151
|
Abstract
Phosphoinositide 3-kinases (PI3Ks) control many important aspects of immune cell development, differentiation, and function. Mammals have eight PI3K catalytic subunits that are divided into three classes based on similarities in structure and function. Specific roles for the class I PI3Ks have been broadly investigated and are relatively well understood, as is the function of their corresponding phosphatases. More recently, specific roles for the class II and class III PI3Ks have emerged. Through vertebrate evolution and in parallel with the evolution of adaptive immunity, there has been a dramatic increase not only in the genes for PI3K subunits but also in genes for phosphatases that act on 3-phosphoinositides and in 3-phosphoinositide-binding proteins. Our understanding of the PI3Ks in immunity is guided by fundamental discoveries made in simpler model organisms as well as by appreciating new adaptations of this signaling module in mammals in general and in immune cells in particular.
Collapse
Affiliation(s)
- Klaus Okkenhaug
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, CB22 3AT, United Kingdom.
| |
Collapse
|
152
|
Kim HR. Phosphoinositide 3-kinase (PI3K) as a New Therapeutic Target for Rheumatoid Arthritis. JOURNAL OF RHEUMATIC DISEASES 2013. [DOI: 10.4078/jrd.2013.20.2.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
153
|
Giudice FS, Squarize CH. The determinants of head and neck cancer: Unmasking the PI3K pathway mutations. ACTA ACUST UNITED AC 2013; Suppl 5. [PMID: 25126449 DOI: 10.4172/2157-2518.s5-003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Studies attempting to identify and understand the function of mutated genes and deregulated molecular pathways in cancer have been ongoing for many years. The PI3K-PTEN-mTOR signaling pathway is one of the most frequently deregulated pathways in cancer. PIK3CA mutations are found 11%-33% of head and neck cancer (HNC). The hotspot mutation sites for PIK3CA are E542K, E545K and H1047R/L. The PTEN somatic mutations are in 9-23% of HNC, and they frequently cluster in the phosphatase domain of PTEN protein. PTEN loss of heterozygosity (LOH) ranges from 41%-71% and loss of PTEN protein expression occurs in 31.2% of the HNC samples. PIK3CA and PTEN are key molecules in the PI3K-PTEN-mTOR signaling pathway. In this review, we provided a comprehensive overview of mutations in the PI3K-PTEN-mTOR molecular circuitry in HNC, including PI3K family members, TSC1/TSC2, PTEN, AKT, and mTORC1 and mTORC2 complexes. We discussed how these genetic alterations may affect protein structure and function. We also highlight the latest discoveries in protein kinase and tumor suppressor families, emphasizing how mutations in these families interfere with PI3K signaling. A better understanding of the mechanisms underlying cancer formation, progression and resistance to therapy will inform selection of novel genomic-based personalized therapies for head and neck cancer patients.
Collapse
Affiliation(s)
- Fernanda S Giudice
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, 48109-1078, USA ; International Research Center, A. C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, 48109-1078, USA
| |
Collapse
|
154
|
Discovery and optimization of a series of 2-aminothiazole-oxazoles as potent phosphoinositide 3-kinase γ inhibitors. Bioorg Med Chem Lett 2012; 22:7534-8. [DOI: 10.1016/j.bmcl.2012.10.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/02/2012] [Accepted: 10/05/2012] [Indexed: 11/20/2022]
|
155
|
Fuller SJ. New Insights into the Pathogenesis, Diagnosis, and Management of Mastocytosis. Hematol Oncol Clin North Am 2012; 26:1143-68. [DOI: 10.1016/j.hoc.2012.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
156
|
Sun X, Liu B, Sartor RB, Jobin C. Phosphatidylinositol 3-kinase-γ signaling promotes Campylobacter jejuni-induced colitis through neutrophil recruitment in mice. THE JOURNAL OF IMMUNOLOGY 2012. [PMID: 23180818 DOI: 10.4049/jimmunol.1201825] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Crypt abscesses caused by excessive neutrophil accumulation are prominent features of human campylobacteriosis and its associated pathology. The molecular and cellular events responsible for this pathological situation are currently unknown. We investigated the contribution of PI3K-γ signaling in Campylobacter jejuni-induced neutrophil accumulation and intestinal inflammation. Germ-free and specific pathogen-free Il10(-/-) and germ-free Il10(-/-);Rag2(-/-) mice were infected with C. jejuni (10(9) CFU/mouse). PI3K-γ signaling was manipulated using either the pharmacological PI3K-γ inhibitor AS252424 (i.p. 10 mg/kg daily) or genetically using Pi3k-γ(-/-) mice. After up to 14 d, inflammation was assessed histologically and by measuring levels of colonic Il1β, Cxcl2, and Il17a mRNA. Neutrophils were depleted using anti-Gr1 Ab (i.p. 0.5 mg/mouse/every 3 d). Using germ-free Il10(-/-);Rag2(-/-) mice, we observed that innate immune cells are the main cellular compartment responsible for campylobacteriosis. Pharmacological blockade of PI3K-γ signaling diminished C. jejuni-induced intestinal inflammation, neutrophil accumulation, and NF-κB activity, which correlated with reduced Il1β (77%), Cxcl2 (73%), and Il17a (72%) mRNA accumulation. Moreover, Pi3k-γ(-/-) mice pretreated with anti-IL-10R were resistant to C. jejuni-induced intestinal inflammation compared with Wt mice. This improvement was accompanied by a reduction of C. jejuni translocation into the colon and extraintestinal tissues and by attenuation of neutrophil migratory capacity. Furthermore, neutrophil depletion attenuated C. jejuni-induced crypt abscesses and intestinal inflammation. Our findings indicate that C. jejuni-induced PI3K-γ signaling mediates neutrophil recruitment and intestinal inflammation in Il10(-/-) mice. Selective pharmacological inhibition of PI3K-γ may represent a novel means to alleviate severe cases of campylobacteriosis, especially in antibiotic-resistant strains.
Collapse
Affiliation(s)
- Xiaolun Sun
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
157
|
Nigorikawa K, Hazeki K, Kumazawa T, Itoh Y, Hoshi M, Hazeki O. Class-IA phosphoinositide 3-kinase p110β Triggers GPCR-induced superoxide production in p110γ-deficient murine neutrophils. J Pharmacol Sci 2012; 120:270-9. [PMID: 23149576 DOI: 10.1254/jphs.12134fp] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Studies with knockout mice have indicated that the only isoform of phosphoinositide 3-kinase (PI3K) functioning in the oxidative burst of mouse neutrophils in response to heterotrimeric guanine nucleotide-binding protein-coupled receptor (GPCR) agonists is a class-IB PI3K, p110γ. In the present study, we observed that the cells from p110γ(-/-) mice gain a response to N-formyl-Met-Leu-Phe (fMLP) after priming with cytochalasin E. Even the unprimed cells, which show no response to fMLP, produce a significant amount of superoxide, when an effective agonist of the mouse-type fMLP receptors, Trp-Lys-Tyr-Met-Val-D-Met, is used to stimulate the cells. These results suggested that the class-IA isoforms (p110α, p110β, and p110δ) of PI3K are sufficient to trigger and maintain superoxide production. Examination of the effects of isoform-specific inhibitors suggested that the p110β isoform is the primary PI3K triggering the response to GPCR agonists when p110γ is absent.
Collapse
Affiliation(s)
- Kiyomi Nigorikawa
- Department of Physiological Chemistry, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan.
| | | | | | | | | | | |
Collapse
|
158
|
Germena G, Hirsch E. PI3Ks and small GTPases in neutrophil migration: two sides of the same coin. Mol Immunol 2012; 55:83-6. [PMID: 23137593 DOI: 10.1016/j.molimm.2012.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/11/2012] [Indexed: 12/24/2022]
Abstract
Cell migration is a key event in physiological processes such as embryonic development, tissue repair, angiogenesis and immune responses. Alteration of the migration program is an important component in multiple pathologies, including chronic inflammation, autoimmunity and tumor metastasis. Understanding of the precise mechanisms at the basis of cellular migration may lead to the identification of novel therapeutic approach for these diseases. Recent evidences show that the interplay between the lipid kinases phosphatidylinositol 3-kinase (PI3Ks) and small GTPases play a critical role in driving cell migration. In this review we will describe the role of these molecules and the interaction between their signal cascades in leukocyte polarization and amoeboid migration.
