151
|
Abstract
Sigma-1 receptors (σ1Rs) are structurally unique intracellular proteins that function as chaperones. σ1Rs translocate from the mitochondria-associated membrane to other subcellular compartments, and can influence a host of targets, including ion channels, G-protein-coupled receptors, lipids, and other signaling proteins. Drugs binding to σRs can induce or block the actions of σRs. Studies indicate that stimulant self-administration induces the reinforcing effects of σR agonists, because of dopamine transporter actions. Once established, the reinforcing effects of σR agonists are independent of dopaminergic mechanisms traditionally thought to be critical to the reinforcing effects of stimulants. Self-administered doses of σR agonists do not increase dopamine concentrations in the nucleus accumbens shell, a transmitter and brain region considered important for the reinforcing effects of abused drugs. However, self-administration of σR agonists is blocked by σR antagonists. Several effects of stimulants have been blocked by σR antagonists, including the reinforcing effects, assessed by a place-conditioning procedure. However, the self-administration of stimulants is largely unaffected by σR antagonists, indicating fundamental differences in the mechanisms underlying these two procedures used to assess the reinforcing effects. When σR antagonists are administered in combination with dopamine uptake inhibitors, an effective and specific blockade of stimulant self-administration is obtained. Actions of stimulant drugs related to their abuse induce unique changes in σR activity and the changes induced potentially create redundant and, once established, independent reinforcement pathways. Concomitant targeting of both dopaminergic pathways and σR proteins produces a selective antagonism of stimulant self-administration, suggesting new avenues for combination chemotherapies to specifically combat stimulant abuse.
Collapse
|
152
|
Babayeva M, Assefa H, Basu P, Chumki S, Loewy Z. Marijuana Compounds: A Nonconventional Approach to Parkinson's Disease Therapy. PARKINSON'S DISEASE 2016; 2016:1279042. [PMID: 28050308 PMCID: PMC5165161 DOI: 10.1155/2016/1279042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/29/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is the second most common neurological illness in United States. Neurologically, it is characterized by the selective degeneration of a unique population of cells, the nigrostriatal dopamine neurons. The current treatment is symptomatic and mainly involves replacement of dopamine deficiency. This therapy improves only motor symptoms of Parkinson's disease and is associated with a number of adverse effects including dyskinesia. Therefore, there is unmet need for more comprehensive approach in the management of PD. Cannabis and related compounds have created significant research interest as a promising therapy in neurodegenerative and movement disorders. In this review we examine the potential benefits of medical marijuana and related compounds in the treatment of both motor and nonmotor symptoms as well as in slowing the progression of the disease. The potential for cannabis to enhance the quality of life of Parkinson's patients is explored.
Collapse
Affiliation(s)
- Mariana Babayeva
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Haregewein Assefa
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Paramita Basu
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Sanjeda Chumki
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Zvi Loewy
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| |
Collapse
|
153
|
Abstract
Prevalence of psychiatric disorders continues to rise globally, yet remission rates and patient outcome remain less than ideal. As a result, novel treatment approaches for these disorders are necessary to decrease societal economic burden, as well as increase individual functioning. The recent discovery of the endocannabinoid system has provided an outlet for further research into its role in psychiatric disorders, because efficacy of targeted treatments have been demonstrated in medical illnesses, including cancers, neuropathic pain, and multiple sclerosis. The present review will investigate the role of the endocannabinoid system in psychiatric disorders, specifically schizophrenia, depressive, anxiety, and posttraumatic stress disorders, as well as attention-deficit hyperactivity disorder. Controversy remains in prescribing medicinal cannabinoid treatments due to the fear of adverse effects. However, one must consider all potential limitations when determining the safety and tolerability of cannabinoid products, specifically cannabinoid content (ie, Δ-tetrahydrocannabinol vs cannabidiol) as well as study design. The potential efficacy of cannabinoid treatments in the psychiatric population is an emerging topic of interest that provides potential value going forward in medicine.
Collapse
|
154
|
Bloomfield MAP, Ashok AH, Volkow ND, Howes OD. The effects of Δ 9-tetrahydrocannabinol on the dopamine system. Nature 2016; 539:369-377. [PMID: 27853201 PMCID: PMC5123717 DOI: 10.1038/nature20153] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022]
Abstract
The effects of Δ9-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, are a pressing concern for global mental health. Patterns of cannabis use are changing drastically owing to legalization, the availability of synthetic analogues (commonly termed spice), cannavaping and an emphasis on the purported therapeutic effects of cannabis. Many of the reinforcing effects of THC are mediated by the dopamine system. Owing to the complexity of the cannabinoid-dopamine interactions that take place, there is conflicting evidence from human and animal studies concerning the effects of THC on the dopamine system. Acute THC administration causes increased dopamine release and neuron activity, whereas long-term use is associated with blunting of the dopamine system. Future research must examine the long-term and developmental dopaminergic effects of THC.
Collapse
Affiliation(s)
- Michael A P Bloomfield
- Psychiatric Imaging Group, Robert Steiner MR Unit, MRC Clinical Sciences Centre, Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
- Psychiatric Imaging Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- Division of Psychiatry, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London WC1T 7NF, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology &Neuroscience, Kings College London, De Crespigny Park, London SE5 8AF, UK
- Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, 1-19 Torrington Place, London WC1E 6BT, UK
| | - Abhishekh H Ashok
- Psychiatric Imaging Group, Robert Steiner MR Unit, MRC Clinical Sciences Centre, Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
- Psychiatric Imaging Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology &Neuroscience, Kings College London, De Crespigny Park, London SE5 8AF, UK
| | - Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, 6001 Executive Boulevard, Bethesda, Maryland 20892-9561, USA
| | - Oliver D Howes
- Psychiatric Imaging Group, Robert Steiner MR Unit, MRC Clinical Sciences Centre, Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
- Psychiatric Imaging Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology &Neuroscience, Kings College London, De Crespigny Park, London SE5 8AF, UK
| |
Collapse
|
155
|
Tanda G, Mereu M, Hiranita T, Quarterman JC, Coggiano M, Katz JL. Lack of Specific Involvement of (+)-Naloxone and (+)-Naltrexone on the Reinforcing and Neurochemical Effects of Cocaine and Opioids. Neuropsychopharmacology 2016; 41:2772-81. [PMID: 27296151 PMCID: PMC5026747 DOI: 10.1038/npp.2016.91] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 01/14/2023]
Abstract
Effective medications for drug abuse remain a largely unmet goal in biomedical science. Recently, the (+)-enantiomers of naloxone and naltrexone, TLR4 antagonists, have been reported to attenuate preclinical indicators of both opioid and stimulant abuse. To further examine the potential of these compounds as drug-abuse treatments, we extended the previous assessments to include a wider range of doses and procedures. We report the assessment of (+)-naloxone and (+)-naltrexone on the acute dopaminergic effects of cocaine and heroin determined by in vivo microdialysis, on the reinforcing effects of cocaine and the opioid agonist, remifentanil, tested under intravenous self-administration procedures, as well as the subjective effects of cocaine determined by discriminative-stimulus effects in rats. Pretreatments with (+)-naloxone or (+)-naltrexone did not attenuate, and under certain conditions enhanced the stimulation of dopamine levels produced by cocaine or heroin in the nucleus accumbens shell. Furthermore, although an attenuation of either cocaine or remifentanil self-administration was obtained at the highest doses of (+)-naloxone and (+)-naltrexone, those doses also attenuated rates of food-maintained behaviors, indicating a lack of selectivity of TLR4 antagonist effects for behaviors reinforced with drug injections. Drug-discrimination studies failed to demonstrate a significant interaction of (+)-naloxone with subjective effects of cocaine. The present studies demonstrate that under a wide range of doses and experimental conditions, the TLR4 antagonists, (+)-naloxone and (+)-naltrexone, did not specifically block neurochemical or behavioral abuse-related effects of cocaine or opioid agonists.
Collapse
Affiliation(s)
- Gianluigi Tanda
- Medication Development Program, Molecular Targets and Medication Discovery Branch, NIDA-IRP, NIH/DHHS, Baltimore, MD, USA,Medication Development Program, TRIAD Building, NIDA Suite 3301, 333 Cassell Drive, Baltimore, MD 21224, USA, Tel: +1-443-740-2580, Fax: +1-443-740-2111, E-mail:
| | - Maddalena Mereu
- Medication Development Program, Molecular Targets and Medication Discovery Branch, NIDA-IRP, NIH/DHHS, Baltimore, MD, USA
| | - Takato Hiranita
- Psychobiology Section, Molecular Neuropsychiatry Research Branch, NIDA-IRP, NIH/DHHS, Baltimore, MD, USA
| | - Juliana C Quarterman
- Medication Development Program, Molecular Targets and Medication Discovery Branch, NIDA-IRP, NIH/DHHS, Baltimore, MD, USA
| | - Mark Coggiano
- Medication Development Program, Molecular Targets and Medication Discovery Branch, NIDA-IRP, NIH/DHHS, Baltimore, MD, USA
| | - Jonathan L Katz
- Psychobiology Section, Molecular Neuropsychiatry Research Branch, NIDA-IRP, NIH/DHHS, Baltimore, MD, USA
| |
Collapse
|
156
|
Ligresti A, De Petrocellis L, Di Marzo V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol Rev 2016; 96:1593-659. [DOI: 10.1152/physrev.00002.2016] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.
Collapse
Affiliation(s)
- Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| |
Collapse
|
157
|
Mereu M, Chun LE, Prisinzano TE, Newman AH, Katz JL, Tanda G. The unique psychostimulant profile of (±)-modafinil: investigation of behavioral and neurochemical effects in mice. Eur J Neurosci 2016; 45:167-174. [PMID: 27545285 DOI: 10.1111/ejn.13376] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/08/2016] [Accepted: 08/18/2016] [Indexed: 11/29/2022]
Abstract
Blockade of dopamine (DA) reuptake via the dopamine transporter (DAT) is a primary mechanism identified as underlying the therapeutic actions of (±)-modafinil (modafinil) and its R-enantiomer, armodafinil. Herein, we explored the neurochemical and behavioral actions of modafinil to better characterize its psychostimulant profile. Swiss-Webster mice were implanted with microdialysis probes in the nucleus accumbens shell (NAS) or core (NAC) to evaluate changes in DA levels related to acute reinforcing actions of drugs of abuse. Additionally, subjective effects were studied in mice trained to discriminate 10 mg/kg cocaine (i.p.) from saline. Modafinil (17-300 mg/kg, i.p.) significantly increased NAS and NAC DA levels that at the highest doses reached ~300% at 1 h, and lasted > 6 h in duration. These elevated DA levels did not show statistically significant regional differences between the NAS and NAC. Modafinil produced cocaine-like subjective effects at 56-100 mg/kg when administered at 5 and 60 min before the start of the session, and enhanced cocaine effects when the two were administered in combination. Despite sharing subjective effects with cocaine, modafinil's psychostimulant profile was unique compared to that of cocaine and like compounds. Modafinil had lower potency and efficacy than cocaine in stimulating NAS DA. In addition, the cocaine-like subjective effects of modafinil were obtained at lower doses and earlier onset times than expected based on its dopaminergic effects. These studies suggest that although inhibition of DA reuptake may be a primary mechanism underlying modafinil's therapeutic actions, non DA-dependent actions may be playing a role in its psychostimulant profile.
Collapse
Affiliation(s)
- Maddalena Mereu
- Medication Development Program, Molecular Targets and Medications Discovery Branch, Department of Health and Human Services, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Lauren E Chun
- Medication Development Program, Molecular Targets and Medications Discovery Branch, Department of Health and Human Services, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Thomas E Prisinzano
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS, USA
| | - Amy H Newman
- Medication Development Program, Molecular Targets and Medications Discovery Branch, Department of Health and Human Services, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, USA.,Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, Department of Health and Human Services, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Jonathan L Katz
- Psychobiology Section, Molecular Neuropsychiatry Research Branch, Department of Health and Human Services, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Gianluigi Tanda
- Medication Development Program, Molecular Targets and Medications Discovery Branch, Department of Health and Human Services, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, USA
| |
Collapse
|
158
|
Reward deficiency and anti-reward in pain chronification. Neurosci Biobehav Rev 2016; 68:282-297. [DOI: 10.1016/j.neubiorev.2016.05.033] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 12/12/2022]
|
159
|
Kim J, Ham S, Hong H, Moon C, Im HI. Brain Reward Circuits in Morphine Addiction. Mol Cells 2016; 39:645-53. [PMID: 27506251 PMCID: PMC5050528 DOI: 10.14348/molcells.2016.0137] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 12/30/2022] Open
Abstract
Morphine is the most potent analgesic for chronic pain, but its clinical use has been limited by the opiate's innate tendency to produce tolerance, severe withdrawal symptoms and rewarding properties with a high risk of relapse. To understand the addictive properties of morphine, past studies have focused on relevant molecular and cellular changes in the brain, highlighting the functional roles of reward-related brain regions. Given the accumulated findings, a recent, emerging trend in morphine research is that of examining the dynamics of neuronal interactions in brain reward circuits under the influence of morphine action. In this review, we highlight recent findings on the roles of several reward circuits involved in morphine addiction based on pharmacological, molecular and physiological evidences.
