151
|
Petrosyan A, Hsieh IH, Phillips JP, Saberi K. Enhanced tethered-flight duration and locomotor activity by overexpression of the human gene SOD1 in Drosophila motorneurons. Genet Mol Biol 2015; 38:107-14. [PMID: 25983632 PMCID: PMC4415569 DOI: 10.1590/s1415-475738138120140132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 11/06/2014] [Indexed: 03/12/2023] Open
Abstract
Mutation of the human gene superoxide dismutase (hSOD1) is associated with the fatal neurodegenerative disease familial amyotrophic lateral sclerosis (Lou Gehrig's disease). Selective overexpression of hSOD1 in Drosophila motorneurons increases lifespan to 140% of normal. The current study was designed to determine resistance to lifespan decline and failure of sensorimotor functions by overexpressing hSOD1 in Drosophila's motorneurons. First, we measured the ability to maintain continuous flight and wingbeat frequency (WBF) as a function of age (5 to 50 days). Flies overexpressing hSOD1 under the D42-GAL4 activator were able to sustain flight significantly longer than controls, with the largest effect observed in the middle stages of life. The hSOD1-expressed line also had, on average, slower wingbeat frequencies in late, but not early life relative to age-matched controls. Second, we examined locomotor (exploratory walking) behavior in late life when flies had lost the ability to fly (age ≥ 60 d). hSOD1-expressed flies showed significantly more robust walking activity relative to controls. Findings show patterns of functional decline dissimilar to those reported for other life-extended lines, and suggest that the hSOD1 gene not only delays death but enhances sensorimotor abilities critical to survival even in late life.
Collapse
Affiliation(s)
- Agavni Petrosyan
- Department of Cognitive Sciences, University of California, Irvine, CA,
USA
| | - I-Hui Hsieh
- Institute of Cognitive Neuroscience, National Central University,
Jhongli City, Taiwan
| | - John P. Phillips
- Department of Molecular Biology and Genetics, University of Guelph,
Guelph, Ontario, Canada
| | - Kourosh Saberi
- Department of Cognitive Sciences, University of California, Irvine, CA,
USA
| |
Collapse
|
152
|
Uncoupling lifespan and healthspan in Caenorhabditis elegans longevity mutants. Proc Natl Acad Sci U S A 2015; 112:E277-86. [PMID: 25561524 DOI: 10.1073/pnas.1412192112] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aging research has been very successful at identifying signaling pathways and evolutionarily conserved genes that extend lifespan with the assumption that an increase in lifespan will also increase healthspan. However, it is largely unknown whether we are extending the healthy time of life or simply prolonging a period of frailty with increased incidence of age-associated diseases. Here we use Caenorhabditis elegans, one of the premiere systems for lifespan studies, to determine whether lifespan and healthspan are intrinsically correlated. We conducted multiple cellular and organismal assays on wild type as well as four long-lived mutants (insulin/insulin-like growth factor-1, dietary restriction, protein translation, mitochondrial signaling) in a longitudinal manner to determine the health of the animals as they age. We find that some long-lived mutants performed better than wild type when measured chronologically (number of days). However, all long-lived mutants increased the proportion of time spent in a frail state. Together, these data suggest that lifespan can no longer be the sole parameter of interest and reveal the importance of evaluating multiple healthspan parameters for future studies on antiaging interventions.
Collapse
|
153
|
Haeler E, Fiedler K, Grill A. What prolongs a butterfly's life?: Trade-offs between dormancy, fecundity and body size. PLoS One 2014; 9:e111955. [PMID: 25390334 PMCID: PMC4229126 DOI: 10.1371/journal.pone.0111955] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 09/17/2014] [Indexed: 11/30/2022] Open
Abstract
In butterflies, life span often increases only at the expense of fecundity. Prolonged life span, on the other hand, provides more opportunities for oviposition. Here, we studied the association between life span and summer dormancy in two closely related species of Palearctic Meadow Brown butterflies, the endemic Maniola nurag and the widespread M. jurtina, from two climatic provenances, a Mediterranean and a Central European site, and tested the relationships between longevity, body size and fecundity. We experimentally induced summer dormancy and hence prolonged the butterflies’ life in order to study the effects of such a prolonged life. We were able to modulate longevity only in Mediterranean females by rearing them under summer photoperiodic conditions (light 16 h : dark 8 h), thereby more than doubling their natural life span, to up to 246 days. Central European individuals kept their natural average live span under all treatments, as did Mediterranean individuals under autumn treatment (light 11: dark 13). Body size only had a significant effect in the smaller species, M. nurag, where it affected the duration of dormancy and lifetime fecundity. In the larger species, M. jurtina, a prolonged adult life span did, surprisingly, not convey any fecundity loss. In M. nurag, which generally deposited fewer eggs, extended life had a fecundity cost. We conclude that Mediterranen M. jurtina butterflies have an extraordinary plasticity in aging which allows them to extend life span in response to adverse environmental conditions and relieve the time limitation on egg-laying while maintaining egg production at equal levels.
Collapse
Affiliation(s)
- Elena Haeler
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Konrad Fiedler
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Andrea Grill
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
154
|
Lin YR, Parikh H, Park Y. Loco signaling pathway in longevity. Small GTPases 2014; 2:158-161. [PMID: 21776417 DOI: 10.4161/sgtp.2.3.16390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 05/09/2011] [Indexed: 01/02/2023] Open
Abstract
Despite the various roles of regulator of G protein signaling (RGS) protein in the G protein signaling pathway that have been defined, the function of RGS has not been characterized in longevity signaling pathways. We found that reduced expression of Loco, a Drosophila RGS protein, resulted in a longer lifespan of flies with stronger resistance to stress, higher MnSOD activity and increased fat content. In contrast, overexpression of the loco gene shortened the fly lifespan significantly, lowered stress resistance and reduced fat content, also indicating that the RGS domain containing GTPase-activating protein (GAP) activity is related to the regulation of longevity. Interestingly, expressional changes of yeast RGS2 and rat RGS14, homologs to the fly Loco, also affected oxidative stress resistance and longevity in the respective species. It is known that Loco inactivates inhibitory Gαi•GTP protein to reduce activity of adenylate cyclase (AC) and RGS14 interacts with activated H-Ras and Raf-1 kinases, which subsequently inhibits ERK phosphorylation. We propose that Loco/RGS14 protein may regulate stress resistance and longevity as an activator in AC-cAMP-PKA pathway and/or as a molecular scaffold that sequesters active Ras and Raf from Ras•GTP-Raf-MEK-ERK signaling pathway. Consistently, our data showed that downregulation of Loco significantly diminishes cAMP amounts and increases p-ERK levels with higher resistance to the oxidative stress.
Collapse
Affiliation(s)
- Yuh-Ru Lin
- Department of Cell Biology and Molecular Medicine; University of Medicine and Dentistry of New Jersey-New Jersey Medical School; Newark, NJ USA
| | | | | |
Collapse
|
155
|
Schriner SE, Kuramada S, Lopez TE, Truong S, Pham A, Jafari M. Extension of Drosophila lifespan by cinnamon through a sex-specific dependence on the insulin receptor substrate chico. Exp Gerontol 2014; 60:220-30. [PMID: 25456850 DOI: 10.1016/j.exger.2014.09.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/10/2014] [Accepted: 09/13/2014] [Indexed: 01/28/2023]
Abstract
Cinnamon is a spice commonly used worldwide to flavor desserts, fruits, cereals, breads, and meats. Numerous health benefits have been attributed to its consumption, including the recent suggestion that it may decrease blood glucose levels in people with diabetes. Insulin signaling is an integral pathway regulating the lifespan of laboratory organisms, such as worms, flies, and mice. We posited that if cinnamon truly improved the clinical signs of diabetes in people that it would also act on insulin signaling in laboratory organisms and increase lifespan. We found that cinnamon did extend lifespan in the fruit fly, Drosophila melanogaster. However, it had no effect on the expression levels of the 3 aging-related Drosophila insulin-like peptides nor did it alter sugar, fat, or soluble protein levels, as would be predicted. In addition, cinnamon exhibited no protective effects in males against oxidative challenges. However, in females it did confer a protective effect against paraquat, but sensitized them to iron. Cinnamon provided no protective effect against desiccation and starvation in females, but sensitized males to both. Interestingly, cinnamon protected both sexes against cold, sensitized both to heat, and elevated HSP70 expression levels. We also found that cinnamon required the insulin receptor substrate to extend lifespan in males, but not females. We conclude that cinnamon does not extend lifespan by improving stress tolerance in general, though it does act, at least in part, through insulin signaling.
