151
|
Loo RL, Chan Q, Nicholson JK, Holmes E. Balancing the Equation: A Natural History of Trimethylamine and Trimethylamine- N-oxide. J Proteome Res 2022; 21:560-589. [PMID: 35142516 DOI: 10.1021/acs.jproteome.1c00851] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trimethylamine (TMA) and its N-oxide (TMAO) are ubiquitous in prokaryote and eukaryote organisms as well as in the environment, reflecting their fundamental importance in evolutionary biology, and their diverse biochemical functions. Both metabolites have multiple biological roles including cell-signaling. Much attention has focused on the significance of serum and urinary TMAO in cardiovascular disease risk, yet this is only one of the many facets of a deeper TMA-TMAO partnership that reflects the significance of these metabolites in multiple biological processes spanning animals, plants, bacteria, and fungi. We report on analytical methods for measuring TMA and TMAO and attempt to critically synthesize and map the global functions of TMA and TMAO in a systems biology framework.
Collapse
Affiliation(s)
- Ruey Leng Loo
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Queenie Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, United Kingdom.,MRC Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, United Kingdom
| | - Jeremy K Nicholson
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Institute of Global Health Innovation, Imperial College London, Level 1, Faculty Building, South Kensington Campus, London SW7 2NA, United Kingdom
| | - Elaine Holmes
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Nutrition Research, Department of Metabolism, Nutrition and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, United Kingdom
| |
Collapse
|
152
|
Ridwan M, Shrestha BR, Maharjan N, Mishra H. Zwitterions Layer at but Do Not Screen Electrified Interfaces. J Phys Chem B 2022; 126:1852-1860. [PMID: 35194995 PMCID: PMC8900129 DOI: 10.1021/acs.jpcb.1c10388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/07/2022] [Indexed: 11/29/2022]
Abstract
The role of ionic electrostatics in colloidal processes is well-understood in natural and applied contexts; however, the electrostatic contribution of zwitterions, known to be present in copious amounts in extremophiles, has not been extensively explored. In response, we studied the effects of glycine as a surrogate zwitterion, ion, and osmolyte on the electrostatic forces between negatively charged mica-mica and silica-silica interfaces. Our results reveal that while zwitterions layer at electrified interfaces and contribute to solutions' osmolality, they do not affect at all the surface potentials, the electrostatic surface forces (magnitude and range), and solutions' ionic conductivity across 0.3-30 mM glycine concentration. We infer that the zwitterionic structure imposes an inseparability among positive and negative charges and that this inseparability prevents the buildup of a counter-charge at interfaces. These elemental experimental results pinpoint how zwitterions enable extremophiles to cope with the osmotic stress without affecting finely tuned electrostatic force balance.
Collapse
Affiliation(s)
- Muhammad
Ghifari Ridwan
- Environmental Science and
Engineering (EnSE) Program, Biological and Environmental Science and
Engineering (BESE) Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Interfacial Lab (iLab), Water
Desalination and Reuse Center (WDRC), King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Buddha Ratna Shrestha
- Environmental Science and
Engineering (EnSE) Program, Biological and Environmental Science and
Engineering (BESE) Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Interfacial Lab (iLab), Water
Desalination and Reuse Center (WDRC), King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nischal Maharjan
- Environmental Science and
Engineering (EnSE) Program, Biological and Environmental Science and
Engineering (BESE) Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Interfacial Lab (iLab), Water
Desalination and Reuse Center (WDRC), King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | | |
Collapse
|
153
|
Tang Y, Zhang Y, Liu L, Yang Y, Wang Y, Xu B. Glycine and Melatonin Improve Preimplantation Development of Porcine Oocytes Vitrified at the Germinal Vesicle Stage. Front Cell Dev Biol 2022; 10:856486. [PMID: 35281108 PMCID: PMC8907381 DOI: 10.3389/fcell.2022.856486] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Lipid-rich porcine oocytes are extremely sensitive to cryopreservation compared to other low-lipid oocytes. Vitrification has outperformed slowing freezing in oocyte cryopreservation and is expected to improve further by minimizing cellular osmotic and/or oxidative stresses. In this study, we compared the effects of loading porcine cumulus-oocyte complexes with glycine (an organic osmolyte) or glycine plus melatonin (an endogenous antioxidant) during vitrification, thawing and subsequent maturation to mitigate osmotic injuries or osmotic and oxidative damages on the developmental potential of porcine oocytes. Our data demonstrated that glycine treatment significantly increased the vitrification efficiency of porcine oocytes to levels comparable to those observed with glycine plus melatonin treatment. It was manifested as the thawed oocyte viability, oocyte nuclear maturation, contents of reactive oxygen species, translocation of cortical granules and apoptotic occurrence in mature oocytes, levels of ATP and transcripts of glycolytic genes in cumulus cells (markers of oocyte quality), oocyte fertilization and blastocyst development. However, the latter was more likely than the former to increase ATP contents and normal mitochondrial distribution in mature oocytes. Taken together, our results suggest that mitigating osmotic and oxidative stresses induced by vitrification and thawing can further enhance the developmental competency of vitrified porcine oocytes at the germinal vesicle stage.