Collapse
Affiliation(s)
- Giulia Germena
- Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy
| | | |
Collapse
|
159
|
Ittner A, Block H, Reichel CA, Varjosalo M, Gehart H, Sumara G, Gstaiger M, Krombach F, Zarbock A, Ricci R. Regulation of PTEN activity by p38δ-PKD1 signaling in neutrophils confers inflammatory responses in the lung. ACTA ACUST UNITED AC 2012; 209:2229-46. [PMID: 23129748 PMCID: PMC3501357 DOI: 10.1084/jem.20120677] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Deletion of p38 MAP kinase p38 d results in decreased alveolar neutrophil accumulation and attenuation of acute lung injury through activation of protein kinase D1 and PTEN. Despite their role in resolving inflammatory insults, neutrophils trigger inflammation-induced acute lung injury (ALI), culminating in acute respiratory distress syndrome (ARDS), a frequent complication with high mortality in humans. Molecular mechanisms underlying recruitment of neutrophils to sites of inflammation remain poorly understood. Here, we show that p38 MAP kinase p38δ is required for recruitment of neutrophils into inflammatory sites. Global and myeloid-restricted deletion of p38δ in mice results in decreased alveolar neutrophil accumulation and attenuation of ALI. p38δ counteracts the activity of its downstream target protein kinase D1 (PKD1) in neutrophils and myeloid-restricted inactivation of PKD1 leads to exacerbated lung inflammation. Importantly, p38δ and PKD1 conversely regulate PTEN activity in neutrophils, thereby controlling their extravasation and chemotaxis. PKD1 phosphorylates p85α to enhance its interaction with PTEN, leading to polarized PTEN activity, thereby regulating neutrophil migration. Thus, aberrant p38δ–PKD1 signaling in neutrophils may underlie development of ALI and life-threatening ARDS in humans.
Collapse
Affiliation(s)
- Arne Ittner
- Institute of Cell Biology, Eidgenössische Technische Hochschule Zurich, 8006 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Ritsma L, Steller EJA, Beerling E, Loomans CJM, Zomer A, Gerlach C, Vrisekoop N, Seinstra D, van Gurp L, Schafer R, Raats DA, de Graaff A, Schumacher TN, de Koning EJP, Rinkes IHB, Kranenburg O, Rheenen JV. Intravital Microscopy Through an Abdominal Imaging Window Reveals a Pre-Micrometastasis Stage During Liver Metastasis. Sci Transl Med 2012; 4:158ra145. [DOI: 10.1126/scitranslmed.3004394] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
161
|
Juss JK, Hayhoe RP, Owen CE, Bruce I, Walmsley SR, Cowburn AS, Kulkarni S, Boyle KB, Stephens L, Hawkins PT, Chilvers ER, Condliffe AM. Functional redundancy of class I phosphoinositide 3-kinase (PI3K) isoforms in signaling growth factor-mediated human neutrophil survival. PLoS One 2012; 7:e45933. [PMID: 23029326 PMCID: PMC3454369 DOI: 10.1371/journal.pone.0045933] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/23/2012] [Indexed: 11/19/2022] Open
Abstract
We have investigated the contribution of individual phosphoinositide 3-kinase (PI3K) Class I isoforms to the regulation of neutrophil survival using (i) a panel of commercially available small molecule isoform-selective PI3K Class I inhibitors, (ii) novel inhibitors, which target single or multiple Class I isoforms (PI3Kα, PI3Kβ, PI3Kδ, and PI3Kγ), and (iii) transgenic mice lacking functional PI3K isoforms (p110δKOγKO or p110γKO). Our data suggest that there is considerable functional redundancy amongst Class I PI3Ks (both Class IA and Class IB) with regard to GM-CSF-mediated suppression of neutrophil apoptosis. Hence pharmacological inhibition of any 3 or more PI3K isoforms was required to block the GM-CSF survival response in human neutrophils, with inhibition of individual or any two isoforms having little or no effect. Likewise, isolated blood neutrophils derived from double knockout PI3K p110δKOγKO mice underwent normal time-dependent constitutive apoptosis and displayed identical GM-CSF mediated survival to wild type cells, but were sensitized to pharmacological inhibition of the remaining PI3K isoforms. Surprisingly, the pro-survival neutrophil phenotype observed in patients with an acute exacerbation of chronic obstructive pulmonary disease (COPD) was resilient to inactivation of the PI3K pathway.
Collapse
Affiliation(s)
- Jatinder K. Juss
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
- Inositide Laboratory, The Babraham Institute, Cambridge, United Kingdom
| | - Richard P. Hayhoe
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
| | | | - Ian Bruce
- Novartis, Horsham Research Centre, Horsham, United Kingdom
| | - Sarah R. Walmsley
- Academic Unit of Respiratory Medicine, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Andrew S. Cowburn
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
| | - Suhasini Kulkarni
- Inositide Laboratory, The Babraham Institute, Cambridge, United Kingdom
| | - Keith B. Boyle
- Inositide Laboratory, The Babraham Institute, Cambridge, United Kingdom
| | - Len Stephens
- Inositide Laboratory, The Babraham Institute, Cambridge, United Kingdom
| | | | - Edwin R. Chilvers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
| | - Alison M. Condliffe
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
162
|
GPCR activation of Ras and PI3Kc in neutrophils depends on PLCb2/b3 and the RasGEF RasGRP4. EMBO J 2012; 31:3118-29. [PMID: 22728827 PMCID: PMC3400018 DOI: 10.1038/emboj.2012.167] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/15/2012] [Indexed: 12/31/2022] Open
Abstract
The molecular mechanisms by which receptors regulate the Ras Binding Domains of the PIP3-generating, class I PI3Ks remain poorly understood, despite their importance in a range of biological settings, including tumorigenesis, activation of neutrophils by pro-inflammatory mediators, chemotaxis of Dictyostelium and cell growth in Drosophila. We provide evidence that G protein-coupled receptors (GPCRs) can stimulate PLCb2/b3 and diacylglycerol- dependent activation of the RasGEF, RasGRP4 in neutrophils. The genetic loss of RasGRP4 phenocopies knock-in of a Ras-insensitive version of PI3Kc in its effects on PI3Kc-dependent PIP3 accumulation, PKB activation, chemokinesis and reactive oxygen species (ROS) formation. These results establish a new mechanism by which GPCRs can stimulate Ras, and the broadly important principle that PLCs can control activation of class I PI3Ks.
Collapse
|
163
|
Khabbazi S, Jacques R, Moyano Cardaba C, Mueller A. Janus kinase 2 and signal transducer and activator of transcription 3 activation is not essential for CCL3-, CCL5- or CCL8-induced chemotaxis. Cell Biochem Funct 2012; 31:312-8. [DOI: 10.1002/cbf.2901] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 01/08/2023]
Affiliation(s)
- S. Khabbazi
- School of Pharmacy; University of East Anglia; Norwich; UK
| | - R.O. Jacques
- School of Pharmacy; University of East Anglia; Norwich; UK
| | | | - A. Mueller
- School of Pharmacy; University of East Anglia; Norwich; UK
| |
Collapse
|
164
|
Comerford I, Litchfield W, Kara E, McColl SR. PI3Kγ drives priming and survival of autoreactive CD4(+) T cells during experimental autoimmune encephalomyelitis. PLoS One 2012; 7:e45095. [PMID: 23028778 PMCID: PMC3441529 DOI: 10.1371/journal.pone.0045095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/17/2012] [Indexed: 11/20/2022] Open
Abstract
The class IB phosphoinositide 3-kinase gamma enzyme complex (PI3Kγ) functions in multiple signaling pathways involved in leukocyte activation and migration, making it an attractive target in complex human inflammatory diseases including MS. Here, using pik3cg−/− mice and a selective PI3Kγ inhibitor, we show that PI3Kγ promotes development of experimental autoimmune encephalomyelitis (EAE). In pik3cg−/− mice, EAE is markedly suppressed and fewer leukocytes including CD4+ and CD8+ T cells, granulocytes and mononuclear phagocytes infiltrate the CNS. CD4+ T cell priming in secondary lymphoid organs is reduced in pik3cg−/− mice following immunisation. This is attributable to defects in DC migration concomitant with a failure of full T cell activation following TCR ligation in the absence of p110γ. Together, this results in suppressed autoreactive T cell responses in pik3cg−/− mice, with more CD4+ T cells undergoing apoptosis and fewer cytokine-producing Th1 and Th17 cells in lymphoid organs and the CNS. When administered from onset of EAE, the orally active PI3Kγ inhibitor AS605240 caused inhibition and reversal of clinical disease, and demyelination and cellular pathology in the CNS was reduced. These results strongly suggest that inhibitors of PI3Kγ may be useful therapeutics for MS.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Apoptosis/drug effects
- Apoptosis/immunology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/enzymology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- Cell Movement/drug effects
- Cell Movement/immunology
- Cell Survival/drug effects
- Cell Survival/immunology
- Central Nervous System/drug effects
- Central Nervous System/immunology
- Central Nervous System/pathology
- Class Ib Phosphatidylinositol 3-Kinase/deficiency
- Class Ib Phosphatidylinositol 3-Kinase/metabolism
- Cross-Priming/drug effects
- Cross-Priming/immunology
- Cytokines/biosynthesis
- Dendritic Cells/drug effects
- Dendritic Cells/enzymology
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Encephalomyelitis, Autoimmune, Experimental/enzymology
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Gene Deletion
- Humans
- Mice
- Mice, Inbred C57BL
- Protein Kinase Inhibitors/administration & dosage
- Protein Kinase Inhibitors/pharmacology
- Quinoxalines/administration & dosage
- Quinoxalines/pharmacology
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Thiazolidinediones/administration & dosage
- Thiazolidinediones/pharmacology
Collapse
Affiliation(s)
- Iain Comerford
- Chemokine Biology Laboratory, the School of Molecular & Biomedical Science, the University of Adelaide, Adelaide, South Australia, Australia.