Collapse
Affiliation(s)
- Samuel E Schriner
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| | - Steven Kuramada
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| | - Terry E Lopez
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| | - Stephanie Truong
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| | - Andrew Pham
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| | - Mahtab Jafari
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
156
|
A mutation in Drosophila methuselah resists paraquat induced Parkinson-like phenotypes. Neurobiol Aging 2014; 35:2419.e1-2419.e16. [DOI: 10.1016/j.neurobiolaging.2014.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 03/14/2014] [Accepted: 04/13/2014] [Indexed: 11/23/2022]
|
157
|
Li C, Zhang Y, Yun X, Wang Y, Sang M, Liu X, Hu X, Li B. Methuselah-like genes affect development, stress resistance, lifespan and reproduction in Tribolium castaneum. INSECT MOLECULAR BIOLOGY 2014; 23:587-597. [PMID: 24924269 DOI: 10.1111/imb.12107] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Methuselah (Mth) is associated with lifespan, stress resistance and reproduction in Drosophila melanogaster, but Mth is not present in nondrosophiline insects. A number of methuselah-likes (mthls) have been identified in nondrosophiline insects, but it is unknown whether the functions of mth are shared by mthls or are divergent from them. Five mthls have been identified in Tribolium castaneum. Although they have different developmental expression patterns, they all enhance resistance to starvation. Only mthl1 and mthl2 enhance resistance to high temperature, whereas mthl4 and mthl5 negatively regulate oxidative stress in T. castaneum. Unlike in the fly with mth mutation, knockdown of mthls, except mthl3, shortens the lifespan of T. castaneum. Moreover, mthl1 and mthl2 are critical for Tribolium development. mthl1 plays important roles in larval and pupal development and adult eclosion, while mthl2 is required for eclosion. Moreover, mthl1 and mthl2 silencing reduces the fertility of T. castaneum, and mthl1 and mthl4 are also essential for embryo development. In conclusion, mthls have a significant effect on insect development, lifespan, stress resistance and reproduction. These results provide experimental evidence for functional divergence among mthls/mth and clues for the signal transduction of Mthls.
Collapse
Affiliation(s)
- Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Liu X, Greer C, Secombe J. KDM5 interacts with Foxo to modulate cellular levels of oxidative stress. PLoS Genet 2014; 10:e1004676. [PMID: 25329053 PMCID: PMC4199495 DOI: 10.1371/journal.pgen.1004676] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/14/2014] [Indexed: 12/12/2022] Open
Abstract
Increased cellular levels of oxidative stress are implicated in a large number of human diseases. Here we describe the transcription co-factor KDM5 (also known as Lid) as a new critical regulator of cellular redox state. Moreover, this occurs through a novel KDM5 activity whereby it alters the ability of the transcription factor Foxo to bind to DNA. Our microarray analyses of kdm5 mutants revealed a striking enrichment for genes required to regulate cellular levels of oxidative stress. Consistent with this, loss of kdm5 results in increased sensitivity to treatment with oxidizers, elevated levels of oxidized proteins, and increased mutation load. KDM5 activates oxidative stress resistance genes by interacting with Foxo to facilitate its recruitment to KDM5-Foxo co-regulated genes. Significantly, this occurs independently of KDM5's well-characterized demethylase activity. Instead, KDM5 interacts with the lysine deacetylase HDAC4 to promote Foxo deacetylation, which affects Foxo DNA binding.
Collapse
Affiliation(s)
- Xingyin Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Christina Greer
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
159
|
Li C, Wu W, Sang M, Liu X, Hu X, Yun X, Li B. Comparative RNA-sequencing analysis of mthl1 functions and signal transductions in Tribolium castaneum. Gene 2014; 547:310-8. [DOI: 10.1016/j.gene.2014.06.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/17/2014] [Accepted: 06/27/2014] [Indexed: 01/20/2023]
|
160
|
Cassar M, Issa AR, Riemensperger T, Petitgas C, Rival T, Coulom H, Iché-Torres M, Han KA, Birman S. A dopamine receptor contributes to paraquat-induced neurotoxicity in Drosophila. Hum Mol Genet 2014; 24:197-212. [PMID: 25158689 DOI: 10.1093/hmg/ddu430] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Long-term exposure to environmental oxidative stressors, like the herbicide paraquat (PQ), has been linked to the development of Parkinson's disease (PD), the most frequent neurodegenerative movement disorder. Paraquat is thus frequently used in the fruit fly Drosophila melanogaster and other animal models to study PD and the degeneration of dopaminergic neurons (DNs) that characterizes this disease. Here, we show that a D1-like dopamine (DA) receptor, DAMB, actively contributes to the fast central nervous system (CNS) failure induced by PQ in the fly. First, we found that a long-term increase in neuronal DA synthesis reduced DAMB expression and protected against PQ neurotoxicity. Secondly, a striking age-related decrease in PQ resistance in young adult flies correlated with an augmentation of DAMB expression. This aging-associated increase in oxidative stress vulnerability was not observed in a DAMB-deficient mutant. Thirdly, targeted inactivation of this receptor in glutamatergic neurons (GNs) markedly enhanced the survival of Drosophila exposed to either PQ or neurotoxic levels of DA, whereas, conversely, DAMB overexpression in these cells made the flies more vulnerable to both compounds. Fourthly, a mutation in the Drosophila ryanodine receptor (RyR), which inhibits activity-induced increase in cytosolic Ca(2+), also strongly enhanced PQ resistance. Finally, we found that DAMB overexpression in specific neuronal populations arrested development of the fly and that in vivo stimulation of either DNs or GNs increased PQ susceptibility. This suggests a model for DA receptor-mediated potentiation of PQ-induced neurotoxicity. Further studies of DAMB signaling in Drosophila could have implications for better understanding DA-related neurodegenerative disorders in humans.
Collapse
Affiliation(s)
- Marlène Cassar
- Genes Circuits Rhythms and Neuropathologies, Brain Plasticity Unit, CNRS, PSL Research University, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris, France
| | - Abdul-Raouf Issa
- Genes Circuits Rhythms and Neuropathologies, Brain Plasticity Unit, CNRS, PSL Research University, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris, France
| | - Thomas Riemensperger
- Genes Circuits Rhythms and Neuropathologies, Brain Plasticity Unit, CNRS, PSL Research University, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris, France
| | - Céline Petitgas
- Genes Circuits Rhythms and Neuropathologies, Brain Plasticity Unit, CNRS, PSL Research University, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris, France
| | - Thomas Rival
- Genetics and Physiopathology of Neurotransmission, Developmental Biology Institute of Marseille-Luminy, CNRS, Université de la Méditerranée, 13009 Marseille, France and
| | - Hélène Coulom
- Genetics and Physiopathology of Neurotransmission, Developmental Biology Institute of Marseille-Luminy, CNRS, Université de la Méditerranée, 13009 Marseille, France and
| | - Magali Iché-Torres
- Genetics and Physiopathology of Neurotransmission, Developmental Biology Institute of Marseille-Luminy, CNRS, Université de la Méditerranée, 13009 Marseille, France and
| | - Kyung-An Han
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Serge Birman
- Genes Circuits Rhythms and Neuropathologies, Brain Plasticity Unit, CNRS, PSL Research University, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris, France Genetics and Physiopathology of Neurotransmission, Developmental Biology Institute of Marseille-Luminy, CNRS, Université de la Méditerranée, 13009 Marseille, France and
| |
Collapse
|
161
|
Burke MK, King EG, Shahrestani P, Rose MR, Long AD. Genome-wide association study of extreme longevity in Drosophila melanogaster. Genome Biol Evol 2014; 6:1-11. [PMID: 24259311 PMCID: PMC3914684 DOI: 10.1093/gbe/evt180] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human genome-wide association studies (GWAS) of longevity attempt to identify alleles at different frequencies in the extremely old, relative to a younger control sample. Here, we apply a GWAS approach to “synthetic” populations of Drosophila melanogaster derived from a small number of inbred founders. We used next-generation DNA sequencing to estimate allele and haplotype frequencies in the oldest surviving individuals of an age cohort and compared these frequencies with those of randomly sampled individuals from the same cohort. We used this case–control strategy in four independent cohorts and identified eight significantly differentiated regions of the genome potentially harboring genes with relevance for longevity. By modeling the effects of local haplotypes, we have more power to detect regions enriched for longevity genes than marker-based GWAS. Most significant regions occur near chromosome ends or centromeres where recombination is infrequent, consistent with these regions harboring unconditionally deleterious alleles impacting longevity. Genes in regions of normal recombination are enriched for those relevant to immune function and a gene family involved in oxidative stress response. Genetic differentiation between our experimental cohorts is comparable to that between human populations, suggesting in turn that our results may help explain heterogeneous signals in human association studies of extreme longevity when panels have diverse ancestry.