Collapse
Affiliation(s)
- Yu Tang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchu, China
- State Key Laboratory for Molecular Biology of Economic Animals, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ying Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchu, China
- State Key Laboratory for Molecular Biology of Economic Animals, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lixiang Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchu, China
- State Key Laboratory for Molecular Biology of Economic Animals, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yifeng Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchu, China
- State Key Laboratory for Molecular Biology of Economic Animals, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yan Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchu, China
- State Key Laboratory for Molecular Biology of Economic Animals, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Baozeng Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchu, China
- State Key Laboratory for Molecular Biology of Economic Animals, Chinese Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Baozeng Xu, ,
| |
Collapse
|
154
|
Tomioka Y, Arakawa T, Akuta T, Nakagawa M, Ishibashi M. Analysis of proteins by agarose native gel electrophoresis in the presence of solvent additives. Int J Biol Macromol 2022; 198:26-36. [PMID: 34954298 DOI: 10.1016/j.ijbiomac.2021.12.084] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/05/2022]
Abstract
Solvent additives, including NaCl, arginine hydrochloride (ArgHCl), glycine and sucrose, are used to enhance protein stability or reduce protein aggregation. Here, we studied the effects of these additives on proteins using agarose native gel electrophoresis. Since these additives are used at relatively high concentration, we first confirmed that they do not interfere with the performance of the native gel electrophoresis. Agarose native gel electrophoresis showed that aggregation of bovine serum albumin (BSA) induced by heating was slightly reduced by NaCl and ArgHCl. On the contrary, glycine and sucrose had marginal effects. ArgHCl and NaCl promoted heat aggregation of monoclonal antibody (mAb), while glycine and sucrose stabilized the native mAb. Arginine methyl ester inhibited heat aggregation of lysozyme and, to a much lesser extent, BSA. These results show that agarose native gel electrophoresis can be used to analyze the effects of solvent additives on proteins subjected to heat stresses. SYPRO Orange that stains only unfolded proteins confirmed unfolded structures of soluble aggregates.
Collapse
Affiliation(s)
- Yui Tomioka
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki 318-0004, Japan
| | - Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Pantera Rd, San Diego, CA 92130, USA.
| | - Teruo Akuta
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki 318-0004, Japan
| | - Masataka Nakagawa
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki 318-0004, Japan
| | - Matsujiro Ishibashi
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
155
|
Maiti A, Daschakraborty S. Can Urea and Trimethylamine- N-oxide Prevent the Pressure-Induced Phase Transition of Lipid Membrane? J Phys Chem B 2022; 126:1426-1440. [PMID: 35139638 DOI: 10.1021/acs.jpcb.1c08891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Organisms dwelling in ocean trenches are exposed to the high hydrostatic pressure of ocean water. Increasing pressure can alter the membrane packing density and fluidity and trigger the fluid-to-gel phase transition. To combat environmental stress, the organisms synthesize small polar solutes, which are known as osmolytes. Urea and trimethylamine-N-oxide (TMAO) are two such solutes found in deep-sea creatures. While TMAO stabilizes protein, urea induces protein denaturation. These solutes strongly influence the packing density and membrane fluidity of the lipid bilayer at different conditions. But can these solutes affect the pressure-induced phase transition of the lipid membrane? In the present work, we have studied the effect of these two solutes on pressure-induced fluid-to-gel phase transition based on the all-atom molecular dynamics (MD) simulation approach. A high-pressure-stimulated fluid-to-gel phase transition of the membrane is seen at 800 bar, which is consistent with previous experiments. We have also observed that in the low-pressure region (1-400 bar), urea slightly increases the membrane fluidity where TMAO decreases the same. However, the phase transition pressure remains almost unchanged on the addition of urea while TMAO shifts the phase transition toward a lower pressure. We have found that the hydrogen (H)-bond interaction between lipid and urea plays an important role in preserving the fluidity of the membrane in the low-pressure zone. However, at a higher pressure, both water and urea are excluded from the membrane surface. TMAO is also excluded from the interfacial region of the membrane at all pressures. Exclusion from the membrane surface further triggers the phase transition of the lipid membrane from the fluid to gel phase at a high pressure.