| | | | | | | |
Collapse
|
165
|
Banham-Hall E, Clatworthy MR, Okkenhaug K. The Therapeutic Potential for PI3K Inhibitors in Autoimmune Rheumatic Diseases. Open Rheumatol J 2012; 6:245-58. [PMID: 23028409 PMCID: PMC3460535 DOI: 10.2174/1874312901206010245] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/16/2011] [Accepted: 11/20/2011] [Indexed: 12/14/2022] Open
Abstract
The class 1 PI3Ks are lipid kinases with key roles in cell surface receptor-triggered signal transduction pathways. Two isoforms of the catalytic subunits, p110γ and p110δ, are enriched in leucocytes in which they promote activation, cellular growth, proliferation, differentiation and survival through the generation of the second messenger PIP3. Genetic inactivation or pharmaceutical inhibition of these PI3K isoforms in mice result in impaired immune responses and reduced susceptibility to autoimmune and inflammatory conditions. We review the PI3K signal transduction pathways and the effects of inhibition of p110γ and/or p110δ on innate and adaptive immunity. Focusing on rheumatoid arthritis and systemic lupus erythematosus we discuss the preclinical evidence and prospects for small molecule inhibitors of p110γ and/or p110δ in autoimmune disease.
Collapse
Affiliation(s)
- Edward Banham-Hall
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, CB22
3AT, UK
| | - Menna R Clatworthy
- Cambridge Institute for Medical Research and the Department of Medicine, University of Cambridge School of Clinical
Medicine, Cambridge CB2 0XY, UK
| | - Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, CB22
3AT, UK
| |
Collapse
|
166
|
Abstract
Leukocyte recruitment to sites of infection or tissue damage plays a crucial role for the innate immune response. Chemokine-dependent signaling in immune cells is a very important mechanism leading to integrin activation and leukocyte recruitment. CXC chemokine receptor 2 (CXCR2) is a prominent chemokine receptor on neutrophils. During the last years, several studies were performed investigating the role of CXCR2 in different diseases. Until now, many CXCR2 inhibitors are tested in animal models and clinical trials and promising results were obtained. This review gives an overview of the structure of CXCR2 and the signaling pathways that are activated following CXCR2 stimulation. We discuss in detail the role of this chemokine receptor in different disease models including acute lung injury, COPD, sepsis, and ischemia-reperfusion-injury. Furthermore, this review summarizes the results of clinical trials which used CXCR2 inhibitors.
Collapse
Affiliation(s)
- Anika Stadtmann
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Münster Münster, Germany
| | | |
Collapse
|
167
|
Sunose M, Bell K, Ellard K, Bergamini G, Neubauer G, Werner T, Ramsden N. Discovery of 5-(2-amino-[1,2,4]triazolo[1,5-a]pyridin-7-yl)-N-(tert-butyl)pyridine-3-sulfonamide (CZC24758), as a potent, orally bioavailable and selective inhibitor of PI3K for the treatment of inflammatory disease. Bioorg Med Chem Lett 2012; 22:4613-8. [DOI: 10.1016/j.bmcl.2012.05.090] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 05/24/2012] [Accepted: 05/28/2012] [Indexed: 12/31/2022]
|
168
|
Heller NM, Gwinn WM, Donnelly RP, Constant SL, Keegan AD. IL-4 engagement of the type I IL-4 receptor complex enhances mouse eosinophil migration to eotaxin-1 in vitro. PLoS One 2012; 7:e39673. [PMID: 22761864 PMCID: PMC3386270 DOI: 10.1371/journal.pone.0039673] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 05/27/2012] [Indexed: 01/21/2023] Open
Abstract
Background Previous work from our laboratory demonstrated that IL-4Rα expression on a myeloid cell type was responsible for enhancement of Th2-driven eosinophilic inflammation in a mouse model of allergic lung inflammation. Subsequently, we have shown that IL-4 signaling through type I IL-4 receptors on monocytes/macrophages strongly induced activation of the IRS-2 pathway and a subset of genes characteristic of alternatively activated macrophages. The direct effect(s) of IL-4 and IL-13 on mouse eosinophils are not clear. The goal of this study was determine the effect of IL-4 and IL-13 on mouse eosinophil function. Methods Standard Transwell chemotaxis assay was used to assay migration of mouse eosinophils and signal transduction was assessed by Western blotting. Results Here we determined that (i) mouse eosinophils express both type I and type II IL-4 receptors, (ii) in contrast to human eosinophils, mouse eosinophils do not chemotax to IL-4 or IL-13 although (iii) pre-treatment with IL-4 but not IL-13 enhanced migration to eotaxin-1. This IL-4-mediated enhancement was dependent on type I IL-4 receptor expression: γC-deficient eosinophils did not show enhancement of migratory capacity when pre-treated with IL-4. In addition, mouse eosinophils responded to IL-4 with the robust tyrosine phosphorylation of STAT6 and IRS-2, while IL-13-induced responses were considerably weaker. Conclusions The presence of IL-4 in combination with eotaxin-1 in the allergic inflammatory milieu could potentiate infiltration of eosinophils into the lungs. Therapies that block IL-4 and chemokine receptors on eosinophils might be more effective clinically in reducing eosinophilic lung inflammation.
Collapse
Affiliation(s)
- Nicola M. Heller
- Department of Microbiology and Immunology and the Center for Vascular and Inflammatory Diseases, The University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - William M. Gwinn
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Medical Center, Washington, District of Columbia, United States of America
| | - Raymond P. Donnelly
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Stephanie L. Constant
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Medical Center, Washington, District of Columbia, United States of America
| | - Achsah D. Keegan
- Department of Microbiology and Immunology and the Center for Vascular and Inflammatory Diseases, The University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
169
|
Klement GL, Goukassian D, Hlatky L, Carrozza J, Morgan JP, Yan X. Cancer Therapy Targeting the HER2-PI3K Pathway: Potential Impact on the Heart. Front Pharmacol 2012; 3:113. [PMID: 22754526 PMCID: PMC3384262 DOI: 10.3389/fphar.2012.00113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 05/24/2012] [Indexed: 01/22/2023] Open
Abstract
The HER2-PI3K pathway is the one of the most mutated pathways in cancer. Several drugs targeting the major kinases of this pathway have been approved by the Food and Drug Administration and many are being tested in clinical trials for the treatment of various cancers. However, the HER2-PI3K pathway is also pivotal for maintaining the physiological function of the heart, especially in the presence of cardiac stress. Clinical studies have shown that in patients treated with doxorubicin concurrently with Trastuzumab, a monoclonal antibody that blocks the HER2 receptor, the New York Heart Association class III/IV heart failure was significantly increased compared to those who were treated with doxorubicin alone (16 vs. 3%). Studies in transgenic mice have also shown that other key kinases of this pathway, such as PI3Kα, PDK1, Akt, and mTOR, are important for protecting the heart from ischemia-reperfusion and aortic stenosis induced cardiac dysfunction. Studies, however, have also shown that inhibition of PI3Kγ improve cardiac function of a failing heart. In addition, results from transgenic mouse models are not always consistent with the outcome of the pharmacological inhibition of this pathway. Here, we will review these findings and discuss how we can address the cardiac side-effects caused by inhibition of this important pathway in both cancer and cardiac biology.