Collapse
Affiliation(s)
- Molly K Burke
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| | | | | | | | | |
Collapse
|
162
|
Pickering AM, Lehr M, Kohler WJ, Han ML, Miller RA. Fibroblasts From Longer-Lived Species of Primates, Rodents, Bats, Carnivores, and Birds Resist Protein Damage. J Gerontol A Biol Sci Med Sci 2014; 70:791-9. [PMID: 25070662 DOI: 10.1093/gerona/glu115] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/16/2014] [Indexed: 01/15/2023] Open
Abstract
Species differ greatly in their rates of aging. Among mammalian species life span ranges from 2 to over 60 years. Here, we test the hypothesis that skin-derived fibroblasts from long-lived species of animals differ from those of short-lived animals in their defenses against protein damage. In parallel studies of rodents, nonhuman primates, birds, and species from the Laurasiatheria superorder (bats, carnivores, shrews, and ungulates), we find associations between species longevity and resistance of proteins to oxidative stress after exposure to H(2)O(2) or paraquat. In addition, baseline levels of protein carbonyl appear to be higher in cells from shorter-lived mammals compared with longer-lived mammals. Thus, resistance to protein oxidation is associated with species maximal life span in independent clades of mammals, suggesting that this cellular property may be required for evolution of longevity. Evaluation of the properties of primary fibroblast cell lines can provide insights into the factors that regulate the pace of aging across species of mammals.
Collapse
Affiliation(s)
- Andrew M Pickering
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor
| | - Marcus Lehr
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor
| | - William J Kohler
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor
| | - Melissa L Han
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor.
| |
Collapse
|
163
|
Weisman NY, Fedorov VI, Nemova EF, Nikolaev NA. Survival and life span of Drosophila melanogaster in response to terahertz radiation. ADVANCES IN GERONTOLOGY 2014. [DOI: 10.1134/s2079057014030102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
164
|
Cho J, Yusuf R, Kook S, Attar E, Lee D, Park B, Cheng T, Scadden DT, Lee BC. Purinergic P2Y₁₄ receptor modulates stress-induced hematopoietic stem/progenitor cell senescence. J Clin Invest 2014; 124:3159-71. [PMID: 24937426 DOI: 10.1172/jci61636] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/29/2014] [Indexed: 11/17/2022] Open
Abstract
Purinergic receptors of the P2Y family are G protein-coupled surface receptors that respond to extracellular nucleotides and can mediate responses to local cell damage. P2Y-dependent signaling contributes to thrombotic and/or inflammatory consequences of tissue injury by altering platelet and endothelial activation and immune cell phagocytosis. Here, we have demonstrated that P2Y14 modifies cell senescence and cell death in response to tissue stress, thereby enabling preservation of hematopoietic stem/progenitor cell function. In mice, P2Y14 deficiency had no demonstrable effect under homeostatic conditions; however, radiation stress, aging, sequential exposure to chemotherapy, and serial bone marrow transplantation increased senescence in animals lacking P2Y14. Enhanced senescence coincided with increased ROS, elevated p16(INK4a) expression, and hypophosphorylated Rb and was inhibited by treatment with a ROS scavenger or inhibition of p38/MAPK and JNK. Treatment of WT cells with pertussis toxin recapitulated the P2Y14 phenotype, suggesting that P2Y14 mediates antisenescence effects through Gi/o protein-dependent pathways. Primitive hematopoietic cells lacking P2Y14 were compromised in their ability to restore hematopoiesis in irradiated mice. Together, these data indicate that P2Y14 on stem/progenitor cells of the hematopoietic system inhibits cell senescence by monitoring and responding to the extracellular manifestations of tissue stress and suggest that P2Y14-mediated responses prevent the premature decline of regenerative capacity after injury.
Collapse
|
165
|
Zevian SC, Yanowitz JL. Methodological considerations for heat shock of the nematode Caenorhabditis elegans. Methods 2014; 68:450-7. [PMID: 24780523 DOI: 10.1016/j.ymeth.2014.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022] Open
Abstract
Stress response pathways share commonalities across many species, including humans, making heat shock experiments valuable tools for many biologists. The study of stress response in Caenorhabditis elegans has provided great insight into many complex pathways and diseases. Nevertheless, the heat shock/heat stress field does not have consensus as to the timing, temperature, or duration of the exposure and protocols differ extensively between laboratories. The lack of cohesiveness makes it difficult to compare results between groups or to know where to start when preparing your own protocol. We present a discussion of some of the major hurdles to reproducibility in heat shock experiments as well as detailed protocols for heat shock and hormesis experiments.
Collapse
Affiliation(s)
- Shannin C Zevian
- Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| | - Judith L Yanowitz
- Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
166
|
He Y, Jasper H. Studying aging in Drosophila. Methods 2014; 68:129-33. [PMID: 24751824 DOI: 10.1016/j.ymeth.2014.04.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 11/28/2022] Open
Abstract
Drosophila melanogaster represents one of the most important genetically accessible model organisms for aging research. Studies in flies have identified single gene mutations that influence lifespan and have characterized endocrine signaling interactions that control homeostasis systemically. Recent studies have focused on the effects of aging on specific tissues and physiological processes, providing a comprehensive picture of age-related tissue dysfunction and the loss of systemic homeostasis. Here we review methodological aspects of this work and highlight technical considerations when using Drosophila to study aging and age-related diseases.
Collapse
Affiliation(s)
- Ying He
- Buck Institute for Research on Aging, Novato, CA, USA
| | | |
Collapse
|
167
|
Biology of ageing and role of dietary antioxidants. BIOMED RESEARCH INTERNATIONAL 2014; 2014:831841. [PMID: 24804252 PMCID: PMC3996317 DOI: 10.1155/2014/831841] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/12/2014] [Accepted: 02/24/2014] [Indexed: 01/29/2023]
Abstract
Interest in relationship between diet and ageing is growing. Research has shown that dietary calorie restriction and some antioxidants extend lifespan in various ageing models. On the one hand, oxygen is essential to aerobic organisms because it is a final electron acceptor in mitochondria. On the other hand, oxygen is harmful because it can continuously generate reactive oxygen species (ROS), which are believed to be the factors causing ageing of an organism. To remove these ROS in cells, aerobic organisms possess an antioxidant defense system which consists of a series of enzymes, namely, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). In addition, dietary antioxidants including ascorbic acid, vitamin A, vitamin C, α-tocopherol, and plant flavonoids are also able to scavenge ROS in cells and therefore theoretically can extend the lifespan of organisms. In this connection, various antioxidants including tea catechins, theaflavins, apple polyphenols, black rice anthocyanins, and blueberry polyphenols have been shown to be capable of extending the lifespan of fruit flies. The purpose of this review is to brief the literature on modern biological theories of ageing and role of dietary antioxidants in ageing as well as underlying mechanisms by which antioxidants can prolong the lifespan with focus on fruit flies as an model.
Collapse
|
168
|
|
169
|
Levine M, Crimmins E. Not all smokers die young: a model for hidden heterogeneity within the human population. PLoS One 2014; 9:e87403. [PMID: 24520332 PMCID: PMC3919713 DOI: 10.1371/journal.pone.0087403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 12/20/2013] [Indexed: 01/10/2023] Open
Abstract
The ability of some individuals to reach extreme old age in the presence of clearly high exposure to damaging factors may signal an innate biological advantage. For this study we used data on 4,655 current and never smokers, ages 50 and above, from NHANES III to examine whether long-lived smokers represent a biologically resilient phenotype that could facilitate our understanding of heterogeneity in the aging process. Using a proportional hazards model, our results showed that while smoking significantly increased mortality in most age groups, it did not increase the mortality risk for those who were age 80 and over at baseline. Additionally when comparing the adjusted means of biomarkers between never and current smokers, we found that long-lived smokers (80+) had similar inflammation, HDL, and lung function levels to never smokers. Given that factors which allow some individuals to withstand smoking may also enable others to cope with everyday biological stressors, the investigation of long-lived smokers may eventually allow us to identify molecular and genetic mechanisms which enable longevity extension.
Collapse
Affiliation(s)
- Morgan Levine
- Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| | - Eileen Crimmins
- Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
170
|
Petrosyan A, Gonçalves ÓF, Hsieh IH, Saberi K. Improved functional abilities of the life-extended Drosophila mutant Methuselah are reversed at old age to below control levels. AGE (DORDRECHT, NETHERLANDS) 2014; 36:213-21. [PMID: 23913251 PMCID: PMC3889883 DOI: 10.1007/s11357-013-9568-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/12/2013] [Indexed: 06/02/2023]
Abstract
Methuselah (mth) is a chromosome 3 Drosophila mutant with an increased lifespan. A large number of studies have investigated the genetic, molecular, and biochemical mechanisms of the mth gene. Much less is known about the effects of mth on preservation of sensorimotor abilities throughout Drosophila's lifespan, particularly in late life. The current study investigated functional senescence in mth and its parental-control line (w1118) in two experiments that measured age-dependent changes in flight functions and locomotor activity. In experiment 1, a total of 158 flies (81 mth and 77 controls) with an age range from 10 to 70 days were individually tethered under an infrared laser-sensor system that allowed monitoring of flight duration during phototaxic flight. We found that mth has a statistically significant advantage in maintaining continuous flight over control flies at age 10 days, but not during middle and late life. At age 70 days, the trend reversed and parental control flies had a small but significant advantage, suggesting an interaction between age and genotype in the ability to sustain flight. In experiment 2, a total of 173 different flies (97 mth and 76 controls) with an age range from 50 to 76 days were individually placed in a large well-lit arena (60 × 45 cm) and their locomotor activity quantified as the distance walked in a 1-min period. Results showed that mth flies had lower levels of locomotor activity relative to controls at ages 50 and 60 days. These levels converged for the two genotypes at the oldest ages tested. Findings show markedly different patterns of functional decline for the mth line relative to those previously reported for other life-extended genotypes, suggesting that different life-extending genes have dissimilar effects on preservation of sensory and motor abilities throughout an organism's lifespan.
