151
|
Shaheen ZR, Williams SJA, Binstadt BA. Case Report: A Novel TNFAIP3 Mutation Causing Haploinsufficiency of A20 With a Lupus-Like Phenotype. Front Immunol 2021; 12:629457. [PMID: 33679772 PMCID: PMC7933217 DOI: 10.3389/fimmu.2021.629457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/04/2021] [Indexed: 12/25/2022] Open
Abstract
Genetic mutations that result in loss-of-function of the protein A20 result in an early-onset autoinflammatory disease—haploinsufficiency of A20 (HA20). The reported clinical presentations of HA20 include a Behcet’s disease-like phenotype and a more lupus-like phenotype. We have identified a novel mutation in the gene encoding A20 in a pediatric patient with chronic lymphadenopathy, lupus-like symptoms, and progressive hypogammaglobulinemia. This case illustrates the wide range of clinical symptoms, including immunodeficiency, that can occur in patients with HA20.
Collapse
Affiliation(s)
- Zachary R Shaheen
- Division of Rheumatology, Allergy & Immunology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Sarah J A Williams
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Bryce A Binstadt
- Division of Rheumatology, Allergy & Immunology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
152
|
Yuan W, Chen Y, Zhou Y, Bao K, Yu X, Xu Y, Zhang Y, Zheng J, Jiang G, Hong M. Formononetin attenuates atopic dermatitis by upregulating A20 expression via activation of G protein-coupled estrogen receptor. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113397. [PMID: 32971159 DOI: 10.1016/j.jep.2020.113397] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atopic dermatitis (AD) is a complex skin disease with highly heterogeneous inflammation, which ranks among the largest component of the nonfatal diseases worldwide. The medications currently used to treat AD primarily include antihistamines, vitamin D and anti-inflammatory drugs, etc. But, the usage of these drugs is usually accompanied by various side-effects. Formononetin (FMN), a natural active ingredient of Astragalus membranaceus (Fisch.) Bunge, decreases the AD relapse rate, reduces recurring severity incidence and resists the inflammation in the initial stage of AD. However, the underlying mechanism of FMN on repressing the development of AD is still unknown. AIM OF THE STUDY To investigate the potential mechanism of FMN on relieving the initial responses of AD and elucidate its possible therapeutic targets in vivo and in vitro. MATERIALS AND METHODS A fluorescein isothiocyanate (FITC)-induced mouse model of the initial stage of AD was established in vivo. Human keratinocytes (HaCaT) cells were co-stimulated with tumor necrosis factor alpha (TNF-α) and polyinosinic-polycytidylic acid (Poly(I:C)) in vitro. The production of thymic stromal lymphopoietin (TSLP) and immunoglobulin E (IgE) were detected by enzyme-linked immunosorbnent assay (ELISA). The protein expression was measured through immunohistochemistry and western blotting. The mRNA expression was examined by real-time quantitative polymerase chain reaction (RT-qPCR). The impact of TNF-α-induced protein 3 (TNFAIP3/A20) was reflected using its small interfering RNA (siRNA). The role of G protein-coupled estrogen receptor (GPER) was explored using its agonist (G1), antagonist (G15) or siRNA (siGPER) in vitro. RESULTS We found that FMN upregulated the expression of A20 protein and mRNA in the initial stage of AD model, especially in the epithelial region of ear tissue, and inhibited the production of TSLP simultaneously. Consistently, FMN significantly upregulated A20 protein and its mRNA expression while reduced TSLP protein and its mRNA expression in vitro, and this effect could be antagonized by A20 siRNA (siA20). Moreover, compared with PPT (ERα agonist) and DPN (ERβ agonist), G1 could significantly increase the expression of A20. In addition, compared with MPP (ERα antagonist) and PHTPP (ERβ antagonist), G15 could markedly reduce the expression of A20. Furthermore, the effects of FMN on A20 were interfered by siGPER and G15 in vitro and in vivo. CONCLUSIONS These results demonstrated that FMN attenuated AD by upregulating A20 expression via activation of GPER. This new strategy might have effective therapeutic potential for AD and other inflammatory disorders.
Collapse
Affiliation(s)
- Weiyuan Yuan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, 215003, China.
| | - Yanyan Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yijing Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Kaifan Bao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xuerui Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yifan Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yuheng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jie Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Guorong Jiang
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, 215003, China.
| | - Min Hong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
153
|
El-hady MA, Mosallam DS, Anis SK, Mansour BS, Yassa ME. Tumor necrosis factor induced protein 3 gene polymorphism and the susceptibility to chronic primary immune thrombocytopenia in Egyptian children: a case-control study. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-020-00129-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Primary immune thrombocytopenia (PIT) is an acquired auto-immune disease characterized by decreased platelet count with increased bleeding tendency. The tumor necrosis factor associated induced protein-3 (TNFAIP3) codes for the ubiquitin-modifying enzyme that is indispensable for limiting inflammation. TNFAIP3 single-nucleotide polymorphisms (SNP) has been implicated in the susceptibility to multiple auto-immune diseases. We aimed to study the distribution of TNFAIP3 (rs5029939 C>G) SNP and the possible association of the studied polymorphism with the susceptibility to chronic PIT and the response to treatment in a sample of the Egyptian pediatric chronic PIT patients. This is a case-control study performed on 40 chronic PIT patients and 50 age- and gender-matched healthy controls. DNA samples from both groups were tested for TNFAIP3 (rs5029939 C>G) SNP using polymerase chain reaction-restriction fragment length polymorphism assay.
Results
TNFAIP3 (rs5029939 C>G) genotype distribution showed no statistically significant difference between PIT cases and controls [CC 77.5% vs. 82.5%, and CG 22% vs. 18%, respectively; OR (95% CI), 1.323 (0.470–0.723); p, 0.596]. The minor allele frequency (MAF) of rs5029939-G was comparable between the 2 groups (0.11 vs. 0.09) [OR (95% CI), 1.282 (0.484–3.397); p, 0.617]. No statistically significant difference was observed between chronic PIT patients carrying the mutant heterozygous genotype (CG) achieving complete response and those with no response [OR (95% CI), 1.667 (0.165-16.810); p > 0.05]. The MAF of rs5029939-G was comparable between both groups [OR (95% CI), 1.571 (0.175–14.111); p > 0.05].
Conclusion
This study showed no liability of patients carrying TNFAIP3 (rs5029939 C>G) polymorphism to develop chronic course of the disease or to achieve complete response to treatment. TNFAIP3 (rs5029939 C < G) SNP plays no role in either susceptibility to chronic PIT in the studied sample of Egyptian pediatric population or their response to treatment.
Collapse
|
154
|
Hu J, Yi S, Wang C, Zhang Y, Tang J, Huang X, Yang L, Yang J, Li H. A20 Inhibits Intraocular Inflammation in Mice by Regulating the Function of CD4+T Cells and RPE Cells. Front Immunol 2021; 11:603939. [PMID: 33613524 PMCID: PMC7890008 DOI: 10.3389/fimmu.2020.603939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022] Open
Abstract
A20 is a negative regulator of inflammation and immunity and plays a role in several autoimmune and inflammatory diseases. Here, we demonstrate that A20 overexpression significantly ameliorates severity of EAU by inhibiting the infiltration of Th1 and Th17 cells, and by protecting integrity of the blood retinal barrier. In vitro studies showed that A20 silencing could promote CD4+T cells toward a Th1 and Th17 phenotype. A decreased expression of A20 in CD4+T cells was noticed in active BD patients but not in VKH patients. Furthermore, silencing of A20 in hRPE cells induced the production of IL-6, IL-8, and MCP-1 and downregulated ZO-1 and occludin expression which is mediated by inhibition of MAPK and NF-κB pathways. This study reveals a mechanism by which A20 prevents autoimmune uveitis.
Collapse
Affiliation(s)
- Jianping Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Shenglan Yi
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Chaokui Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Yiting Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Jihong Tang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Xinyue Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Lu Yang
- Department of Ophthalmology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Jinglu Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Hong Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| |
Collapse
|
155
|
Strong EJ, Lee S. Targeting Autophagy as a Strategy for Developing New Vaccines and Host-Directed Therapeutics Against Mycobacteria. Front Microbiol 2021; 11:614313. [PMID: 33519771 PMCID: PMC7840607 DOI: 10.3389/fmicb.2020.614313] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Mycobacterial disease is an immense burden worldwide. This disease group includes tuberculosis, leprosy (Hansen's disease), Buruli Ulcer, and non-tuberculous mycobacterial (NTM) disease. The burden of NTM disease, both pulmonary and ulcerative, is drastically escalating globally, especially in developed countries such as America and Australia. Mycobacteria's ability to inhibit or evade the host immune system has contributed significantly to its continued prevalence. Pre-clinical studies have highlighted promising candidates that enhance endogenous pathways and/or limit destructive host responses. Autophagy is a cell-autonomous host defense mechanism by which intracytoplasmic cargos can be delivered and then destroyed in lysosomes. Previous studies have reported that autophagy-activating agents, small molecules, and autophagy-activating vaccines may be beneficial in restricting intracellular mycobacterial infection, even with multidrug-resistant strains. This review will examine how mycobacteria evade autophagy and discusses how autophagy could be exploited to design novel TB treatment strategies, such as host-directed therapeutics and vaccines, against Mycobacterium tuberculosis and NTMs.
Collapse
Affiliation(s)
| | - Sunhee Lee
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
156
|
Cockram PE, Kist M, Prakash S, Chen SH, Wertz IE, Vucic D. Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ 2021; 28:591-605. [PMID: 33432113 PMCID: PMC7798376 DOI: 10.1038/s41418-020-00708-5] [Citation(s) in RCA: 290] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
The ubiquitin system is complex, multifaceted, and is crucial for the modulation of a vast number of cellular processes. Ubiquitination is tightly regulated at different levels by a range of enzymes including E1s, E2s, and E3s, and an array of DUBs. The UPS directs protein degradation through the proteasome, and regulates a wide array of cellular processes including transcription and epigenetic factors as well as key oncoproteins. Ubiquitination is key to the dynamic regulation of programmed cell death. Notably, the TNF signaling pathway is controlled by competing ubiquitin conjugation and deubiquitination, which governs both proteasomal degradation and signaling complex formation. In the inflammatory response, ubiquitination is capable of both activating and dampening inflammasome activation through the control of either protein stability, complex formation, or, in some cases, directly affecting receptor activity. In this review, we discuss the enzymes and targets in the ubiquitin system that regulate fundamental cellular processes regulating cell death, and inflammation, as well as disease consequences resulting from their dysregulation. Finally, we highlight several pre-clinical and clinical compounds that regulate ubiquitin system enzymes, with the aim of restoring homeostasis and ameliorating diseases.
Collapse
Affiliation(s)
- Peter E Cockram
- Departments of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.,Departments of Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Matthias Kist
- Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Sumit Prakash
- Departments of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Si-Han Chen
- Departments of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ingrid E Wertz
- Departments of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA. .,Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Domagoj Vucic
- Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
157
|
Niu D, Ma X, Yuan T, Niu Y, Xu Y, Sun Z, Ping Y, Li W, Zhang J, Wang T, Church GM. Porcine genome engineering for xenotransplantation. Adv Drug Deliv Rev 2021; 168:229-245. [PMID: 32275950 DOI: 10.1016/j.addr.2020.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/28/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
The extreme shortage of human donor organs for treatment of patients with end-stage organ failures is well known. Xenotransplantation, which might provide unlimited organ supply, is a most promising strategy to solve this problem. Domestic pigs are regarded as ideal organ-source animals owing to similarity in anatomy, physiology and organ size to humans as well as high reproductive capacity and low maintenance cost. However, several barriers, which include immune rejection, inflammation and coagulative dysfunctions, as well as the cross-species transmission risk of porcine endogenous retrovirus, blocked the pig-to-human xenotransplantation. With the rapid development of genome engineering technologies and the potent immunosuppressive medications in recent years, these barriers could be eliminated through genetic modification of pig genome together with the administration of effective immunosuppressants. A number of candidate genes involved in the regulation of immune response, inflammation and coagulation have been explored to optimize porcine xenograft survival in non-human primate recipients. PERV inactivation in pigs has also been accomplished to firmly address the safety issue in pig-to-human xenotransplantation. Many encouraging preclinical milestones have been achieved with some organs surviving for years. Therefore, the clinical trials of some promising organs, such as islet, kidney and heart, are aimed to be launched in the near future.