Collapse
Affiliation(s)
- Giannoula L Klement
- Center of Cancer Systems Biology, St. Elizabeth's Medical Center, Tufts University School of Medicine Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
170
|
Suwanabol PA, Seedial SM, Zhang F, Shi X, Si Y, Liu B, Kent KC. TGF-β and Smad3 modulate PI3K/Akt signaling pathway in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2012; 302:H2211-9. [PMID: 22447946 PMCID: PMC3378292 DOI: 10.1152/ajpheart.00966.2011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 03/21/2012] [Indexed: 12/29/2022]
Abstract
Transforming growth factor-β (TGF-β) is upregulated at the time of arterial injury; however, the mechanism through which TGF-β enhances the development of intimal hyperplasia is not clear. Recent studies from our laboratory suggest that in the presence of elevated levels of Smad3, TGF-β stimulates smooth muscle cell (SMC) proliferation. This is a novel phenomenon in that TGF-β has traditionally been known as a potent inhibitor of cellular proliferation. In these studies we explore the signaling pathways through which TGF-β mediates its proliferative effect in vascular SMCs. We found that TGF-β phosphorylates and activates Akt in a time-dependent manner, and this effect is significantly enhanced by overexpression of Smad3. Furthermore, both chemical and molecular inhibition of Smad3 can reverse the effect of TGF-β on Akt. Although we found numerous signaling pathways that might function as intermediates between Smad3 and Akt, p38 appeared the most promising. Overexpression of Smad3 enhanced p38 phosphorylation and inhibition of p38 with a chemical inhibitor or a small interfering RNA blocked TGF-β-induced Akt phosphorylation. Moreover, TGF-β/Smad3 enhancement of SMC proliferation was blocked by inhibition of p38. Phosphorylation of Akt by TGF-β/Smad3 was not dependent on gene expression or protein synthesis, and immunoprecipitation studies revealed a physical association among p38, Akt, and Smad3 suggesting that activation requires a direct protein-protein interaction. Our findings were confirmed in vivo where overexpression of Smad3 in a rat carotid injury model led to enhancement of p-p38, p-Akt, as well as SMC proliferation. Furthermore, inhibition of p38 in vivo led to decreased Akt phosphorylation and SMC proliferation. In summary, our studies reveal a novel pathway whereby TGF-β/Smad3 stimulates SMC proliferation through p38 and Akt. These findings provide a potential mechanism for the substantial effect of TGF-β on intimal hyperplasia and suggest new targets for chemical or molecular prevention of vascular restenosis.
Collapse
MESH Headings
- Animals
- Carotid Artery Injuries/physiopathology
- Cell Proliferation/drug effects
- Cells, Cultured
- In Vitro Techniques
- Male
- Models, Animal
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Phosphatidylinositol 3-Kinases/physiology
- Phosphorylation/physiology
- Proto-Oncogene Proteins c-akt/physiology
- RNA, Small Interfering/pharmacology
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/physiology
- Smad3 Protein/antagonists & inhibitors
- Smad3 Protein/drug effects
- Smad3 Protein/physiology
- Time Factors
- Transforming Growth Factor beta/pharmacology
- Transforming Growth Factor beta/physiology
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- p38 Mitogen-Activated Protein Kinases/drug effects
- p38 Mitogen-Activated Protein Kinases/physiology
Collapse
Affiliation(s)
- Pasithorn A Suwanabol
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin, Madison, 53592-7375, USA
| | | | | | | | | | | | | |
Collapse
|
171
|
A biased ligand for OXE-R uncouples Gα and Gβγ signaling within a heterotrimer. Nat Chem Biol 2012; 8:631-8. [PMID: 22634634 DOI: 10.1038/nchembio.962] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 03/15/2012] [Indexed: 01/06/2023]
Abstract
Differential targeting of heterotrimeric G protein versus β-arrestin signaling are emerging concepts in G protein-coupled receptor (GPCR) research and drug discovery, and biased engagement by GPCR ligands of either β-arrestin or G protein pathways has been disclosed. Herein we report on a new mechanism of ligand bias to titrate the signaling specificity of a cell-surface GPCR. Using a combination of biomolecular and virtual screening, we identified the small-molecule modulator Gue1654, which inhibits Gβγ but not Gα signaling triggered upon activation of Gα(i)-βγ by the chemoattractant receptor OXE-R in both recombinant and human primary cells. Gue1654 does not interfere nonspecifically with signaling directly at or downstream of Gβγ. This hitherto unappreciated mechanism of ligand bias at a GPCR highlights both a new paradigm for functional selectivity and a potentially new strategy to develop pathway-specific therapeutics.
Collapse
|
172
|
Leahy JW, Buhr CA, Johnson HWB, Kim BG, Baik T, Cannoy J, Forsyth TP, Jeong JW, Lee MS, Ma S, Noson K, Wang L, Williams M, Nuss JM, Brooks E, Foster P, Goon L, Heald N, Holst C, Jaeger C, Lam S, Lougheed J, Nguyen L, Plonowski A, Song J, Stout T, Wu X, Yakes MF, Yu P, Zhang W, Lamb P, Raeber O. Discovery of a Novel Series of Potent and Orally Bioavailable Phosphoinositide 3-Kinase γ Inhibitors. J Med Chem 2012; 55:5467-82. [DOI: 10.1021/jm300403a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- James W. Leahy
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Chris A. Buhr
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Henry W. B. Johnson
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Byung Gyu Kim
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - TaeGon Baik
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Jonah Cannoy
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Timothy P. Forsyth
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Joon Won Jeong
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Matthew S. Lee
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Sunghoon Ma
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Kevin Noson
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Longcheng Wang
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Matthew Williams
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - John M. Nuss
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Eric Brooks
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Paul Foster
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Leanne Goon
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Nathan Heald
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Charles Holst
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Christopher Jaeger
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Scott Lam
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Julie Lougheed
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Lam Nguyen
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Arthur Plonowski
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Joanne Song
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Thomas Stout
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Xiang Wu
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Michael F. Yakes
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Peiwen Yu
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Wentao Zhang
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Peter Lamb
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Olivia Raeber
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| |
Collapse
|
173
|
Mazaki Y, Nishimura Y, Sabe H. GBF1 bears a novel phosphatidylinositol-phosphate binding module, BP3K, to link PI3Kγ activity with Arf1 activation involved in GPCR-mediated neutrophil chemotaxis and superoxide production. Mol Biol Cell 2012; 23:2457-67. [PMID: 22573891 PMCID: PMC3386210 DOI: 10.1091/mbc.e12-01-0062] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In neutrophils, Arf1 is activated upon GPCR stimulation. GBF1, a GEF for Arf, is primarily responsible for Arf1 activation upon GPCR stimulation and is important for chemotaxis and superoxide production. GBF1 also binds to products of PI3Kγ . The results indicate a novel mechanism that links PI3Kγ with chemotaxis and superoxide production. Most chemoattractants for neutrophils bind to the Gαi family of heterotrimeric G protein–coupled receptors (GPCRs) and release Gβγ subunits to activate chemotaxis and superoxide production. GIT2, a GTPase-activating protein for Arf1, forms a complex with Gβγ and is integral for directional sensing and suppression of superoxide production. Here we show that GBF1, a guanine nucleotide exchanging factor for Arf-GTPases, is primarily responsible for Arf1 activation upon GPCR stimulation and is important for neutrophil chemotaxis and superoxide production. We find that GBF1 bears a novel module, namely binding to products of phosphatidyl inositol 3-kinase (PI3K), which binds to products of PI3Kγ. Through this binding, GBF1 is translocated from the Golgi to the leading edge upon GPCR stimulation to activate Arf1 and recruit p22phox and GIT2 to the leading edge. Moreover, GBF1-mediated Arf1 activation is necessary to unify cell polarity during chemotaxis. Our results identify a novel mechanism that links PI3Kγ activity with chemotaxis and superoxide production in GPCR signaling.
Collapse
Affiliation(s)
- Yuichi Mazaki
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan.
| | | | | |
Collapse
|
174
|
Bartok B, Boyle DL, Liu Y, Ren P, Ball ST, Bugbee WD, Rommel C, Firestein GS. PI3 Kinase δ Is a Key Regulator of Synoviocyte Function in Rheumatoid Arthritis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1906-16. [DOI: 10.1016/j.ajpath.2012.01.030] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 01/13/2012] [Accepted: 01/19/2012] [Indexed: 11/16/2022]
|
175
|
Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 2012; 76:442-6. [PMID: 22296764 DOI: 10.1016/j.humimm.2015.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 02/05/2015] [Accepted: 03/11/2015] [Indexed: 12/24/2022]
Abstract
Inflammation is triggered when innate immune cells detect infection or tissue injury. Surveillance mechanisms involve pattern recognition receptors (PRRs) on the cell surface and in the cytoplasm. Most PRRs respond to pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs) by triggering activation of NF-κB, AP1, CREB, c/EBP, and IRF transcription factors. Induction of genes encoding enzymes, chemokines, cytokines, adhesion molecules, and regulators of the extracellular matrix promotes the recruitment and activation of leukocytes, which are critical for eliminating foreign particles and host debris. A subset of PRRs activates the protease caspase-1, which causes maturation of the cytokines IL1β and IL18. Cell adhesion molecules and chemokines facilitate leukocyte extravasation from the circulation to the affected site, the chemokines stimulating G-protein-coupled receptors (GPCRs). Binding initiates signals that regulate leukocyte motility and effector functions. Other triggers of inflammation include allergens, which form antibody complexes that stimulate Fc receptors on mast cells. Although the role of inflammation is to resolve infection and injury, increasing evidence indicates that chronic inflammation is a risk factor for cancer.