Collapse
Affiliation(s)
- Juhwan Kim
- Center for Neuroscience, Brain Science Institute, Seoul 02792,
Korea
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
- Department of Veterinary Anatomy, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186,
Korea
| | - Suji Ham
- Center for Neuroscience, Brain Science Institute, Seoul 02792,
Korea
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
- Department of Neuroscience, Korea University of Science and Technology (UST), Daejeon 34113,
Korea
| | - Heeok Hong
- Department of Medical Science, Konkuk University School of Medicine, Seoul 05029,
Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186,
Korea
| | - Heh-In Im
- Center for Neuroscience, Brain Science Institute, Seoul 02792,
Korea
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
- Department of Neuroscience, Korea University of Science and Technology (UST), Daejeon 34113,
Korea
| |
Collapse
|
160
|
Blockade of Nicotine and Cannabinoid Reinforcement and Relapse by a Cannabinoid CB1-Receptor Neutral Antagonist AM4113 and Inverse Agonist Rimonabant in Squirrel Monkeys. Neuropsychopharmacology 2016; 41:2283-93. [PMID: 26888056 PMCID: PMC4946059 DOI: 10.1038/npp.2016.27] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/08/2016] [Accepted: 02/16/2016] [Indexed: 01/08/2023]
Abstract
Nicotine, the main psychoactive component of tobacco, and (-)-Δ(9)-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, play major roles in tobacco and marijuana dependence as reinforcers of drug-seeking and drug-taking behavior. Drugs that act as inverse agonists of cannabinoid CB1 receptors in the brain can attenuate the rewarding and abuse-related effects of nicotine and THC, but their clinical use is hindered by potentially serious side effects. The recently developed CB1-receptor neutral antagonists may provide an alternative therapeutic approach to nicotine and cannabinoid dependence. Here we compare attenuation of nicotine and THC reinforcement and reinstatement in squirrel monkeys by the CB1-receptor inverse agonist rimonabant and by the recently developed CB1-receptor neutral antagonist AM4113. Both rimonabant and AM4113 reduced two effects of nicotine and THC that play major roles in tobacco and marijuana dependence: (1) maintenance of high rates of drug-taking behavior, and (2) priming- or cue-induced reinstatement of drug-seeking behavior in abstinent subjects (models of relapse). In contrast, neither rimonabant nor AM4113 modified cocaine-reinforced or food-reinforced operant behavior under similar experimental conditions. However, both rimonabant and AM4113 reduced cue-induced reinstatement in monkeys trained to self-administer cocaine, suggesting the involvement of a common cannabinoid-mediated mechanism in the cue-induced reinstatement for different drugs of abuse. These findings point to CB1-receptor neutral antagonists as a new class of medications for treatment of both tobacco dependence and cannabis dependence.
Collapse
|
161
|
Lofwall MR, Babalonis S, Nuzzo PA, Elayi SC, Walsh SL. Opioid withdrawal suppression efficacy of oral dronabinol in opioid dependent humans. Drug Alcohol Depend 2016; 164:143-150. [PMID: 27234658 PMCID: PMC4910823 DOI: 10.1016/j.drugalcdep.2016.05.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/04/2016] [Accepted: 05/04/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND The cannabinoid (CB) system is a rational novel target for treating opioid dependence, a significant public health problem around the world. This proof-of-concept study examined the potential efficacy of a CB1 receptor partial agonist, dronabinol, in relieving signs and symptoms of opioid withdrawal. METHODS Twelve opioid dependent adults participated in this 5-week, inpatient, double-blind, randomized, placebo-controlled study. Volunteers were maintained on double-blind oxycodone (30mg oral, four times/day) and participated in a training session followed by 7 experimental sessions, each testing a single oral test dose (placebo, oxycodone 30 and 60mg, dronabinol 5, 10, 20, and 30mg [decreased from 40mg]). Placebo was substituted for oxycodone maintenance doses for 21h before each session in order to produce measurable opioid withdrawal. Outcomes included observer- and participant-ratings of opioid agonist, opioid withdrawal and psychomotor/cognitive performance. RESULTS Oxycodone produced prototypic opioid agonist effects (i.e. suppressing withdrawal and increasing subjective effects indicative of abuse liability). Dronabinol 5 and 10mg produced effects most similar to placebo, while the 20 and 30mg doses produced modest signals of withdrawal suppression that were accompanied by dose-related increases in high, sedation, bad effects, feelings of heart racing, and tachycardia. Dronabinol was not liked more than placebo, showed some impairment in cognitive performance, and was identified as marijuana with increasing dose. CONCLUSION CB1 receptor activation is a reasonable strategy to pursue for the treatment of opioid withdrawal; however, dronabinol is not a likely candidate given its modest withdrawal suppression effects of limited duration and previously reported tachycardia during opioid withdrawal.
Collapse
Affiliation(s)
- Michelle R. Lofwall
- University of Kentucky College of Medicine (UK COM), Center on Drug and Alcohol Research, 845 Angliana Ave., Lexington, KY, United States 40508,UK COM, Department of Behavioral Science, Lexington, KY, United States 40536,UK COM, Department of Psychiatry, Lexington, KY, United States 40509
| | - Shanna Babalonis
- University of Kentucky College of Medicine (UK COM), Center on Drug and Alcohol Research, 845 Angliana Ave., Lexington, KY, United States 40508,UK COM, Department of Behavioral Science, Lexington, KY, United States 40536
| | - Paul A. Nuzzo
- UK COM, Department of Behavioral Science, Lexington, KY, United States 40536
| | - Samy Claude Elayi
- UK COM, Department of Cardiology, Gill Heart Institute, Lexington, KY, United States 40536
| | - Sharon L. Walsh
- University of Kentucky College of Medicine (UK COM), Center on Drug and Alcohol Research, 845 Angliana Ave., Lexington, KY, United States 40508,UK COM, Department of Behavioral Science, Lexington, KY, United States 40536,UK COM, Department of Psychiatry, Lexington, KY, United States 40509
| |
Collapse
|
162
|
Roussell A, Omori M. Normalising desistance: contextualising marijuana and cocaine use careers in young adults. SOCIOLOGY OF HEALTH & ILLNESS 2016; 38:916-938. [PMID: 27037510 DOI: 10.1111/1467-9566.12421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Although there is a vast literature on drug use and addiction, there is little work that addresses the long-term use of drugs within the general population. We take a more contextual look in examining longitudinal drug use patterns over the course of 14 years for a representative sample of young adults in their late teens and early twenties in the United States using the National Longitudinal Survey of Youth (NLSY). We use a growth trajectory modelling approach for cocaine and marijuana users to determine general use careers. Using contextual and life-course variables, we then estimate a multinomial logistic regression model to predict group membership. In addition to establishing general use career groups, we ask how well mainstream theories comport with our findings and how the different chemical makeup of cocaine and marijuana influence our findings. We find four general use career groups: (i) high use/late desistance; (ii) peaked use/strong desistance; (iii) low use; and (iv) stable use/gradual desistance. Our results suggest similar careers for users of both drugs, with desistance over time as the rule for all groups. We also find some support for life-course and contextual factors in drug using patterns, but our findings challenge other psychological and criminological theories.
Collapse
Affiliation(s)
- Aaron Roussell
- Department of Criminal Justice & Criminology, Washington State University, Pullman, USA
| | - Marisa Omori
- Department of Sociology, University of Miami, USA
| |
Collapse
|
163
|
Katz JL, Hiranita T, Kopajtic TA, Rice KC, Mesangeau C, Narayanan S, Abdelazeem AH, McCurdy CR. Blockade of Cocaine or σ Receptor Agonist Self Administration by Subtype-Selective σ Receptor Antagonists. J Pharmacol Exp Ther 2016; 358:109-24. [PMID: 27189970 PMCID: PMC4931880 DOI: 10.1124/jpet.116.232728] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/14/2016] [Indexed: 11/22/2022] Open
Abstract
The identification of sigma receptor (σR) subtypes has been based on radioligand binding and, despite progress with σ1R cellular function, less is known about σR subtype functions in vivo. Recent findings that cocaine self administration experience will trigger σR agonist self administration was used in this study to assess the in vivo receptor subtype specificity of the agonists (+)-pentazocine, PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], and 1,3-di-o-tolylguanidine (DTG) and several novel putative σR antagonists. Radioligand binding studies determined in vitro σR selectivity of the novel compounds, which were subsequently studied for self administration and antagonism of cocaine, (+)-pentazocine, PRE-084, or DTG self administration. Across the dose ranges studied, none of the novel compounds were self administered, nor did they alter cocaine self administration. All compounds blocked DTG self administration, with a subset also blocking (+)-pentazocine and PRE-084 self administration. The most selective of the compounds in binding σ1Rs blocked cocaine self administration when combined with a dopamine transport inhibitor, either methylphenidate or nomifensine. These drug combinations did not decrease rates of responding maintained by food reinforcement. In contrast, the most selective of the compounds in binding σ2Rs had no effect on cocaine self administration in combination with either dopamine transport inhibitor. Thus, these results identify subtype-specific in vivo antagonists, and the utility of σR agonist substitution for cocaine self administration as an assay capable of distinguishing σR subtype selectivity in vivo. These results further suggest that effectiveness of dual σR antagonism and dopamine transport inhibition in blocking cocaine self administration is specific for σ1Rs and further support this dual targeting approach to development of cocaine antagonists.
Collapse
Affiliation(s)
- Jonathan L Katz
- Psychobiology Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse, Baltimore, Maryland (J.L.K., T.H., T.A.K.); Drug Design and Synthesis Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Baltimore, Maryland (K.C.R.); and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (C.M., S.N., A.H.A., C.R.M.)
| | - Takato Hiranita
- Psychobiology Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse, Baltimore, Maryland (J.L.K., T.H., T.A.K.); Drug Design and Synthesis Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Baltimore, Maryland (K.C.R.); and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (C.M., S.N., A.H.A., C.R.M.)
| | - Theresa A Kopajtic
- Psychobiology Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse, Baltimore, Maryland (J.L.K., T.H., T.A.K.); Drug Design and Synthesis Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Baltimore, Maryland (K.C.R.); and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (C.M., S.N., A.H.A., C.R.M.)
| | - Kenner C Rice
- Psychobiology Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse, Baltimore, Maryland (J.L.K., T.H., T.A.K.); Drug Design and Synthesis Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Baltimore, Maryland (K.C.R.); and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (C.M., S.N., A.H.A., C.R.M.)
| | - Christophe Mesangeau
- Psychobiology Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse, Baltimore, Maryland (J.L.K., T.H., T.A.K.); Drug Design and Synthesis Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Baltimore, Maryland (K.C.R.); and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (C.M., S.N., A.H.A., C.R.M.)
| | - Sanju Narayanan
- Psychobiology Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse, Baltimore, Maryland (J.L.K., T.H., T.A.K.); Drug Design and Synthesis Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Baltimore, Maryland (K.C.R.); and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (C.M., S.N., A.H.A., C.R.M.)
| | - Ahmed H Abdelazeem
- Psychobiology Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse, Baltimore, Maryland (J.L.K., T.H., T.A.K.); Drug Design and Synthesis Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Baltimore, Maryland (K.C.R.); and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (C.M., S.N., A.H.A., C.R.M.)
| | - Christopher R McCurdy
- Psychobiology Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse, Baltimore, Maryland (J.L.K., T.H., T.A.K.); Drug Design and Synthesis Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Baltimore, Maryland (K.C.R.); and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (C.M., S.N., A.H.A., C.R.M.)