Collapse
Affiliation(s)
- Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P.R. China
| | - Xiang Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P.R. China
| | - Taoyan Yuan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yifan Niu
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China
| | - Yibin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhongxin Sun
- Cosmetic & Plastic Surgery Department, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jufang Zhang
- Cosmetic & Plastic Surgery Department, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, China.
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China.
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
158
|
Chen L, Wang D, Qiu J, Zhang X, Liu X, Qiao Y, Liu X. Synergistic effects of immunoregulation and osteoinduction of ds-block elements on titanium surface. Bioact Mater 2021; 6:191-207. [PMID: 32913928 PMCID: PMC7452063 DOI: 10.1016/j.bioactmat.2020.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/01/2020] [Accepted: 08/01/2020] [Indexed: 12/18/2022] Open
Abstract
Ds-block elements have been gaining increasing attention in the field of biomaterials modification, owing to their excellent biological properties, such as antibiosis, osteogenesis, etc. However, their function mechanisms are not well understood and conflicting conclusions were drawn by previous studies on this issue, which are mainly resulted from the inconsistent experimental conditions. In this work, three most widely used ds-block elements, copper, zinc, and silver were introduced on titanium substrate by plasma immersion ion implantation method to investigate the rule of ds-block elements in the immune responses. Results showed that the implanted samples could decrease the inflammatory responses compared with Ti sample. The trend of anti-inflammatory effects of macrophages on samples was in correlation with cellular ROS levels, which was induced by the implanted biomaterials and positively correlated with the number of valence electrons of ds-block elements. The co-culture experiments of macrophages and bone marrow mesenchymal stem cells showed that these two kinds of cells could enhance the anti-inflammation and osteogenesis of samples by the paracrine manner of PGE2. In general, in their steady states on titanium substrate (Cu2+, Zn2+, Ag), the ds-block elements with more valence electrons exhibit better anti-inflammatory and osteogenic effects. Moreover, molecular biology experiments indicate that the PGE2-related signaling pathway may contribute to the desired immunoregulation and osteoinduction capability of ds-block elements. These findings suggest a correlation between the number of valence electrons of ds-block elements and the relevant biological responses, which provides new insight into the selection of implanted ions and surface design of biomaterials.
Collapse
Affiliation(s)
- Lan Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Donghui Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Jiajun Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xianming Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xingdan Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
159
|
Boucher A, Klopfenstein N, Hallas WM, Skibbe J, Appert A, Jang SH, Pulakanti K, Rao S, Cowden Dahl KD, Dahl R. The miR-23a∼27a∼24-2 microRNA Cluster Promotes Inflammatory Polarization of Macrophages. THE JOURNAL OF IMMUNOLOGY 2020; 206:540-553. [PMID: 33328213 DOI: 10.4049/jimmunol.1901277] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
Macrophages are critical for regulating inflammatory responses. Environmental signals polarize macrophages to either a proinflammatory (M1) state or an anti-inflammatory (M2) state. We observed that the microRNA (miRNA) cluster mirn23a, coding for miRs-23a, -27a, and -24-2, regulates mouse macrophage polarization. Gene expression analysis of mirn23a-deficient myeloid progenitors revealed a decrease in TLR and IFN signaling. Mirn23a -/- bone marrow-derived macrophages (BMDMs) have an attenuated response to LPS, demonstrating an anti-inflammatory phenotype in mature cells. In vitro, mirn23a-/- BMDMs have decreased M1 responses and an enhanced M2 responses. Overexpression of mirn23a has the opposite effect, enhancing M1 and inhibiting M2 gene expression. Interestingly, expression of mirn23a miRNAs goes down with inflammatory stimulation and up with anti-inflammatory stimulation, suggesting that its regulation prevents locking macrophages into polarized states. M2 polarization of tumor-associated macrophages (TAMs) correlates with poor outcome for many tumors, so to determine if there was a functional consequence of mirn23a loss modulating immune cell polarization, we assayed syngeneic tumor growth in wild-type and mirn23a -/- mice. Consistent with the increased anti-inflammatory/immunosuppressive phenotype in vitro, mirn23a -/- mice inoculated with syngeneic tumor cells had worse outcomes compared with wild-type mice. Coinjecting tumor cells with mirn23a -/- BMDMs into wild-type mice phenocopied tumor growth in mirn23a -/- mice, supporting a critical role for mirn23a miRNAs in macrophage-mediated tumor immunity. Our data demonstrate that mirn23a regulates M1/M2 polarization and suggests that manipulation of mirn23a miRNA can be used to direct macrophage polarization to drive a desired immune response.
Collapse
Affiliation(s)
- Austin Boucher
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556.,Harper Cancer Research Institute, South Bend, IN 46617
| | - Nathan Klopfenstein
- Harper Cancer Research Institute, South Bend, IN 46617.,Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, IN 46617
| | - William Morgan Hallas
- Harper Cancer Research Institute, South Bend, IN 46617.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Jennifer Skibbe
- Harper Cancer Research Institute, South Bend, IN 46617.,Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, IN 46617
| | - Andrew Appert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556.,Harper Cancer Research Institute, South Bend, IN 46617
| | - Seok Hee Jang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556.,Harper Cancer Research Institute, South Bend, IN 46617
| | | | - Sridhar Rao
- Blood Research Institute, Versiti, Milwaukee, WI 53226.,Department of Cell Biology, Medical College of Wisconsin, Milwaukee, WI 53226.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | - Karen D Cowden Dahl
- Harper Cancer Research Institute, South Bend, IN 46617.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617
| | - Richard Dahl
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556; .,Harper Cancer Research Institute, South Bend, IN 46617.,Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, IN 46617
| |
Collapse
|
160
|
Cheng A, Choi D, Lora M, Shum-Tim D, Rak J, Colmegna I. Human multipotent mesenchymal stromal cells cytokine priming promotes RAB27B-regulated secretion of small extracellular vesicles with immunomodulatory cargo. Stem Cell Res Ther 2020; 11:539. [PMID: 33317598 PMCID: PMC7734842 DOI: 10.1186/s13287-020-02050-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022] Open
Abstract
Background The paracrine effects of multipotent mesenchymal stromal cells (MSCs) are mediated by their secretome composed by soluble factors (i.e., cytokines, growth factors, hormones) and extracellular vesicles (EVs). EVs promote intercellular communication, and the EV cargoes [e.g., proteins, soluble factors, microRNAs (miRNAs), messenger RNA (mRNA), DNA] reflect the molecular and functional characteristics of their parental cells. MSC-derived EVs (MSC-EVs) are currently evaluated as subcellular therapeutics. A key function of the MSC secretome is its ability to promote immune tolerance (i.e., immunopotency), a property that is enhanced by priming approaches (e.g., cytokines, hypoxia, chemicals) and inversely correlates with the age of the MSC donors. We evaluated mechanisms underlying MSC vesiculation and the effects of inflammation and aging on this process. Methods We evaluated the effects of interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) on human adipose-derived MSC: (a) vesiculation (custom RT2 Profiler PCR Array), (b) EV profiles (Nanoparticle Tracking Analysis and Nanoparticle Flow Cytometry), (c) EV cargo (proteomic analysis and Western blot analysis), and (d) immunopotency (standard MSC:CD4 T cell proliferation inhibition assay). We confirmed the role of RAB27B on MSC vesiculation (RAB27B siRNA) and assessed its differential contribution to vesiculation in adult and pediatric MSCs (qPCR). Results Cytokine priming upregulated RAB27B in adipose-derived MSCs increasing their secretion of exosome-like small EVs (sEVs; < 200 nm) containing two key mediators of immunopotency: A20 and TSG-6. These EVs inhibited T cell proliferation in a dose-dependent manner. RAB27B siRNA inhibited MSC vesiculation. Adipose-derived MSCs isolated from pediatric donors exhibited higher RAB27B expression and secreted more sEVs than adult MSCs. Conclusions Cytokine priming is a useful strategy to harvest anti-inflammatory MSC-sEVs for clinical applications. Of relevance, donor age should be considered in the selection of MSC-sEVs for clinical applications.
Collapse
Affiliation(s)
- Anastasia Cheng
- Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Office # EM2-3238, Montreal, QC, H4A 3J1, Canada
| | - Dongsic Choi
- Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Office # EM2-3238, Montreal, QC, H4A 3J1, Canada
| | - Maximilien Lora
- Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Office # EM2-3238, Montreal, QC, H4A 3J1, Canada
| | - Dominique Shum-Tim
- Division of Cardiac Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
| | - Janusz Rak
- Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Office # EM2-3238, Montreal, QC, H4A 3J1, Canada
| | - Inés Colmegna
- Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Office # EM2-3238, Montreal, QC, H4A 3J1, Canada. .,Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
161
|
Nowak AJ, Relja B. The Impact of Acute or Chronic Alcohol Intake on the NF-κB Signaling Pathway in Alcohol-Related Liver Disease. Int J Mol Sci 2020; 21:E9407. [PMID: 33321885 PMCID: PMC7764163 DOI: 10.3390/ijms21249407] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Ethanol misuse is frequently associated with a multitude of profound medical conditions, contributing to health-, individual- and social-related damage. A particularly dangerous threat from this classification is coined as alcoholic liver disease (ALD), a liver condition caused by prolonged alcohol overconsumption, involving several pathological stages induced by alcohol metabolic byproducts and sustained cellular intoxication. Molecular, pathological mechanisms of ALD principally root in the innate immunity system and are especially associated with enhanced functionality of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. NF-κB is an interesting and convoluted DNA transcription regulator, promoting both anti-inflammatory and pro-inflammatory gene expression. Thus, the abundancy of studies in recent years underlines the importance of NF-κB in inflammatory responses and the mechanistic stimulation of inner molecular motifs within the factor components. Hereby, in the following review, we would like to put emphasis on the correlation between the NF-κB inflammation signaling pathway and ALD progression. We will provide the reader with the current knowledge regarding the chronic and acute alcohol consumption patterns, the molecular mechanisms of ALD development, the involvement of the NF-κB pathway and its enzymatic regulators. Therefore, we review various experimental in vitro and in vivo studies regarding the research on ALD, including the recent active compound treatments and the genetic modification approach. Furthermore, our investigation covers a few human studies.
Collapse
Affiliation(s)
- Aleksander J. Nowak
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Leipziger Strasse 44, 39120 Magdeburg, Germany;
- Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Borna Relja
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Leipziger Strasse 44, 39120 Magdeburg, Germany;
- Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| |
Collapse
|
162
|
Weinelt N, van Wijk SJL. Ubiquitin-dependent and -independent functions of OTULIN in cell fate control and beyond. Cell Death Differ 2020; 28:493-504. [PMID: 33288901 PMCID: PMC7862380 DOI: 10.1038/s41418-020-00675-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Ubiquitination, and its control by deubiquitinating enzymes (DUBs), mediates protein stability, function, signaling and cell fate. The ovarian tumor (OTU) family DUB OTULIN (FAM105B) exclusively cleaves linear (Met1-linked) poly-ubiquitin chains and plays important roles in auto-immunity, inflammation and infection. OTULIN regulates Met1-linked ubiquitination downstream of tumor necrosis factor receptor 1 (TNFR1), toll-like receptor (TLR) and nucleotide-binding and oligomerization domain-containing protein 2 (NOD2) receptor activation and interacts with the Met1 ubiquitin-specific linear ubiquitin chain assembly complex (LUBAC) E3 ligase. However, despite extensive research efforts, the receptor and cytosolic roles of OTULIN and the distributions of multiple Met1 ubiquitin-associated E3-DUB complexes in the regulation of cell fate still remain controversial and unclear. Apart from that, novel ubiquitin-independent OTULIN functions have emerged highlighting an even more complex role of OTULIN in cellular homeostasis. For example, OTULIN interferes with endosome-to-plasma membrane trafficking and the OTULIN-related pseudo-DUB OTULINL (FAM105A) resides at the endoplasmic reticulum (ER). Here, we discuss how OTULIN contributes to cell fate control and highlight novel ubiquitin-dependent and -independent functions.