Collapse
Affiliation(s)
- Kim Newton
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, California 94080, USA
| | | |
Collapse
|
176
|
Abstract
Inflammation is triggered when innate immune cells detect infection or tissue injury. Surveillance mechanisms involve pattern recognition receptors (PRRs) on the cell surface and in the cytoplasm. Most PRRs respond to pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs) by triggering activation of NF-κB, AP1, CREB, c/EBP, and IRF transcription factors. Induction of genes encoding enzymes, chemokines, cytokines, adhesion molecules, and regulators of the extracellular matrix promotes the recruitment and activation of leukocytes, which are critical for eliminating foreign particles and host debris. A subset of PRRs activates the protease caspase-1, which causes maturation of the cytokines IL1β and IL18. Cell adhesion molecules and chemokines facilitate leukocyte extravasation from the circulation to the affected site, the chemokines stimulating G-protein-coupled receptors (GPCRs). Binding initiates signals that regulate leukocyte motility and effector functions. Other triggers of inflammation include allergens, which form antibody complexes that stimulate Fc receptors on mast cells. Although the role of inflammation is to resolve infection and injury, increasing evidence indicates that chronic inflammation is a risk factor for cancer.
Collapse
Affiliation(s)
- Kim Newton
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, California 94080, USA
| | | |
Collapse
|
177
|
Abstract
G protein-coupled receptors (GPCRs) play important roles in inflammation. Inflammatory cells such as polymorphonuclear leukocytes (PMN), monocytes and macrophages express a large number of GPCRs for classic chemoattractants and chemokines. These receptors are critical to the migration of phagocytes and their accumulation at sites of inflammation, where these cells can exacerbate inflammation but also contribute to its resolution. Besides chemoattractant GPCRs, protease activated receptors (PARs) such as PAR1 are involved in the regulation of vascular endothelial permeability. Prostaglandin receptors play different roles in inflammatory cell activation, and can mediate both proinflammatory and anti-inflammatory functions. Many GPCRs present in inflammatory cells also mediate transcription factor activation, resulting in the synthesis and secretion of inflammatory factors and, in some cases, molecules that suppress inflammation. An understanding of the signaling paradigms of GPCRs in inflammatory cells is likely to facilitate translational research and development of improved anti-inflammatory therapies.
Collapse
|
178
|
Shirshev SV. Role of Epac proteins in mechanisms of cAMP-dependent immunoregulation. BIOCHEMISTRY (MOSCOW) 2012; 76:981-98. [PMID: 22082266 DOI: 10.1134/s000629791109001x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents observations on the role of Epac proteins (exchange protein directly activated by cAMP) in immunoregulation mechanisms. Signaling pathways that involve Epac proteins and their domain organization and functions are considered. The role of Epac1 protein expressed in the immune system cells is especially emphasized. Molecular mechanisms of the cAMP-dependent signal via Epac1 are analyzed in monocytes/macrophages, T-cells, and B-lymphocytes. The role of Epac1 is shown in the regulation of adhesion, leukocyte chemotaxis, as well as in phagocytosis and bacterial killing. The molecular cascade initiated by Epac1 is examined under conditions of antigen activation of T-cells and immature B-lymphocytes.
Collapse
Affiliation(s)
- S V Shirshev
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, Russia.
| |
Collapse
|
179
|
Abstract
Over the past two decades, our understanding of phospoinositide 3-kinases (PI3Ks) has progressed from the identification of an enzymatic activity associated with growth factors, GPCRs and certain oncogene products to a disease target in cancer and inflammation, with PI3K inhibitors currently in clinical trials. Elucidation of PI3K-dependent networks led to the discovery of the phosphoinositide-binding PH, PX and FYVE domains as conduits of intracellular lipid signalling, the determination of the molecular function of the tumour suppressor PTEN and the identification of AKT and mTOR protein kinases as key regulators of cell growth. Here we look back at the main discoveries that shaped the PI3K field.
Collapse
|
180
|
Nino G, Hu A, Grunstein JS, McDonough J, Kreiger PA, Josephson MB, Choi JK, Grunstein MM. G Protein βγ-subunit signaling mediates airway hyperresponsiveness and inflammation in allergic asthma. PLoS One 2012; 7:e32078. [PMID: 22384144 PMCID: PMC3284547 DOI: 10.1371/journal.pone.0032078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 01/23/2012] [Indexed: 01/11/2023] Open
Abstract
Since the Gβγ subunit of Gi protein has been importantly implicated in regulating immune and inflammatory responses, this study investigated the potential role and mechanism of action of Gβγ signaling in regulating the induction of airway hyperresponsiveness (AHR) in a rabbit model of allergic asthma. Relative to non-sensitized animals, OVA-sensitized rabbits challenged with inhaled OVA exhibited AHR, lung inflammation, elevated BAL levels of IL-13, and increased airway phosphodiesterase-4 (PDE4) activity. These proasthmatic responses were suppressed by pretreatment with an inhaled membrane-permeable anti-Gβγ blocking peptide, similar to the suppressive effect of glucocorticoid pretreatment. Extended mechanistic studies demonstrated that: 1) corresponding proasthmatic changes in contractility exhibited in isolated airway smooth muscle (ASM) sensitized with serum from OVA-sensitized+challenged rabbits or IL-13 were also Gβγ-dependent and mediated by MAPK-upregulated PDE4 activity; and 2) the latter was attributed to Gβγ-induced direct stimulation of the non-receptor tyrosine kinase, c-Src, resulting in downstream activation of ERK1/2 and its consequent transcriptional upregulation of PDE4. Collectively, these data are the first to identify that a mechanism involving Gβγ-induced direct activation of c-Src, leading to ERK1/2-mediated upregulation of PDE4 activity, plays a decisive role in regulating the induction of AHR and inflammation in a rabbit model of allergic airway disease.
Collapse
Affiliation(s)
- Gustavo Nino
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Division of Pediatric Pulmonary and Sleep Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Aihua Hu
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Judith S. Grunstein
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joseph McDonough
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Portia A. Kreiger
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology, Nemours/A.I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Maureen B. Josephson
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - John K. Choi
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael M. Grunstein
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
181
|
Wu Y, Wang S, Farooq SM, Castelvetere MP, Hou Y, Gao JL, Navarro JV, Oupicky D, Sun F, Li C. A chemokine receptor CXCR2 macromolecular complex regulates neutrophil functions in inflammatory diseases. J Biol Chem 2012; 287:5744-5755. [PMID: 22203670 PMCID: PMC3285346 DOI: 10.1074/jbc.m111.315762] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/13/2011] [Indexed: 01/01/2023] Open
Abstract
Inflammation plays an important role in a wide range of human diseases such as ischemia-reperfusion injury, arteriosclerosis, cystic fibrosis, inflammatory bowel disease, etc. Neutrophilic accumulation in the inflamed tissues is an essential component of normal host defense against infection, but uncontrolled neutrophilic infiltration can cause progressive damage to the tissue epithelium. The CXC chemokine receptor CXCR2 and its specific ligands have been reported to play critical roles in the pathophysiology of various inflammatory diseases. However, it is unclear how CXCR2 is coupled specifically to its downstream signaling molecules and modulates cellular functions of neutrophils. Here we show that the PDZ scaffold protein NHERF1 couples CXCR2 to its downstream effector phospholipase C (PLC)-β2, forming a macromolecular complex, through a PDZ-based interaction. We assembled a macromolecular complex of CXCR2·NHERF1·PLC-β2 in vitro, and we also detected such a complex in neutrophils by co-immunoprecipitation. We further observed that the CXCR2-containing macromolecular complex is critical for the CXCR2-mediated intracellular calcium mobilization and the resultant migration and infiltration of neutrophils, as disrupting the complex with a cell permeant CXCR2-specific peptide (containing the PDZ motif) inhibited intracellular calcium mobilization, chemotaxis, and transepithelial migration of neutrophils. Taken together, our data demonstrate a critical role of the PDZ-dependent CXCR2 macromolecular signaling complex in regulating neutrophil functions and suggest that targeting the CXCR2 multiprotein complex may represent a novel therapeutic strategy for certain inflammatory diseases.