Collapse
Affiliation(s)
- Archita Maiti
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India
| | | |
Collapse
|
156
|
Speer SL, Stewart CJ, Sapir L, Harries D, Pielak GJ. Macromolecular Crowding Is More than Hard-Core Repulsions. Annu Rev Biophys 2022; 51:267-300. [PMID: 35239418 DOI: 10.1146/annurev-biophys-091321-071829] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells are crowded, but proteins are almost always studied in dilute aqueous buffer. We review the experimental evidence that crowding affects the equilibrium thermodynamics of protein stability and protein association and discuss the theories employed to explain these observations. In doing so, we highlight differences between synthetic polymers and biologically relevant crowders. Theories based on hard-core interactions predict only crowding-induced entropic stabilization. However, experiment-based efforts conducted under physiologically relevant conditions show that crowding can destabilize proteins and their complexes. Furthermore, quantification of the temperature dependence of crowding effects produced by both large and small cosolutes, including osmolytes, sugars, synthetic polymers, and proteins, reveals enthalpic effects that stabilize or destabilize proteins. Crowding-induced destabilization and the enthalpic component point to the role of chemical interactions between and among the macromolecules, cosolutes, and water. We conclude with suggestions for future studies. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shannon L Speer
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA;
| | - Claire J Stewart
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA;
| | - Liel Sapir
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Daniel Harries
- Institute of Chemistry and The Fritz Haber Research Center, The Hebrew University, Jerusalem, Israel
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA; .,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina, USA.,Lineberger Cancer Research Center, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
157
|
Recent Advances in Understanding of Alzheimer's Disease Progression through Mass Spectrometry-Based Metabolomics. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:1-17. [PMID: 35656096 PMCID: PMC9159642 DOI: 10.1007/s43657-021-00036-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the aging population, but despite extensive research, there is no consensus on the biological cause of AD. While AD research is dominated by protein/peptide-centric research based on the amyloid hypothesis, a theory that designates dysfunction in beta-amyloid production, accumulation, or disposal as the primary cause of AD, many studies focus on metabolomics as a means of understanding the biological processes behind AD progression. In this review, we discuss mass spectrometry (MS)-based AD metabolomics studies, including sample type and preparation, mass spectrometry specifications, and data analysis, as well as biological insights gleaned from these studies, with the hope of informing future AD metabolomic studies.
Collapse
|
158
|
Li L, Zhou X, Chen Z, Cao Y, Zhao G. The group 3 LEA protein of Artemia franciscana for cryopreservation. Cryobiology 2022; 106:1-12. [DOI: 10.1016/j.cryobiol.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/03/2022]
|
159
|
Avenues for post-translational protein modification prevention and therapy. Mol Aspects Med 2022; 86:101083. [PMID: 35227517 PMCID: PMC9378364 DOI: 10.1016/j.mam.2022.101083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/22/2022]
Abstract
Non-enzymatic post-translational modifications (nPTMs) of proteins have emerged as novel risk factors for the genesis and progression of various diseases. We now have a variety of experimental and established therapeutic strategies to target harmful nPTMs and potentially improve clinical outcomes. Protein carbamylation and glycation are two common and representative nPTMs that have gained considerable attention lately as favorable therapeutic targets with emerging clinical evidence. Protein carbamylation is associated with the occurrence of cardiovascular disease (CVD) and mortality in patients with chronic kidney disease (CKD); and advanced glycation end products (AGEs), a heterogeneous group of molecules produced in a series of glycation reactions, have been linked to various diabetic complications. Therefore, reducing the burden of protein carbamylation and AGEs is an appealing and promising therapeutic approach. This review chapter summarizes potential anti-nPTM therapy options in CKD, CVD, and diabetes along with clinical implications. Using two prime examples-protein carbamylation and AGEs-we discuss the varied preventative and therapeutic options to mitigate these pathologic nPTMs in detail. We provide in-depth case studies on carbamylation in the setting of kidney disease and AGEs in metabolic disorders, with an emphasis on the relevance to reducing adverse clinical outcomes such as CKD progression, cardiovascular events, and mortality. Overall, whether specific efforts to lower carbamylation and AGE burden will yield definitive clinical improvement in humans remains largely to be seen. However, the scientific rationale for such pursuits is demonstrated herein.