Collapse
Affiliation(s)
- Nadine Weinelt
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstrasse 3a, 60528, Frankfurt am Main, Germany.
| |
Collapse
|
163
|
Yu MP, Xu XS, Zhou Q, Deuitch N, Lu MP. Haploinsufficiency of A20 (HA20): updates on the genetics, phenotype, pathogenesis and treatment. World J Pediatr 2020; 16:575-584. [PMID: 31587140 DOI: 10.1007/s12519-019-00288-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/04/2019] [Indexed: 01/25/2023]
Abstract
BACKGROUND A20, a protein encoded by the tumor necrosis factor alpha-induced protein 3 gene (TNFAIP3), plays a vital role in the negative regulation of inflammation and immunity. Loss-of-function mutation in TNFAIP3 leads to a new described autoinflammatory disease-haploinsufficiency of A20 (HA20). Since HA20 was first described in 2016, a number of new cases have been described in this literature, however, the disease and its pathogenesis are poorly understood. This review seeks to improve clinical recognition of this disorder, and promote both earlier diagnosis and initiation of targeted therapies to improve patients' outcomes. METHODS We reviewed 26 papers about A20 and HA20, and we summarized genetic variants and clinical manifestations of a total of 61 reported patients from 26 families identified to have a genetic diagnosis of germline pathogenic variants in TNFAIP3/A20. Additionally, we discussed the pathogenesis and treatment of HA20. RESULTS A total of 24 pathogenic variants of A20 had been reported. There was significant clinical heterogeneity, even among those with the same variants in TNFAIP3. Prior to receiving a molecular diagnosis of HA20, patients had been diagnosed with Behcet's disease, rheumatoid arthritis, rheumatic fever, juvenile idiopathic arthritis, systemic lupus erythematosus, and even adult-onset Stills' disease. The patients with HA20 that presented with inflammatory signatures in NF-κB signaling were mostly responsive to treatment. CONCLUSIONS HA20 is a monogenic autoinflammatory disease with highly variable clinical manifestations. This extensive heterogeneity makes it difficult to set a clinical diagnostic criteria, and genetic sequencing is necessary for a definitive diagnosis of HA20.
Collapse
Affiliation(s)
- Mei-Ping Yu
- Department of Rheumatology Immunology and Allergy, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Xi-Sheng Xu
- Department of Rheumatology Immunology and Allergy, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Qing Zhou
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | | | - Mei-Ping Lu
- Department of Rheumatology Immunology and Allergy, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
164
|
Mahmoudi M, Aslani S, Meguro A, Akhtari M, Fatahi Y, Mizuki N, Shahram F. A comprehensive overview on the genetics of Behçet's disease. Int Rev Immunol 2020; 41:84-106. [PMID: 33258398 DOI: 10.1080/08830185.2020.1851372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Behçet's disease (BD) is a systemic and inflammatory disease, characterized mainly by recurrent oral and genital ulcers, eye involvement, and skin lesions. Although the exact etiopathogenesis of BD remains unrevealed, a bulk of studies have implicated the genetic contributing factors as critical players in disease predisposition. In countries along the Silk Road, human leukocyte antigen (HLA)-B51 has been reported as the strongest genetically associated factor for BD. Genome-wide association studies, local genetic polymorphism studies, and meta-analysis of combined data from Turkish, Iranian, and Japanese populations have also identified new genetic associations with BD. Among these, other HLA alleles such as HLA-B*15, HLA-B*27, HLA-B*57, and HLA-A*26 have been found as independent risk factors for BD, whereas HLA-B*49 and HLA-A*03 are independent protective alleles for BD. Moreover, other genes have also reached the genome-wide significance level of association with BD susceptibility, including IL10, IL23R-IL12RB2, IL12A, CCR1-CCR3, STAT4, TNFAIP3, ERAP1, KLRC4, and FUT2. Also, several rare nonsynonymous variants in TLR4, IL23R, NOD2, and MEFV genes have been reported to be involved in BD pathogenesis. According to genetic determinants in the loci outside the MHC region that are contributed to the host defense, immunity, and inflammation pathways, it is suggested that immune responses to the pathogen as an important environmental factor and mucosal immunity contribute to BD susceptibility.
Collapse
Affiliation(s)
- Mahdi Mahmoudi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Maryam Akhtari
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Faculty of Pharmacy, Department of Pharmaceutical Nanotechnology, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Farhad Shahram
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
165
|
Oliver Metzig M, Tang Y, Mitchell S, Taylor B, Foreman R, Wollman R, Hoffmann A. An incoherent feedforward loop interprets NFκB/RelA dynamics to determine TNF-induced necroptosis decisions. Mol Syst Biol 2020; 16:e9677. [PMID: 33314666 PMCID: PMC7734648 DOI: 10.15252/msb.20209677] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/31/2022] Open
Abstract
Balancing cell death is essential to maintain healthy tissue homeostasis and prevent disease. Tumor necrosis factor (TNF) not only activates nuclear factor κB (NFκB), which coordinates the cellular response to inflammation, but may also trigger necroptosis, a pro-inflammatory form of cell death. Whether TNF-induced NFκB affects the fate decision to undergo TNF-induced necroptosis is unclear. Live-cell microscopy and model-aided analysis of death kinetics identified a molecular circuit that interprets TNF-induced NFκB/RelA dynamics to control necroptosis decisions. Inducible expression of TNFAIP3/A20 forms an incoherent feedforward loop to interfere with the RIPK3-containing necrosome complex and protect a fraction of cells from transient, but not long-term TNF exposure. Furthermore, dysregulated NFκB dynamics often associated with disease diminish TNF-induced necroptosis. Our results suggest that TNF's dual roles in either coordinating cellular responses to inflammation, or further amplifying inflammation are determined by a dynamic NFκB-A20-RIPK3 circuit, that could be targeted to treat inflammation and cancer.
Collapse
Affiliation(s)
- Marie Oliver Metzig
- Signaling Systems LaboratoryDepartment of MicrobiologyImmunology and Molecular GeneticsUCLALos AngelesCAUSA
- Institute for Quantitative and Computational BiosciencesUCLALos AngelesCAUSA
| | - Ying Tang
- Signaling Systems LaboratoryDepartment of MicrobiologyImmunology and Molecular GeneticsUCLALos AngelesCAUSA
- Institute for Quantitative and Computational BiosciencesUCLALos AngelesCAUSA
| | - Simon Mitchell
- Signaling Systems LaboratoryDepartment of MicrobiologyImmunology and Molecular GeneticsUCLALos AngelesCAUSA
- Institute for Quantitative and Computational BiosciencesUCLALos AngelesCAUSA
- Present address:
Brighton and Sussex Medical SchoolUniversity of SussexBrightonUK
| | - Brooks Taylor
- Signaling Systems LaboratoryDepartment of MicrobiologyImmunology and Molecular GeneticsUCLALos AngelesCAUSA
- Institute for Quantitative and Computational BiosciencesUCLALos AngelesCAUSA
| | - Robert Foreman
- Institute for Quantitative and Computational BiosciencesUCLALos AngelesCAUSA
- Department of Chemistry and BiochemistryUCLALos AngelesCAUSA
- Department of Integrative Biology and PhysiologyUCLALos AngelesCAUSA
| | - Roy Wollman
- Institute for Quantitative and Computational BiosciencesUCLALos AngelesCAUSA
- Department of Chemistry and BiochemistryUCLALos AngelesCAUSA
- Department of Integrative Biology and PhysiologyUCLALos AngelesCAUSA
| | - Alexander Hoffmann
- Signaling Systems LaboratoryDepartment of MicrobiologyImmunology and Molecular GeneticsUCLALos AngelesCAUSA
- Institute for Quantitative and Computational BiosciencesUCLALos AngelesCAUSA
| |
Collapse
|
166
|
Abstract
A20/TNFAIP3 is a TNF induced gene that plays a profound role in preserving cellular and organismal homeostasis (Lee, et al., 2000; Opipari etal., 1990). This protein has been linked to multiple human diseases via genetic, epigenetic, and an emerging series of patients with mono-allelic coding mutations. Diverse cellular functions of this pleiotropically expressed protein include immune-suppressive, anti-inflammatory, and cell protective functions. The A20 protein regulates ubiquitin dependent cell signals; however, the biochemical mechanisms by which it performs these functions is surprisingly complex. Deciphering these cellular and biochemical facets of A20 dependent biology should greatly improve our understanding of murine and human disease pathophysiology as well as unveil new mechanisms of cell and tissue biology.
Collapse
Affiliation(s)
- Bahram Razani
- Department of Dermatology, University of California, San Francisco, CA, United States
| | - Barbara A Malynn
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
167
|
Sato J, Azuma K, Kinowaki K, Ikeda K, Ogura T, Takazawa Y, Kawabata H, Kitagawa M, Inoue S. Combined A20 and tripartite motif-containing 44 as poor prognostic factors for breast cancer patients of the Japanese population. Pathol Int 2020; 71:60-69. [PMID: 33159706 DOI: 10.1111/pin.13047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/23/2020] [Indexed: 01/06/2023]
Abstract
We previously reported that a strong immunoreactivity of tripartite motif-containing 44 (TRIM44) predicts the poor prognosis of patients with invasive breast cancer, and proposed that TRIM44 activates nuclear factor-κB (NF-κB) signaling as a causative mechanism. In the present study, we examined the clinicopathological roles of A20, which is known to be an NF-κB responsive gene, with TRIM44, in an updated cohort. Tissue samples of invasive breast cancer were obtained from 140 Japanese female breast cancer patients who underwent surgical treatment. Immunoreactivities of A20 and TRIM44 were analyzed using specific antibodies for each protein. A positive A20 immunoreactivity was significantly associated with a shorter disease-free survival (P = 0.043) and was positively correlated with TRIM44 immunoreactivity (P = 0.039). Combined use of the immunoreactivities for two proteins revealed that double-positive status for both A20 and TRIM44 immunoreactivities was associated with a shorter disease-free survival (P = 0.012) and was an independent factor for poor prognosis. These results indicate that a combined A20 and TRIM44 immunoreactivity predicted the prognosis of patients with invasive breast cancer. Moreover, the positive correlation between A20 and TRIM44 immunoreactivities suggested that the activation of NF-κB signaling by TRIM44 could occur in clinical breast cancer tissues.
Collapse
Affiliation(s)
- Junichiro Sato
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo, Japan.,Department of Pathology, Toranomon Hospital, Tokyo, Japan
| | - Kotaro Azuma
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | - Kazuhiro Ikeda
- Research, Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Takuya Ogura
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Breast and Endocrine Surgery, Toranomon Hospital, Tokyo, Japan
| | | | - Hidetaka Kawabata
- Department of Breast and Endocrine Surgery, Toranomon Hospital, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Research, Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
168
|
Cultrone D, Zammit NW, Self E, Postert B, Han JZR, Bailey J, Warren J, Croucher DR, Kikuchi K, Bogdanovic O, Chtanova T, Hesselson D, Grey ST. A zebrafish functional genomics model to investigate the role of human A20 variants in vivo. Sci Rep 2020; 10:19085. [PMID: 33154446 PMCID: PMC7644770 DOI: 10.1038/s41598-020-75917-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/25/2020] [Indexed: 01/21/2023] Open
Abstract
Germline loss-of-function variation in TNFAIP3, encoding A20, has been implicated in a wide variety of autoinflammatory and autoimmune conditions, with acquired somatic missense mutations linked to cancer progression. Furthermore, human sequence data reveals that the A20 locus contains ~ 400 non-synonymous coding variants, which are largely uncharacterised. The growing number of A20 coding variants with unknown function, but potential clinical impact, poses a challenge to traditional mouse-based approaches. Here we report the development of a novel functional genomics approach that utilizes a new A20-deficient zebrafish (Danio rerio) model to investigate the impact of TNFAIP3 genetic variants in vivo. A20-deficient zebrafish are hyper-responsive to microbial immune activation and exhibit spontaneous early lethality. Ectopic addition of human A20 rescued A20-null zebrafish from lethality, while missense mutations at two conserved A20 residues, S381A and C243Y, reversed this protective effect. Ser381 represents a phosphorylation site important for enhancing A20 activity that is abrogated by its mutation to alanine, or by a causal C243Y mutation that triggers human autoimmune disease. These data reveal an evolutionarily conserved role for TNFAIP3 in limiting inflammation in the vertebrate linage and show how this function is controlled by phosphorylation. They also demonstrate how a zebrafish functional genomics pipeline can be utilized to investigate the in vivo significance of medically relevant human TNFAIP3 gene variants.