Collapse
Affiliation(s)
- Yanning Wu
- From the Department of Biochemistry and Molecular Biology
| | - Shuo Wang
- From the Department of Biochemistry and Molecular Biology
| | | | | | - Yuning Hou
- From the Department of Biochemistry and Molecular Biology
| | - Ji-Liang Gao
- the Laboratory of Molecular Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Javier V. Navarro
- the Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| | - David Oupicky
- Pharmaceutical Sciences, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Fei Sun
- Departments of Physiology and
| | - Chunying Li
- From the Department of Biochemistry and Molecular Biology
- Cardiovascular Research Institute
- Barbara Ann Karmanos Cancer Institute, and
| |
Collapse
|
182
|
Tang W, Zhang Y, Xu W, Harden TK, Sondek J, Sun L, Li L, Wu D. A PLCβ/PI3Kγ-GSK3 signaling pathway regulates cofilin phosphatase slingshot2 and neutrophil polarization and chemotaxis. Dev Cell 2012; 21:1038-50. [PMID: 22172670 DOI: 10.1016/j.devcel.2011.10.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 10/20/2011] [Accepted: 10/29/2011] [Indexed: 01/11/2023]
Abstract
Neutrophils, in response to a chemoattractant gradient, undergo dynamic F-actin remodeling, a process important for their directional migration or chemotaxis. However, signaling mechanisms for chemoattractants to regulate the process are incompletely understood. Here, we characterized chemoattractant-activated signaling mechanisms that regulate cofilin dephosphorylation and actin cytoskeleton reorganization and are critical for neutrophil polarization and chemotaxis. In neutrophils, chemoattractants induced phosphorylation and inhibition of GSK3 via both PLCβ-PKC and PI3Kγ-AKT pathways, leading to the attenuation of GSK3-mediated phosphorylation and inhibition of the cofilin phosphatase slingshot2 and an increase in dephosphorylated, active cofilin. The relative contribution of this GSK3-mediated pathway to neutrophil chemotaxis regulation depended on neutrophil polarity preset by integrin-induced polarization of PIP5K1C. Therefore, our study characterizes a signaling mechanism for chemoattractant-induced actin cytoskeleton remodeling and elucidates its context-dependent role in regulating neutrophil polarization and chemotaxis.
Collapse
Affiliation(s)
- Wenwen Tang
- Department of Pharmacology and Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Németh T, Mócsai A. The role of neutrophils in autoimmune diseases. Immunol Lett 2012; 143:9-19. [PMID: 22342996 DOI: 10.1016/j.imlet.2012.01.013] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/27/2012] [Accepted: 01/29/2012] [Indexed: 12/29/2022]
Abstract
Though chronic autoimmune disorders such as rheumatoid arthritis or systemic lupus erythematosus affect a significant percentage of the human population and strongly diminish the quality of life and life expectancy in Western societies, the molecular pathomechanisms of those diseases are still poorly understood, hindering the development of novel treatment strategies. Autoimmune diseases are thought to be caused by disturbed recognition of foreign and self antigens, leading to the emergence of autoreactive T-cells (so-called immunization phase). Those autoreactive T-cells then trigger the second (so-called effector) phase of the disease which is characterized by immune-mediated damage to host tissues. For a long time, neutrophils have mainly been neglected as potential players of the development of autoimmune diseases. However, a significant amount of new experimental data now indicates that neutrophils likely play an important role in both the immunization and the effector phase of autoimmune diseases. Here we review the current literature on the role of neutrophils in autoimmune diseases with special emphasis on rheumatoid arthritis, systemic lupus erythematosus, autoimmune vasculitides and blistering skin diseases. We also discuss the role of neutrophil cell surface receptors (e.g. integrins, Fc-receptors or chemokine receptors) and intracellular signal transduction pathways (e.g. Syk and other tyrosine kinases) in the pathogenesis of autoimmune inflammation. Though many of the results discussed in this review were obtained using animal models, additional data indicate that those mechanisms likely also contribute to human pathology. Taken together, neutrophils should be considered as one of the important cell types in autoimmune disease pathogenesis and they may also prove to be suitable targets of the pharmacological control of those diseases in the future.
Collapse
Affiliation(s)
- Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary.
| | | |
Collapse
|
184
|
CCL3 induced migration occurs independently of intracellular calcium release. Biochem Biophys Res Commun 2012; 418:17-21. [DOI: 10.1016/j.bbrc.2011.12.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 01/25/2023]
|
185
|
Abstract
It has been well established that integrins mediate cell-cell and cell-matrix adhesion and play crucial roles in the immune system such as leukocyte-endothelium interactions, immune synapse formation, and effector functions. Since the discovery that integrins undergo dynamic changes of adhesive activities in response to external stimuli, intensive studies have been conducted to elucidate the signaling events that control the activation of integrins (inside-out signaling) and signaling events from the induced integrin-dependent adhesion (outside-in signaling). The molecular characterization of these signaling pathways highlights the importance of integrins as bidirectional signaling receptors. The characteristics of integrin signaling are best exemplified in the immune system. This chapter highlights the recent studies of intracellular signaling pathways that regulate integrins in immunological contexts.
Collapse
Affiliation(s)
- Tatsuo Kinashi
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan.
| |
Collapse
|
186
|
Critical role for phosphoinositide 3-kinase gamma in parasite invasion and disease progression of cutaneous leishmaniasis. Proc Natl Acad Sci U S A 2012; 109:1251-6. [PMID: 22232690 DOI: 10.1073/pnas.1110339109] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Obligate intracellular pathogens such as Leishmania specifically target host phagocytes for survival and replication. Phosphoinositide 3-kinase γ (PI3Kγ), a member of the class I PI3Ks that is highly expressed by leukocytes, controls cell migration by initiating actin polymerization and cytoskeletal reorganization, which are processes also critical for phagocytosis. In this study, we demonstrate that class IB PI3K, PI3Kγ, plays a critical role in pathogenesis of chronic cutaneous leishmaniasis caused by L. mexicana. Using the isoform-selective PI3Kγ inhibitor, AS-605240 and PI3Kγ gene-deficient mice, we show that selective blockade or deficiency of PI3Kγ significantly enhances resistance against L. mexicana that is associated with a significant suppression of parasite entry into phagocytes and reduction in recruitment of host phagocytes as well as regulatory T cells to the site of infection. Furthermore, we demonstrate that AS-605240 is as effective as the standard antileishmanial drug sodium stibogluconate in treatment of cutaneous leishmaniasis caused by L. mexicana. These findings reveal a unique role for PI3Kγ in Leishmania invasion and establishment of chronic infection, and demonstrate that therapeutic targeting of host pathways involved in establishment of infection may be a viable strategy for treating infections caused by obligate intracellular pathogens such as Leishmania.
Collapse
|
187
|
Abstract
In the last decade, the availability of genetically modified animals has revealed interesting roles for phosphoinositide 3-kinases (PI3Ks) as signaling platforms orchestrating multiple cellular responses, both in health and pathology. By acting downstream distinct receptor types, PI3Ks nucleate complex signaling assemblies controlling several biological process, ranging from cell proliferation and survival to immunity, cancer, metabolism and cardiovascular control. While the involvement of these kinases in modulating immune reactions and neoplastic transformation has long been accepted, recent progress from our group and others has highlighted new and unforeseen roles of PI3Ks in controlling cardiovascular function. Hence, the view is emerging that pharmacological targeting of distinct PI3K isoforms could be successful in treating disorders such as myocardial infarction and heart failure, besides inflammatory diseases and cancer. Currently, PI3Ks represent attractive drug targets for companies interested in the development of novel and safe treatments for such diseases. Numerous hit and lead compounds are now becoming available and, for some of them, clinical trials can be envisaged in the near future. In the following sections, we will outline the impact of specific PI3K isoforms in regulating different cellular contexts, including immunity, metabolism, cancer and cardiovascular system, both in physiological and disease conditions.
Collapse
|
188
|
Davies EM, Sheffield DA, Tibarewal P, Fedele CG, Mitchell CA, Leslie NR. The PTEN and Myotubularin phosphoinositide 3-phosphatases: linking lipid signalling to human disease. Subcell Biochem 2012; 58:281-336. [PMID: 22403079 DOI: 10.1007/978-94-007-3012-0_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two classes of lipid phosphatases selectively dephosphorylate the 3 position of the inositol ring of phosphoinositide signaling molecules: the PTEN and the Myotubularin families. PTEN dephosphorylates PtdIns(3,4,5)P(3), acting in direct opposition to the Class I PI3K enzymes in the regulation of cell growth, proliferation and polarity and is an important tumor suppressor. Although there are several PTEN-related proteins encoded by the human genome, none of these appear to fulfill the same functions. In contrast, the Myotubularins dephosphorylate both PtdIns(3)P and PtdIns(3,5)P(2), making them antagonists of the Class II and Class III PI 3-kinases and regulators of membrane traffic. Both phosphatase groups were originally identified through their causal mutation in human disease. Mutations in specific myotubularins result in myotubular myopathy and Charcot-Marie-Tooth peripheral neuropathy; and loss of PTEN function through mutation and other mechanisms is evident in as many as a third of all human tumors. This chapter will discuss these two classes of phosphatases, covering what is known about their biochemistry, their functions at the cellular and whole body level and their influence on human health.