| |
Collapse
|
164
|
Bagher AM, Laprairie RB, Kelly MEM, Denovan-Wright EM. Antagonism of Dopamine Receptor 2 Long Affects Cannabinoid Receptor 1 Signaling in a Cell Culture Model of Striatal Medium Spiny Projection Neurons. Mol Pharmacol 2016; 89:652-66. [PMID: 27053685 DOI: 10.1124/mol.116.103465] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/04/2016] [Indexed: 02/14/2025] Open
Abstract
Activation of dopamine receptor 2 long (D2L) switches the signaling of type 1 cannabinoid receptor (CB1) from Gαi to Gαs, a process thought to be mediated through CB1-D2L heteromerization. Given the clinical importance of D2 antagonists, the goal of this study was to determine if D2 antagonists could modulate CB1 signaling. Interactions between CB1 and D2L, Gαi, Gαs, and β-arrestin1 were studied using bioluminescence resonance energy transfer 2 (BRET(2)) in STHdh(Q7/Q7) cells. CB1-dependent extracellular regulated kinase (ERK)1/2, CREB phosphorylation, and CB1 internalization following cotreatment of CB1 agonist and D2 antagonist were quantified. Preassembled CB1-Gαi complexes were detected by BRET(2) Arachidonyl-2'-chloroethylamide (ACEA), a selective CB1 agonist, caused a rapid and transient increase in BRET efficiency (BRETEff) between Gαi-Rluc and CB1-green fluorescent protein 2 (GFP(2)), and a Gαi-dependent increase in ERK phosphorylation. Physical interactions between CB1 and D2L were observed using BRET(2) Cotreatment of STHdh(Q7/Q7) cells with ACEA and haloperidol, a D2 antagonist, inhibited BRETEff signals between Gαi-Rluc and CB1-GFP(2) and reduced the EMax and pEC50 of ACEA-mediated Gαi-dependent ERK phosphorylation. ACEA and haloperidol cotreatments produced a delayed and sustained increase in BRETEff between Gαs-Rluc and CB1-GFP(2) and increased the EMax and pEC50 of ACEA-induced Gαs-dependent cAMP response element-binding protein phosphorylation. In cells expressing CB1 and D2L treated with ACEA, binding of haloperidol to D2 receptors switched CB1 coupling from Gαi to Gαs In addition, haloperidol treatment reduced ACEA-induced β-arrestin1 recruitment to CB1 and CB1 internalization. D2 antagonists allosterically modulate cannabinoid-induced CB1 coupling, signaling, and β-arrestin1 recruitment through binding to CB1-D2L heteromers. These findings indicate that D2 antagonism, like D2 agonists, change agonist-mediated CB1 coupling and signaling.
Collapse
Affiliation(s)
- Amina M Bagher
- Departments of Pharmacology and Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert B Laprairie
- Departments of Pharmacology and Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Melanie E M Kelly
- Departments of Pharmacology and Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Eileen M Denovan-Wright
- Departments of Pharmacology and Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
165
|
Vallée M. Neurosteroids and potential therapeutics: Focus on pregnenolone. J Steroid Biochem Mol Biol 2016; 160:78-87. [PMID: 26433186 DOI: 10.1016/j.jsbmb.2015.09.030] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 12/26/2022]
Abstract
Considerable evidence from preclinical and clinical studies shows that steroids and in particular neurosteroids are important endogenous modulators of several brain-related functions. In this context, it remains to be elucidated whether neurosteroids may serve as biomarkers in the diagnosis of disorders and might have therapeutic potential for the treatment of these disorders. Pregnenolone (PREG) is the main steroid synthesized from cholesterol in mammals and invertebrates. PREG has three main sources of synthesis, the gonads, adrenal glands and brain and is submitted to various metabolizing pathways which are modulated depending on various factors including species, steroidogenic tissues and steroidogenic enzymes. Looking at the whole picture of steroids, PREG is often known as the precursor to other steroids and not as an active steroid per se. Actually, physiological and brain functions have been studied mainly for steroids that are very active either binding to specific intracellular receptors, or modulating with high affinity the abundant membrane receptors, GABAA or NMDA receptors. However, when high sensitive and specific methodological approaches were available to analyze low concentrations of steroids and then match endogenous levels of different steroid metabolomes, several studies have reported more significant alterations in PREG than in other steroids in extraphysiological or pathological conditions, suggesting that PREG could play a functional role as well. Additionally, several molecular targets of PREG were revealed in the mammalian brain and beneficial effects of PREG have been demonstrated in preclinical and clinical studies. On this basis, this review will be divided into three parts. The first provides a brief overview of the molecular targets of PREG and the pharmacological effects observed in animal and human studies. The second will focus on the possible functional role of PREG with an outline of the modulation of PREG levels in animal and in human research. Finally, the review will highlight the possible therapeutic uses of PREG that point towards the development of pregnenolone-like molecules.
Collapse
Affiliation(s)
- Monique Vallée
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction, Bordeaux F33077, France; Université de Bordeaux, Bordeaux F33077, France.
| |
Collapse
|
166
|
The ketamine-like compound methoxetamine substitutes for ketamine in the self-administration paradigm and enhances mesolimbic dopaminergic transmission. Psychopharmacology (Berl) 2016; 233:2241-51. [PMID: 27020786 DOI: 10.1007/s00213-016-4275-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/09/2016] [Indexed: 01/26/2023]
Abstract
RATIONALE Recently, an increasing number of emergency cases due to a novel ketamine-like drug, methoxetamine (MXE), were reported in several countries. However, very little is known about the neuropsychopharmacological and reinforcing profile of this compound. OBJECTIVES Our study aims to investigate the effects of MXE on self-administration (SA) behaviour in comparison to ketamine and on dopaminergic transmission. METHODS A SA substitution study was performed in male rats trained to intravenously (IV) self-administer ketamine. At responding stability, rats were exposed to sequential phases of MXE substitution at different dosages (starting from 0.5 and then decreasing to 0.25 and 0.125 mg/kg). Standard electrophysiological techniques were used to record changes in firing activities of ventral tegmental area (VTA) dopamine neurons projecting to the nucleus accumbens (NAc) shell after acute injection of cumulative doses of MXE (0.031-0.5 mg/kg IV). Finally, in vivo microdialysis was performed in freely moving rats to evaluate the effect of acute MXE administration (0.125, 0.25 and 0.5 mg/kg IV) on dopamine release in the NAc shell. RESULTS MXE 0.125 and 0.25 mg/kg, but not 0.5 mg/kg, substituted for ketamine SA. MXE also induced a dose-dependent stimulation of firing rate (p < 0.0001) and burst firing (p < 0.05) of NAc-projecting VTA dopamine neurons. Consistently, MXE significantly (p < 0.05) increased dopamine extracellular levels in the NAc shell at 0.5 and 0.25 mg/kg with different time onsets, i.e. at 40 and 100 min, respectively. CONCLUSIONS This study, while confirming the reinforcing effects of MXE, highlights an electrophysiological and neurochemical profile predictive of its addictive properties.
Collapse
|
167
|
Mela V, Vargas A, Meza C, Kachani M, Wagner EJ. Modulatory influences of estradiol and other anorexigenic hormones on metabotropic, Gi/o-coupled receptor function in the hypothalamic control of energy homeostasis. J Steroid Biochem Mol Biol 2016; 160:15-26. [PMID: 26232394 PMCID: PMC4732935 DOI: 10.1016/j.jsbmb.2015.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/22/2015] [Accepted: 07/26/2015] [Indexed: 11/22/2022]
Abstract
The appetite suppressant actions of estradiol are due to its ability to attenuate orexigenic signals and potentiate anorexigenic signals. The work from my laboratory has shown that male guinea pigs are more sensitive to the hyperphagic and hypothermic effects of cannabinoids than their female counterparts. Cannabinoid sensitivity is further dampened by the activational effects of estradiol. This occurs via the hypothalamic feeding circuitry, where estradiol rapidly attenuates the cannabinoid CB1 receptor-mediated presynaptic inhibition of glutamatergic input onto anorexigenic proopiomelanocortin (POMC) neurons in the arcuate nucleus. This disruption is blocked by the estrogen receptor antagonist ICI 182,780, and associated with increased expression of phosphatidylinositol-3-kinase (PI3K). Moreover, the ability of estradiol to reduce both the cannabinoid-induced hyperphagia and glutamate release onto POMC neurons is abrogated by the PI3K inhibitor PI 828. The peptide orphanin FQ/nociceptin (OFQ/N) activates opioid receptor-like (ORL)1 receptors to hyperpolarize and inhibit POMC neurons via the activation of postsynaptic G protein-gated, inwardly-rectifying (GIRK) channels. We have demonstrated that the fasting-induced hyperphagia observed in ORL1-null mice is blunted compared to wild type controls. In addition, the ORL1 receptor-mediated activation of GIRK channels in POMC neurons from ovariectomized female rats is markedly impaired by estradiol. The estrogenic attenuation of presynaptic CB1 and postsynaptic ORL1 receptor function may be part of a more generalized mechanism through which anorexigenic hormones suppress orexigenic signaling. Indeed, we have found that leptin robustly suppresses the OFQ/N-induced activation of GIRK channels in POMC neurons. Furthermore, its ability to augment excitatory input onto POMC neurons is blocked by PI 828. Thus, estradiol and other hormones like leptin reduce energy intake at least partly by activating PI3K to disrupt the pleiotropic functions of Gi/o-coupled receptors that inhibit anorexigenic POMC neurons.
Collapse
Affiliation(s)
- Virginia Mela
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Amanda Vargas
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Cecilia Meza
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Malika Kachani
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Edward J Wagner
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States.
| |
Collapse
|
168
|
Scherma M, Muntoni AL, Melis M, Fattore L, Fadda P, Fratta W, Pistis M. Interactions between the endocannabinoid and nicotinic cholinergic systems: preclinical evidence and therapeutic perspectives. Psychopharmacology (Berl) 2016; 233:1765-77. [PMID: 26728894 DOI: 10.1007/s00213-015-4196-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/13/2015] [Indexed: 12/29/2022]
Abstract
RATIONALE Several lines of evidence suggest that endocannabinoid and nicotinic cholinergic systems are implicated in the regulation of different physiological processes, including reward, and in the neuropathological mechanisms of psychiatric diseases, such as addiction. A crosstalk between these two systems is substantiated by the overlapping distribution of cannabinoid and nicotinic acetylcholine receptors in many brain structures. OBJECTIVE We will review recent preclinical data showing how the endocannabinoid and nicotinic cholinergic systems interact bidirectionally at the level of the brain reward pathways, and how this interaction plays a key role in modulating nicotine and cannabinoid intake and dependence. RESULTS Many behavioral and neurochemical effects of nicotine that are related to its addictive potential are reduced by pharmacological blockade or genetic deletion of type-1 cannabinoid receptors, inhibition of endocannabinoid uptake or metabolic degradation, and activation of peroxisome proliferator-activated-receptor-α. On the other hand, cholinergic antagonists at α7 nicotinic acetylcholine receptors as well as endogenous negative allosteric modulators of these receptors are effective in blocking dependence-related effects of cannabinoids. CONCLUSIONS Pharmacological manipulation of the endocannabinoid system and endocannabinoid-like neuromodulators shows promise in the treatment of nicotine dependence and in relapse prevention. Likewise, drugs acting at nicotinic acetylcholine receptors might prove useful in the therapy of cannabinoid dependence. Research by Steven R. Goldberg has significantly contributed to the progress in this research field.
Collapse
Affiliation(s)
- Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato (CA), 09042, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, section of Cagliari, National Research Council, Cagliari, Italy
- Centre of Excellence "Neurobiology of Dependence", University of Cagliari, Cagliari, Italy
| | - Miriam Melis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato (CA), 09042, Italy
| | - Liana Fattore
- Neuroscience Institute, section of Cagliari, National Research Council, Cagliari, Italy
- Centre of Excellence "Neurobiology of Dependence", University of Cagliari, Cagliari, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato (CA), 09042, Italy
- Centre of Excellence "Neurobiology of Dependence", University of Cagliari, Cagliari, Italy
| | - Walter Fratta
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato (CA), 09042, Italy
- Centre of Excellence "Neurobiology of Dependence", University of Cagliari, Cagliari, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato (CA), 09042, Italy.
- Neuroscience Institute, section of Cagliari, National Research Council, Cagliari, Italy.