Collapse
Affiliation(s)
- Daniele Cultrone
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
| | - Nathan W Zammit
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
| | - Eleanor Self
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
| | - Benno Postert
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
- Diabetes Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Jeremy Z R Han
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Jacqueline Bailey
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
| | - Joanna Warren
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
| | - David R Croucher
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Kazu Kikuchi
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Ozren Bogdanovic
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
- Epigenetics Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Tatyana Chtanova
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
| | - Daniel Hesselson
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
- Diabetes Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Shane T Grey
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia.
| |
Collapse
|
169
|
Smith MA, Culver-Cochran AE, Adelman ER, Rhyasen GW, Ma A, Figueroa ME, Starczynowski DT. TNFAIP3 Plays a Role in Aging of the Hematopoietic System. Front Immunol 2020; 11:536442. [PMID: 33224133 PMCID: PMC7670064 DOI: 10.3389/fimmu.2020.536442] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPC) experience a functional decline in response to chronic inflammation or aging. Haploinsufficiency of A20, or TNFAIP3, an innate immune regulator, is associated with a variety of autoimmune, inflammatory, and hematologic malignancies. Based on a prior analysis of epigenomic and transcriptomic changes during normal human aging, we find that the expression of A20 is significantly reduced in aged HSPC as compared to young HSPC. Here, we show that the partial reduction of A20 expression in young HSPC results in characteristic features of aging. Specifically, heterozygous deletion of A20 in hematopoietic cells resulted in expansion of the HSPC pool, reduced HSPC fitness, and myeloid-biased hematopoiesis. These findings suggest that altered expression of A20 in HSPC contributes to an aging-like phenotype, and that there may be a common underlying mechanism for diminished HSPC function between inflammatory states and aging.
Collapse
Affiliation(s)
- Molly A Smith
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, United States
| | - Ashley E Culver-Cochran
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Emmalee R Adelman
- Department of Human Genetics, University of Miami, Miami, FL, United States
| | - Garrett W Rhyasen
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, United States
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Maria E Figueroa
- Department of Human Genetics, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - Daniel T Starczynowski
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, United States.,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
170
|
Essential role of the linear ubiquitin chain assembly complex and TAK1 kinase in A20 mutant Hodgkin lymphoma. Proc Natl Acad Sci U S A 2020; 117:28980-28991. [PMID: 33139544 DOI: 10.1073/pnas.2014470117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
More than 70% of Epstein-Barr virus (EBV)-negative Hodgkin lymphoma (HL) cases display inactivation of TNFAIP3 (A20), a ubiquitin-editing protein that regulates nonproteolytic protein ubiquitination, indicating the significance of protein ubiquitination in HL pathogenesis. However, the precise mechanistic roles of A20 and the ubiquitination system remain largely unknown in this disease. Here, we performed high-throughput CRISPR screening using a ubiquitin regulator-focused single-guide RNA library in HL lines carrying either wild-type or mutant A20. Our CRISPR screening highlights the essential oncogenic role of the linear ubiquitin chain assembly complex (LUBAC) in HL lines, which overlaps with A20 inactivation status. Mechanistically, LUBAC promotes IKK/NF-κB activity and NEMO linear ubiquitination in A20 mutant HL cells, which is required for prosurvival genes and immunosuppressive molecule expression. As a tumor suppressor, A20 directly inhibits IKK activation and HL cell survival via its C-terminal linear-ubiquitin binding ZF7. Clinically, LUBAC activity is consistently elevated in most primary HL cases, and this is correlated with high NF-κB activity and low A20 expression. To further understand the complete mechanism of NF-κB activation in A20 mutant HL, we performed a specifically designed CD83-based NF-κB CRISPR screen which led us to identify TAK1 kinase as a major mediator for NF-κB activation in cells dependent on LUBAC, where the LUBAC-A20 axis regulates TAK1 and IKK complex formation. Finally, TAK1 inhibitor Takinib shows promising activity against HL in vitro and in a xenograft mouse model. Altogether, these findings provide strong support that targeting LUBAC or TAK1 could be attractive therapeutic strategies in A20 mutant HL.
Collapse
|
171
|
Kumar V. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol 2020; 89:107087. [PMID: 33075714 PMCID: PMC7550173 DOI: 10.1016/j.intimp.2020.107087] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Sepsis infects more than 48.9 million people world-wide, with 19.7 million deaths. Cytokine storm plays a significant role in sepsis, along with severe COVID-19. TLR signaling pathways plays a crucial role in generating the cytokine storm. Endogenous negative regulators of TLR signaling are crucial to regulate cytokine storm.
Cytokine storm generates during various systemic acute infections, including sepsis and current pandemic called COVID-19 (severe) causing devastating inflammatory conditions, which include multi-organ failure or multi-organ dysfunction syndrome (MODS) and death of the patient. Toll-like receptors (TLRs) are one of the major pattern recognition receptors (PRRs) expressed by immune cells as well as non-immune cells, including neurons, which play a crucial role in generating cytokine storm. They recognize microbial-associated molecular patterns (MAMPs, expressed by pathogens) and damage or death-associate molecular patterns (DAMPs; released and/expressed by damaged/killed host cells). Upon recognition of MAMPs and DAMPs, TLRs activate downstream signaling pathways releasing several pro-inflammatory mediators [cytokines, chemokines, interferons, and reactive oxygen and nitrogen species (ROS or RNS)], which cause acute inflammation meant to control the pathogen and repair the damage. Induction of an exaggerated response due to genetic makeup of the host and/or persistence of the pathogen due to its evasion mechanisms may lead to severe systemic inflammatory condition called sepsis in response to the generation of cytokine storm and organ dysfunction. The activation of TLR-induced inflammatory response is hardwired to the induction of several negative feedback mechanisms that come into play to conclude the response and maintain immune homeostasis. This state-of-the-art review describes the importance of TLR signaling in the onset of the sepsis-associated cytokine storm and discusses various host-derived endogenous negative regulators of TLR signaling pathways. The subject is very important as there is a vast array of genes and processes implicated in these negative feedback mechanisms. These molecules and mechanisms can be targeted for developing novel therapeutic drugs for cytokine storm-associated diseases, including sepsis, severe COVID-19, and other inflammatory diseases, where TLR-signaling plays a significant role.
Collapse
Affiliation(s)
- V Kumar
- Children Health Clinical Unit, Faculty of Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
172
|
Simpson DS, Gabrielyan A, Feltham R. RIPK1 ubiquitination: Evidence, correlations and the undefined. Semin Cell Dev Biol 2020; 109:76-85. [PMID: 32980239 DOI: 10.1016/j.semcdb.2020.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/23/2022]
Abstract
Over the last two decades the mechanisms that underpin cell survival and cell death have been intensively studied. One molecule in particular, Receptor Interacting Protein Kinase 1 (RIPK1), has gained interest due to the ability to function upstream of both NF-κB signaling and caspase-dependent and -independent cell death. RIPK1 is critical in determining cell fate downstream of cytokine signaling receptors such as the Tumour Necrosis Factor Receptor Super Family (TNFRSF) and the innate immune Toll-like receptors. Various studies have attempted to untangle how ubiquitination of RIPK1 dictates signaling outcomes; however, due to the complex nature of ubiquitin signaling it has been difficult to prove that ubiquitination of RIPK1 does in fact influence signaling outcomes. Therefore, we ask the question: What do we really know about RIPK1 ubiquitination, and, to what extent can we conclude that ubiquitination of RIPK1 impacts RIPK1-mediated signaling events?
Collapse
Affiliation(s)
- Daniel S Simpson
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Anna Gabrielyan
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Rebecca Feltham
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia.
| |
Collapse
|
173
|
Wu Y, He X, Huang N, Yu J, Shao B. A20: a master regulator of arthritis. Arthritis Res Ther 2020; 22:220. [PMID: 32958016 PMCID: PMC7504854 DOI: 10.1186/s13075-020-02281-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
A20, also known as TNF-α-induced protein 3 (TNFAIP3), is an anti-inflammatory protein that plays an important part in both immune responses and cell death. Impaired A20 function is associated with several human inflammatory and autoimmune diseases. Although the role of A20 in mediating inflammation has been frequently discussed, its intrinsic link to arthritis awaits further explanation. Here, we review new findings that further demonstrate the molecular mechanisms through which A20 regulates inflammatory arthritis, and we discuss the regulation of A20 by many factors. We conclude by reviewing the latest A20-associated mouse models that have been applied in related research because they reflect the characteristics of arthritis, the study of which will hopefully cast new light on anti-arthritis treatments.
Collapse
Affiliation(s)
- Yongyao Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaomin He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ning Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiayun Yu
- State Key Laboratory of Biotherapy anf Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. .,State Key Laboratory of Biotherapy anf Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
174
|
Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther 2020; 5:209. [PMID: 32958760 PMCID: PMC7506548 DOI: 10.1038/s41392-020-00312-6] [Citation(s) in RCA: 1194] [Impact Index Per Article: 238.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
NF-κB pathway consists of canonical and non-canonical pathways. The canonical NF-κB is activated by various stimuli, transducing a quick but transient transcriptional activity, to regulate the expression of various proinflammatory genes and also serve as the critical mediator for inflammatory response. Meanwhile, the activation of the non-canonical NF-κB pathway occurs through a handful of TNF receptor superfamily members. Since the activation of this pathway involves protein synthesis, the kinetics of non-canonical NF-κB activation is slow but persistent, in concordance with its biological functions in the development of immune cell and lymphoid organ, immune homeostasis and immune response. The activation of the canonical and non-canonical NF-κB pathway is tightly controlled, highlighting the vital roles of ubiquitination in these pathways. Emerging studies indicate that dysregulated NF-κB activity causes inflammation-related diseases as well as cancers, and NF-κB has been long proposed as the potential target for therapy of diseases. This review attempts to summarize our current knowledge and updates on the mechanisms of NF-κB pathway regulation and the potential therapeutic application of inhibition of NF-κB signaling in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Liangbin Lin
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
175
|
Sisto M, Ribatti D, Lisi S. Understanding the Complexity of Sjögren's Syndrome: Remarkable Progress in Elucidating NF-κB Mechanisms. J Clin Med 2020; 9:jcm9092821. [PMID: 32878252 PMCID: PMC7563658 DOI: 10.3390/jcm9092821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Sjögren’s syndrome (SS) is a systemic autoimmune inflammatory disease with a poorly defined aetiology, which targets exocrine glands (particularly salivary and lachrymal glands), affecting the secretory function. Patients suffering from SS exhibit persistent xerostomia and keratoconjunctivitis sicca. It is now widely acknowledged that a chronic grade of inflammation plays a central role in the initiation, progression, and development of SS. Consistent with its key role in organizing inflammatory responses, numerous recent studies have shown involvement of the transcription factor nuclear factor κ (kappa)-light-chain-enhancer of activated B cells (NF-κB) in the development of this disease. Therefore, chronic inflammation is considered as a critical factor in the disease aetiology, offering hope for the development of new drugs for treatment. The purpose of this review is to describe the current knowledge about the NF-κB-mediated molecular events implicated in the pathogenesis of SS.