Collapse
Affiliation(s)
- Elizabeth M Davies
- Division of Cell Signalling and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, Scotland, United Kingdom,
| | | | | | | | | | | |
Collapse
|
189
|
Abstract
Phosphoinositide 3-kinases (PI3Ks) control cell growth, proliferation, cell survival, metabolic activity, vesicular trafficking, degranulation, and migration. Through these processes, PI3Ks modulate vital physiology. When over-activated in disease, PI3K promotes tumor growth, angiogenesis, metastasis or excessive immune cell activation in inflammation, allergy and autoimmunity. This chapter will introduce molecular activation and signaling of PI3Ks, and connections to target of rapamycin (TOR) and PI3K-related protein kinases (PIKKs). The focus will be on class I PI3Ks, and extend into current developments to exploit mechanistic knowledge for therapy.
Collapse
Affiliation(s)
- Matthias Wymann
- Institute Biochemistry & Genetics, Department Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland,
| |
Collapse
|
190
|
Abstract
Phosphatidylinositol lipids generated through the action of phosphinositide 3-kinase (PI3K) are key mediators of a wide array of biological responses. In particular, their role in the regulation of cell migration has been extensively studied and extends to amoeboid as well as mesenchymal migration. Through the emergence of fluorescent probes that target PI3K products as well as the use of specific inhibitors and knockout technologies, the spatio-temporal distribution of PI3K products in chemotaxing cells has been shown to represent a key anterior polarity signal that targets downstream effectors to actin polymerization. In addition, through intricate cross-talk networks PI3K products have been shown to regulate signals that control posterior effectors. Yet, in more complex environments or in conditions where chemoattractant gradients are steep, a variety of cell types can still chemotax in the absence of PI3K signals. Indeed, parallel signal transduction pathways have been shown to coordinately regulate cell polarity and directed movement. In this chapter, we will review the current role PI3K products play in the regulation of directed cell migration in various cell types, highlight the importance of mathematical modeling in the study of chemotaxis, and end with a brief overview of other signaling cascades known to also regulate chemotaxis.
Collapse
Affiliation(s)
- Michael C Weiger
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bldg.37/Rm2066, 20892-4256, Bethesda, MD, USA
| | | |
Collapse
|
191
|
Abstract
The physiological effects of many extracellular neurotransmitters, hormones, growth factors, and other stimuli are mediated by receptor-promoted activation of phospholipase C (PLC) and consequential activation of inositol lipid signaling pathways. These signaling responses include the classically described conversion of phosphatidylinositol(4,5)P(2) to the Ca(2+)-mobilizing second messenger inositol(1,4,5)P(3) and the protein kinase C-activating second messenger diacylglycerol as well as alterations in membrane association or activity of many proteins that harbor phosphoinositide binding domains. The 13 mammalian PLCs elaborate a minimal catalytic core typified by PLC-d to confer multiple modes of regulation of lipase activity. PLC-b isozymes are activated by Gaq- and Gbg-subunits of heterotrimeric G proteins, and activation of PLC-g isozymes occurs through phosphorylation promoted by receptor and non-receptor tyrosine kinases. PLC-e and certain members of the PLC-b and PLC-g subclasses of isozymes are activated by direct binding of small G proteins of the Ras, Rho, and Rac subfamilies of GTPases. Recent high resolution three dimensional structures together with biochemical studies have illustrated that the X/Y linker region of the catalytic core mediates autoinhibition of most if not all PLC isozymes. Activation occurs as a consequence of removal of this autoinhibition.
Collapse
|
192
|
Ghigo A, Morello F, Perino A, Damilano F, Hirsch E. Specific PI3K isoform modulation in heart failure: lessons from transgenic mice. Curr Heart Fail Rep 2011; 8:168-75. [PMID: 21519914 DOI: 10.1007/s11897-011-0059-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cardiac pathophysiology heavily relies on receptor-mediated signal transduction, and pharmacologic control of such biological processes has proven successful in preventing and treating multiple heart diseases. Recent progress in the study of receptor-mediated signal transduction events in the heart highlighted the role of a family of lipid kinases known as phosphoinositide 3-kinases (PI3Ks). These enzymes are involved downstream different receptors in the production of a lipid second messenger molecule (namely phosphatidylinositol (3,4,5)-trisphosphate [PIP(3)]), which mediates a large number of biological responses critical for the heart, including cardiomyocyte growth, survival, and contractility as well as cardiovascular inflammation. This review focuses on the recent advances in the understanding of PI3K function in cardiac pathophysiology obtained by studying mouse mutants for different PI3K genes and by validating the effects of PI3K pharmacologic inhibition in preclinical models of critical cardiac diseases like heart failure.
Collapse
Affiliation(s)
- Alessandra Ghigo
- Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | | | | | | | | |
Collapse
|
193
|
Molecular cloning and characterization of PLCB1 (phospholipase C, beta 1) gene from the olive flounder, Paralichthys olivaceus. Genes Genomics 2011. [DOI: 10.1007/s13258-011-0100-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
194
|
Greenfield EM, Tatro JM, Smith MV, Schnaser EA, Wu D. PI3Kγ deletion reduces variability in the in vivo osteolytic response induced by orthopaedic wear particles. J Orthop Res 2011; 29:1649-53. [PMID: 21538508 PMCID: PMC3338193 DOI: 10.1002/jor.21440] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 03/31/2011] [Indexed: 02/06/2023]
Abstract
Orthopedic wear particles activate a number of intracellular signaling pathways associated with inflammation in macrophages and we have previously shown that the phosphoinositol-3-kinase (PI3K)/Akt pathway is one of the signal transduction pathways that mediates the in vitro activation of macrophages by orthopedic wear particles. Since PI3Kγ is primarily responsible for PI3K activity during inflammation, we hypothesized that PI3Kγ mediates particle-induced osteolysis in vivo. Our results do not strongly support the hypothesis that PI3Kγ regulates the overall amount of particle-induced osteolysis in the murine calvarial model. However, our results strongly support the conclusion that variability in the amount of particle-induced osteolysis between individual mice is reduced in the PI3Kγ(-/-) mice. These results suggest that PI3Kγ contributes to osteolysis to different degrees in individual mice and that the mice, and patients, that are most susceptible to osteolysis may be so, in part, due to an increased contribution from PI3Kγ.
Collapse
Affiliation(s)
- Edward M Greenfield
- Department of Orthopaedics, Case Western Reserve University, University Hospitals Case Medical Center, Biomedical Research Building, Room 331, 2109 Adelbert Road, Cleveland, Ohio 44106, USA.
| | | | | | | | | |
Collapse
|
195
|
Wei JD, Kim JY, Kim JH. BLT2 phosphorylation at Thr355
by Akt is necessary for BLT2-mediated chemotaxis. FEBS Lett 2011; 585:3501-6. [DOI: 10.1016/j.febslet.2011.10.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/12/2011] [Accepted: 10/19/2011] [Indexed: 11/29/2022]
|
196
|
Yasudo H, Ando T, Xiao W, Kawakami Y, Kawakami T. Short Stat5-interacting peptide derived from phospholipase C-β3 inhibits hematopoietic cell proliferation and myeloid differentiation. PLoS One 2011; 6:e24995. [PMID: 21949826 PMCID: PMC3176784 DOI: 10.1371/journal.pone.0024995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/22/2011] [Indexed: 11/18/2022] Open
Abstract
Constitutive activation of the transcription factor Stat5 in hematopoietic stem/progenitor cells leads to various hematopoietic malignancies including myeloproliferative neoplasm (MPN). Our recent study found that phospholipase C (PLC)-β3 is a novel tumor suppressor involved in MPN, lymphoma and other tumors. Stat5 activity is negatively regulated by the SH2 domain-containing protein phosphatase SHP-1 in a PLC-β3-dependent manner. PLC-β3 can form the multimolecular SPS complex together with SHP-1 and Stat5. The close physical proximity of SHP-1 and Stat5 brought about by interacting with the C-terminal segment of PLC-β3 (PLC-β3-CT) accelerates SHP-1-mediated dephosphorylation of Stat5. Here we identify the minimal sequences within PLC-β3-CT required for its tumor suppressor function. Two of the three Stat5-binding noncontiguous regions, one of which also binds SHP-1, substantially inhibited in vitro proliferation of Ba/F3 cells. Surprisingly, an 11-residue Stat5-binding peptide (residues 988-998) suppressed Stat5 activity in Ba/F3 cells and in vivo proliferation and myeloid differentiation of hematopoietic stem/progenitor cells. Therefore, this study further defines PLC-β3-CT as the Stat5- and SHP-1-binding domain by identifying minimal functional sequences of PLC-β3 for its tumor suppressor function and implies their potential utility in the control of hematopoietic malignancies.