Collapse
Affiliation(s)
- Agavni Petrosyan
- />Department of Cognitive Sciences, University of California, Irvine, CA 92697-5100 USA
- />Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | - Óscar F. Gonçalves
- />Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal
- />Department of Counseling & Applied Educational Psychology, Bouvé College of Health Sciences, Northeastern University, Boston, USA
| | - I-Hui Hsieh
- />Institute of Cognitive Neuroscience, National Central University, Jhongli City, Taiwan
| | - Kourosh Saberi
- />Department of Cognitive Sciences, University of California, Irvine, CA 92697-5100 USA
| |
Collapse
|
171
|
Sgrò CM, van Heerwaarden B, Kellermann V, Wee CW, Hoffmann AA, Lee SF. Complexity of the genetic basis of ageing in nature revealed by a clinal study of lifespan and methuselah, a gene for ageing, in Drosophila from eastern Australia. Mol Ecol 2014; 22:3539-51. [PMID: 23802551 DOI: 10.1111/mec.12353] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 03/12/2013] [Accepted: 03/16/2013] [Indexed: 11/29/2022]
Abstract
Clinal studies are a powerful tool for understanding the genetic basis of climatic adaptation. However, while clines in quantitative traits and genetic polymorphisms have been observed within and across continents, few studies have attempted to demonstrate direct links between them. The gene methuselah in Drosophila has been shown to have a major effect on stress response and longevity phenotypes based largely on laboratory studies of induced mutations in the mth gene. Clinal patterns in the most common mth haplotype and for lifespan (both increasing with latitude) have been observed in North American populations of D. melanogaster, implicating climatic selection. While these clinal patterns have led some to suggest that mth influences ageing in natural populations, limited evidence on the association between the two has so far been collected. Here, we describe a significant cline in the mth haplotype in eastern Australian D. melanogaster populations that parallel the cline in North America. We also describe a cline in mth gene expression. These findings further support the idea that mth is itself under selection. In contrast, we show that lifespan has a strong nonlinear clinal pattern, increasing southwards from the tropics, but then decreasing again from mid-latitudes. Furthermore, in association studies, we find no evidence for a direct link between mth haplotype and lifespan. Thus, while our data support a role for mth variation being under natural selection, we found no link to naturally occurring variation in lifespan and ageing in Australian populations of D. melanogaster. Our results indicate that the mth locus likely has genetic background and environment-specific effects.
Collapse
Affiliation(s)
- Carla M Sgrò
- Department of Biological Sciences, Monash University, Clayton, Vic., 3800, Australia.
| | | | | | | | | | | |
Collapse
|
172
|
Gimenez LE, Vishnivetskiy SA, Gurevich VV. Targeting individual GPCRs with redesigned nonvisual arrestins. Handb Exp Pharmacol 2014; 219:153-70. [PMID: 24292829 DOI: 10.1007/978-3-642-41199-1_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Numerous human diseases are caused by excessive signaling of mutant G protein-coupled receptors (GPCRs) or receptors that are overstimulated due to upstream signaling imbalances. The feasibility of functional compensation by arrestins with enhanced ability to quench receptor signaling was recently tested in the visual system. The results showed that even in this extremely demanding situation of rods that have no ability to phosphorylate rhodopsin, enhanced arrestin improved rod morphology, light sensitivity, survival, and accelerated photoresponse recovery. Structurally distinct enhanced mutants of arrestins that bind phosphorylated and non-phosphorylated active GPCRs with much higher affinity than parental wild-type (WT) proteins have been constructed. These "super-arrestins" are likely to have the power to dampen the signaling by hyperactive GPCRs. However, most cells express 5-20 GPCR subtypes, only one of which would be overactive, while nonvisual arrestins are remarkably promiscuous, binding hundreds of different GPCRs. Thus, to be therapeutically useful, enhanced versions of nonvisual arrestins must be made fairly specific for particular receptors. Recent identification of very few arrestin residues as key receptor discriminators paves the way to the construction of receptor subtype-specific nonvisual arrestins.
Collapse
Affiliation(s)
- Luis E Gimenez
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, Nashville, TN, 37232, USA,
| | | | | |
Collapse
|
173
|
Waisman NY, Golubovsky MD, Ilinskii YY. Differences in the parameters of longevity and its sex-specificity in human populations and modeling them in drosophila. ADVANCES IN GERONTOLOGY 2013. [DOI: 10.1134/s2079057013040097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
174
|
Lozinsky OV, Lushchak OV, Storey JM, Storey KB, Lushchak VI. The mitochondrial uncoupler 2,4-dinitrophenol attenuates sodium nitroprusside-induced toxicity in Drosophila melanogaster: potential involvement of free radicals. Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:244-52. [PMID: 24064327 DOI: 10.1016/j.cbpc.2013.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 09/09/2013] [Accepted: 09/16/2013] [Indexed: 12/18/2022]
Abstract
The toxicity of sodium nitroprusside (SNP) (an inducer of oxidative/nitrosative stress) and the attenuation of SNP effects by 2,4-dinitrophenol (DNP) (that induces mild uncoupling of respiration) were evaluated in the Drosophila melanogaster model system. Fly larvae were raised on food supplemented with 1.0 mM SNP, 0.5 or 1.25 mM DNP, or with mixtures 1.0 mM SNP plus 0.5 or 1.25 mM DNP. Food supplementation with SNP decreased larval viability and pupation height whereas supplementation with DNP substantially reversed these changes. Biochemical analyses of oxidative stress markers and activities of antioxidant and associated enzymes were carried out on 2-day-old flies emerged from control larvae and larvae fed on food supplemented with SNP, DNP, or SNP/DNP mixtures. Larval exposure to SNP lowered activities of aconitase, while the presence of DNP reduced the negative impact of SNP by raising aconitase activity back to near control levels. Larval treatment with SNP also elevated the contents of carbonyl protein, uric acid and low molecular mass thiols and produced higher activities of superoxide dismutase, glutathione S-transferase, glucose-6-phosphate dehydrogenase and thioredoxin reductase in adult flies. However, the presence of DNP in the food mixtures prevented SNP-induced changes in thioredoxin reductase and glucose-6-phosphate dehydrogenase activities, as well as uric acid and low-molecular-mass thiol content. The potential mechanisms by which DNP exerts protective effects against SNP toxicity are discussed.
Collapse
Affiliation(s)
- Oleksandr V Lozinsky
- Department of Biochemistry and Biotechnology, Precarpathian National University named after Vassyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk, 76025, Ukraine
| | | | | | | | | |
Collapse
|
175
|
Maruta H. Herbal therapeutics that block the oncogenic kinase PAK1: a practical approach towards PAK1-dependent diseases and longevity. Phytother Res 2013; 28:656-72. [PMID: 23943274 DOI: 10.1002/ptr.5054] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022]
Abstract
Over 35 years research on PAKs, RAC/CDC42(p21)-activated kinases, comes of age, and in particular PAK1 has been well known to be responsible for a variety of diseases such as cancer (mainly solid tumors), Alzheimer's disease, acquired immune deficiency syndrome and other viral/bacterial infections, inflammatory diseases (asthma and arthritis), diabetes (type 2), neurofibromatosis, tuberous sclerosis, epilepsy, depression, schizophrenia, learning disability, autism, etc. Although several distinct synthetic PAK1-blockers have been recently developed, no FDA-approved PAK1 blockers are available on the market as yet. Thus, patients suffering from these PAK1-dependent diseases have to rely on solely a variety of herbal therapeutics such as propolis and curcumin that block PAK1 without affecting normal cell growth. Furthermore, several recent studies revealed that some of these herbal therapeutics significantly extend the lifespan of nematodes (C. elegans) and fruit flies (Drosophila), and PAK1-deficient worm lives longer than the wild type. Here, I outline mainly pathological phenotypes of hyper-activated PAK1 and a list of herbal therapeutics that block PAK1, but cause no side (harmful) effect on healthy people or animals.