- Centre of Excellence "Neurobiology of Dependence", University of Cagliari, Cagliari, Italy.
| |
Collapse
|
169
|
Preclinical studies on the reinforcing effects of cannabinoids. A tribute to the scientific research of Dr. Steve Goldberg. Psychopharmacology (Berl) 2016; 233:1845-66. [PMID: 27026633 PMCID: PMC5073892 DOI: 10.1007/s00213-016-4244-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/09/2016] [Indexed: 11/27/2022]
Abstract
RATIONALE The reinforcing effects of most abused drugs have been consistently demonstrated and studied in animal models, although those of marijuana were not, until the demonstration 15 years ago that delta-9-tetrahydrocannabinol (THC) could serve as a reinforcer in self-administration (SA) procedures in squirrel monkeys. Until then, those effects were inferred using indirect assessments. OBJECTIVES The aim of this manuscript is to review the primary preclinical procedures used to indirectly and directly infer reinforcing effects of cannabinoid drugs. METHODS Results will be reviewed from studies of cannabinoid discrimination, intracranial self-stimulation (ICSS), conditioned place preference (CPP), as well as change in levels of dopamine assessed in brain areas related to reinforcement, and finally from self-administration procedures. For each procedure, an evaluation will be made of the predictive validity in detecting the potential abuse liability of cannabinoids based on seminal papers, with the addition of selected reports from more recent years especially those from Dr. Goldberg's research group. RESULTS AND CONCLUSIONS ICSS and CPP do not provide consistent results for the assessment of potential for abuse of cannabinoids. However, drug discrimination and neurochemistry procedures appear to detect potential for abuse of cannabinoids, as well as several novel "designer cannabinoid drugs." Though after 15 years transfer of the self-administration model of marijuana abuse from squirrel monkeys to other species remains somewhat problematic, studies with the former species have substantially advanced the field, and several reports have been published with consistent self-administration of cannabinoid agonists in rodents.
Collapse
|
170
|
Edwards A, Abizaid A. Driving the need to feed: Insight into the collaborative interaction between ghrelin and endocannabinoid systems in modulating brain reward systems. Neurosci Biobehav Rev 2016; 66:33-53. [PMID: 27136126 DOI: 10.1016/j.neubiorev.2016.03.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 03/08/2016] [Accepted: 03/31/2016] [Indexed: 01/29/2023]
Abstract
Independent stimulation of either the ghrelin or endocannabinoid system promotes food intake and increases adiposity. Given the similar distribution of their receptors in feeding associated brain regions and organs involved in metabolism, it is not surprising that evidence of their interaction and its importance in modulating energy balance has emerged. This review documents the relationship between ghrelin and endocannabinoid systems within the periphery and hypothalamus (HYP) before presenting evidence suggesting that these two systems likewise work collaboratively within the ventral tegmental area (VTA) to modulate non-homeostatic feeding. Mechanisms, consistent with current evidence and local infrastructure within the VTA, will be proposed.
Collapse
Affiliation(s)
- Alexander Edwards
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
171
|
Miliano C, Serpelloni G, Rimondo C, Mereu M, Marti M, De Luca MA. Neuropharmacology of New Psychoactive Substances (NPS): Focus on the Rewarding and Reinforcing Properties of Cannabimimetics and Amphetamine-Like Stimulants. Front Neurosci 2016; 10:153. [PMID: 27147945 PMCID: PMC4835722 DOI: 10.3389/fnins.2016.00153] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/21/2016] [Indexed: 01/19/2023] Open
Abstract
New psychoactive substances (NPS) are a heterogeneous and rapidly evolving class of molecules available on the global illicit drug market (e.g smart shops, internet, “dark net”) as a substitute for controlled substances. The use of NPS, mainly consumed along with other drugs of abuse and/or alcohol, has resulted in a significantly growing number of mortality and emergency admissions for overdoses, as reported by several poison centers from all over the world. The fact that the number of NPS have more than doubled over the last 10 years, is a critical challenge to governments, the scientific community, and civil society [EMCDDA (European Drug Report), 2014; UNODC, 2014b; Trends and developments]. The chemical structure (phenethylamines, piperazines, cathinones, tryptamines, synthetic cannabinoids) of NPS and their pharmacological and clinical effects (hallucinogenic, anesthetic, dissociative, depressant) help classify them into different categories. In the recent past, 50% of newly identified NPS have been classified as synthetic cannabinoids followed by new phenethylamines (17%) (UNODC, 2014b). Besides peripheral toxicological effects, many NPS seem to have addictive properties. Behavioral, neurochemical, and electrophysiological evidence can help in detecting them. This manuscript will review existing literature about the addictive and rewarding properties of the most popular NPS classes: cannabimimetics (JWH, HU, CP series) and amphetamine-like stimulants (amphetamine, methamphetamine, methcathinone, and MDMA analogs). Moreover, the review will include recent data from our lab which links JWH-018, a CB1 and CB2 agonist more potent than Δ9-THC, to other cannabinoids with known abuse potential, and to other classes of abused drugs that increase dopamine signaling in the Nucleus Accumbens (NAc) shell. Thus the neurochemical mechanisms that produce the rewarding properties of JWH-018, which most likely contributes to the greater incidence of dependence associated with “Spice” use, will be described (De Luca et al., 2015a). Considering the growing evidence of a widespread use of NPS, this review will be useful to understand the new trends in the field of drug reward and drug addiction by revealing the rewarding properties of NPS, and will be helpful to gather reliable data regarding the abuse potential of these compounds.
Collapse
Affiliation(s)
- Cristina Miliano
- Department of Biomedical Sciences, University of Cagliari Cagliari, Italy
| | - Giovanni Serpelloni
- Advisory and Steering Group, URITo.N. - Unit for Research and Innovation on Forensic Toxicology, Neuroscience of Addiction and New Drugs. FT-DSS University of Florence Florence, Italy
| | - Claudia Rimondo
- Department of Diagnostic and Public Health, University of Verona Verona, Italy
| | - Maddalena Mereu
- Departmentof Pharmaceutical and Pharmacological Sciences, University of Padua Padua, Italy
| | - Matteo Marti
- Department of Life Sciences and Biotechnology, University of Ferrara Ferrara, Italy
| | | |
Collapse
|
172
|
Curran HV, Freeman TP, Mokrysz C, Lewis DA, Morgan CJA, Parsons LH. Keep off the grass? Cannabis, cognition and addiction. Nat Rev Neurosci 2016; 17:293-306. [PMID: 27052382 DOI: 10.1038/nrn.2016.28] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In an increasing number of states and countries, cannabis now stands poised to join alcohol and tobacco as a legal drug. Quantifying the relative adverse and beneficial effects of cannabis and its constituent cannabinoids should therefore be prioritized. Whereas newspaper headlines have focused on links between cannabis and psychosis, less attention has been paid to the much more common problem of cannabis addiction. Certain cognitive changes have also been attributed to cannabis use, although their causality and longevity are fiercely debated. Identifying why some individuals are more vulnerable than others to the adverse effects of cannabis is now of paramount importance to public health. Here, we review the current state of knowledge about such vulnerability factors, the variations in types of cannabis, and the relationship between these and cognition and addiction.
Collapse
Affiliation(s)
- H Valerie Curran
- Clinical Psychopharmacology Unit, University College London, Gower Street, London WC1E 6BT, UK
| | - Tom P Freeman
- Clinical Psychopharmacology Unit, University College London, Gower Street, London WC1E 6BT, UK
| | - Claire Mokrysz
- Clinical Psychopharmacology Unit, University College London, Gower Street, London WC1E 6BT, UK
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, Pennsylvania 15213, USA
| | - Celia J A Morgan
- Clinical Psychopharmacology Unit, University College London, Gower Street, London WC1E 6BT, UK.,Psychopharmacology and Addiction Research Centre, University of Exeter, Perry Road, Exeter EX4 4QG, UK
| | - Loren H Parsons
- The Scripps Research Institute, 10550 N. Torrey Pines Road, SP30-2001, La Jolla, California 92037, USA
| |
Collapse
|
173
|
Pei Y, Asif-Malik A, Canales JJ. Trace Amines and the Trace Amine-Associated Receptor 1: Pharmacology, Neurochemistry, and Clinical Implications. Front Neurosci 2016; 10:148. [PMID: 27092049 PMCID: PMC4820462 DOI: 10.3389/fnins.2016.00148] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 03/21/2016] [Indexed: 01/30/2023] Open
Abstract
Biogenic amines are a collection of endogenous molecules that play pivotal roles as neurotransmitters and hormones. In addition to the "classical" biogenic amines resulting from decarboxylation of aromatic acids, including dopamine (DA), norepinephrine, epinephrine, serotonin (5-HT), and histamine, other biogenic amines, present at much lower concentrations in the central nervous system (CNS), and hence referred to as "trace" amines (TAs), are now recognized to play significant neurophysiological and behavioral functions. At the turn of the century, the discovery of the trace amine-associated receptor 1 (TAAR1), a phylogenetically conserved G protein-coupled receptor that is responsive to both TAs, such as β-phenylethylamine, octopamine, and tyramine, and structurally-related amphetamines, unveiled mechanisms of action for TAs other than interference with aminergic pathways, laying the foundations for deciphering the functional significance of TAs and its mammalian CNS receptor, TAAR1. Although, its molecular interactions and downstream targets have not been fully elucidated, TAAR1 activation triggers accumulation of intracellular cAMP, modulates PKA and PKC signaling and interferes with the β-arrestin2-dependent pathway via G protein-independent mechanisms. TAAR1 is uniquely positioned to exert direct control over DA and 5-HT neuronal firing and release, which has profound implications for understanding the pathophysiology of, and therefore designing more efficacious therapeutic interventions for, a range of neuropsychiatric disorders that involve aminergic dysregulation, including Parkinson's disease, schizophrenia, mood disorders, and addiction. Indeed, the recent development of novel pharmacological tools targeting TAAR1 has uncovered the remarkable potential of TAAR1-based medications as new generation pharmacotherapies in neuropsychiatry. This review summarizes recent developments in the study of TAs and TAAR1, their intricate neurochemistry and pharmacology, and their relevance for neurodegenerative and neuropsychiatric disease.
Collapse
Affiliation(s)
| | | | - Juan J. Canales
- Department of Neuroscience, Psychology and Behaviour, University of LeicesterLeicester, UK
| |
Collapse
|
174
|
Reddy DS, Golub VM. The Pharmacological Basis of Cannabis Therapy for Epilepsy. J Pharmacol Exp Ther 2016; 357:45-55. [PMID: 26787773 DOI: 10.1124/jpet.115.230151] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/15/2016] [Indexed: 12/30/2022] Open
Abstract
Recently, cannabis has been suggested as a potential alternative therapy for refractory epilepsy, which affects 30% of epilepsy, both adults and children, who do not respond to current medications. There is a large unmet medical need for new antiepileptics that would not interfere with normal function in patients with refractory epilepsy and conditions associated with refractory seizures. The two chief cannabinoids are Δ-9-tetrahyrdrocannabinol, the major psychoactive component of marijuana, and cannabidiol (CBD), the major nonpsychoactive component of marijuana. Claims of clinical efficacy in epilepsy of CBD-predominant cannabis or medical marijuana come mostly from limited studies, surveys, or case reports. However, the mechanisms underlying the antiepileptic efficacy of cannabis remain unclear. This article highlights the pharmacological basis of cannabis therapy, with an emphasis on the endocannabinoid mechanisms underlying the emerging neurotherapeutics of CBD in epilepsy. CBD is anticonvulsant, but it has a low affinity for the cannabinoid receptors CB1 and CB2; therefore the exact mechanism by which it affects seizures remains poorly understood. A rigorous clinical evaluation of pharmaceutical CBD products is needed to establish the safety and efficacy of their use in the treatment of epilepsy. Identification of mechanisms underlying the anticonvulsant efficacy of CBD is also critical for identifying other potential treatment options.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Victoria M Golub
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
175
|
Adolescent Δ(9)-Tetrahydrocannabinol Exposure Alters WIN55,212-2 Self-Administration in Adult Rats. Neuropsychopharmacology 2016; 41:1416-26. [PMID: 26388146 PMCID: PMC4793126 DOI: 10.1038/npp.2015.295] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 12/13/2022]
Abstract
Cannabis is the most commonly used illicit drug worldwide, and use is typically initiated during adolescence. The endocannabinoid system has an important role in formation of the nervous system, from very early development through adolescence. Cannabis exposure during this vulnerable period might lead to neurobiological changes that affect adult brain functions and increase the risk of cannabis use disorder. The aim of this study was to investigate whether exposure to Δ(9)-tetrahydrocannabinol (THC) in adolescent rats might enhance reinforcing effects of cannabinoids in adulthood. Male adolescent rats were treated with increasing doses of THC (or its vehicle) twice/day for 11 consecutive days (PND 45-55). When the animals reached adulthood, they were tested by allowing them to intravenously self-administer the cannabinoid CB1-receptor agonist WIN55,212-2. In a separate set of animals given the same THC (or vehicle) treatment regimen, electrophysiological and neurochemical experiments were performed to assess possible modifications of the mesolimbic dopaminergic system, which is critically involved in cannabinoid-induced reward. Behavioral data showed that acquisition of WIN55,212-2 self-administration was enhanced in THC-exposed rats relative to vehicle-exposed controls. Neurophysiological data showed that THC-exposed rats displayed a reduced capacity for WIN55,212-2 to stimulate firing of dopamine neurons in the ventral tegmental area and to increase dopamine levels in the nucleus accumbens shell. These findings-that early, passive exposure to THC can produce lasting alterations of the reward system of the brain and subsequently increase cannabinoid self-administration in adulthood-suggest a mechanism by which adolescent cannabis exposure could increase the risk of subsequent cannabis dependence in humans.