Collapse
|
160
|
Kabir AMR, Munmun T, Hayashi T, Yasuda S, Kimura AP, Kinoshita M, Murata T, Sada K, Kakugo A. Controlling the Rigidity of Kinesin-Propelled Microtubules in an In Vitro Gliding Assay Using the Deep-Sea Osmolyte Trimethylamine N-Oxide. ACS OMEGA 2022; 7:3796-3803. [PMID: 35128287 PMCID: PMC8811939 DOI: 10.1021/acsomega.1c06699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The biomolecular motor protein kinesin and its associated filamentous protein microtubule have been finding important nanotechnological applications in the recent years. Rigidity of the microtubules, which are propelled by kinesin motors in an in vitro gliding assay, is an important metric that determines the success of utilization of microtubules and kinesins in various applications, such as transportation, sensing, sorting, molecular robotics, etc. Therefore, regulating the rigidity of kinesin-propelled microtubules has been critical. In this work, we report a simple strategy to regulate the rigidity of kinesin-propelled microtubules in an in vitro gliding assay. We demonstrate that rigidity of the microtubules, propelled by kinesins in an in vitro gliding assay, can be modulated simply by using the natural osmolyte trimethylamine N-oxide (TMAO). By varying the concentration of TMAO in the gliding assay, the rigidity of microtubules can be modulated over a wide range. Based on this strategy, we are able to reduce the persistence length of microtubules, a measure of microtubule rigidity, ∼8 fold by using TMAO at the concentration of 1.5 M. Furthermore, we found that the decreased rigidity of the kinesin-propelled microtubules can be restored upon elimination of TMAO from the in vitro gliding assay. Alteration in the rigidity of microtubules is accounted for by the non-uniformity of the force applied by kinesins along the microtubules in the presence of TMAO. This work offers a facile strategy to reversibly regulate the rigidity of kinesin-propelled microtubules in situ, which would widen the applications of the biomolecular motor kinesin and its associated protein microtubule in various fields.
Collapse
Affiliation(s)
| | - Tasrina Munmun
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Tomohiko Hayashi
- Institute
of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Satoshi Yasuda
- Graduate
School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Membrane
Protein Research and Molecular Chirality Research Centers, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Atsushi P. Kimura
- Faculty
of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate
School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masahiro Kinoshita
- Institute
of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
- Graduate
School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Membrane
Protein Research and Molecular Chirality Research Centers, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Takeshi Murata
- Graduate
School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Membrane
Protein Research and Molecular Chirality Research Centers, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Kazuki Sada
- Faculty
of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Akira Kakugo
- Faculty
of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
161
|
Eronina TB, Mikhaylova VV, Chebotareva NA, Kleymenov SY, Pivovarova AV, Kurganov BI. Combined action of chemical chaperones on stability, aggregation and oligomeric state of muscle glycogen phosphorylase b. Int J Biol Macromol 2022; 203:406-416. [PMID: 35066023 DOI: 10.1016/j.ijbiomac.2022.01.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 01/19/2023]
Abstract
Chemical chaperones are a class of small molecules, which enhance protein stability, folding, inhibit protein aggregation, and are used for long-term storage of therapeutic proteins. The combined action of chemical chaperones trehalose, betaine and lysine on stability, aggregation and oligomeric state of muscle glycogen phosphorylase b (Phb) has been studied. Dynamic light scattering data indicate that the affinity of trehalose to Phb increased in the presence of betaine or lysine at both stages (stage of nucleation and aggregate growth) of enzyme aggregation at 48 °C, in contrast, the affinity of betaine to the enzyme in the presence of lysine remained practically unchanged. According to differential scanning calorimetry and analytical ultracentrifugation data, the mixture of trehalose and betaine stabilized Phb stronger than either of them in total. Moreover, the destabilizing effect of lysine on the enzyme was almost completely compensated by trehalose and only partially by betaine. The main protective effect of the mixtures of osmolytes and lysine is associated with their influence on the dissociation/denaturation stage, which is the rate-limiting one of Phb aggregation. Thus, a pair of chaperones affects the stability, oligomeric state, and aggregation of Phb differently than individual chaperones.