Collapse
|
176
|
Saraceno C, Musardo S, Marcello E, Pelucchi S, Di Luca M. Modeling Alzheimer's disease: from past to future. Front Pharmacol 2013; 4:77. [PMID: 23801962 PMCID: PMC3685797 DOI: 10.3389/fphar.2013.00077] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/30/2013] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is emerging as the most prevalent and socially disruptive illness of aging populations, as more people live long enough to become affected. Although AD is placing a considerable and increasing burden on society, it represents the largest unmet medical need in neurology, because current drugs improve symptoms, but do not have profound disease-modifying effects. Although AD pathogenesis is multifaceted and difficult to pinpoint, genetic and cell biological studies led to the amyloid hypothesis, which posits that amyloid β (Aβ) plays a pivotal role in AD pathogenesis. Amyloid precursor protein (APP), as well as β- and γ-secretases are the principal players involved in Aβ production, while α-secretase cleavage on APP prevents Aβ deposition. The association of early onset familial AD with mutations in the APP and γ-secretase components provided a potential tool of generating animal models of the disease. However, a model that recapitulates all the aspects of AD has not yet been produced. Here, we face the problem of modeling AD pathology describing several models, which have played a major role in defining critical disease-related mechanisms and in exploring novel potential therapeutic approaches. In particular, we will provide an extensive overview on the distinct features and pros and contras of different AD models, ranging from invertebrate to rodent models and finally dealing with computational models and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Claudia Saraceno
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano Milano, Italy ; Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano Milano, Italy
| | | | | | | | | |
Collapse
|
177
|
Mockett RJ, Nobles AC. Lack of robustness of life extension associated with several single-gene P element mutations in Drosophila melanogaster. J Gerontol A Biol Sci Med Sci 2013; 68:1157-69. [PMID: 23729660 DOI: 10.1093/gerona/glt031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The hypothesis tested in this study was that single-gene mutations found previously to extend the life span of Drosophila melanogaster could do so consistently in both long-lived y w and standard w (1118) genetic backgrounds. GAL4 drivers were used to express upstream activation sequence (UAS)-responder transgenes globally or in the nervous system. Transgenes associated with oxidative damage prevention (UAS-hSOD1 and UAS-GCLc) or removal (EP-UAS-Atg8a and UAS-dTOR (FRB) ) failed to increase mean life spans in any expression pattern in either genetic background. Flies containing a UAS-EGFP-bMSRA (C) transgene associated with protein repair were found not to exhibit life extension or detectable enhanced green fluorescent protein (EGFP) activity. The presence of UAS-responder transgenes was confirmed by PCR amplification and sequencing at the 5' and 3' end of each insertion. These results cast doubt on the robustness of life extension in flies carrying single-gene mutations and suggest that the effects of all such mutations should be tested independently in multiple genetic backgrounds and laboratory environments.
Collapse
Affiliation(s)
- Robin J Mockett
- Department of Biomedical Sciences, University of South Alabama, HAHN 4025, 5721 USA Drive N, Mobile, AL 36688.
| | | |
Collapse
|
178
|
Araújo AR, Reis M, Rocha H, Aguiar B, Morales-Hojas R, Macedo-Ribeiro S, Fonseca NA, Reboiro-Jato D, Reboiro-Jato M, Fdez-Riverola F, Vieira CP, Vieira J. The Drosophila melanogaster methuselah gene: a novel gene with ancient functions. PLoS One 2013; 8:e63747. [PMID: 23696853 PMCID: PMC3655951 DOI: 10.1371/journal.pone.0063747] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/05/2013] [Indexed: 01/10/2023] Open
Abstract
The Drosophila melanogaster G protein-coupled receptor gene, methuselah (mth), has been described as a novel gene that is less than 10 million years old. Nevertheless, it shows a highly specific expression pattern in embryos, larvae, and adults, and has been implicated in larval development, stress resistance, and in the setting of adult lifespan, among others. Although mth belongs to a gene subfamily with 16 members in D. melanogaster, there is no evidence for functional redundancy in this subfamily. Therefore, it is surprising that a novel gene influences so many traits. Here, we explore the alternative hypothesis that mth is an old gene. Under this hypothesis, in species distantly related to D. melanogaster, there should be a gene with features similar to those of mth. By performing detailed phylogenetic, synteny, protein structure, and gene expression analyses we show that the D. virilis GJ12490 gene is the orthologous of mth in species distantly related to D. melanogaster. We also show that, in D. americana (a species of the virilis group of Drosophila), a common amino acid polymorphism at the GJ12490 orthologous gene is significantly associated with developmental time, size, and lifespan differences. Our results imply that GJ12490 orthologous genes are candidates for developmental time and lifespan differences in Drosophila in general.
Collapse
Affiliation(s)
- Ana Rita Araújo
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Micael Reis
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Helder Rocha
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Bruno Aguiar
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ramiro Morales-Hojas
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Nuno A. Fonseca
- Center of Research in Advanced Computing Systems (CRACS-INESC Porto), Universidade do Porto, Porto, Portugal
- EMBL-European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom
| | | | | | | | - Cristina P. Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Jorge Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
179
|
McCormick MA, Kennedy BK. Genome-scale studies of aging: challenges and opportunities. Curr Genomics 2013; 13:500-7. [PMID: 23633910 PMCID: PMC3468883 DOI: 10.2174/138920212803251454] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 06/08/2012] [Accepted: 07/25/2012] [Indexed: 12/21/2022] Open
Abstract
Whole-genome studies involving a phenotype of interest are increasingly prevalent, in part due to a dramatic increase in speed at which many high throughput technologies can be performed coupled to simultaneous decreases in cost. This type of genome-scale methodology has been applied to the phenotype of lifespan, as well as to whole-transcriptome changes during the aging process or in mutants affecting aging. The value of high throughput discovery-based science in this field is clearly evident, but will it yield a true systems-level understanding of the aging process? Here we review some of this work to date, focusing on recent findings and the unanswered puzzles to which they point. In this context, we also discuss recent technological advances and some of the likely future directions that they portend.
Collapse
|
180
|
Zuo Y, Peng C, Liang Y, Ma KY, Yu H, Edwin Chan HY, Chen ZY. Black rice extract extends the lifespan of fruit flies. Food Funct 2013; 3:1271-9. [PMID: 22930061 DOI: 10.1039/c2fo30135k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Black rice is rich in anthocyanin antioxidants. The present study investigated the lifespan-prolonging activity of black rice extracts (BREs) and its effect on gene expressions of CuZnSOD (SOD1), MnSOD (SOD2), catalase (CAT), methuselah (Mth) and Rpn11 involved in the antioxidant system and ageing of fruit flies. The OR wild type fly was maintained on a control diet or two experimental diets containing 10 mg ml(-1) BRE (BRE10) or 30 mg ml(-1) BRE (BRE30). Results demonstrated that BRE30 could prolong the mean lifespan of fruit flies by 14%, accompanied with up-regulation of mRNA SOD1, SOD2, CAT and Rpn11, and with down-regulation of Mth. It was also found that BRE30 could attenuate the paraquat-induced neurodegeneration in OR wild type flies accompanied by up-regulation of SOD1, SOD2, CAT and Rpn11. In addition, BRE30 supplementation increased the survival time of OR wild type flies and Alzheimer transgenic flies Aβ42 33769 with chronic exposure to paraquat. It was concluded that BREs could extend the lifespan of fruit flies, most likely by regulating the genes of SOD1, SOD2, CAT, Mth and Rpn11 at the transcriptional level.
Collapse
Affiliation(s)
- Yuanyuan Zuo
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
181
|
Reynolds RM, Phillips PC. Natural variation for lifespan and stress response in the nematode Caenorhabditis remanei. PLoS One 2013; 8:e58212. [PMID: 23658604 PMCID: PMC3637273 DOI: 10.1371/journal.pone.0058212] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 02/01/2013] [Indexed: 12/18/2022] Open
Abstract
Genetic approaches (e.g. mutation, RNA interference) in model organisms, particularly the nematode Caenorhabditis elegans, have yielded a wealth of information on cellular processes that can influence lifespan. Although longevity mutants discovered in the lab are instructive of cellular physiology, lab studies might miss important genes that influence health and longevity in the wild. C. elegans has relatively low natural genetic variation and high levels of linkage disequilibrium, and thus is not optimal for studying natural variation in longevity. In contrast, its close relative C. remanei possesses very high levels of molecular genetic variation and low levels of linkage disequilibrium. To determine whether C. remanei may be a good model system for the study of natural genetic variation in aging, we evaluated levels of quantitative genetic variation for longevity and resistance to oxidative, heat and UV stress. Heritability (and the coefficient of additive genetic variation) was high for oxidative and heat stress resistance, low (but significant) for longevity, and essentially zero for UV stress response. Our results suggest that C. remanei may be a powerful system for studying natural genetic variation for longevity and oxidative and heat stress response, as well as an informative model for the study of functional relationships between longevity and stress response.