Collapse
|
176
|
Cadoni C. Fischer 344 and Lewis Rat Strains as a Model of Genetic Vulnerability to Drug Addiction. Front Neurosci 2016; 10:13. [PMID: 26903787 PMCID: PMC4746315 DOI: 10.3389/fnins.2016.00013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/11/2016] [Indexed: 01/02/2023] Open
Abstract
Today it is well acknowledged that both nature and nurture play important roles in the genesis of psychopathologies, including drug addiction. Increasing evidence suggests that genetic factors contribute for at least 40–60% of the variation in liability to drug dependence. Human genetic studies suggest that multiple genes of small effect, rather than single genes, contribute to the genesis of behavioral psychopathologies. Therefore, the use of inbred rat strains might provide a valuable tool to identify differences, linked to genotype, important in liability to addiction and related disorders. In this regard, Lewis and Fischer 344 inbred rats have been proposed as a model of genetic vulnerability to drug addiction, given their innate differences in sensitivity to the reinforcing and rewarding effects of drugs of abuse, as well their different responsiveness to stressful stimuli. This review will provide evidence in support of this model for the study of the genetic influence on addiction vulnerability, with particular emphasis on differences in mesolimbic dopamine (DA) transmission, rewarding and emotional function. It will be highlighted that Lewis and Fischer 344 rats differ not only in several indices of DA transmission and adaptive changes following repeated drug exposure, but also in hypothalamic-pituitary-adrenal (HPA) axis responsiveness, influencing not only the ability of the individual to cope with stressful events, but also interfering with rewarding and motivational processes, given the influence of corticosteroids on dopamine neuron functionality. Further differences between the two strains, as impulsivity or anxiousness, might contribute to their different proneness to addiction, and likely these features might be linked to their different DA neurotransmission plasticity. Although differences in other neurotransmitter systems might deserve further investigation, results from the reviewed studies might open new vistas in understanding aberrant deviations in reward and motivational functions.
Collapse
Affiliation(s)
- Cristina Cadoni
- Institute of Neuroscience, Cagliari Section, Department of Biomedical Sciences, National Research Council of ItalyCagliari, Italy; Centre of Excellence "Neurobiology of Dependence", University of CagliariCagliari, Italy
| |
Collapse
|
177
|
Ghrelin and endocannabinoids participation in morphine-induced effects in the rat nucleus accumbens. Psychopharmacology (Berl) 2016; 233:469-84. [PMID: 26507196 DOI: 10.1007/s00213-015-4119-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 10/15/2015] [Indexed: 12/11/2022]
Abstract
RATIONALE AND OBJECTIVES In addition to dopamine, endocannabinoids are thought to participate in neural reward mechanisms of opioids. Number of recent studies suggests crucial involvement of ghrelin in some addictive drugs effects. Our previous results showed that ghrelin participates in morphine-induced changes in the mesolimbic dopaminergic system associated with reward processing. The goal of the present study was to test whether the growth hormone secretagogue receptor (GHS-R1A) antagonist JMV2959 was able to influence morphine-induced effects on anandamide (N-arachidonoylethanolamine, AEA) and 2-arachidonoylglycerol (2-AG) in the nucleus accumbens shell (NACSh). METHODS We used in vivo microdialysis to determine changes in levels of AEA and 2-AG in the NACSh in rats following (i) an acute morphine dose (5, 10 mg/kg s.c.) with and without JMV2959 pretreatment (3, 6 mg/kg i.p.) or (ii) a morphine challenge dose (5 mg/kg s.c.) with and without JMV2959 (3, 6 mg/kg i.p.) pretreatment, administered during abstinence following repeated doses of morphine (5 days, 10-40 mg/kg). Co-administration of ghrelin (40 ug/kg i.p.) was used to verify the ghrelin mechanisms involvement. RESULTS Pretreatment with JMV2959 significantly and dose-dependently reversed morphine-induced anandamide increases in the NACSh in both the acute and longer-term models, resulting in a significant AEA decrease. JMV2959 significantly intensified acute morphine-induced decreases in accumbens 2-AG levels and attenuated morphine challenge-induced 2-AG decreases. JMV2959 pretreatment significantly reduced concurrent morphine challenge-induced behavioral sensitization. JMV2959 pretreatment effects were abolished by co-administration of ghrelin. CONCLUSIONS Our results indicate significant involvement of ghrelin signaling in morphine-induced endocannabinoid changes in the NACSh.
Collapse
|
178
|
Oliva I, Wanat MJ. Ventral Tegmental Area Afferents and Drug-Dependent Behaviors. Front Psychiatry 2016; 7:30. [PMID: 27014097 PMCID: PMC4780106 DOI: 10.3389/fpsyt.2016.00030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/23/2016] [Indexed: 01/10/2023] Open
Abstract
Drug-related behaviors in both humans and rodents are commonly thought to arise from aberrant learning processes. Preclinical studies demonstrate that the acquisition and expression of many drug-dependent behaviors involves the ventral tegmental area (VTA), a midbrain structure comprised of dopamine, GABA, and glutamate neurons. Drug experience alters the excitatory and inhibitory synaptic input onto VTA dopamine neurons, suggesting a critical role for VTA afferents in mediating the effects of drugs. In this review, we present evidence implicating the VTA in drug-related behaviors, highlight the diversity of neuronal populations in the VTA, and discuss the behavioral effects of selectively manipulating VTA afferents. Future experiments are needed to determine which VTA afferents and what neuronal populations in the VTA mediate specific drug-dependent behaviors. Further studies are also necessary for identifying the afferent-specific synaptic alterations onto dopamine and non-dopamine neurons in the VTA following drug administration. The identification of neural circuits and adaptations involved with drug-dependent behaviors can highlight potential neural targets for pharmacological and deep brain stimulation interventions to treat substance abuse disorders.
Collapse
Affiliation(s)
- Idaira Oliva
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio , San Antonio, TX , USA
| | - Matthew J Wanat
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio , San Antonio, TX , USA
| |
Collapse
|
179
|
Hernandez G, Cheer JF. To Act or Not to Act: Endocannabinoid/Dopamine Interactions in Decision-Making. Front Behav Neurosci 2015; 9:336. [PMID: 26733830 PMCID: PMC4681836 DOI: 10.3389/fnbeh.2015.00336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/19/2015] [Indexed: 12/11/2022] Open
Abstract
Decision-making is an ethologically adaptive construct that is impaired in multiple psychiatric disorders. Activity within the mesocorticolimbic dopamine system has been traditionally associated with decision-making. The endocannabinoid system through its actions on inhibitory and excitatory synapses modulates dopamine activity and decision-making. The aim of this brief review is to present a synopsis of available data obtained when the endocannabinoid system is manipulated and dopamine activity recorded. To this end, we review research using different behavioral paradigms to provide further insight into how this ubiquitous signaling system biases dopamine-related behaviors to regulate decision-making.
Collapse
Affiliation(s)
- Giovanni Hernandez
- Faculté de Pharmacie, Université de Montréal Montréal, Quebec, QC, Canada
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of MedicineBaltimore, Maryland, MD, USA; Department of Psychiatry, University of Maryland School of MedicineBaltimore, Maryland, MD, USA
| |
Collapse
|
180
|
Abstract
The endocannabinoid system consists of endogenous cannabinoids (endocannabinoids), the enzymes that synthesize and degrade endocannabinoids, and the receptors that transduce the effects of endocannabinoids. Much of what we know about the function of endocannabinoids comes from studies that combine localization of endocannabinoid system components with physiological or behavioral approaches. This review will focus on the localization of the best-known components of the endocannabinoid system for which the strongest anatomical evidence exists.
Collapse
|
181
|
De Luca MA, Castelli MP, Loi B, Porcu A, Martorelli M, Miliano C, Kellett K, Davidson C, Stair JL, Schifano F, Di Chiara G. Native CB1 receptor affinity, intrinsic activity and accumbens shell dopamine stimulant properties of third generation SPICE/K2 cannabinoids: BB-22, 5F-PB-22, 5F-AKB-48 and STS-135. Neuropharmacology 2015; 105:630-638. [PMID: 26686391 DOI: 10.1016/j.neuropharm.2015.11.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 01/07/2023]
Abstract
In order to investigate the in vivo dopamine (DA) stimulant properties of selected 3rd generation Spice/K2 cannabinoids, BB-22, 5F-PB-22, 5F-AKB-48 and STS-135, their in vitro affinity and agonist potency at native rat and mice CB1 receptors was studied. The compounds bind with high affinity to CB1 receptors in rat cerebral cortex homogenates and stimulate CB1-induced [(35)S]GTPγS binding with high potency and efficacy. BB-22 and 5F-PB-22 showed the lowest Ki of binding to CB1 receptors (0.11 and 0.13 nM), i.e., 30 and 26 times lower respectively than that of JWH-018 (3.38 nM), and a potency (EC50, 2.9 and 3.7 nM, respectively) and efficacy (Emax, 217% and 203%, respectively) as CB1 agonists higher than JWH-018 (EC50, 20.2 nM; Emax, 163%). 5F-AKB-48 and STS-135 had higher Ki for CB1 binding, higher EC50 and lower Emax as CB1 agonists than BB-22 and 5F-PB-22 but still comparatively more favourable than JWH-018. The agonist properties of all the compounds were abolished or drastically reduced by the CB1 antagonist/inverse agonist AM251 (0.1 μM). No activation of G-protein was observed in CB1-KO mice. BB-22 (0.003-0.01 mg/kg i.v.) increased dialysate DA in the accumbens shell but not in the core or in the medial prefrontal cortex, with a bell shaped dose-response curve and an effect at 0.01 mg/kg and a biphasic time-course. Systemic AM251 (1.0 mg/kg i.p.) completely prevented the stimulant effect of BB-22 on dialysate DA in the NAc shell. All the other compounds increased dialysate DA in the NAc shell at doses consistent with their in vitro affinity for CB1 receptors (5F-PB-22, 0.01 mg/kg; 5F-AKB-48, 0.1 mg/kg; STS-135, 0.15 mg/kg i.v.). 3rd generation cannabinoids can be even more potent and super-high CB1 receptor agonists compared to JWH-018. Future research will try to establish if these properties can explain the high toxicity and lethality associated with these compounds.
Collapse
Affiliation(s)
| | - M Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Barbara Loi
- School of Life and Medical Sciences, University of Hertfordshire, UK
| | - Alessandra Porcu
- Department of Biomedical Sciences, University of Cagliari, Italy
| | | | - Cristina Miliano
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Kathryn Kellett
- School of Life and Medical Sciences, University of Hertfordshire, UK
| | - Colin Davidson
- Pharmacology and Cell Physiology, Division of Biomedical Science, St George's University of London, London, UK
| | | | - Fabrizio Schifano
- School of Life and Medical Sciences, University of Hertfordshire, UK
| | - Gaetano Di Chiara
- Department of Biomedical Sciences, University of Cagliari, Italy; CNR Institute of Neuroscience, Cagliari Section, University of Cagliari, Italy.
| |
Collapse
|
182
|
Molecular Mechanisms of Cannabis Signaling in the Brain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:123-47. [PMID: 26810000 DOI: 10.1016/bs.pmbts.2015.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cannabis has been cultivated and used by humans for thousands of years. Research for decades was focused on understanding the mechanisms of an illegal/addictive drug. This led to the discovery of the vast endocannabinoid system. Research has now shifted to understanding fundamental biological questions related to one of the most widespread signaling systems in both the brain and the body. Our understanding of cannabinoid signaling has advanced significantly in the last two decades. In this review, we discuss the state of knowledge on mechanisms of Cannabis signaling in the brain and the modulation of key brain neurotransmitter systems involved in both brain reward/addiction and psychiatric disorders. It is highly probable that various cannabinoids will be found to be efficacious in the treatment of a number of psychiatric disorders. However, while there is clearly much potential, marijuana has not been properly vetted by the medical-scientific evaluation process and there are clearly a range of potentially adverse side-effects-including addiction. We are at crossroads for research on endocannabinoid function and therapeutics (including the use of exogenous treatments such as Cannabis). With over 100 cannabinoid constituents, the majority of which have not been studied, there is much Cannabis research yet to be done. With more states legalizing both the medicinal and recreational use of marijuana the rigorous scientific investigation into cannabinoid signaling is imperative.