Collapse
Affiliation(s)
- Tatiana B Eronina
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia.
| | - Valeriya V Mikhaylova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Natalia A Chebotareva
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Sergey Y Kleymenov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia; Koltsov's Institute of Developmental Biology, Russian Academy of Sciences, Vavilova 26, Moscow 119991, Russia
| | - Anastasia V Pivovarova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Boris I Kurganov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| |
Collapse
|
162
|
Taurine Stabilizing Effect on Lysozyme. Life (Basel) 2022; 12:life12010133. [PMID: 35054526 PMCID: PMC8779517 DOI: 10.3390/life12010133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 01/05/2023] Open
Abstract
Taurine is an important organic osmolyte in mammalian cells, and it weakens inflammation and oxidative stress mediated injuries in some diseases. Recently, taurine has been demonstrated to play a therapeutic role against neurodegenerative disorders, although its parallel involvement in several biochemical mechanisms makes not clear taurine specific role in these diseases. Furthermore, the stabilizing effect of this molecule in terms of protein stability is known, but not deeply investigated. In this work we explore by Circular Dichroism the stabilizing impact of taurine in lysozyme thermal denaturation and its influence in lysozyme aggregation into amyloid fibrils. Taurine even at low concentration modifies protein-protein interactions in lysozyme native state, as revealed by Small Angle X-ray Scattering experiments, and alters the amyloid aggregation pattern without completely inhibiting it, as confirmed by UV/Vis spectroscopy with Congo Red and by Atomic Force Microscopy. Evaluation of the cytotoxicities of the amyloid fibrils grown in presence or in absence of taurine is investigated on SH-SY5Y neuroblastoma cells.
Collapse
|
163
|
Isakov N. Histocompatibility and Reproduction: Lessons from the Anglerfish. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010113. [PMID: 35054506 PMCID: PMC8780861 DOI: 10.3390/life12010113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/16/2022]
Abstract
Reproduction in certain deep-sea anglerfishes involves the permanent attachment of dwarf males to much larger females and fusion of their tissues leading to the establishment of a shared circulatory system. This unusual phenomenon of sexual parasitism enables anglerfishes to maximize reproductive success in the vast and deep oceans, where females and males otherwise rarely meet. An even more surprising phenomenon relates to the observation that joining of genetically disparate male and female anglerfishes does not evoke a strong anti-graft immune rejection response, which occurs in vertebrates following allogeneic parabiosis. Recent studies demonstrated that the evolutionary processes that led to the unique mating strategy of anglerfishes coevolved with genetic changes that resulted in loss of functional genes encoding critical components of the adaptive immune system. These genetic alterations enabled anglerfishes to tolerate the histoincompatible tissue antigens of their mate and prevent the occurrence of reciprocal graft rejection responses. While the exact mechanisms by which anglerfishes defend themselves against pathogens have not yet been deciphered, it is speculated that during evolution, anglerfishes adopted new immune strategies that compensate for the loss of B and T lymphocyte functions and enable them to resist infection by pathogens.
Collapse
Affiliation(s)
- Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| |
Collapse
|
164
|
Hawkins JP, Oresnik IJ. The Rhizobium-Legume Symbiosis: Co-opting Successful Stress Management. FRONTIERS IN PLANT SCIENCE 2022; 12:796045. [PMID: 35046982 PMCID: PMC8761673 DOI: 10.3389/fpls.2021.796045] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/02/2021] [Indexed: 05/20/2023]
Abstract
The interaction of bacteria with plants can result in either a positive, negative, or neutral association. The rhizobium-legume interaction is a well-studied model system of a process that is considered a positive interaction. This process has evolved to require a complex signal exchange between the host and the symbiont. During this process, rhizobia are subject to several stresses, including low pH, oxidative stress, osmotic stress, as well as growth inhibiting plant peptides. A great deal of work has been carried out to characterize the bacterial response to these stresses. Many of the responses to stress are also observed to have key roles in symbiotic signaling. We propose that stress tolerance responses have been co-opted by the plant and bacterial partners to play a role in the complex signal exchange that occurs between rhizobia and legumes to establish functional symbiosis. This review will cover how rhizobia tolerate stresses, and how aspects of these tolerance mechanisms play a role in signal exchange between rhizobia and legumes.