Collapse
Affiliation(s)
- Rose M. Reynolds
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
182
|
Braeckman BP, Houthoofd K, Vanfleteren JR. Patterns of metabolic activity during aging of the wild type and longevity mutants of Caenorhabditis elegans. J Am Aging Assoc 2013; 23:55-73. [PMID: 23604840 DOI: 10.1007/s11357-000-0007-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
At least three mechanisms determine life span in Caenorhabditis elegans. An insulin-like signaling pathway regulates dauer diapause, reproduction and longevity. Reduction-or loss-of-function mutations in this pathway can extend longevity substantially, suggesting that the wild-type alleles shorten life span. The mutations extend life span by activating components of a dauer longevity assurance program in adult life, resulting in altered metabolism and enhanced stress resistance. The Clock (Clk) genes regulate many temporal processes, including life span. Mutation in the Clk genes clk-1 and gro-1 mildly affect energy production, but repress energy consumption dramatically, thereby reducing the rate of anabolic metabolism and lengthening life span. Dietary restriction, either imposed by mutation or by the culture medium increases longevity and uncovers a third mechanism of life span determination. Dietary restriction likely elicits the longevity assurance program. There is still uncertainty as to whether these pathways converge on daf-16 to activate downstream longevity effector genes such as ctl-1 and sod-3. There is overwhelming evidence that the interplay between reactive oxygen species (ROS) and the capacity to resist oxidative stress controls the aging process and longevity. It is as yet not clear whether metabolic homeostasis collapses with age as a direct result of ROS-derived damage or is selectively repressed by longevity-determining genes. The dramatic decline of protein turnover during senescence results in the accumulation of altered enzymes and in a gradual decline of metabolic performance eventually followed by fatal failure of the system.
Collapse
Affiliation(s)
- B P Braeckman
- Department of Biology, University of Gent, Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | |
Collapse
|
183
|
Robertson M, Keene AC. Molecular mechanisms of age-related sleep loss in the fruit fly - a mini-review. Gerontology 2013; 59:334-9. [PMID: 23594925 DOI: 10.1159/000348576] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 02/04/2013] [Indexed: 11/19/2022] Open
Abstract
Across phyla, aging is associated with reduced sleep duration and efficiency. Both aging and sleep involve complex genetic architecture and diverse cell types and are heavily influenced by diet and environment. Therefore, understanding the molecular mechanisms of age-dependent changes in sleep will require integrative approaches that go beyond examining these two processes independently. The fruit fly, Drosophila melanogaster, provides a genetically amenable system for dissecting the molecular basis of these processes. In this review, we examine the role of metabolism and circadian rhythms in age-dependent sleep loss.
Collapse
Affiliation(s)
- Meagan Robertson
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
184
|
Gospodaryov DV, Yurkevych IS, Jafari M, Lushchak VI, Lushchak OV. Lifespan extension and delay of age-related functional decline caused by Rhodiola rosea depends on dietary macronutrient balance. LONGEVITY & HEALTHSPAN 2013; 2:5. [PMID: 24472572 PMCID: PMC3922952 DOI: 10.1186/2046-2395-2-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 02/11/2013] [Indexed: 01/04/2023]
Abstract
Background This study was conducted to evaluate the effects of rhizome powder from the herb Rhodiola rosea, a traditional Western Ukraine medicinal adaptogen, on lifespan and age-related physiological functions of the fruit fly Drosophila melanogaster. Results Flies fed food supplemented with 5.0 mg/ml and 10.0 mg/ml of R. rosea rhizome powder had a 14% to 17% higher median lifespan, whereas at 30.0 mg/ml lifespan was decreased by 9% to 12%. The preparation did not decrease fly fecundity. The effect of R. rosea supplement on lifespan was dependent on diet composition. Lifespan extension by 15% to 21% was observed only for diets with protein-to-carbohydrate ratios less than 1. Lifespan extension was also dependent on total concentration of macronutrients. Thus, for the diet with 15% yeast and 15% sucrose there was no lifespan extension, while for the diet with protein-to-carbohydrate ratio 20:1 R. rosea decreased lifespan by about 10%. Flies fed Rhodiola preparation were physically more active, less sensitive to the redox-cycling compound menadione and had a longer time of heat coma onset compared with controls. Positive effects of Rhodiola rhizome on stress resistance and locomotor activity were highest at the ‘middle age’. Conclusions The present data show that long-term food supplementation with R. rosea rhizome not only increases D. melanogaster lifespan, but also delays age-related decline of physical activity and increases stress resistance, what depends on protein-to-carbohydrate ratio of the diet.
Collapse
Affiliation(s)
| | | | | | | | - Oleh V Lushchak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76025, Ukraine.
| |
Collapse
|
185
|
Huangfu J, Liu J, Peng C, Suen YL, Wang M, Jiang Y, Chen ZY, Chen F. DHA-rich marine microalga Schizochytrium mangrovei possesses anti-ageing effects on Drosophila melanogaster. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.01.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
186
|
Pheromone sensing regulates Caenorhabditis elegans lifespan and stress resistance via the deacetylase SIR-2.1. Proc Natl Acad Sci U S A 2013; 110:5522-7. [PMID: 23509272 DOI: 10.1073/pnas.1214467110] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lifespan in Caenorhabditis elegans, Drosophila, and mice is regulated by conserved signaling networks, including the insulin/insulin-like growth factor 1 (IGF-1) signaling cascade and pathways depending on sirtuins, a family of NAD(+)-dependent deacetylases. Small molecules such as resveratrol are of great interest because they increase lifespan in many species in a sirtuin-dependent manner. However, no endogenous small molecules that regulate lifespan via sirtuins have been identified, and the mechanisms underlying sirtuin-dependent longevity are not well understood. Here, we show that in C. elegans, two endogenously produced small molecules, the dauer-inducing ascarosides ascr#2 and ascr#3, regulate lifespan and stress resistance through chemosensory pathways and the sirtuin SIR-2.1. Ascarosides extend adult lifespan and stress resistance without reducing fecundity or feeding rate, and these effects are reduced or abolished when nutrients are restricted. We found that ascaroside-mediated longevity is fully abolished by loss of SIR-2.1 and that the effect of ascr#2 requires expression of the G protein-coupled receptor DAF-37 in specific chemosensory neurons. In contrast to many other lifespan-modulating factors, ascaroside-mediated lifespan increases do not require insulin signaling via the FOXO homolog DAF-16 or the insulin/IGF-1-receptor homolog DAF-2. Our study demonstrates that C. elegans produces specific small molecules to control adult lifespan in a sirtuin-dependent manner, supporting the hypothesis that endogenous regulation of metazoan lifespan functions, in part, via sirtuins. These findings strengthen the link between chemosensory inputs and conserved mechanisms of lifespan regulation in metazoans and suggest a model for communal lifespan regulation in C. elegans.
Collapse
|
187
|
Li C, Chen M, Sang M, Liu X, Wu W, Li B. Comparative genomic analysis and evolution of family-B G protein-coupled receptors from six model insect species. Gene 2013; 519:1-12. [PMID: 23428791 DOI: 10.1016/j.gene.2013.01.061] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/21/2012] [Accepted: 01/30/2013] [Indexed: 10/27/2022]
Abstract
Family-B G protein-coupled receptors (GPCR-Bs) play vital roles in many biological processes, including growth, development and reproduction. However, the evolution and function of GPCR-Bs have been poorly understood in insects. We have identified 87 GPCR-Bs from six model insect species, 20 from Tribolium castaneum, 9 from Apis mellifera, 11 from Bombyx mori, 9 from Acyrthosiphon pisum, 14 from Anopheles gambiae and 24 from Drosophila melanogaster. 22 of them were reported in this study for the first time. Phylogenetic analysis revealed that there are three kinds of evolutionary patterns that occurred among GPCR-Bs during insect evolution: one-to-one orthologous relationships, species-specific expansion and episodic duplication or loss in certain insect lineages. A striking finding was the discovery of a parathyroid hormone receptor like gene (pthrl) in invertebrates, which was independently duplicated in vertebrates and invertebrates, whereas this gene was lost at least twice during insect evolution. These results indicate that PTHRL is possibly divergent in the functions between mammals and insects. The information of family-B GPCRs in nondrosophiline insects has been established, and will promote the further study on the function of these GPCRs and deorphanization of them. On the other hand, this study provides us with multiple function of GPCR-Bs in differential organisms, which will be also the potential attacking targets for new pesticides and drugs.
Collapse
Affiliation(s)
- Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | | | | | | | | | | |
Collapse
|
188
|
Gimenez LED, Ghildyal P, Fischer KE, Hu H, Ja WW, Eaton BA, Wu Y, Austad SN, Ranjan R. Modulation of methuselah expression targeted to Drosophila insulin-producing cells extends life and enhances oxidative stress resistance. Aging Cell 2013; 12:121-9. [PMID: 23121290 DOI: 10.1111/acel.12027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2012] [Indexed: 01/14/2023] Open
Abstract
Ubiquitously reduced signaling via Methuselah (MTH), a G-protein-coupled receptor (GPCR) required for neurosecretion, has previously been reported to extend life and enhance stress resistance in flies. Whether these effects are due to reduced MTH signalling in specific tissues remains unknown. We determined that reduced expression of mth targeted to the insulin-producing cells (IPCs) of the fly brain was sufficient to extend life and enhance oxidative stress resistance. Paradoxically, we discovered that overexpression of mth targeted to the same cells has similar phenotypic effects to reduced expression due to MTH's interaction with β-arrestin, which uncouples GPCRs from their G-proteins. We confirmed the functional relationship between MTH and β-arrestin by finding that IPC-targeted overexpression of β-arrestin alone mimics the longevity phenotype of reduced MTH signaling. As reduced MTH signaling also inhibits insulin secretion from the IPCs, the most parsimonious mechanistic explanation of its longevity and stress-resistance enhancement might be through reduced insulin/IGF signaling (IIS). However, examination of phenotypic features of long-lived IPC-mth modulated flies as well as several downstream IIS targets implicates enhanced activity of the JNK stress-resistance pathway more directly than insulin signaling in the longevity and stress-resistance phenotypes.