Collapse
|
176
|
Canh NX, Giang NV, Nghia VX, Sopjani M, Ngan NTT, Hoang NH, Xuan NT. Regulation of cell activation by A20 through STAT signaling in acute lymphoblastic leukemia. J Recept Signal Transduct Res 2020; 41:331-338. [PMID: 32808859 DOI: 10.1080/10799893.2020.1808678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the hematologic malignancy characterized by the aberrant proliferation of immature lymphoid cells. A20 is a deubiquitinase gene that inhibits functional activation of immune cells mediated through NF-κB/STAT pathways and frequently found inactivated in lymphoma. IL-6 is a pro-inflammatory cytokine secreted by immune cells under the pathogenic conditions and regulated by STAT signaling. Little is known about the role of A20 in regulating the function of ALL blasts and underlying molecular mechanisms. The present study, therefore, explored whether A20 expression contributes to IL-6 induced cell migration and activation of myeloid cells in ALL. To this end, blood samples of thirty-five adult ALL patients were examined. Gene expression profile was determined by quantitative RT-PCR, immunophenotype by flow cytometry, secretion of inflammatory cytokines by ELISA, and cell migration by a transwell migration assay. As a result, the expression of A20 was inactivated in ALL. Immunophenotypic analysis indicated that percent of CD11b+CD40+ expressing cells present in ALL was significantly reduced when transfected with PEM-T easy A20. Importantly, IL6-induced CXCL12-mediated migration of ALL blasts was dependent on the presence of A20. The inhibitory effects of A20 on activated myeloid cells and migration of ALL blasts were mediated through the STAT pathway upon IL-6 challenge. In addition, the CA-125 level was much higher in elderly females than either young female or male ALL patients or healthy donors. In conclusion, the inhibitory effects of A20 on activation of ALL blasts are expected to affect the immune response to treatment for adult ALL patients.
Collapse
Affiliation(s)
- Nguyen Xuan Canh
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Nguyen Van Giang
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | | | - Mentor Sopjani
- Faculty of Medicine, University of Prishtina, Prishtinë, Kosova
| | - Nguyen Thi Thanh Ngan
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Nguyen Huy Hoang
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Nguyen Thi Xuan
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| |
Collapse
|
177
|
Liang J, Zhang JJ, Huang HI, Kanayama M, Youssef N, Jin YJ, Reyes EY, Abram CL, Yang S, Lowell CA, Wang D, Shao L, Shinohara ML, Zhang JY, Hammer GE. The Ubiquitin-Modifying Enzyme A20 Terminates C-Type Lectin Receptor Signals and Is a Suppressor of Host Defense against Systemic Fungal Infection. Infect Immun 2020; 88:e00048-20. [PMID: 32540868 PMCID: PMC7440764 DOI: 10.1128/iai.00048-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/01/2020] [Indexed: 01/02/2023] Open
Abstract
C-type lectin receptors (CLRs) play key roles in antifungal defense. CLR-induced NF-κB is central to CLR functions in immunity, and thus, molecules that control the amplitude of CLR-induced NF-κB could profoundly influence host defense against fungal pathogens. However, little is known about the mechanisms that negatively regulate CLR-induced NF-κB, and molecules which act on the CLR family broadly and which directly regulate acute CLR-signaling cascades remain unidentified. Here, we identify the ubiquitin-editing enzyme A20 as a negative regulator of acute NF-κB activation downstream of multiple CLR pathways. Absence of A20 suppression results in exaggerated CLR responses in cells which are A20 deficient and also cells which are A20 haplosufficient, including multiple primary immune cells. Loss of a single allele of A20 results in enhanced defense against systemic Candida albicans infection and prolonged host survival. Thus, A20 restricts CLR-induced innate immune responses in vivo and is a suppressor of host defense against systemic fungal infection.
Collapse
Affiliation(s)
- Jie Liang
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Junyi J Zhang
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Hsin-I Huang
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Masashi Kanayama
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Nourhan Youssef
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yingai J Jin
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Estefany Y Reyes
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Clare L Abram
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, California, USA
| | - Shigao Yang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, California, USA
| | - Donghai Wang
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Ling Shao
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer Y Zhang
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Gianna Elena Hammer
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
178
|
Electroacupuncture Pretreatment Alleviates LPS-Induced Acute Respiratory Distress Syndrome via Regulating the PPAR Gamma/NF-Kappa B Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4594631. [PMID: 32774418 PMCID: PMC7396021 DOI: 10.1155/2020/4594631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 11/18/2022]
Abstract
Electroacupuncture (EA) is reported to possess anti-inflammatory properties and has beneficial effects on acute respiratory distress syndrome (ARDS). However, the underlying mechanisms of the effects of EA on ARDS remain unclear. This study aims to investigate the protective effect of EA on LPS-induced ARDS. In this study, Sprague-Dawley male rats were treated with EA at Hegu (LI4) for 45 minutes before LPS instillation (0.4 mg/kg, 100 ul). H&E staining, wet-to-dry weight (W/D) ratio, PaO2, and protein content in BALF were employed to determine the function of lung tissues. Inflammatory cytokines in serum and BALF were detected by enzyme-linked immunoassay assay (ELISA). The levels of oxidative stress markers were detected to determine the oxidative stress status. Cell apoptosis was observed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining and western blot. Here, we found that EA pretreatment effectively alleviated lung pathological damage. Moreover, EA suppressed the oxidative stress damage by upregulating glutathione and superoxide dismutase and downregulating malondialdehyde. EA pretreatment also regulated apoptosis-related proteins, such as Bax and Bcl-2. We found that peroxisome proliferators-activated receptors γ (PPARγ) play a critical role during ARDS, EA up-regulated the expression of PPARγ, which inhibited the activation of nuclear factor-kappa B (NF-κB) and decreased the inflammatory cytokines (interleukin-1β, interleukin-6, and tumor necrosis factor-α). When rats were treated with GW9662, a selective PPARγ antagonist, these effects of EA were reversed. Our study demonstrated that EA pretreatment had a beneficial effect on LPS-induced ARDS in rats by anti-inflammatory, antioxidative, and antiapoptotic properties which was regulated via PPARγ/NF-κB signaling pathway.
Collapse
|
179
|
Huang X, Zhang X, Xu J, Wang X, Zhang G, Tang T, Shen X, Liang T, Bai X. Deubiquitinating Enzyme: A Potential Secondary Checkpoint of Cancer Immunity. Front Oncol 2020; 10:1289. [PMID: 32850399 PMCID: PMC7426525 DOI: 10.3389/fonc.2020.01289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
The efficacy of cancer immunotherapy depends on the fine interplay between tumoral immune checkpoints and host immune system. However, the up-to-date clinical performance of checkpoint blockers in cancer therapy revealed that higher-level regulation should be further investigated for better therapeutic outcomes. It is becoming increasingly evident that the expression of immune checkpoints is largely associated to the immunotherapeutic response and consequent prognosis. Deubiquitinating enzymes (DUBs) with their role of cleaving ubiquitin from proteins and other molecules, thus reversing ubiquitination-mediated protein degradation, modulate multiple cellular processes, including, but not limited to, transcriptional regulation, cell cycle progression, tissue development, and antiviral response. Accumulating evidence indicates that DUBs also have the critical influence on anticancer immunity, simply by stabilizing pivotal checkpoints or key regulators of T-cell functions. Therefore, this review summarizes the current knowledge about DUBs, highlights the secondary checkpoint-like role of DUBs in cancer immunity, in particular their direct effects on the stability control of pivotal checkpoints and key regulators of T-cell functions, and suggests the therapeutic potential of DUBs-based strategy in targeted immunotherapy for cancer.
Collapse
Affiliation(s)
- Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Xiaozhen Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Jian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Xun Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Xiaochao Shen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Xueli Bai
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| |
Collapse
|
180
|
Li Q, Wang M, Xue H, Liu W, Guo Y, Xu R, Shao B, Yuan Q. Ubiquitin-Specific Protease 34 Inhibits Osteoclast Differentiation by Regulating NF-κB Signaling. J Bone Miner Res 2020; 35:1597-1608. [PMID: 32212276 DOI: 10.1002/jbmr.4015] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 02/05/2023]
Abstract
The ubiquitination and deubiquitination enzymes ensure the stability and proper function of most cellular proteins. Disturbance of either enzyme compromises tissue homeostasis. We recently have identified that the ubiquitin-specific protease 34 (USP34) contributes to bone formation by promoting osteogenic differentiation of mesenchymal stem cells. However, its role in bone resorption, which couples bone formation, remains unknown. Here we show that knockdown of Usp34 promotes osteoclast differentiation of RAW264.7 cells. Conditional knockout of Usp34 in bone marrow-derived macrophages (BMMs) or in osteoclasts leads to elevated osteoclast function and low bone mass. Mechanically, we identify that USP34 restrains NF-κB signaling by deubiquitinating and stabilizing the NF-κB inhibitor alpha (IκBα). Overexpression of IκBα represses osteoclastic hyperfunction of Usp34-deficient RAW264.7 cells. Collectively, our results show that USP34 inhibits osteoclastogenesis by regulating NF-κB signaling. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Qiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengyuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Hanxiao Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weiqing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuchen Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruoshi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
181
|
Mothes J, Ipenberg I, Arslan SÇ, Benary U, Scheidereit C, Wolf J. A Quantitative Modular Modeling Approach Reveals the Effects of Different A20 Feedback Implementations for the NF-kB Signaling Dynamics. Front Physiol 2020; 11:896. [PMID: 32848849 PMCID: PMC7402004 DOI: 10.3389/fphys.2020.00896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/02/2020] [Indexed: 11/13/2022] Open
Abstract
Signaling pathways involve complex molecular interactions and are controled by non-linear regulatory mechanisms. If details of regulatory mechanisms are not fully elucidated, they can be implemented by different, equally reasonable mathematical representations in computational models. The study presented here focusses on NF-κB signaling, which is regulated by negative feedbacks via IκBα and A20. A20 inhibits NF-κB activation indirectly through interference with proteins that transduce the signal from the TNF receptor complex to activate the IκB kinase (IKK) complex. A number of pathway models has been developed implementing the A20 effect in different ways. We here focus on the question how different A20 feedback implementations impact the dynamics of NF-κB. To this end, we develop a modular modeling approach that allows combining previously published A20 modules with a common pathway core module. The resulting models are fitted to a published comprehensive experimental data set and therefore show quantitatively comparable NF-κB dynamics. Based on defined measures for the initial and long-term behavior we analyze the effects of a wide range of changes in the A20 feedback strength, the IκBα feedback strength and the TNFα stimulation strength on NF-κB dynamics. This shows similarities between the models but also model-specific differences. In particular, the A20 feedback strength and the TNFα stimulation strength affect initial and long-term NF-κB concentrations differently in the analyzed models. We validated our model predictions experimentally by varying TNFα concentrations applied to HeLa cells. These time course data indicate that only one of the A20 feedback models appropriately describes the impact of A20 on the NF-κB dynamics in this cell type.
Collapse
Affiliation(s)
- Janina Mothes
- Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Inbal Ipenberg
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Seda Çöl Arslan
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Uwe Benary
- Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Claus Scheidereit
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Jana Wolf
- Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
182
|
Saxena S, Lokhande H, Gombolay G, Raheja R, Rooney T, Chitnis T. Identification of TNFAIP3 as relapse biomarker and potential therapeutic target for MOG antibody associated diseases. Sci Rep 2020; 10:12405. [PMID: 32709905 PMCID: PMC7381621 DOI: 10.1038/s41598-020-69182-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022] Open
Abstract
MOG-antibody associated disease (MOG-AAD) is a recently recognized demyelinating disorder predominantly affecting children but also occurs in adults, with a relapsing course in approximately 50% of patients. We evaluated peripheral blood mononuclear cells from MOG-AAD patients by flow cytometry and found a strong antigen specific central memory cell (CMC) response with increased Th1 and Th17 cells at the time of a relapse. Transcriptomic analysis of CMCs by three independent sequencing platforms revealed TNFAIP3 as a relapse biomarker, whose expression was down regulated at a relapse compared to remission in MOG-AAD patients. Serum in an additional cohort of patients showed decreased TNFAIP3 levels at relapse compared to remission state in MOG-AAD patients. Our studies suggest that alterations in TNFAIP3 levels are associated with relapses in MOG-AAD patients, which may have clinical utility as a disease course biomarker and therapeutic target.