Collapse
Affiliation(s)
| | - Ivan J. Oresnik
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
165
|
Somero GN. The Goldilocks Principle: A Unifying Perspective on Biochemical Adaptation to Abiotic Stressors in the Sea. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:1-23. [PMID: 34102065 DOI: 10.1146/annurev-marine-022521-102228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ability of marine organisms to thrive over wide ranges of environmental stressors that perturb structures of proteins, nucleic acids, and lipids illustrates the effectiveness of adaptation at the biochemical level. A critical role of these adaptations is to achieve a proper balance between structural rigidity, which is necessary for maintaining three-dimensional conformation, and flexibility, which is required to allow changes in conformation during function. The Goldilocks principle refers to this balancing act, wherein structural stability and functional properties are poised at values that are just right for the environment the organism faces. Achieving this balance involves changes in macromolecular sequence and adaptive change in the composition of the aqueous or lipid milieu in which macromolecules function. This article traces the development of the field of biochemical adaptation throughout my career and shows how comparative studies of marine animals from diverse habitats have shed light on fundamental properties of life common to all organisms.
Collapse
Affiliation(s)
- George N Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA;
| |
Collapse
|
166
|
Xu Y, Wang X, Li Z, Cheng S, Jiang J. Potential of food waste hydrolysate as an alternative carbon source for microbial oil synthesis. BIORESOURCE TECHNOLOGY 2022; 344:126312. [PMID: 34767904 DOI: 10.1016/j.biortech.2021.126312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Volatile fatty acids (VFAs) have great potential as cheap raw materials in microbial oil synthesis and reducing the cost of substrates is essential for the development of microbial oil biosynthesis. In this study, the food waste hydrolysate and synthetic VFAs media were both used as substrate to synthesis microbial oil. The optimal short-chain VFAs ratio for microbial oil synthesis is 20:5:5 and increasing the proportion of propionic acid is the key to obtaining odd fatty acids. The hydrolysate obtained from food waste under the total solid condition of 2:1 and pH 5 is the most suitable medium for microbial oil synthesis. The biological products obtained from food waste hydrolysate were comparable to synthetic VFAs media, obtaining a 34.02% of lipid content. Results prove that food waste hydrolysate has great potential as the available feedstock for microbial oil synthesis and a promising application value in food waste recycling.
Collapse
Affiliation(s)
- Yaning Xu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, National Environment and Energy International Science and Technology Cooperation Base, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Xuemei Wang
- Shunde Graduate School of University of Science and Technology Beijing, Beijing, PR China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, National Environment and Energy International Science and Technology Cooperation Base, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - Shikun Cheng
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, National Environment and Energy International Science and Technology Cooperation Base, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Jiacheng Jiang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, National Environment and Energy International Science and Technology Cooperation Base, University of Science and Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
167
|
Abstract
Animals rely on their sensory systems to inform them of ecologically relevant environmental variation. In the Southern Ocean, the thermal environment has remained between −1.9 and 5 °C for 15 Myr, yet we have no knowledge of how an Antarctic marine organism might sense their thermal habitat as we have yet to discover a thermosensitive ion channel that gates (opens/closes) below 10 °C. Here, we investigate the evolutionary dynamics of transient receptor potential (TRP) channels, which are the primary thermosensors in animals, within cryonotothenioid fishes—the dominant fish fauna of the Southern Ocean. We found cryonotothenioids have a similar complement of TRP channels as other teleosts (∼28 genes). Previous work has shown that thermosensitive gating in a given channel is species specific, and multiple channels act together to sense the thermal environment. Therefore, we combined evidence of changes in selective pressure, gene gain/loss dynamics, and the first sensory ganglion transcriptome in this clade to identify the best candidate TRP channels that might have a functional dynamic range relevant for frigid Antarctic temperatures. We concluded that TRPV1a, TRPA1b, and TRPM4 are the likeliest putative thermosensors, and found evidence of diversifying selection at sites across these proteins. We also put forward hypotheses for molecular mechanisms of other cryonotothenioid adaptations, such as reduced skeletal calcium deposition, sensing oxidative stress, and unusual magnesium homeostasis. By completing a comprehensive and unbiased survey of these genes, we lay the groundwork for functional characterization and answering long-standing thermodynamic questions of thermosensitive gating and protein adaptation to low temperatures.