Collapse
Affiliation(s)
- Luis E. D. Gimenez
- Department of Pharmacology; University of Texas Health Science Center San Antonio; San Antonio; TX; 78245; USA
| | - Parakashtha Ghildyal
- Department of Pharmacology; University of Texas Health Science Center San Antonio; San Antonio; TX; 78245; USA
| | - Kathleen E. Fischer
- Department of Physiology; University of Texas Health Science Center San Antonio; San Antonio; TX; 78229; USA
| | - Hongxiang Hu
- Department of Pharmacology; University of Texas Health Science Center San Antonio; San Antonio; TX; 78245; USA
| | - William W. Ja
- Department of Metabolism & Aging; The Scripps Research Institute; Jupiter; FL; 33458; USA
| | - Benjamin A. Eaton
- Department of Physiology; University of Texas Health Science Center San Antonio; San Antonio; TX; 78229; USA
| | - Yimin Wu
- Department of Physiology; University of Texas Health Science Center San Antonio; San Antonio; TX; 78229; USA
| | | | | |
Collapse
|
189
|
Stenesen D, Suh JM, Seo J, Yu K, Lee KS, Kim JS, Min KJ, Graff JM. Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies. Cell Metab 2013; 17:101-12. [PMID: 23312286 PMCID: PMC3614013 DOI: 10.1016/j.cmet.2012.12.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 08/08/2012] [Accepted: 12/11/2012] [Indexed: 12/31/2022]
Abstract
A common thread among conserved life span regulators lies within intertwined roles in metabolism and energy homeostasis. We show that heterozygous mutations of AMP biosynthetic enzymes extend Drosophila life span. The life span benefit of these mutations depends upon increased AMP:ATP and ADP:ATP ratios and adenosine monophosphate-activated protein kinase (AMPK). Transgenic expression of AMPK in adult fat body or adult muscle, key metabolic tissues, extended life span, while AMPK RNAi reduced life span. Supplementing adenine, a substrate for AMP biosynthesis, to the diet of long-lived AMP biosynthesis mutants reversed life span extension. Remarkably, this simple change in diet also blocked the prolongevity effects of dietary restriction. These data establish AMP biosynthesis, adenosine nucleotide ratios, and AMPK as determinants of adult life span; provide a mechanistic link between cellular anabolism and energy sensing pathways; and indicate that dietary adenine manipulations might alter metabolism to influence animal life span.
Collapse
Affiliation(s)
- Drew Stenesen
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jae Myoung Suh
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Gene Expression Laboratory, Salk Institute, La Jolla, CA 92037, USA
| | - Jin Seo
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kweon Yu
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Korea
| | - Kyu-Sun Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Korea
| | - Jong-Seok Kim
- Department of Biological Sciences, Inha University, Incheon, 402-751, Korea
| | - Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon, 402-751, Korea
| | - Jonathan M. Graff
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- To whom correspondence should be addressed: NB5.118, 6000 Harry Hines Blvd., Dallas, TX 75390-9133. Tel: 214-648-1481; Fax: 214-648-1960;
| |
Collapse
|
190
|
Zuo Y, Peng C, Liang Y, Ma KY, Chan HYE, Huang Y, Chen ZY. Sesamin extends the mean lifespan of fruit flies. Biogerontology 2013; 14:107-19. [PMID: 23291977 DOI: 10.1007/s10522-012-9413-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
Abstract
The present study investigated the anti-ageing activity of sesamin and its effect on gene expression of superoxide dismutase (SOD), catalase (CAT), methuselah (Mth) and Rpn11 in Drosophila melanogaster. Results demonstrated that 0.2 % sesamin in diet prolonged the mean lifespan of OR wild fruit flies by 12 %, accompanied by up-regulation of SOD1, SOD2, CAT and Rpn11. Sesamin at 0.2 % in diet also attenuated paraquat-induced neurodegeneration with up-regulation of SOD1, SOD2 and Rpn11 in OR wild fruit flies. Supplementation of 0.2 % sesamin in diet increased the survival time of OR wild type flies and Alzheimer flies Aβ42 33769 when they were challenged with paraquat. Furthermore, sesamin-induced increase in the activity and expression of antioxidant enzymes also suggests that the longevity promoting activity of sesamin are possibly due to its action as a hormetin by inducing oxidative stress response-mediated hormesis. It was concluded that sesamin extended the mean lifespan and alleviated the neurodegeneration in Drosophila melanogaster at least mediated by its interaction with genes SOD1, SOD2, CAT, and Rpn11, but not with gene Mth.
Collapse
Affiliation(s)
- Yuanyuan Zuo
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
191
|
Lionaki E, Markaki M, Tavernarakis N. Autophagy and ageing: insights from invertebrate model organisms. Ageing Res Rev 2013; 12:413-28. [PMID: 22634332 DOI: 10.1016/j.arr.2012.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 05/03/2012] [Accepted: 05/08/2012] [Indexed: 12/11/2022]
Abstract
Ageing in diverse species ranging from yeast to humans is associated with the gradual, lifelong accumulation of molecular and cellular damage. Autophagy, a conserved lysosomal, self-destructive process involved in protein and organelle degradation, plays an essential role in both cellular and whole-animal homeostasis. Accumulating evidence now indicates that autophagic degradation declines with age and this gradual reduction of autophagy might have a causative role in the functional deterioration of biological systems during ageing. Indeed, loss of autophagy gene function significantly influences longevity. Moreover, genetic or pharmacological manipulations that extend lifespan in model organisms often activate autophagy. Interestingly, conserved signalling pathways and environmental factors that regulate ageing, such as the insulin/IGF-1 signalling pathway and oxidative stress response pathways converge on autophagy. In this article, we survey recent findings in invertebrates that contribute to advance our understanding of the molecular links between autophagy and the regulation of ageing. In addition, we consider related mechanisms in other organisms and discuss their similarities and idiosyncratic features in a comparative manner.
Collapse
|
192
|
Lozinsky OV, Lushchak OV, Kryshchuk NI, Shchypanska NY, Riabkina AH, Skarbek SV, Maksymiv IV, Storey JM, Storey KB, Lushchak VI. S-nitrosoglutathione-induced toxicity in Drosophila melanogaster: Delayed pupation and induced mild oxidative/nitrosative stress in eclosed flies. Comp Biochem Physiol A Mol Integr Physiol 2013; 164:162-70. [DOI: 10.1016/j.cbpa.2012.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/13/2012] [Accepted: 08/14/2012] [Indexed: 02/04/2023]
|
193
|
Vogel KJ, Brown MR, Strand MR. Phylogenetic investigation of Peptide hormone and growth factor receptors in five dipteran genomes. Front Endocrinol (Lausanne) 2013; 4:193. [PMID: 24379806 PMCID: PMC3863949 DOI: 10.3389/fendo.2013.00193] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 11/29/2013] [Indexed: 12/26/2022] Open
Abstract
Peptide hormones and growth factors bind to membrane receptors and regulate a myriad of processes in insects and other metazoans. The evolutionary relationships among characterized and uncharacterized ("orphan") receptors can provide insights into receptor-ligand biology and narrow target choices in deorphanization studies. However, the large number and low sequence conservation of these receptors make evolutionary analysis difficult. Here, we characterized the G-protein-coupled receptors (GPCRs), receptor guanylyl cyclases (RGCs), and protein kinase receptors (PKRs) of mosquitoes and select other flies by interrogating the genomes of Aedes aegypti, Anopheles gambiae, Culex quinquefasciatus, Drosophila melanogaster, and D. mojavensis. Sequences were grouped by receptor type, clustered using the program CLANS, aligned using HMMR, and phylogenetic trees built using PhyML. Our results indicated that PKRs had relatively few orphan clades whereas GPCRs and RGCs had several. In addition, more than half of the Class B secretin-like GPCRs and RGCs remained uncharacterized. Additional studies revealed that Class B GPCRs exhibited more gain and loss events than other receptor types. Finally, using the neuropeptide F family of insect receptors and the neuropeptide Y family of vertebrate receptors, we also show that functional sites considered critical for ligand binding are conserved among distinct family members and between distantly related taxa. Overall, our results provide the first comprehensive analysis of peptide hormone and growth factor receptors for a major insect group.