Collapse
Affiliation(s)
- Hiroki Yasudo
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Tomoaki Ando
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Wenbin Xiao
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Yuko Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
197
|
Xu X, Jin T. Imaging G-protein coupled receptor (GPCR)-mediated signaling events that control chemotaxis of Dictyostelium discoideum. J Vis Exp 2011:3128. [PMID: 21969095 DOI: 10.3791/3128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Many eukaryotic cells can detect gradients of chemical signals in their environments and migrate accordingly (1). This guided cell migration is referred as chemotaxis, which is essential for various cells to carry out their functions such as trafficking of immune cells and patterning of neuronal cells (2, 3). A large family of G-protein coupled receptors (GPCRs) detects variable small peptides, known as chemokines, to direct cell migration in vivo (4). The final goal of chemotaxis research is to understand how a GPCR machinery senses chemokine gradients and controls signaling events leading to chemotaxis. To this end, we use imaging techniques to monitor, in real time, spatiotemporal concentrations of chemoattractants, cell movement in a gradient of chemoattractant, GPCR mediated activation of heterotrimeric G-protein, and intracellular signaling events involved in chemotaxis of eukaryotic cells (5-8). The simple eukaryotic organism, Dictyostelium discoideum, displays chemotaxic behaviors that are similar to those of leukocytes, and D. discoideum is a key model system for studying eukaryotic chemotaxis. As free-living amoebae, D. discoideum cells divide in rich medium. Upon starvation, cells enter a developmental program in which they aggregate through cAMP-mediated chemotaxis to form multicullular structures. Many components involved in chemotaxis to cAMP have been identified in D. discoideum. The binding of cAMP to a GPCR (cAR1) induces dissociation of heterotrimeric G-proteins into Gγ and Gβγ subunits (7, 9, 10). Gβγ subunits activate Ras, which in turn activates PI3K, converting PIP(2;) into PIP(3;) on the cell membrane (11-13). PIP(3;) serve as binding sites for proteins with pleckstrin Homology (PH) domains, thus recruiting these proteins to the membrane (14, 15). Activation of cAR1 receptors also controls the membrane associations of PTEN, which dephosphorylates PIP(3;) to PIP(2;)(16, 17). The molecular mechanisms are evolutionarily conserved in chemokine GPCR-mediated chemotaxis of human cells such as neutrophils (18). We present following methods for studying chemotaxis of D. discoideum cells. 1. Preparation of chemotactic component cells. 2. Imaging chemotaxis of cells in a cAMP gradient. 3. Monitoring a GPCR induced activation of heterotrimeric G-protein in single live cells. 4. Imaging chemoattractant-triggered dynamic PIP(3;) responses in single live cells in real time. Our developed imaging methods can be applied to study chemotaxis of human leukocytes.
Collapse
Affiliation(s)
- Xuehua Xu
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | | |
Collapse
|
198
|
Seneviratne AMPB, Burroughs M, Giralt E, Smrcka AV. Direct-reversible binding of small molecules to G protein βγ subunits. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1814:1210-8. [PMID: 21621014 PMCID: PMC3140432 DOI: 10.1016/j.bbapap.2011.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 02/08/2023]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) composed of three subunits α, β, γ mediate activation of multiple intracellular signaling cascades initiated by G protein-coupled receptors (GPCRs). Previously our laboratory identified small molecules that bind to Gβγ and interfere with or enhance binding of select effectors with Gβγ. To understand the molecular mechanisms of selectivity and assess binding of compounds to Gβγ, we used biophysical and biochemical approaches to directly monitor small molecule binding to Gβγ. Surface plasmon resonance (SPR) analysis indicated that multiple compounds bound directly to Gβγ with affinities in the high nanomolar to low micromolar range but with surprisingly slow on and off rate kinetics. While the k(off) was slow for most of the compounds in physiological buffers, they could be removed from Gβγ with mild chaotropic salts or mildly dissociating collision energy in a mass-spectrometer indicating that compound-Gβγ interactions were non-covalent. Finally, at concentrations used to observe maximal biological effects the stoichiometry of binding was 1:1. The results from this study show that small molecule modulation of Gβγ-effector interactions is by specific direct non-covalent and reversible binding of small molecules to Gβγ. This is highly relevant to development of Gβγ targeting as a therapeutic approach since reversible, direct binding is a prerequisite for drug development and important for specificity.
Collapse
Affiliation(s)
- AMPB Seneviratne
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14642
- Department of Pathology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14642
| | - Michael Burroughs
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14642
| | - Ernest Giralt
- Institute for Research in Biomedicine, Barcelona Science Park, Barcelona, Spain, Department of Organic Chemistry, University of Barcelona. Martí Franqués, 1. E-08028 Barcelona, Spain (EG)
| | - Alan V. Smrcka
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14642
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14642
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14642
| |
Collapse
|
199
|
Kremer KN, Clift IC, Miamen AG, Bamidele AO, Qian NX, Humphreys TD, Hedin KE. Stromal cell-derived factor-1 signaling via the CXCR4-TCR heterodimer requires phospholipase C-β3 and phospholipase C-γ1 for distinct cellular responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:1440-7. [PMID: 21705626 PMCID: PMC3140596 DOI: 10.4049/jimmunol.1100820] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The CXCR4 chemokine receptor is a G protein-coupled receptor that signals in T lymphocytes by forming a heterodimer with the TCR. CXCR4 and TCR functions are consequently highly cross regulated, affecting T cell immune activation, cytokine secretion, and T cell migration. The CXCR4-TCR heterodimer stimulates T cell migration and activation of the ERK MAPK and downstream AP-1-dependent cytokine transcription in response to stromal cell-derived factor-1 (SDF-1), the sole chemokine ligand of CXCR4. These responses require Gi-type G proteins as well as TCR ITAM domains and the ZAP70 tyrosine kinase, thus indicating that the CXCR4-TCR heterodimer signals to integrate G protein-coupled receptor-associated and TCR-associated signaling molecules in response to SDF-1. Yet, the phospholipase C (PLC) isozymes responsible for coupling the CXCR4-TCR heterodimer to distinct downstream cellular responses are incompletely characterized. In this study, we demonstrate that PLC activity is required for SDF-1 to induce ERK activation, migration, and CXCR4 endocytosis in human T cells. SDF-1 signaling via the CXCR4-TCR heterodimer uses PLC-β3 to activate the Ras-ERK pathway and increase intracellular calcium ion concentrations, whereas PLC-γ1 is dispensable for these outcomes. In contrast, PLC-γ1, but not PLC-β3, is required for SDF-1-mediated migration via a mechanism independent of LAT. These results increase understanding of the signaling mechanisms employed by the CXCR4-TCR heterodimer, characterize new roles for PLC-β3 and PLC-γ1 in T cells, and suggest that multiple PLCs may also be activated downstream of other chemokine receptors to distinctly regulate migration versus other signaling functions.
Collapse
Affiliation(s)
- Kimberly N. Kremer
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905
| | - Ian C. Clift
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905
| | - Alexander G. Miamen
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905
| | - Adebowale O. Bamidele
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905
| | | | | | - Karen E. Hedin
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
200
|
Costa C, Martin-Conte EL, Hirsch E. Phosphoinositide 3-kinase p110γ in immunity. IUBMB Life 2011; 63:707-13. [PMID: 21800408 DOI: 10.1002/iub.516] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 05/20/2011] [Indexed: 11/07/2022]
Abstract
The rapid and accurate response of leukocytes to environmental cues is critical for a proper inflammatory reaction to foreign particles or invading microbes. In the last decade, the signal transduction enzyme phosphoinositide 3-kinase γ (PI3Kγ) has emerged as a critical modulator of leukocyte responses, with its effects spanning from recruitment to the site of inflammation to the production of reactive oxygen species. These findings initially obtained from genetically modified mice have led to the development of experimental anti-inflammatory inhibitors with reasonable selectivity and specificity. While such molecules have not yet reached clinical use, preclinical studies combining genetics and pharmacology continue to provide new therapeutic indications for targeting PI3Kγ. Thus, this review focuses on the latest discoveries regarding PI3Kγ function in leukocytes and on the most recent findings in disease models related to immunity.
Collapse
Affiliation(s)
- Carlotta Costa
- Department of Genetic, Biology and Biochemistry and Molecular Biotechnology Center, University of Torino, Via Nizza 52, Torino, Italy
| | | | | |
Collapse
|