Collapse
|
183
|
Nakao K, Hirakata M, Miyamoto Y, Kainoh M, Wakasa Y, Yanagita T. Nalfurafine hydrochloride, a selective κ opioid receptor agonist, has no reinforcing effect on intravenous self-administration in rhesus monkeys. J Pharmacol Sci 2015; 130:8-14. [PMID: 26786553 DOI: 10.1016/j.jphs.2015.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/20/2015] [Accepted: 11/24/2015] [Indexed: 11/16/2022] Open
Abstract
Nalfurafine hydrochloride [(E)-N-[17-(cyclopropylmethyl)-4,5α-epoxy-3,14-dihydroxymorphinan-6β-yl]-3-(furan-3-yl)-N-methylprop-2-enamide monohydrochloride; nalfurafine] is used in Japan as an antipruritic for the treatment of intractable pruritus in patients undergoing hemodialysis or with chronic liver disease. It is a potent and selective agonist at the κ opioid receptor, but also has weak and partial agonist activity at μ opioid receptors. Opioids, especially those acting at μ receptors, carry a risk of abuse. This is an important factor in the consideration of therapeutic risk vs. benefit in clinical use and the potential for misuse as a public health problem. It is therefore necessary to carefully evaluate the reinforcing effects of nalfurafine. To this end, we investigated intravenous self-administration of nalfurafine in rhesus monkeys. The number of self-administration of nalfurafine at doses of 0.0625, 0.125 and 0.25 μg/kg/infusion was not higher than that of saline in rhesus monkeys that frequently self-administered pentazocine (0.25 mg/kg/infusion). These results indicate that nalfurafine has no reinforcing effect in rhesus monkeys in the intravenous self-administration paradigm.
Collapse
Affiliation(s)
- Kaoru Nakao
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan.
| | - Mikito Hirakata
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Yohei Miyamoto
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Mie Kainoh
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Yoshio Wakasa
- Marketing Department, Ina Research Inc., 2148-188 Nishiminowa, Ina-shi, Nagano 399-4501, Japan
| | - Tomoji Yanagita
- Scientific Advisor, Ina Research Inc., 2148-188 Nishiminowa, Ina-shi, Nagano 399-4501, Japan
| |
Collapse
|
184
|
Romano-López A, Méndez-Díaz M, García FG, Regalado-Santiago C, Ruiz-Contreras AE, Prospéro-García O. Maternal separation and early stress cause long-lasting effects on dopaminergic and endocannabinergic systems and alters dendritic morphology in the nucleus accumbens and frontal cortex in rats. Dev Neurobiol 2015; 76:819-31. [PMID: 26539755 DOI: 10.1002/dneu.22361] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/22/2015] [Accepted: 11/02/2015] [Indexed: 12/22/2022]
Abstract
A considerable amount experimental studies have shown that maternal separation (MS) is associated with adult offspring abnormal behavior and cognition disorder. Accordingly, this experimental procedure has been proposed as a predictor for alcohol and drug dependence based on the neurodevelopmental soon after birth. Endocannabinoid system (eCBs) has been implicated in reward processes, including drug abuse and dependence. MS and associated stress causes changes in the eCBs that seem to facilitate alcohol consumption. In this study, we seek to evaluate potential morphological changes in neurons of the frontal cortex (FCx) and nucleus accumbens (NAcc), in the expression of receptors and enzymes of the endocannabinoid and dopamine systems and in second messengers, such as Akt, in adult rats subjected to MS and early stress (MS + ES; 2 × 180 min daily) vs. nonseparated rats (NMS). Results showed that MS + ES induces higher D2R expression and lower D3R, FAAH, and MAGL expression compared with NMS rats. Alterations in total dendritic length were also detected and were characterized by increases in the NAcc while there were decreases in the FCx. We believe MS + ES-induced changes in the dopaminergic and endocannabinergic systems and in the neuronal microstructure might be contributing to alcohol seeking behavior and, potential vulnerability to other drugs in rats. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 819-831, 2016.
Collapse
Affiliation(s)
- Antonio Romano-López
- Departamento De Fisiología, Laboratorio De Canabinoides, Facultad De Medicina, Universidad Nacional Autónoma De México, Mexico City, Mexico
| | - Mónica Méndez-Díaz
- Departamento De Fisiología, Laboratorio De Canabinoides, Facultad De Medicina, Universidad Nacional Autónoma De México, Mexico City, Mexico
| | - Fabio García García
- Laboratorio De Biología Del Sueño, Instituto De Ciencias De La Salud, Universidad Veracruzana, 91160, Ver., Mexico
| | - Citlalli Regalado-Santiago
- Laboratorio De Biología Del Sueño, Instituto De Ciencias De La Salud, Universidad Veracruzana, 91160, Ver., Mexico
| | - Alejandra E Ruiz-Contreras
- Laboratorio De Neurogenómica Cognitiva, Coordinación De Psicofisiología, Facultad De Psicología, Universidad Nacional Autónoma De México, Mexico City, Mexico
| | - Oscar Prospéro-García
- Departamento De Fisiología, Laboratorio De Canabinoides, Facultad De Medicina, Universidad Nacional Autónoma De México, Mexico City, Mexico
| |
Collapse
|
185
|
De Luca MA, Bimpisidis Z, Melis M, Marti M, Caboni P, Valentini V, Margiani G, Pintori N, Polis I, Marsicano G, Parsons LH, Di Chiara G. Stimulation of in vivo dopamine transmission and intravenous self-administration in rats and mice by JWH-018, a Spice cannabinoid. Neuropharmacology 2015; 99:705-14. [PMID: 26327678 DOI: 10.1016/j.neuropharm.2015.08.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
The synthetic cannabinoid 1-pentyl-3-(1-naphthoyl)-indole (JWH-018) has been detected in about 140 samples of a smokable herbal mixture termed "Spice". JWH-018 is a CB1 and CB2 agonist with a higher affinity than Δ9-THC. In order to investigate the neurobiological substrates of JWH-018 actions, we studied by microdialysis in freely moving rats the effect of JWH-018 on extracellular dopamine (DA) levels in the nucleus accumbens (NAc) shell and core and in the medial prefrontal cortex (mPFC). JWH-018, at the dose of 0.25 mg/kg i.p., increased DA release in the NAc shell but not in the NAc core and mPFC. Lower (0.125 mg/kg) and higher doses (0.50 mg/kg) were ineffective. These effects were blocked by CB1 receptor antagonists (SR-141716A and AM 251) and were absent in mice lacking the CB1 receptor. Ex vivo whole cell patch clamp recordings from rat ventral tegmental area (VTA) DA neurons showed that JWH-018 decreases GABAA-mediated post-synaptic currents in a dose-dependent fashion suggesting that the stimulation of DA release observed in vivo might result from disinhibition of DA neurons. In addition, on the "tetrad" paradigm for screening cannabinoid-like effects (i.e., hypothermia, analgesia, catalepsy, hypomotility), JWH-018, at doses of 1 and 3 mg/kg i.p., produced CB1 receptor-dependent behavioural effects in rats. Finally, under appropriate experimental conditions, rats (20 μg/kg/inf i.v., FR3; nose-poking) and mice (30 μg/kg/inf i.v., FR1; lever-pressing) self-administer intravenously JWH-018. In conclusion, JWH-018 shares with the active ingredient of Marijuana, Δ9-THC, CB1-dependent reinforcing and DA stimulant actions.
Collapse
Affiliation(s)
- M A De Luca
- Department of Biomedical Sciences, University of Cagliari, Italy; INN, National Institute of Neuroscience, Italy.
| | - Z Bimpisidis
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - M Melis
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - M Marti
- INN, National Institute of Neuroscience, Italy; Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - P Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - V Valentini
- Department of Biomedical Sciences, University of Cagliari, Italy; INN, National Institute of Neuroscience, Italy; Centre of Excellence "Neurobiology of Addiction", Italy
| | - G Margiani
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - N Pintori
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - I Polis
- The Scripps Research Institute, La Jolla, CA, USA
| | - G Marsicano
- Neurocentre Magendie, University of Bordeaux, France
| | - L H Parsons
- The Scripps Research Institute, La Jolla, CA, USA
| | - G Di Chiara
- Department of Biomedical Sciences, University of Cagliari, Italy; INN, National Institute of Neuroscience, Italy; CNR Institute of Neuroscience, Cagliari Section, Italy; Centre of Excellence "Neurobiology of Addiction", Italy
| |
Collapse
|
186
|
Ruda-Kucerova J, Amchova P, Havlickova T, Jerabek P, Babinska Z, Kacer P, Syslova K, Sulcova A, Sustkova-Fiserova M. Reward related neurotransmitter changes in a model of depression: An in vivo microdialysis study. World J Biol Psychiatry 2015; 16:521-35. [PMID: 26444572 DOI: 10.3109/15622975.2015.1077991] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES The self-medication hypothesis assumes that symptoms related to potential monoaminergic deficits in depression may be relieved by drug abuse. The aim of this study was to elucidate the neurotransmitter changes in a rat model of depression by measuring their levels in the nucleus accumbens shell, which is typically involved in the drug of abuse acquisition mechanism. METHODS Depression was modelled by the olfactory bulbectomy (OBX) in Wistar male rats. In vivo microdialysis was performed, starting from the baseline and following after a single methamphetamine injection and behaviour was monitored. The determination of neurotransmitters and their metabolites was performed by high-performance liquid chromatography combined with mass spectrometry. RESULTS OBX animals had lower basal levels of dopamine and serotonin and their metabolites. However, γ-aminobutyric acid (GABA) and glutamate levels were increased. The methamphetamine injection induced stronger dopamine and serotonin release in the OBX rats and lower release of glutamate in comparison with sham-operated rats; GABA levels did not differ significantly. CONCLUSIONS This study provides an evidence of mesolimbic neurotransmitter changes in the rat model of depression which may elucidate mechanisms underlying intravenous self-administration studies in which OBX rats were demonstrated to have higher drug intake in comparison to intact controls.