Collapse
Affiliation(s)
- Shrishti Saxena
- Ann Romney Center for Neurologic Disease, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Office 9002K, Boston, MA, 02115-6128, USA
| | - Hrishikesh Lokhande
- Ann Romney Center for Neurologic Disease, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Office 9002K, Boston, MA, 02115-6128, USA
| | - Grace Gombolay
- Ann Romney Center for Neurologic Disease, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Office 9002K, Boston, MA, 02115-6128, USA.,Emory University and Children's Healthcare of Atlanta, Atlanta, GA, 30329, USA.,Department of Neurology, Partners Pediatric Multiple Sclerosis Center, Massachusetts General Hospital, Boston, MA, USA
| | - Radhika Raheja
- Ann Romney Center for Neurologic Disease, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Office 9002K, Boston, MA, 02115-6128, USA
| | - Timothy Rooney
- Ann Romney Center for Neurologic Disease, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Office 9002K, Boston, MA, 02115-6128, USA
| | - Tanuja Chitnis
- Ann Romney Center for Neurologic Disease, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Office 9002K, Boston, MA, 02115-6128, USA. .,Department of Neurology, Partners Pediatric Multiple Sclerosis Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
183
|
Hamadou I, Garritano S, Romanel A, Naimi D, Hammada T, Demichelis F. Inherited variant in NFκB-1 promoter is associated with increased risk of IBD in an Algerian population and modulates SOX9 binding. Cancer Rep (Hoboken) 2020; 3:e1240. [PMID: 32671985 DOI: 10.1002/cnr2.1240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/11/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The link between inflammation and cancer development was intensively studied in the last decade. To date, few studies explored the association between inflammatory genes and colorectal cancer (CRC) development. AIM The present study aimed to evaluate the implication of three single nucleotide polymorphisms (SNPs), rs28362491 ins/del -94 ATTG in NFκB1, rs6920220 (G/A) in TNFAIP3, and rs419598 (C/T) in IL1RN, which play a role in inflammation regulation in CRC development. METHODS AND RESULTS A case-control study was conducted on an Algerian cohort of 358 subjects (147 healthy people, 89 individuals affected by inflammatory bowel disease [IBD], and 122 CRC patients enrolled at the University Hospital Center Ben Badis of Constantine). SNPs genotyping was performed by allelic discrimination TaqMan assay. The rs28362491 ins/del heterozygous genotype in NFκB1 conferred an increased risk of IBD compared with ins/ins homozygous genotype, with an increase of twofold (OR = 2.34 [1.29-4.21]; 95% CI, 1.29-4.21, P value = 0.004). No significant association was detected for the other two variants. Dual-Luciferase Reporter Assay System performed in LoVo cells showed a significantly higher activity of the construct with ins allele of rs28362491 compared with the one harboring the del allele. Computational analysis nominated SOX9 as putative transcription factor (TF) with higher probability to bind the NFκB1 promoter at the SNP site, and we demonstrated in the in vitro assay that its overexpression modulates NFκB1 promoter activity in allele-specific manner. CONCLUSION We speculate that SOX9 may modulate the NFκB1 activity by binding its promoter at the SNP site in allelic specific manner.
Collapse
Affiliation(s)
- Imene Hamadou
- Laboratory of Microbiological Engineering and Applications, University of Constantine 1, Constantine, Algeria
| | - Sonia Garritano
- Laboratory of Computational and Functional Oncology, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Alessandro Romanel
- Laboratory of Computational and Functional Oncology, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.,Laboratory of Bioinformatics and Computational Genomics Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Dalila Naimi
- Higher National School of Biotechnology, University of Constantine 3, El Khroub, Algeria
| | - Talel Hammada
- Service D'Hépatogastroentérologie, Faculté de Médecine de Constantine, CHU Benbadis, Constantine, Algeria
| | - Francesca Demichelis
- Laboratory of Computational and Functional Oncology, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
184
|
Schnappauf O, Aksentijevich I. Mendelian diseases of dysregulated canonical NF-κB signaling: From immunodeficiency to inflammation. J Leukoc Biol 2020; 108:573-589. [PMID: 32678922 DOI: 10.1002/jlb.2mr0520-166r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/05/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
NF-κB is a master transcription factor that activates the expression of target genes in response to various stimulatory signals. Activated NF-κB mediates a plethora of diverse functions including innate and adaptive immune responses, inflammation, cell proliferation, and NF-κB is regulated through interactions with IκB inhibitory proteins, which are in turn regulated by the inhibitor of κB kinase (IKK) complex. Together, these 3 components form the core of the NF-κB signalosomes that have cell-specific functions which are dependent on the interactions with other signaling molecules and pathways. The activity of NF-κB pathway is also regulated by a variety of post-translational modifications including phosphorylation and ubiquitination by Lys63, Met1, and Lys48 ubiquitin chains. The physiologic role of NF-κB is best studied in the immune system due to discovery of many human diseases caused by pathogenic variants in various proteins that constitute the NF-κB pathway. These disease-causing variants can act either as gain-of-function (GoF) or loss-of-function (LoF) and depending on the function of mutated protein, can cause either immunodeficiency or systemic inflammation. Typically, pathogenic missense variants act as GoF and they lead to increased activity in the pathway. LoF variants can be inherited as recessive or dominant alleles and can cause either a decrease or an increase in pathway activity. Dominantly inherited LoF variants often result in haploinsufficiency of inhibitory proteins. Here, we review human Mendelian immunologic diseases, which results from mutations in different molecules in the canonical NF-κB pathway and surprisingly present with a continuum of clinical features including immunodeficiency, atopy, autoimmunity, and autoinflammation.
Collapse
Affiliation(s)
- Oskar Schnappauf
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ivona Aksentijevich
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
185
|
Dysregulation of Cell Death in Human Chronic Inflammation. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037036. [PMID: 31843991 DOI: 10.1101/cshperspect.a037036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inflammation is a fundamental biological process mediating host defense and wound healing during infections and tissue injury. Perpetuated and excessive inflammation may cause autoinflammation, autoimmunity, degenerative disorders, allergies, and malignancies. Multimodal signaling by tumor necrosis factor receptor 1 (TNFR1) plays a crucial role in determining the transition between inflammation, cell survival, and programmed cell death. Targeting TNF signaling has been proven as an effective therapeutic in several immune-related disorders. Mouse studies have provided critical mechanistic insights into TNFR1 signaling and its potential role in a broad spectrum of diseases. The characterization of patients with monogenic primary immunodeficiencies (PIDs) has highlighted the importance of TNFR1 signaling in human disease. In particular, patients with PIDs have revealed paradoxical connections between immunodeficiency, chronic inflammation, and dysregulated cell death. Importantly, studies on PIDs may help to predict beneficial effects and side-effects of therapeutic targeting of TNFR1 signaling.
Collapse
|
186
|
Kim J, Perkins GB, Coates PT. Evolutionary immunology: how your ancestry can affect your kidney transplant. Kidney Int 2020; 98:45-47. [DOI: 10.1016/j.kint.2020.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 01/13/2020] [Indexed: 12/28/2022]
|
187
|
Endothelial Cell-Selective Adhesion Molecule Contributes to the Development of Definitive Hematopoiesis in the Fetal Liver. Stem Cell Reports 2020; 13:992-1005. [PMID: 31813828 PMCID: PMC6915804 DOI: 10.1016/j.stemcr.2019.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
Endothelial cell-selective adhesion molecule (ESAM) is a lifelong marker of hematopoietic stem cells (HSCs). Although we previously elucidated the functional importance of ESAM in HSCs in stress-induced hematopoiesis in adults, it is unclear how ESAM affects hematopoietic development during fetal life. To address this issue, we analyzed fetuses from conventional or conditional ESAM-knockout mice. Approximately half of ESAM-null fetuses died after mid-gestation due to anemia. RNA sequencing analyses revealed downregulation of adult-type globins and Alas2, a heme biosynthesis enzyme, in ESAM-null fetal livers. These abnormalities were attributed to malfunction of ESAM-null HSCs, which was demonstrated in culture and transplantation experiments. Although crosslinking ESAM directly influenced gene transcription in HSCs, observations in conditional ESAM-knockout fetuses revealed the critical involvement of ESAM expressed in endothelial cells in fetal lethality. Thus, we showed that ESAM had important roles in developing definitive hematopoiesis. Furthermore, we unveiled the importance of endothelial ESAM in this process.
Collapse
|
188
|
Peng X, Zhang C, Bao JP, Zhu L, Shi R, Xie ZY, Wang F, Wang K, Wu XT. A20 of nucleus pulposus cells plays a self-protection role via the nuclear factor-kappa B pathway in the inflammatory microenvironment. Bone Joint Res 2020; 9:225-235. [PMID: 32566144 PMCID: PMC7284293 DOI: 10.1302/2046-3758.95.bjr-2019-0230.r1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aims Inflammatory response plays a pivotal role in the pathophysiological process of intervertebral disc degeneration (IDD). A20 (also known as tumour necrosis factor alpha-induced protein 3 (TNFAIP3)) is a ubiquitin-editing enzyme that restricts nuclear factor-kappa B (NF-κB) signalling. A20 prevents the occurrence of multiple inflammatory diseases. However, the role of A20 in the initiation of IDD has not been elucidated. The aim of the study was to investigate the effect of A20 in senescence of TNF alpha (TNF-α)-induced nucleus pulposus cells (NPCs). Methods Immunohistochemical staining was performed to observe the expression of A20 in normal and degenerated human intervertebral discs. The NPCs were dissected from the tail vertebrae of healthy male Sprague-Dawley rats and were cultured in the incubator. In the experiment, TNF-α was used to mimic the inflammatory environment of IDD. The cell viability and senescence were examined to investigate the effect of A20 on TNF-α-treated NPCs. The expression of messenger RNA (mRNA)-encoding proteins related to matrix macromolecules (collagen II, aggrecan) and senescence markers (p53, p16). Additionally, NF-κB/p65 activity of NPCs was detected within different test compounds. Results The expression of A20 was upregulated in degenerate human intervertebral discs. The A20 levels of NPCs in TNF-α inflammatory microenvironments were dramatically higher than those of the control group. TNF-α significantly decreased cell proliferation potency but increased senescence-associated beta-galactosidase (SA-β-Gal) activity, the expression of senescence-associated proteins, the synthesis of extracellular matrix, and G1 cycle arrest. The senescence indicators and NF-κB/p65 expression of A20 downregulated group treated with TNF-α were significantly upregulated compared to TNF-α-treated normal NPCs. Conclusion A20 has a self-protective effect on the senescence of NPCs induced by TNF-α. The downregulation of A20 in NPCs exacerbated the senescence of NPCs induced by TNF-α. Cite this article:Bone Joint Res. 2020;9(5):225–235.