Collapse
Affiliation(s)
- Julia M York
- Department of Integrative Biology, University of Texas at Austin, USA
- Corresponding author: E-mail:
| | - Harold H Zakon
- Department of Integrative Biology, University of Texas at Austin, USA
| |
Collapse
|
168
|
Suescún-Bolívar LP, Thomé PE. The specific inhibition of glycerol synthesis and the phosphorylation of a putative MAPK give insight into the mechanism of osmotic sensing in a dinoflagellate symbiont. J Eukaryot Microbiol 2021; 69:e12883. [PMID: 34936156 DOI: 10.1111/jeu.12883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022]
Abstract
Signaling pathways are fundamental for the establishment and maintenance of diverse symbioses. The symbiosis of cnidarians and dinoflagellate algae is the foundation for the ecological success of coral reefs, involving the transfer of photosynthetic products from symbiont to host. However, signal transduction pathways for this symbiosis remain uncharacterized. Cultured and natural cnidarian symbionts can produce glycerol, one of the main translocated photosynthates. Here, we investigate whether a signal transduction pathway may be involved in inducing glycerol synthesis in cultured symbionts under an osmotic stress model. We evaluated the effect of specific inhibitors of the main transduction pathways, p38, JNK, and ERK 1/2 in Brevolium minutum, the symbiont of the Aiptasia model system. We found that glycerol production and the specific activity of the enzyme Gpdh were selectively inhibited by a p38 MAPK inhibitor. Additionally, the phosphorylation of a putative p38-like protein was rapidly detected. Finally, we studied the presence of each of the components of the p38 MAPK pathway in silico, in genomes and transcriptomes reported up to date for different symbiont types. We propose a model for the arrangement of this pathway in the family of dinoflagellate symbionts known as Symbiodiniaceae.
Collapse
Affiliation(s)
- L P Suescún-Bolívar
- Universidad Nacional Autónoma de México Instituto de Ciencias del Mar y Limnología Unidad Académica de Sistemas Arrecifales Puerto Morelos, Puerto Morelos, Mexico
| | - P E Thomé
- Universidad Nacional Autónoma de México Instituto de Ciencias del Mar y Limnología Unidad Académica de Sistemas Arrecifales Puerto Morelos, Puerto Morelos, Mexico
| |
Collapse
|
169
|
Vustin MM. The Biological Role of Glycerol in Yeast Cells. Yeast as Glycerol Producers. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821090088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
170
|
Ibrahimova U, Zivcak M, Gasparovic K, Rastogi A, Allakhverdiev SI, Yang X, Brestic M. Electron and proton transport in wheat exposed to salt stress: is the increase of the thylakoid membrane proton conductivity responsible for decreasing the photosynthetic activity in sensitive genotypes? PHOTOSYNTHESIS RESEARCH 2021; 150:195-211. [PMID: 34125427 PMCID: PMC8556197 DOI: 10.1007/s11120-021-00853-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/28/2021] [Indexed: 05/16/2023]
Abstract
Effects of salinity caused by 150 mM NaCl on primary photochemical reactions and some physiological and biochemical parameters (K+/Na+ ratio, soluble sugars, proline, MDA) have been studied in five Triticum aestivum L. genotypes with contrasting salt tolerance. It was found that 150 mM NaCl significantly decreased the photosynthetic efficiency of two sensitive genotypes. The K+/Na+ ratio decreased in all genotypes exposed to salinity stress when compared with the control. Salinity stress also caused lipid peroxidation and accumulation of soluble sugars and proline. The amounts of soluble sugars and proline were higher in tolerant genotypes than sensitive ones, and lipid peroxidation was higher in sensitive genotypes. The noninvasive measurements of photosynthesis-related parameters indicated the genotype-dependent effects of salinity stress on the photosynthetic apparatus. The significant decrease of chlorophyll content (SPAD values) or adverse effects on photosynthetic functions at the PSII level (measured by the chlorophyll fluorescence parameters) were observed in the two sensitive genotypes only. Although the information obtained by different fast noninvasive techniques were consistent, the correlation analyses identified the highest correlation of the noninvasive records with MDA, K+/Na+ ratio, and free proline content. The lower correlation levels were found for chlorophyll content (SPAD) and Fv/Fm values derived from chlorophyll fluorescence. Performance index (PIabs) derived from fast fluorescence kinetics, and F735/F685 ratio correlated well with MDA and Na+ content. The most promising were the results of linear electron flow measured by MultispeQ sensor, in which we found a highly significant correlation with all parameters assessed. Moreover, the noninvasive simultaneous measurements of chlorophyll fluorescence and electrochromic band shift using this sensor indicated the apparent proton leakage at the thylakoid membranes resulting in a high proton conductivity (gH+), present in sensitive genotypes only. The possible consequences for the photosynthetic functions and the photoprotection are discussed.
