such strong evidence, its role in the development of hematologic malignancies still requires attention of investigators worldwide. In this review, we make an effort to discuss the role of host gut microbiota-immune crosstalk in leukemia development and progression. Additionally, we highlight certain recently developed strategies to modify the gut microbial composition that may help to overcome dysbiosis in leukemia patients in the near future.
Collapse
Affiliation(s)
- Mayuri Goswami
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, India
| | - Purabi Deka Bose
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, India.
| |
Collapse
|
199
|
Deehan EC, Mocanu V, Madsen KL. Effects of dietary fibre on metabolic health and obesity. Nat Rev Gastroenterol Hepatol 2024; 21:301-318. [PMID: 38326443 DOI: 10.1038/s41575-023-00891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/09/2024]
Abstract
Obesity and metabolic syndrome represent a growing epidemic worldwide. Body weight is regulated through complex interactions between hormonal, neural and metabolic pathways and is influenced by numerous environmental factors. Imbalances between energy intake and expenditure can occur due to several factors, including alterations in eating behaviours, abnormal satiation and satiety, and low energy expenditure. The gut microbiota profoundly affects all aspects of energy homeostasis through diverse mechanisms involving effects on mucosal and systemic immune, hormonal and neural systems. The benefits of dietary fibre on metabolism and obesity have been demonstrated through mechanistic studies and clinical trials, but many questions remain as to how different fibres are best utilized in managing obesity. In this Review, we discuss the physiochemical properties of different fibres, current findings on how fibre and the gut microbiota interact to regulate body weight homeostasis, and knowledge gaps related to using dietary fibres as a complementary strategy. Precision medicine approaches that utilize baseline microbiota and clinical characteristics to predict individual responses to fibre supplementation represent a new paradigm with great potential to enhance weight management efficacy, but many challenges remain before these approaches can be fully implemented.
Collapse
Affiliation(s)
- Edward C Deehan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Nebraska Food for Health Center, Lincoln, NE, USA
| | - Valentin Mocanu
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Karen L Madsen
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
200
|
Niu Y, Hu X, Song Y, Wang C, Luo P, Ni S, Jiao F, Qiu J, Jiang W, Yang S, Chen J, Huang R, Jiang H, Chen S, Zhai Q, Xiao J, Guo F. Blautia Coccoides is a Newly Identified Bacterium Increased by Leucine Deprivation and has a Novel Function in Improving Metabolic Disorders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309255. [PMID: 38429906 PMCID: PMC11095201 DOI: 10.1002/advs.202309255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/14/2024] [Indexed: 03/03/2024]
Abstract
Gut microbiota is linked to human metabolic diseases. The previous work showed that leucine deprivation improved metabolic dysfunction, but whether leucine deprivation alters certain specific species of bacterium that brings these benefits remains unclear. Here, this work finds that leucine deprivation alters gut microbiota composition, which is sufficient and necessary for the metabolic improvements induced by leucine deprivation. Among all the affected bacteria, B. coccoides is markedly increased in the feces of leucine-deprived mice. Moreover, gavage with B. coccoides improves insulin sensitivity and reduces body fat in high-fat diet (HFD) mice, and singly colonization of B. coccoides increases insulin sensitivity in gnotobiotic mice. The effects of B. coccoides are mediated by metabolizing tryptophan into indole-3-acetic acid (I3AA) that activates the aryl hydrocarbon receptor (AhR) in the liver. Finally, this work reveals that reduced fecal B. coccoides and I3AA levels are associated with the clinical metabolic syndrome. These findings suggest that B. coccoides is a newly identified bacterium increased by leucine deprivation, which improves metabolic disorders via metabolizing tryptophan into I3AA.
Collapse
Affiliation(s)
- Yuguo Niu
- Zhongshan HospitalState Key Laboratory of Medical NeurobiologyInstitute for Translational Brain ResearchMOE Frontiers Center for Brain ScienceFudan UniversityShanghai200032China
| | - Xiaoming Hu
- Zhongshan HospitalState Key Laboratory of Medical NeurobiologyInstitute for Translational Brain ResearchMOE Frontiers Center for Brain ScienceFudan UniversityShanghai200032China
| | - Yali Song
- Department of Metabolic and Bariatric Surgery and Clinical Research InstituteFirst Affiliated Hospital of Jinan UniversityGuangzhou510632China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery and Clinical Research InstituteFirst Affiliated Hospital of Jinan UniversityGuangzhou510632China
| | - Peixiang Luo
- CAS Key Laboratory of NutritionMetabolism and Food SafetyInnovation Center for Intervention of Chronic Disease and Promotion of HealthShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Shihong Ni
- Zhongshan HospitalState Key Laboratory of Medical NeurobiologyInstitute for Translational Brain ResearchMOE Frontiers Center for Brain ScienceFudan UniversityShanghai200032China
| | - Fuxin Jiao
- CAS Key Laboratory of NutritionMetabolism and Food SafetyInnovation Center for Intervention of Chronic Disease and Promotion of HealthShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Ju Qiu
- CAS Key Laboratory of NutritionMetabolism and Food SafetyInnovation Center for Intervention of Chronic Disease and Promotion of HealthShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Weihong Jiang
- Key Laboratory of Synthetic BiologyInstitute of Plant Physiology and EcologyCAS Center for Excellence in Molecular Plant ScienceShanghai200032China
| | - Sheng Yang
- Key Laboratory of Synthetic BiologyInstitute of Plant Physiology and EcologyCAS Center for Excellence in Molecular Plant ScienceShanghai200032China
| | - Jun Chen
- Key Laboratory of Synthetic BiologyInstitute of Plant Physiology and EcologyCAS Center for Excellence in Molecular Plant ScienceShanghai200032China
| | - Rui Huang
- CAS Key Laboratory of NutritionMetabolism and Food SafetyInnovation Center for Intervention of Chronic Disease and Promotion of HealthShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Haizhou Jiang
- Zhongshan HospitalState Key Laboratory of Medical NeurobiologyInstitute for Translational Brain ResearchMOE Frontiers Center for Brain ScienceFudan UniversityShanghai200032China
| | - Shanghai Chen
- Zhongshan HospitalState Key Laboratory of Medical NeurobiologyInstitute for Translational Brain ResearchMOE Frontiers Center for Brain ScienceFudan UniversityShanghai200032China
| | - Qiwei Zhai
- CAS Key Laboratory of NutritionMetabolism and Food SafetyInnovation Center for Intervention of Chronic Disease and Promotion of HealthShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jia Xiao
- Department of Metabolic and Bariatric Surgery and Clinical Research InstituteFirst Affiliated Hospital of Jinan UniversityGuangzhou510632China
| | - Feifan Guo
- Zhongshan HospitalState Key Laboratory of Medical NeurobiologyInstitute for Translational Brain ResearchMOE Frontiers Center for Brain ScienceFudan UniversityShanghai200032China
| |
Collapse
|