Collapse
Affiliation(s)
- Xin Peng
- Medical School of Southeast University, Nanjing, China
| | - Cong Zhang
- Medical School of Southeast University, Nanjing, China
| | - Jun-Ping Bao
- Medical School of Southeast University, Nanjing, China
| | - Lei Zhu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Rui Shi
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Zhi-Yang Xie
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Feng Wang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Kun Wang
- Medical School of Southeast University and Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiao-Tao Wu
- Medical School of Southeast University and Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
189
|
Zhang L, Yao Y, Tian J, Jiang W, Zhou S, Chen J, Xu T, Wu M. Alterations and abnormal expression of A20 in peripheral monocyte subtypes in patients with rheumatoid arthritis. Clin Rheumatol 2020; 40:341-348. [PMID: 32488768 DOI: 10.1007/s10067-020-05137-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/21/2020] [Accepted: 05/01/2020] [Indexed: 10/24/2022]
Abstract
As the precursors of macrophages and osteoclasts, monocytes play an important role in the pathogenesis of rheumatoid arthritis (RA). Since the deficiency of zinc-finger protein A20 in myeloid cells triggers erosive polyarthritis resembling RA, A20 in monocytes may play a protective role in RA. In the present study, we aimed to investigate the abnormality of monocyte subtypes and the expression of zinc-finger protein A20 in RA. Peripheral blood mononuclear cells and clinical data were collected from RA patients and healthy controls (HCs). Monocyte subtypes and A20 expression were determined through flow cytometry and compared between the two groups. Correlations between monocyte subtypes, A20 expression, and clinical data were analyzed. A total of 43 RA patients and 23 HCs were included in the present study. RA patients had higher absolute monocyte counts (p < 0.001) in the peripheral blood. The proportions and counts of intermediate monocytes (IMs) (both p < 0.001) and non-classical monocytes (NCMs) were higher (both p < 0.001) in RA patients. The expression of A20 in IMs (p < 0.001) was lower in RA patients compared with that in the HCs. Furthermore, the expression of A20 in IMs was negatively correlated with the anti-cyclic citrullinated peptide (CCP) antibody level in RA patients (r = - 0.409, p = 0.01). The expression of A20 in NCMs was positively correlated with modified total Sharp score (mTSS) in RA patients (r = 0.471, p = 0.02). Collectively, we proved that IMs and NCMs were increased in RA patients, suggesting that they played a suggestive role in the pathogenesis of RA. Furthermore, the downregulation of A20 in IMs might be correlated with anti-CCP antibody production. The A20 expression in NCMs might affect bone erosion in RA. Key Points • IMs and NCMs were increased in the peripheral blood of RA patients, suggesting their pathogenic role in RA. • The decreased expression of zinc-finger protein A20 in IMs of RA patients suggested the protective role of A20 in RA. • The negative correlation between the A20 expression in IMs and anti-CCP antibody revealed that A20 in IMs might be related to the formation of anti-CCP antibodies. • The positive correlation between the A20 expression in NCMs and mTSS revealed that A20 in NCMs might affect the bone erosion in RA.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, People's Republic of China
| | - Yao Yao
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, People's Republic of China
| | - Junmei Tian
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, People's Republic of China
| | - Wanlan Jiang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, People's Republic of China
| | - Shiliang Zhou
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, People's Republic of China
| | - Jinyun Chen
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, People's Republic of China
| | - Ting Xu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, People's Republic of China.
| | - Min Wu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, People's Republic of China.
| |
Collapse
|
190
|
Webster JD, Vucic D. The Balance of TNF Mediated Pathways Regulates Inflammatory Cell Death Signaling in Healthy and Diseased Tissues. Front Cell Dev Biol 2020; 8:365. [PMID: 32671059 PMCID: PMC7326080 DOI: 10.3389/fcell.2020.00365] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022] Open
Abstract
Tumor necrosis factor alpha (TNF; TNFα) is a critical regulator of immune responses in healthy organisms and in disease. TNF is involved in the development and proper functioning of the immune system by mediating cell survival and cell death inducing signaling. TNF stimulated signaling pathways are tightly regulated by a series of phosphorylation and ubiquitination events, which enable timely association of TNF receptors-associated intracellular signaling complexes. Disruption of these signaling events can disturb the balance and the composition of signaling complexes, potentially resulting in severe inflammatory diseases.
Collapse
Affiliation(s)
- Joshua D Webster
- Departments of Pathology and Early Discovery Biochemistry, Genentech, South San Francisco, CA, United States
| | - Domagoj Vucic
- Departments of Pathology and Early Discovery Biochemistry, Genentech, South San Francisco, CA, United States
| |
Collapse
|
191
|
Bourges C, Groff AF, Burren OS, Gerhardinger C, Mattioli K, Hutchinson A, Hu T, Anand T, Epping MW, Wallace C, Smith KG, Rinn JL, Lee JC. Resolving mechanisms of immune-mediated disease in primary CD4 T cells. EMBO Mol Med 2020; 12:e12112. [PMID: 32239644 PMCID: PMC7207160 DOI: 10.15252/emmm.202012112] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Deriving mechanisms of immune-mediated disease from GWAS data remains a formidable challenge, with attempts to identify causal variants being frequently hampered by strong linkage disequilibrium. To determine whether causal variants could be identified from their functional effects, we adapted a massively parallel reporter assay for use in primary CD4 T cells, the cell type whose regulatory DNA is most enriched for immune-mediated disease SNPs. This enabled the effects of candidate SNPs to be examined in a relevant cellular context and generated testable hypotheses into disease mechanisms. To illustrate the power of this approach, we investigated a locus that has been linked to six immune-mediated diseases but cannot be fine-mapped. By studying the lead expression-modulating SNP, we uncovered an NF-κB-driven regulatory circuit which constrains T-cell activation through the dynamic formation of a super-enhancer that upregulates TNFAIP3 (A20), a key NF-κB inhibitor. In activated T cells, this feedback circuit is disrupted-and super-enhancer formation prevented-by the risk variant at the lead SNP, leading to unrestrained T-cell activation via a molecular mechanism that appears to broadly predispose to human autoimmunity.
Collapse
Affiliation(s)
- Christophe Bourges
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Abigail F Groff
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Oliver S Burren
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Chiara Gerhardinger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Kaia Mattioli
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Anna Hutchinson
- MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK
| | - Theodore Hu
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Tanmay Anand
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Madeline W Epping
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Chris Wallace
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Kenneth Gc Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - James C Lee
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
192
|
Priem D, van Loo G, Bertrand MJM. A20 and Cell Death-driven Inflammation. Trends Immunol 2020; 41:421-435. [PMID: 32241683 DOI: 10.1016/j.it.2020.03.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Abstract
A20 is a potent anti-inflammatory molecule, and mutations in TNFAIP3, the gene encoding A20, are associated with a wide panel of inflammatory pathologies, both in human and mouse. The anti-inflammatory properties of A20 are commonly attributed to its ability to suppress inflammatory NF-κB signaling by functioning as a ubiquitin-editing enzyme. However, A20 also protects cells from death, independently of NF-κB regulation, and recent work has demonstrated that cell death may drive some of the inflammatory conditions caused by A20 deficiency. Adding to the fact that the protective role of A20 does not primarily rely on its catalytic activities, these findings shed new light on A20 biology.
Collapse
Affiliation(s)
- Dario Priem
- Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Geert van Loo
- Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mathieu J M Bertrand
- Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
193
|
Field NS, Moser EK, Oliver PM. Itch regulation of innate and adaptive immune responses in mice and humans. J Leukoc Biol 2020; 108:353-362. [PMID: 32356405 DOI: 10.1002/jlb.3mir0320-272r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/29/2022] Open
Abstract
The E3 ubiquitin ligase Itch has long been appreciated to be a critical suppressor of inflammation, first identified as a regulator of Th2 differentiation and lung inflammation. Recent studies have revealed novel roles for this protein in mouse and human disease, and it is now clear that Itch also limits the function of other lymphocytes, innate immune cells, and nonhematopoietic cells to regulate immunity. In addition to Th2 cells, Itch also regulates Th17 and regulatory T cells. Itch regulates humoral immunity through direct roles in T follicular helper cells and T follicular regulatory cells, and B cells. Furthermore, Itch limits innate immune responses, such as macrophage cytokine production. Through these cell-intrinsic functions, Itch regulates the interplay between innate and adaptive immune cells, resulting in profound autoinflammation in Itch-deficient mice. Whereas Itch deficiency was previously thought to be an extremely rare occurrence humans, whole exome sequencing of patients with unexplained autoimmune disease has revealed at least two additional cases of Itch deficiency in the last year alone, each caused by distinct mutations within the Itch gene. The recent identification of these patients suggests that Itch mutations may be more common than previously thought, and demonstrates the need to understand how this protein regulates inflammation and autoimmune disease.
Collapse
Affiliation(s)
- Natania S Field
- Cell and Molecular Biology Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily K Moser
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paula M Oliver
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
194
|
Muto T, Walker CS, Choi K, Hueneman K, Smith MA, Gul Z, Garcia-Manero G, Ma A, Zheng Y, Starczynowski DT. Adaptive response to inflammation contributes to sustained myelopoiesis and confers a competitive advantage in myelodysplastic syndrome HSCs. Nat Immunol 2020; 21:535-545. [PMID: 32313245 DOI: 10.1038/s41590-020-0663-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
Despite evidence of chronic inflammation in myelodysplastic syndrome (MDS) and cell-intrinsic dysregulation of Toll-like receptor (TLR) signaling in MDS hematopoietic stem and progenitor cells (HSPCs), the mechanisms responsible for the competitive advantage of MDS HSPCs in an inflammatory milieu over normal HSPCs remain poorly defined. Here, we found that chronic inflammation was a determinant for the competitive advantage of MDS HSPCs and for disease progression. The cell-intrinsic response of MDS HSPCs, which involves signaling through the noncanonical NF-κB pathway, protected these cells from chronic inflammation as compared to normal HSPCs. In response to inflammation, MDS HSPCs switched from canonical to noncanonical NF-κB signaling, a process that was dependent on TLR-TRAF6-mediated activation of A20. The competitive advantage of TLR-TRAF6-primed HSPCs could be restored by deletion of A20 or inhibition of the noncanonical NF-κB pathway. These findings uncover the mechanistic basis for the clonal dominance of MDS HSPCs and indicate that interfering with noncanonical NF-κB signaling could prevent MDS progression.
Collapse
Affiliation(s)
- Tomoya Muto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Callum S Walker
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Molly A Smith
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zartash Gul
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
195
|
TNFAIP3 Deficiency Affects Monocytes, Monocytes-Derived Cells and Microglia in Mice. Int J Mol Sci 2020; 21:ijms21082830. [PMID: 32325694 PMCID: PMC7215837 DOI: 10.3390/ijms21082830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/07/2020] [Accepted: 04/15/2020] [Indexed: 01/23/2023] Open
Abstract
The intracellular-ubiquitin-ending-enzyme tumor necrosis factor alpha-induced protein 3 (TNFAIP3) is a potent inhibitor of the pro-inflammatory nuclear factor kappa-light-chain-enhancer of activated B cell (NF-kB) pathway. Single nucleotide polymorphisms in TNFAIP3 locus have been associated to autoimmune inflammatory disorders, including Multiple Sclerosis (MS). Previously, we reported a TNFAIP3 down-regulated gene expression level in blood and specifically in monocytes obtained from treatment-naïve MS patients compared to healthy controls (HC). Myeloid cells exert a key role in the pathogenesis of MS. Here we evaluated the effect of specific TNFAIP3 deficiency in myeloid cells including monocytes, monocyte-derived cells (M-MDC) and microglia analyzing lymphoid organs and microglia of mice. TNFAIP3 deletion is induced using conditional knock-out mice for myeloid lineage. Flow-cytometry and histological procedures were applied to assess the immune cell populations of spleen, lymph nodes and bone marrow and microglial cell density in the central nervous system (CNS), respectively. We found that TNFAIP3 deletion in myeloid cells induces a reduction in body weight, a decrease in the number of M-MDC and of common monocyte and granulocyte precursor cells (CMGPs). We also reported that the lack of TNFAIP3 in myeloid cells induces an increase in microglial cell density. The results suggest that TNFAIP3 in myeloid cells critically controls the development of M-MDC in lymphoid organ and of microglia in the CNS.