Collapse
Affiliation(s)
- Kevin J. Vogel
- Department of Entomology, The University of Georgia, Athens, GA, USA
- *Correspondence: Kevin J. Vogel, Department of Entomology, The University of Georgia, 413 Biological Sciences Building, Athens, GA 30602, USA e-mail:
| | - Mark R. Brown
- Department of Entomology, The University of Georgia, Athens, GA, USA
| | - Michael R. Strand
- Department of Entomology, The University of Georgia, Athens, GA, USA
| |
Collapse
|
194
|
Sun Y, Yolitz J, Wang C, Spangler E, Zhan M, Zou S. Aging studies in Drosophila melanogaster. Methods Mol Biol 2013; 1048:77-93. [PMID: 23929099 DOI: 10.1007/978-1-62703-556-9_7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drosophila is a genetically tractable system ideal for investigating the mechanisms of aging and developing interventions for promoting healthy aging. Here we describe methods commonly used in Drosophila aging research. These include basic approaches for preparation of diets and measurements of lifespan, food intake, and reproductive output. We also describe some commonly used assays to measure changes in physiological and behavioral functions of Drosophila in aging, such as stress resistance and locomotor activity.
Collapse
Affiliation(s)
- Yaning Sun
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
195
|
dSir2 in the adult fat body, but not in muscles, regulates life span in a diet-dependent manner. Cell Rep 2012; 2:1485-91. [PMID: 23246004 DOI: 10.1016/j.celrep.2012.11.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/03/2012] [Accepted: 11/15/2012] [Indexed: 11/20/2022] Open
Abstract
Sir2, an evolutionarily conserved NAD(+)-dependent deacetylase, has been implicated as a key factor in mediating organismal life span. However, recent contradictory findings have brought into question the role of Sir2 and its orthologs in regulating organismal longevity. In this study, we report that Drosophila Sir2 (dSir2) in the adult fat body regulates longevity in a diet-dependent manner. We used inducible Gal4 drivers to knock down and overexpress dSir2 in a tissue-specific manner. A diet-dependent life span phenotype of dSir2 perturbations (both knockdown and overexpression) in the fat body, but not muscles, negates the effects of background genetic mutations. In addition to providing clarity to the field, our study contrasts the ability of dSir2 in two metabolic tissues to affect longevity. We also show that dSir2 knockdown abrogates fat-body dFOXO-dependent life span extension. This report highlights the importance of the interplay between genetic factors and dietary inputs in determining organismal life spans.
Collapse
|
196
|
Krementsova AV, Roshina NV, Tsybul’ko EA, Rybina OY, Symonenko AV, Pasyukova EG. Reproducible effects of the mitochondria-targeted plastoquinone derivative SkQ1 on Drosophila melanogaster lifespan under different experimental scenarios. Biogerontology 2012; 13:595-607. [DOI: 10.1007/s10522-012-9404-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/05/2012] [Indexed: 12/19/2022]
|
197
|
Ungvari Z, Sosnowska D, Mason JB, Gruber H, Lee SW, Schwartz TS, Brown MK, Storm NJ, Fortney K, Sowa J, Byrne AB, Kurz T, Levy E, Sonntag WE, Austad SN, Csiszar A, Ridgway I. Resistance to genotoxic stresses in Arctica islandica, the longest living noncolonial animal: is extreme longevity associated with a multistress resistance phenotype? J Gerontol A Biol Sci Med Sci 2012; 68:521-9. [PMID: 23051979 DOI: 10.1093/gerona/gls193] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bivalve molluscs are newly discovered models of successful aging. Here, we test the hypothesis that extremely long-lived bivalves are not uniquely resistant to oxidative stressors (eg, tert-butyl hydroperoxide, as demonstrated in previous studies) but exhibit a multistress resistance phenotype. We contrasted resistance (in terms of organismal mortality) to genotoxic stresses (including topoisomerase inhibitors, agents that cross-link DNA or impair genomic integrity through DNA alkylation or methylation) and to mitochondrial oxidative stressors in three bivalve mollusc species with dramatically differing life spans: Arctica islandica (ocean quahog), Mercenaria mercenaria (northern quahog), and the Atlantic bay scallop, Argopecten irradians irradians (maximum species life spans: >500, >100, and ~2 years, respectively). With all stressors, the short-lived A i irradians were significantly less resistant than the two longer lived species. Arctica islandica were consistently more resistant than M mercenaria to mortality induced by oxidative stressors as well as DNA methylating agent nitrogen mustard and the DNA alkylating agent methyl methanesulfonate. The same trend was not observed for genotoxic agents that act through cross-linking DNA. In contrast, M mercenaria tended to be more resistant to epirubicin and genotoxic stressors, which cause DNA damage by inhibiting topoisomerases. To our knowledge, this is the first study comparing resistance to genotoxic stressors in bivalve mollusc species with disparate longevities. In line with previous studies of comparative stress resistance and longevity, our data extends, at least in part, the evidence for the hypothesis that an association exists between longevity and a general resistance to multiplex stressors, not solely oxidative stress. This work also provides justification for further investigation into the interspecies differences in stress response signatures induced by a diverse array of stressors in short-lived and long-lived bivalves, including pharmacological agents that elicit endoplasmic reticulum stress and cellular stress caused by activation of innate immunity.
Collapse
Affiliation(s)
- Zoltan Ungvari
- 1Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Patel MV, Hallal DA, Jones JW, Bronner DN, Zein R, Caravas J, Husain Z, Friedrich M, Vanberkum MFA. Dramatic expansion and developmental expression diversification of the methuselah gene family during recent Drosophila evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:368-87. [PMID: 22711569 DOI: 10.1002/jez.b.22453] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Functional studies of the methuselah/methuselah-like (mth/mthl) gene family have focused on the founding member mth, but little is known regarding the developmental functions of this receptor or any of its paralogs. We undertook a comprehensive analysis of developmental expression and sequence divergence in the mth/mthl gene family. Using in situ hybridization techniques, we detect expression of six genes (mthl1, 5, 9, 11, 13, and 14) in the embryo during gastrulation and development of the gut, heart, and lymph glands. Four receptors (mthl3, 4, 6, and 8) are expressed in the larval central nervous system, imaginal discs, or both, and two receptors (mthl10 and mth) are expressed in both embryos and larvae. Phylogenetic analysis of all mth/mthl genes in five Drosophila species, mosquito and flour beetle structured the mth/mthl family into several subclades. mthl1, 5, and 14 are present in most species, each forming a separate clade. A newly identified Drosophila mthl gene (CG31720; herein mthl15) formed another ancient clade. The remaining Drosophila receptors, including mth, are members of a large "superclade" that diversified relatively recently during dipteran evolution, in many cases within the melanogaster subgroup. Comparing the expression patterns of the mth/mthl "superclade" paralogs to the embryonic expression of the singleton ortholog in Tribolium suggests both subfunctionalization and acquisition of novel functionalities. Taken together, our findings shed novel light on mth as a young member of an adaptively evolving developmental gene family.
Collapse
Affiliation(s)
- Meghna V Patel
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Molecular mechanisms of aging and immune system regulation in Drosophila. Int J Mol Sci 2012; 13:9826-9844. [PMID: 22949833 PMCID: PMC3431831 DOI: 10.3390/ijms13089826] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/25/2012] [Accepted: 07/30/2012] [Indexed: 12/04/2022] Open
Abstract
Aging is a complex process that involves the accumulation of deleterious changes resulting in overall decline in several vital functions, leading to the progressive deterioration in physiological condition of the organism and eventually causing disease and death. The immune system is the most important host-defense mechanism in humans and is also highly conserved in insects. Extensive research in vertebrates has concluded that aging of the immune function results in increased susceptibility to infectious disease and chronic inflammation. Over the years, interest has grown in studying the molecular interaction between aging and the immune response to pathogenic infections. The fruit fly Drosophila melanogaster is an excellent model system for dissecting the genetic and genomic basis of important biological processes, such as aging and the innate immune system, and deciphering parallel mechanisms in vertebrate animals. Here, we review the recent advances in the identification of key players modulating the relationship between molecular aging networks and immune signal transduction pathways in the fly. Understanding the details of the molecular events involved in aging and immune system regulation will potentially lead to the development of strategies for decreasing the impact of age-related diseases, thus improving human health and life span.
Collapse
|
200
|
Cui L, Li J, Xie X. Rediocide A, an Insecticide, induces G-protein-coupled receptor desensitization via activation of conventional protein kinase C. JOURNAL OF NATURAL PRODUCTS 2012; 75:1058-1062. [PMID: 22650618 DOI: 10.1021/np3000359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In order to identify small-molecule antagonists of Methuselah (Mth), a Drosophila G-protein-coupled receptor (GPCR) involved in life-span control, a library of natural compounds was screened, and it was found that rediocide A (1), a daphnane ester from the roots of Trigonostemon reidioides and used currently for flea control, potently inhibited calcium mobilization mediated by this receptor. Compound 1 inhibited calcium mobilization in GPCRs other than Mth, indicating that the inhibitory effect was not due to receptor antagonism but rather to a more general mechanism. It was found that 1 can induce GPCR desensitization and internalization, and such effects were mediated by the activation of conventional protein kinase C.
Collapse
Affiliation(s)
- Lixin Cui
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | | | | |
Collapse
|