Collapse
Affiliation(s)
- Jana Ruda-Kucerova
- a Experimental and Applied Neuropsychopharmacology Research Group , CEITEC - Central European Institute of Technology, Masaryk University , Brno , Czech Republic .,b Department of Pharmacology , Faculty of Medicine, Masaryk University , Brno , Czech Republic
| | - Petra Amchova
- a Experimental and Applied Neuropsychopharmacology Research Group , CEITEC - Central European Institute of Technology, Masaryk University , Brno , Czech Republic .,b Department of Pharmacology , Faculty of Medicine, Masaryk University , Brno , Czech Republic
| | - Tereza Havlickova
- c Department of Pharmacology , Third Faculty of Medicine, Charles University , Prague , Czech Republic , and
| | - Pavel Jerabek
- c Department of Pharmacology , Third Faculty of Medicine, Charles University , Prague , Czech Republic , and
| | - Zuzana Babinska
- a Experimental and Applied Neuropsychopharmacology Research Group , CEITEC - Central European Institute of Technology, Masaryk University , Brno , Czech Republic .,b Department of Pharmacology , Faculty of Medicine, Masaryk University , Brno , Czech Republic
| | - Petr Kacer
- d Laboratory of Medicinal Diagnostics, Department of Organic Technology ICT , Prague , Czech Republic
| | - Kamila Syslova
- d Laboratory of Medicinal Diagnostics, Department of Organic Technology ICT , Prague , Czech Republic
| | - Alexandra Sulcova
- a Experimental and Applied Neuropsychopharmacology Research Group , CEITEC - Central European Institute of Technology, Masaryk University , Brno , Czech Republic
| | - Magdalena Sustkova-Fiserova
- c Department of Pharmacology , Third Faculty of Medicine, Charles University , Prague , Czech Republic , and
| |
Collapse
|
187
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [PMID: 26403687 DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Adaptation of the nervous system to different chemical and physiologic conditions is important for the homeostasis of brain processes and for learning and remembering appropriate responses to challenges. Although processes such as tolerance and dependence to various drugs of abuse have been known for a long time, it was recently discovered that even a single pharmacologically relevant dose of various drugs of abuse induces neuroplasticity in selected neuronal populations, such as the dopamine neurons of the ventral tegmental area, which persist long after the drug has been excreted. Prolonged (self-) administration of drugs induces gene expression, neurochemical, neurophysiological, and structural changes in many brain cell populations. These region-specific changes correlate with addiction, drug intake, and conditioned drugs effects, such as cue- or stress-induced reinstatement of drug seeking. In rodents, adolescent drug exposure often causes significantly more behavioral changes later in adulthood than a corresponding exposure in adults. Clinically the most impairing and devastating effects on the brain are produced by alcohol during fetal development. In adult recreational drug users or in medicated patients, it has been difficult to find persistent functional or behavioral changes, suggesting that heavy exposure to drugs of abuse is needed for neurotoxicity and for persistent emotional and cognitive alterations. This review describes recent advances in this important area of research, which harbors the aim of translating this knowledge to better treatments for addictions and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Bjørnar den Hollander
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Usman Farooq
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Elena Vashchinkina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - David J Nutt
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Gavin S Dawe
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| |
Collapse
|
188
|
Bowers M, Boutros N, D’Souza DC, Madonick S. Substance Abuse as a Risk Factor for Schizophrenia and Related Disorders. INTERNATIONAL JOURNAL OF MENTAL HEALTH 2015. [DOI: 10.1080/00207411.2001.11449509] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
189
|
Flax SM, Wakeford AGP, Cheng K, Rice KC, Riley AL. Effect of norbinaltorphimine on ∆⁹-tetrahydrocannabinol (THC)-induced taste avoidance in adolescent and adult Sprague-Dawley rats. Psychopharmacology (Berl) 2015; 232:3193-201. [PMID: 26025420 PMCID: PMC5551397 DOI: 10.1007/s00213-015-3970-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/13/2015] [Indexed: 01/06/2023]
Abstract
RATIONALE The aversive effects of ∆(9)-tetrahydrocannabinol (THC) are mediated by activity at the kappa opioid receptor (KOR) as assessed in adult animals; however, no studies have assessed KOR involvement in the aversive effects of THC in adolescents. Given that adolescents have been reported to be insensitive to the aversive effects induced by KOR agonists, a different mechanism might mediate the aversive effects of THC in this age group. OBJECTIVES The present study was designed to assess the impact of KOR antagonism on the aversive effects of THC in adolescent and adult rats using the conditioned taste avoidance (CTA) procedure. METHODS Following a single pretreatment injection of norbinaltorphimine (norBNI; 15 mg/kg), CTAs induced by THC (0, 0.56, 1.0, 1.8, and 3.2 mg/kg) were assessed in adolescent (n = 84) and adult (n = 83) Sprague-Dawley rats. RESULTS The KOR antagonist, norBNI, had weak and inconsistent effects on THC-induced taste avoidance in adolescent rats in that norBNI both attenuated and strengthened taste avoidance dependent on dose and trial. norBNI had limited impact on the final one-bottle avoidance and no effects on the two-bottle preference test. Interestingly, norBNI had no effect on THC-induced taste avoidance in adult rats as well. CONCLUSIONS That norBNI had no significant effect on THC-induced avoidance in adults, and a minor and inconsistent effect in adolescents demonstrates that the aversive effects of THC are not mediated by KOR activity as assessed by the CTA design in Sprague-Dawley rats.
Collapse
Affiliation(s)
- Shaun M Flax
- Pscyhopharmacology Laboratory, Department of Psychology, American University, 4400 Massachusetts Avenue NW, Washington, DC, 20016, USA,
| | | | | | | | | |
Collapse
|
190
|
Lazenka MF, Tomarchio AJ, Lichtman AH, Greengard P, Flajolet M, Selley DE, Sim-Selley LJ. Role of Dopamine Type 1 Receptors and Dopamine- and cAMP-Regulated Phosphoprotein Mr 32 kDa in Δ9-Tetrahydrocannabinol-Mediated Induction of ΔFosB in the Mouse Forebrain. J Pharmacol Exp Ther 2015; 354:316-27. [PMID: 26099530 PMCID: PMC4538878 DOI: 10.1124/jpet.115.224428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/18/2015] [Indexed: 11/22/2022] Open
Abstract
Δ(9)-Tetrahydrocannabinol (THC), the main psychoactive component of marijuana, produces motor and motivational effects via interactions with the dopaminergic system in the caudate-putamen and nucleus accumbens. However, the molecular events that underlie these interactions after THC treatment are not well understood. Our study shows that pretreatment with dopamine D1 receptor (D1R) antagonists before repeated administration of THC attenuated induction of Δ FBJ murine osteosarcoma viral oncogene homolog B (ΔFosB) in the nucleus accumbens, caudate-putamen, amygdala, and prefrontal cortex. Anatomical studies showed that repeated THC administration induced ΔFosB in D1R-containing striatal neurons. Dopamine signaling in the striatum involves phosphorylation-specific effects of the dopamine- and cAMP-regulated phosphoprotein Mr 32 kDa (DARPP-32), which regulates protein kinase A signaling. Genetic deletion of DARPP-32 attenuated ΔFosB expression measured after acute, but not repeated, THC administration in both the caudate-putamen and nucleus accumbens. THC was then acutely or repeatedly administered to wild-type (WT) and DARPP-32 knockout (KO) mice, and in vivo responses were measured. DARPP-32 KO mice exhibited enhanced acute THC-mediated hypolocomotion and developed greater tolerance to this response relative to the WT mice. Agonist-stimulated guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding showed that cannabinoid-stimulated G-protein activity did not differ between DARPP-32 KO and WT mice treated with vehicle or repeated THC. These results indicate that D1Rs play a major role in THC-mediated ΔFosB induction in the forebrain, whereas the role of DARPP-32 in THC-mediated ΔFosB induction and modulation of motor activity appears to be more complex.
Collapse
Affiliation(s)
- Matthew F Lazenka
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia (M.F.L., A.J.T., A.H.L., D.E.S., L.J.S.-S.); and Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York (P.G., M.F.)
| | - Aaron J Tomarchio
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia (M.F.L., A.J.T., A.H.L., D.E.S., L.J.S.-S.); and Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York (P.G., M.F.)
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia (M.F.L., A.J.T., A.H.L., D.E.S., L.J.S.-S.); and Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York (P.G., M.F.)
| | - Paul Greengard
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia (M.F.L., A.J.T., A.H.L., D.E.S., L.J.S.-S.); and Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York (P.G., M.F.)
| | - Marc Flajolet
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia (M.F.L., A.J.T., A.H.L., D.E.S., L.J.S.-S.); and Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York (P.G., M.F.)
| | - Dana E Selley
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia (M.F.L., A.J.T., A.H.L., D.E.S., L.J.S.-S.); and Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York (P.G., M.F.)
| | - Laura J Sim-Selley
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia (M.F.L., A.J.T., A.H.L., D.E.S., L.J.S.-S.); and Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York (P.G., M.F.)
| |
Collapse
|
191
|
Sami MB, Rabiner EA, Bhattacharyya S. Does cannabis affect dopaminergic signaling in the human brain? A systematic review of evidence to date. Eur Neuropsychopharmacol 2015; 25:1201-24. [PMID: 26068702 DOI: 10.1016/j.euroneuro.2015.03.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/23/2015] [Accepted: 03/22/2015] [Indexed: 12/21/2022]
Abstract
A significant body of epidemiological evidence has linked psychotic symptoms with both acute and chronic use of cannabis. Precisely how these effects of THC are mediated at the neurochemical level is unclear. While abnormalities in multiple pathways may lead to schizophrenia, an abnormality in dopamine neurotransmission is considered to be the final common abnormality. One would thus expect cannabis use to be associated with dopamine signaling alterations. This is the first systematic review of all studies, both observational as well as experimental, examining the acute as well as chronic effect of cannabis or its main psychoactive ingredient, THC, on the dopamine system in man. We aimed to review all studies conducted in man, with any reported neurochemical outcomes related to the dopamine system after cannabis, cannabinoid or endocannabinoid administration or use. We identified 25 studies reporting outcomes on over 568 participants, of which 244 participants belonged to the cannabis/cannabinoid exposure group. In man, there is as yet little direct evidence to suggest that cannabis use affects acute striatal dopamine release or affects chronic dopamine receptor status in healthy human volunteers. However some work has suggested that acute cannabis exposure increases dopamine release in striatal and pre-frontal areas in those genetically predisposed for, or at clinical high risk of psychosis. Furthermore, recent studies are suggesting that chronic cannabis use blunts dopamine synthesis and dopamine release capacity. Further well-designed studies are required to definitively delineate the effects of cannabis use on the dopaminergic system in man.
Collapse
Affiliation(s)
- Musa Basser Sami
- Kent and Medway Partnership, NHS Trust, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King׳s College London, De Crespigny Park, London SE5 8AF, UK
| | - Eugenii A Rabiner
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King׳s College London, UK; Imanova, Centre for Imaging Sciences, London, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King׳s College London, De Crespigny Park, London SE5 8AF, UK.
| |
Collapse
|
192
|
Bossong MG, Mehta MA, van Berckel BN, Howes OD, Kahn RS, Stokes PR. Further human evidence for striatal dopamine release induced by administration of ∆9-tetrahydrocannabinol (THC): selectivity to limbic striatum. Psychopharmacology (Berl) 2015; 232:2723-9. [PMID: 25801289 PMCID: PMC4816196 DOI: 10.1007/s00213-015-3915-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/23/2015] [Indexed: 02/07/2023]
Abstract
RATIONALE Elevated dopamine function is thought to play a key role in both the rewarding effects of addictive drugs and the pathophysiology of schizophrenia. Accumulating epidemiological evidence indicates that cannabis use is a risk factor for the development of schizophrenia. However, human neurochemical imaging studies that examined the impact of ∆9-tetrahydrocannabinol (THC), the main psychoactive component in cannabis, on striatal dopamine release have provided inconsistent results. OBJECTIVES The objective of this study is to assess the effect of a THC challenge on human striatal dopamine release in a large sample of healthy participants. METHODS We combined human neurochemical imaging data from two previous studies that used [(11)C]raclopride positron emission tomography (PET) (n = 7 and n = 13, respectively) to examine the effect of THC on striatal dopamine neurotransmission in humans. PET images were re-analysed to overcome differences in PET data analysis. RESULTS THC administration induced a significant reduction in [(11)C]raclopride binding in the limbic striatum (-3.65 %, from 2.39 ± 0.26 to 2.30 ± 0.23, p = 0.023). This is consistent with increased dopamine levels in this region. No significant differences between THC and placebo were found in other striatal subdivisions. CONCLUSIONS In the largest data set of healthy participants so far, we provide evidence for a modest increase in human striatal dopamine transmission after administration of THC compared to other drugs of abuse. This finding suggests limited involvement of the endocannabinoid system in regulating human striatal dopamine release and thereby challenges the hypothesis that an increase in striatal dopamine levels after cannabis use is the primary biological mechanism underlying the associated higher risk of schizophrenia.
Collapse
Affiliation(s)
- Matthijs G. Bossong
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, the Netherlands
,Department of Psychosis Studies, Institute of Psychiatry, King’s College London, United Kingdom
| | - Mitul A. Mehta
- Centre for Neuroimaging Sciences, Institute of Psychiatry, King’s College London, United Kingdom
| | - Bart N.M. van Berckel
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, the Netherlands
,Department of Nuclear Medicine & PET Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Oliver D. Howes
- Department of Psychosis Studies, Institute of Psychiatry, King’s College London, United Kingdom
,Psychiatry Group, MRC Clinical Sciences Centre, Imperial College London, United Kingdom
| | - René S. Kahn
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, the Netherlands
| | - Paul R.A. Stokes
- Psychiatry Group, MRC Clinical Sciences Centre, Imperial College London, United Kingdom
,Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, King's College London, United Kingdom
| |
Collapse
|
193
|
Richmond-Rakerd LS, Fleming KA, Slutske WS. Investigating Progression in Substance Use Initiation Using a Discrete-Time Multiple Event Process Survival Mixture (MEPSUM) Approach. Clin Psychol Sci 2015; 4:167-182. [PMID: 27127730 DOI: 10.1177/2167702615587457] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The order and timing of substance initiation has significant implications for later problematic patterns of use. Despite the need to study initiation from a multivariate framework, survival analytic methods typically cannot accommodate more than two substances in one model. The Discrete-Time Multiple Event Process Survival Mixture (MEPSUM; Dean, Bauer, & Shanahan, 2014) model represents an advance by incorporating more than two outcomes and enabling establishment of latent classes within a multivariate hazard distribution. Employing a MEPSUM approach, we evaluated patterns of tobacco, alcohol, and cannabis initiation in the National Longitudinal Study of Adolescent to Adult Health (N=18,923). We found four classes that differed in their ages and ordering of peak initiation risk. Demographics, externalizing psychopathology, and personality significantly predicted class membership. Sex differences in the association between delinquency and initiation patterns also emerged. Findings support the utility of the MEPSUM approach in elucidating developmental pathways underlying clinically relevant phenomena.