Collapse
|
196
|
Jarosz-Griffiths HH, Holbrook J, Lara-Reyna S, McDermott MF. TNF receptor signalling in autoinflammatory diseases. Int Immunol 2020; 31:639-648. [PMID: 30838383 DOI: 10.1093/intimm/dxz024] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/01/2019] [Indexed: 12/16/2022] Open
Abstract
Autoinflammatory syndromes are a group of disorders characterized by recurring episodes of inflammation as a result of specific defects in the innate immune system. Patients with autoinflammatory disease present with recurrent outbreaks of chronic systemic inflammation that are mediated by innate immune cells, for the most part. A number of these diseases arise from defects in the tumour necrosis factor receptor (TNFR) signalling pathway leading to elevated levels of inflammatory cytokines. Elucidation of the molecular mechanisms of these recently defined autoinflammatory diseases has led to a greater understanding of the mechanisms of action of key molecules involved in TNFR signalling, particularly those involved in ubiquitination, as found in haploinsufficiency of A20 (HA20), otulipenia/OTULIN-related autoinflammatory syndrome (ORAS) and linear ubiquitin chain assembly complex (LUBAC) deficiency. In this review, we also address other TNFR signalling disorders such as TNFR-associated periodic syndrome (TRAPS), RELA haploinsufficiency, RIPK1-associated immunodeficiency and autoinflammation, X-linked ectodermal dysplasia and immunodeficiency (X-EDA-ID) and we review the most recent advances surrounding these diseases and therapeutic approaches currently used to target these diseases. Finally, we explore therapeutic advances in TNF-related immune-based therapies and explore new approaches to target disease-specific modulation of autoinflammatory diseases.
Collapse
Affiliation(s)
- Heledd H Jarosz-Griffiths
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, University of Leeds, Leeds, UK.,Leeds Institute of Medical Research at St James's, Clinical Sciences Building, University of Leeds, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| | - Jonathan Holbrook
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, University of Leeds, Leeds, UK.,Leeds Institute of Medical Research at St James's, Clinical Sciences Building, University of Leeds, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| | - Samuel Lara-Reyna
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, University of Leeds, Leeds, UK.,Leeds Institute of Medical Research at St James's, Clinical Sciences Building, University of Leeds, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, University of Leeds, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| |
Collapse
|
197
|
Wisnieski F, Santos LC, Calcagno DQ, Geraldis JC, Gigek CO, Anauate AC, Chen ES, Rasmussen LT, Payão SLM, Artigiani R, Demachki S, Assumpção PP, Lourenço LG, Arasaki CH, Pabinger S, Krainer J, Leal MF, Burbano RR, Arruda Cardoso Smith M. The impact of DNA demethylation on the upregulation of the NRN1 and TNFAIP3 genes associated with advanced gastric cancer. J Mol Med (Berl) 2020; 98:707-717. [PMID: 32285140 DOI: 10.1007/s00109-020-01902-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related death worldwide. Very few therapeutic options are currently available in this neoplasia. The use of 5-Aza-2'-deoxycytidine (5-AZAdC) was approved for the treatment of myelodysplastic syndromes, and this drug can treat solid tumours at low doses. Epigenetic manipulation of GC cell lines is a useful tool to better understand gene expression regulatory mechanisms for clinical applications. Therefore, we compared the gene expression profile of 5-AZAdC-treated and untreated GC cell lines by a microarray assay. Among the genes identified in this analysis, we selected NRN1 and TNFAIP3 to be evaluated for gene expression by RT-qPCR and DNA methylation by bisulfite DNA next-generation sequencing in 43 and 52 pairs of GC and adjacent non-neoplastic tissue samples, respectively. We identified 83 candidate genes modulated by DNA methylation in GC cell lines. Increased expression of NRN1 and TNFAIP3 was associated with advanced tumours (P < 0.05). We showed that increased NRN1 and TNFAIP3 expression seems to be regulated by DNA demethylation in GC samples: inverse correlations between the mRNA and DNA methylation levels in the promoter of NRN1 (P < 0.05) and the intron of TNFAIP3 (P < 0.05) were detected. Reduced NRN1 promoter methylation was associated with III/IV TNM stage tumours (P = 0.03) and the presence of Helicobacter pylori infection (P = 0.02). The identification of demethylated activated genes in GC may be useful in clinical practice, stratifying patients who are less likely to benefit from 5-AZAdC-based therapies. KEY MESSAGES: Higher expression of NRN1 and TNFAIP3 is associated with advanced gastric cancer (GC). NRN1 promoter hypomethylation contributes to gene upregulation in advanced GC. TNFAIP3 intronic-specific CpG site demethylation contributes to gene upregulation in GC. These findings may be useful to stratify GC patients who are less likely to benefit from DNA demethylating-based therapies.
Collapse
Affiliation(s)
- Fernanda Wisnieski
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, São Paulo, 04023900, Brazil. .,Disciplina de Gastroenterologia, Departamento de Medicina, Universidade Federal de São Paulo, Rua Loefgreen, 1726, São Paulo, São Paulo, 04040002, Brazil.
| | - Leonardo Caires Santos
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, São Paulo, 04023900, Brazil
| | - Danielle Queiroz Calcagno
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Universidade Federal do Pará, Rua dos Mundurucus, 4487, Belém, Pará, 66073-000, Brazil
| | - Jaqueline Cruz Geraldis
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, São Paulo, 04023900, Brazil
| | - Carolina Oliveira Gigek
- Departamento de Patologia, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, São Paulo, 04023900, Brazil
| | - Ana Carolina Anauate
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, São Paulo, 04023900, Brazil
| | - Elizabeth Suchi Chen
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, São Paulo, 04023900, Brazil
| | - Lucas Trevizani Rasmussen
- Disciplina de Genética, Hemocentro da Faculdade de Medicina de Marília, Rua Lourival Freire, 240, Marília, São Paulo, 17519-050, Brazil
| | - Spencer Luiz Marques Payão
- Disciplina de Genética, Hemocentro da Faculdade de Medicina de Marília, Rua Lourival Freire, 240, Marília, São Paulo, 17519-050, Brazil
| | - Ricardo Artigiani
- Departamento de Patologia, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, São Paulo, 04023900, Brazil
| | - Samia Demachki
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Universidade Federal do Pará, Rua dos Mundurucus, 4487, Belém, Pará, 66073-000, Brazil
| | - Paulo Pimentel Assumpção
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Universidade Federal do Pará, Rua dos Mundurucus, 4487, Belém, Pará, 66073-000, Brazil
| | - Laercio Gomes Lourenço
- Disciplina de Gastroenterologia Cirúrgica, Departamento de Cirurgia, Universidade Federal de São Paulo, R. Napoleão de Barros, 715, São Paulo, 04024002, Brazil
| | - Carlos Haruo Arasaki
- Disciplina de Gastroenterologia Cirúrgica, Departamento de Cirurgia, Universidade Federal de São Paulo, R. Napoleão de Barros, 715, São Paulo, 04024002, Brazil
| | - Stephan Pabinger
- Austrian Institute of Technology, Center for Health & Bioresources, Molecular Diagnostics, Giefinggasse 4, 1210, Vienna, Austria
| | - Julie Krainer
- Austrian Institute of Technology, Center for Health & Bioresources, Molecular Diagnostics, Giefinggasse 4, 1210, Vienna, Austria
| | - Mariana Ferreira Leal
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, São Paulo, 04023900, Brazil.,Programa de Pós-graduação em Oncologia e Ciências Médicas, Universidade Federal do Pará, Rua dos Mundurucus, 4487, Belém, Pará, 66073-000, Brazil
| | - Rommel Rodriguez Burbano
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Universidade Federal do Pará, Rua dos Mundurucus, 4487, Belém, Pará, 66073-000, Brazil.,Laboratório de Biologia Molecular, Hospital Ophir Loyola, Avenida Governador Magalhães, 992, Belém, 66063-240, Brazil
| | - Marilia Arruda Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, São Paulo, 04023900, Brazil.
| |
Collapse
|
198
|
Affiliation(s)
- Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,MD Anderson UT Health Graduate School, Houston, TX, USA.
| |
Collapse
|
199
|
Kacar M, Pathak S, Savic S. Hereditary systemic autoinflammatory diseases and Schnitzler's syndrome. Rheumatology (Oxford) 2020; 58:vi31-vi43. [PMID: 31769858 PMCID: PMC6878846 DOI: 10.1093/rheumatology/kez448] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
The systemic autoinflammatory diseases are disorders of the innate immune system distinguished by severe inflammation resulting from dysregulation of the innate immune system. Hereditary fever syndromes, such as FMF, TNF receptor-associated periodic syndrome, cryopyrin-associated periodic syndromes and mevalonate kinase deficiency, were the first group of systemic autoinflammatory diseases for which a genetic basis was established, between 1999 and 2001. Currently according to the latest report of the international union of immunological societies, 37 separate monogenic disorders were classified as autoinflammatory. In addition to the abovementioned monogenic conditions, we describe Schnitzler's syndrome, a well-defined, acquired autoinflammatory condition without a clear genetic basis. For the purposes of this review, we discuss several conditions defined by the latest consensus process as systemic autoinflammatory diseases. We focus on those disorders where recent studies have contributed to further phenotypic characterization or had an impact on clinical management.
Collapse
Affiliation(s)
- Mark Kacar
- National Institute for Health Research-Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, UK.,Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, UK
| | - Shelly Pathak
- National Institute for Health Research-Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, UK
| | - Sinisa Savic
- National Institute for Health Research-Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, UK.,Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, UK
| |
Collapse
|
200
|
Zhao W, Xiang Y, Zhang Z, Liu X, Jiang M, Jiang B, Song Y, Hu J. Pharmacological inhibition of GSK3 promotes TNFα-induced GM-CSF via up-regulation of ERK signaling in nasopharyngeal carcinoma (NPC). Int Immunopharmacol 2020; 83:106447. [PMID: 32248019 DOI: 10.1016/j.intimp.2020.106447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
Abstract
Granulocyte-macrophage colony stimulating factor (GM-CSF) functions to drive nasopharyngeal cancer (NPC) metastasis via recruitment and activation of macrophages. However, the source and the regulation of GM-CSF in tumor microenvironment of NPC are not fully understood. In this study, we found that TNFα induced GM-CSF production in NPC CNE1, CNE2, and 5-8F cells in time- and dose-dependent manners. GM-CSF production was tolerant, because the pre-treatment of NPC cells with TNFα down-regulated the GM-CSF production induced by TNFα re-treatment. TNFα activated glycogen synthase kinase-3 (GSK-3), which is an enzyme to regulate glycogen synthesis, and also is a critical downstream element of the PI3K/Akt to regulate cell survival. GSK3 inhibitors up-regulated TNFα-induced GM-CSF, and reversed GM-CSF tolerance induced by TNFα pre-treatment, suggesting that GSK3 activation down-regulated GM-CSF production. GM-CSF down-regulation was not related to ubiquitin-editing enzyme A20. The over-expression of A20 did not regulate GM-CSF production induced by TNFα. However, GSK3 inhibitors up-regulated ERK activation, which contributed to the production of GM-CSF induced by TNFα, suggesting that GSK3 negatively regulated TNFα-induced GM-CSF via down-regulation of ERK signaling. Taking together, these results suggested that GSK3 pathway may be a target for the regulation of TNFα-induced GM-CSF in the tumor microenvironment.
Collapse
Affiliation(s)
- Wang Zhao
- Department of Clinical Laboratory, Changsha Central Hospital, University of South China, Changsha 410004, China; Medical Research Center, Changsha Central Hospital, University of South China, Changsha 410004, China
| | - Yangen Xiang
- Department of Clinical Laboratory, Changsha Central Hospital, University of South China, Changsha 410004, China.
| | - Zhang Zhang
- Department of Pathology, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya Medical School of Central South University, Changsha 410013, China
| | - Xueting Liu
- Medical Research Center, Changsha Central Hospital, University of South China, Changsha 410004, China
| | - Manli Jiang
- Medical Research Center, Changsha Central Hospital, University of South China, Changsha 410004, China
| | - Binyuan Jiang
- Medical Research Center, Changsha Central Hospital, University of South China, Changsha 410004, China
| | - Yinghui Song
- Changsha Cancer Institute, Changsha Central Hospital, University of South China, Changsha 410004, China
| | - Jinyue Hu
- Medical Research Center, Changsha Central Hospital, University of South China, Changsha 410004, China; Changsha Cancer Institute, Changsha Central Hospital, University of South China, Changsha 410004, China.
| |
Collapse
|