Collapse
Affiliation(s)
- Leah S Richmond-Rakerd
- Department of Psychological Sciences, University of Missouri - Columbia; Alcoholism Research Center at Washington University School of Medicine
| | - Kimberly A Fleming
- Department of Psychological Sciences, University of Missouri - Columbia; Alcoholism Research Center at Washington University School of Medicine
| | - Wendy S Slutske
- Department of Psychological Sciences, University of Missouri - Columbia; Alcoholism Research Center at Washington University School of Medicine
| |
Collapse
|
194
|
A review of pharmacogenetic studies of substance-related disorders. Drug Alcohol Depend 2015; 152:1-14. [PMID: 25819021 PMCID: PMC4458176 DOI: 10.1016/j.drugalcdep.2015.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/05/2015] [Accepted: 03/02/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Substance-related disorders (SRDs) are a major cause of morbidity and mortality worldwide. Family, twin, and adoption studies have demonstrated the substantial heritability of SRDs. To determine the impact of genetic variation on risk for SRD and the response to treatment, researchers have conducted a number of secondary data analyses and quasi-experimental studies that target one or more candidate gene variants. METHODS This review examines studies in which candidate polymorphisms were examined as mediator variables to identify pharmacogenetic effects on subjective responses to drug administration or cues or outcomes of medication trials for SRDs. Efforts to use a meta-analytic approach to quantify these effects are premature because the number of available studies using similar methods and outcomes is limited, so the present review is qualitative. RESULTS Findings from these studies provide preliminary evidence of clinically relevant pharmacogenetic effects. However, independent replication of these findings has been sparse. CONCLUSIONS Although this growing body of literature has produced conflicting results, improved statistical controls may help to clarify the findings. Additionally, the use of empirically derived sub-phenotypes (i.e., which serve to differentiate distinct groups of affected individuals) may also help to identify genetic mediators of pharmacologic response in relation to SRDs. The identification of genetic mediators can inform clinical care both by identifying risk factors for SRDs and predicting adverse events and therapeutic outcomes associated with specific pharmacotherapies.
Collapse
|
195
|
Effects of co-administration of 2-arachidonylglycerol (2-AG) and a selective µ-opioid receptor agonist into the nucleus accumbens on high-fat feeding behaviors in the rat. Brain Res 2015; 1618:309-15. [PMID: 26100333 DOI: 10.1016/j.brainres.2015.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/26/2015] [Accepted: 06/12/2015] [Indexed: 12/14/2022]
Abstract
Previous research has demonstrated that the nucleus accumbens is a site where opioids and cannabinoids interact to alter feeding behavior. However, the influence of the endocannabinoid 2-arachidonylglycerol (2-AG) on the well-characterized model of intra-accumbens opioid driven high-fat feeding behavior has not been explored. The present experiments examined high-fat feeding associated behaviors produced by the interaction of 2-AG and the μ-opioid receptor agonist DAla(2),N,Me-Phe(4),Gly-ol(5)-enkaphalin (DAMGO) administered into the nucleus accumbens. Sprague-Dawley rats were implanted with bilateral cannulae aimed at the nucleus accumbens and were co-administered both a sub-threshold dose of 2-AG (0 or 0.25 μg/0.5 μl/side) and DAMGO (0, 0.025 μg or 0.25 μg/0.5 μl/side) in all dose combinations, and in a counterbalanced order. Animals were then immediately allowed a 2h-unrestricted access period to a palatable high-fat diet. Consumption, number and duration of food hopper entries, and locomotor activity were all monitored. DAMGO treatment led to an increase in multiple behaviors, including consumption, duration of food hopper entry, and locomotor activity. However, combined intra-accumbens administration of DAMGO and a subthreshold dose of 2-AG led to a significant increase in number of food hopper entries and locomotor activity, compared to DAMGO by itself. The results confirm that intra-accumbens administration of subthreshold dose of the endogenous cannabinoid 2-AG increases the DAMGO-induced approach and locomotor behaviors associated with high-fat feeding.
Collapse
|
196
|
Promising cannabinoid-based therapies for Parkinson's disease: motor symptoms to neuroprotection. Mol Neurodegener 2015; 10:17. [PMID: 25888232 PMCID: PMC4404240 DOI: 10.1186/s13024-015-0012-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/23/2015] [Indexed: 11/27/2022] Open
Abstract
Parkinson’s disease (PD) is a slow insidious neurological disorder characterized by a loss of dopaminergic neurons in the midbrain. Although several recent preclinical advances have proposed to treat PD, there is hardly any clinically proved new therapeutic for its cure. Increasing evidence suggests a prominent modulatory function of the cannabinoid signaling system in the basal ganglia. Hence, use of cannabinoids as a new therapeutic target has been recommended as a promising therapy for PD. The elements of the endocannabinoid system are highly expressed in the neural circuit of basal ganglia wherein they bidirectionally interact with dopaminergic, glutamatergic, and GABAergic signaling systems. As the cannabinoid signaling system undergoes a biphasic pattern of change during progression of PD, it explains the motor inhibition typically observed in patients with PD. Cannabinoid agonists such as WIN-55,212-2 have been demonstrated experimentally as neuroprotective agents in PD, with respect to their ability to suppress excitotoxicity, glial activation, and oxidative injury that causes degeneration of dopaminergic neurons. Additional benefits provided by cannabinoid related compounds including CE-178253, oleoylethanolamide, nabilone and HU-210 have been reported to possess efficacy against bradykinesia and levodopa-induced dyskinesia in PD. Despite promising preclinical studies for PD, use of cannabinoids has not been studied extensively at the clinical level. In this review, we reassess the existing evidence suggesting involvement of the endocannabinoid system in the cause, symptomatology, and treatment of PD. We will try to identify future threads of research that will help in the understanding of the potential therapeutic benefits of the cannabinoid system for treating PD.
Collapse
|
197
|
de Guglielmo G, Melis M, De Luca MA, Kallupi M, Li HW, Niswender K, Giordano A, Senzacqua M, Somaini L, Cippitelli A, Gaitanaris G, Demopulos G, Damadzic R, Tapocik J, Heilig M, Ciccocioppo R. PPARγ activation attenuates opioid consumption and modulates mesolimbic dopamine transmission. Neuropsychopharmacology 2015; 40:927-37. [PMID: 25311134 PMCID: PMC4330506 DOI: 10.1038/npp.2014.268] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 01/11/2023]
Abstract
PPARγ is one of the three isoforms identified for the peroxisome proliferator-activated receptors (PPARs) and is the receptor for the thiazolidinedione class of anti-diabetic medications including pioglitazone. PPARγ has been long studied for its role in adipogenesis and glucose metabolism, but the discovery of the localization in ventral tegmental area (VTA) neurons opens new vistas for a potential role in the regulation of reward processing and motivated behavior in drug addiction. Here, we demonstrate that activation of PPARγ by pioglitazone reduces the motivation for heroin and attenuates its rewarding properties. These effects are associated with a marked reduction of heroin-induced increase in phosphorylation of DARPP-32 protein in the nucleus accumbens (NAc) and with a marked and selective reduction of acute heroin-induced elevation of extracellular dopamine (DA) levels in the NAc shell, as measured by in vivo microdialysis. Through ex vivo electrophysiology in acute midbrain slices, we also show that stimulation of PPARγ attenuates opioid-induced excitation of VTA DA neurons via reduction of presynaptic GABA release from the rostromedial tegmental nucleus (RMTg). Consistent with this finding, site-specific microinjection of pioglitazone into the RMTg but not into the VTA reduced heroin taking. Our data illustrate that activation of PPARγ may represent a new pharmacotherapeutic option for the treatment of opioid addiction.
Collapse
Affiliation(s)
| | - Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- INN, National Institute of Neuroscience, Cagliari, Italy
| | - Marsida Kallupi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Hong Wu Li
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Kevin Niswender
- Tennessee Valley Healthcare System, Nashville, TN, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
| | - Martina Senzacqua
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
| | - Lorenzo Somaini
- Addiction Treatment Centre, Health Local Unit, ASL 12 Biella, Biella, Italy
| | - Andrea Cippitelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | | | | | - Ruslan Damadzic
- Laboratory of Clinical and Translational Studies, National Institute of Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jenica Tapocik
- Laboratory of Clinical and Translational Studies, National Institute of Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Markus Heilig
- Laboratory of Clinical and Translational Studies, National Institute of Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
198
|
Increased functional connectivity in the resting-state basal ganglia network after acute heroin substitution. Transl Psychiatry 2015; 5:e533. [PMID: 25803496 PMCID: PMC4354356 DOI: 10.1038/tp.2015.28] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/06/2015] [Accepted: 01/20/2015] [Indexed: 01/17/2023] Open
Abstract
Reinforcement signals in the striatum are known to be crucial for mediating the subjective rewarding effects of acute drug intake. It is proposed that these effects may be more involved in early phases of drug addiction, whereas negative reinforcement effects may occur more in later stages of the illness. This study used resting-state functional magnetic resonance imaging to explore whether acute heroin substitution also induced positive reinforcement effects in striatal brain regions of protracted heroin-maintained patients. Using independent component analysis and a dual regression approach, we compared resting-state functional connectivity (rsFC) strengths within the basal ganglia/limbic network across a group of heroin-dependent patients receiving both an acute infusion of heroin and placebo and 20 healthy subjects who received placebo only. Subsequent correlation analyses were performed to test whether the rsFC strength under heroin exposure correlated with the subjective rewarding effect and with plasma concentrations of heroin and its main metabolites morphine. Relative to the placebo treatment in patients, heroin significantly increased rsFC of the left putamen within the basal ganglia/limbic network, the extent of which correlated positively with patients' feelings of rush and with the plasma level of morphine. Furthermore, healthy controls revealed increased rsFC of the posterior cingulate cortex/precuneus in this network relative to the placebo treatment in patients. Our results indicate that acute heroin substitution induces a subjective rewarding effect via increased striatal connectivity in heroin-dependent patients, suggesting that positive reinforcement effects in the striatum still occur after protracted maintenance therapy.
Collapse
|
199
|
Salgado S, Kaplitt MG. The Nucleus Accumbens: A Comprehensive Review. Stereotact Funct Neurosurg 2015; 93:75-93. [PMID: 25720819 DOI: 10.1159/000368279] [Citation(s) in RCA: 315] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 09/10/2014] [Indexed: 11/19/2022]
Affiliation(s)
- Sanjay Salgado
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, N.Y., USA
| | | |
Collapse
|
200
|
Bassareo V, Cucca F, Musio P, Lecca D, Frau R, Di Chiara G. Nucleus accumbens shell and core dopamine responsiveness to sucrose in rats: role of response contingency and discriminative/conditioned cues. Eur J Neurosci 2015; 41:802-9. [PMID: 25645148 DOI: 10.1111/ejn.12839] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 12/19/2014] [Accepted: 12/20/2014] [Indexed: 11/27/2022]
Abstract
This study investigated by microdialysis the role of response contingency and food-associated cues in the responsiveness of dopamine transmission in the nucleus accumbens shell and core to sucrose feeding. In naive rats, single-trial non-contingent presentation and feeding of sucrose pellets increased dialysate shell dopamine and induced full habituation of dopamine responsiveness to sucrose feeding 24 and 48 h later. In rats trained to respond for sucrose pellets on a fixed ratio 1 (FR1) schedule, dialysate dopamine increased in the shell but not in the core during active responding as well as under extinction in the presence of sucrose cues. In rats yoked to the operant rats, the presentation of sucrose cues also increased dialysate dopamine selectively in the shell. In contrast, non-contingent sucrose presentation and feeding in FR1-trained and in yoked rats increased dialysate dopamine to a similar extent in the shell and core. It is concluded that, whereas non-contingent sucrose feeding activated dopamine transmission in the shell and core, response-contingent feeding activated, without habituation, dopamine transmission selectively in the shell as a result of the action of sucrose conditioned cues. These observations are consistent with a critical role of conditioned cues acquired during training and differential activation of shell vs. core dopamine for response-contingent sucrose feeding.
Collapse
Affiliation(s)
- V Bassareo
- Department of Biomedical Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy; National Institute of Neuroscience, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | |
Collapse
|