Collapse
Affiliation(s)
- Ulkar Ibrahimova
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku, AZ, 1073, Azerbaijan
- Research Institute of Crop Husbandry, Ministry of Agriculture of the Azerbaijan Republic, Baku, Azerbaijan
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Kristina Gasparovic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznan, Poland.
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7500 AE, Enschede, The Netherlands.
| | - Suleyman I Allakhverdiev
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku, AZ, 1073, Azerbaijan
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow, 142290, Russia
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, People's Republic of China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia.
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic.
| |
Collapse
|
171
|
Fuertes-Perez S, Vogel RF, Hilgarth M. Comparative genomics of Photobacterium species from terrestrial and marine habitats. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100087. [PMID: 34950912 PMCID: PMC8671102 DOI: 10.1016/j.crmicr.2021.100087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/26/2021] [Indexed: 11/28/2022] Open
Abstract
Photobacterium (P.) is a genus widely studied in regards to its association with and ubiquitous presence in marine environments. However, certain species (P. phosphoreum, P. carnosum, P. iliopiscarium) have been recently described to colonize and spoil raw meats without a marine link. We have studied 27 strains from meat as well as 26 strains from marine environments in order to probe for intraspecies marine/terrestrial subpopulations and identify distinct genomic features acquired by environmental adaptation. We have conducted phylogenetic analysis (MLSA, ANI, fur, codon usage), search of plasmids (plasmidSPADES), phages (PHASTER), CRISPR-cas operons (CRISPR-finder) and secondary metabolites gene clusters (antiSMASH, BAGEL), in addition to a targeted gene search for specific pathways (e.g. TCA cycle, pentose phosphate, respiratory chain) and elements relevant for growth, adaptation and competition (substrate utilization, motility, bioluminescence, sodium and iron transport). P. carnosum appears as a conserved single clade, with one isolate from MAP fish clustering apart that doesn't, however, show distinct features that could indicate different adaptation. The species harbors genes for a wide carbon source utilization (glycogen/starch, maltose, pullulan, fucose) for colonization of diverse niches in its genome. P. phosphoreum is represented by two different clades on the phylogenetic analyses not correlating to their origin or distribution of other features analyzed that can be divided into two novel subspecies based on genome-wide values. A more diverse antimicrobial activity (sactipeptides, microcins), production of secondary metabolites (siderophores and arylpolyenes), stress response and adaptation (bioluminescence, sodium transporters, catalase, high affinity for oxygen cytochrome cbb3 oxidase, DMSO reductase and proton translocating NADH dehydrogenase) is predicted compared to the other species. P. iliopiscarium was divided into two clades based on source of isolation correlating with phylogeny and distribution of several traits. The species shows traits common to the other two species, similar carbon utilization/transport gene conservation as P. carnosum for the meat-isolated strains, and predicted utilization of marine-common DMSO and flagellar cluster for the sea-isolated strains. Results additionally suggest that photobacteria are highly prone to horizontal acquisition/loss of genetic material and genetic transduction, and that it might be a strategy for increasing the frequency of strain- or species-specific features that offers a growth/competition advantage.
Collapse
Affiliation(s)
| | - Rudi F. Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Germany
| | - Maik Hilgarth
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Germany
| |
Collapse
|
172
|
Zubiaurre-Elorza L, Cerdán S, Uribe C, Pérez-Laso C, Marcos A, Rodríguez del Cerro MC, Fernandez R, Pásaro E, Guillamon A. The Effects of Testosterone on the Brain of Transgender Men. ANDROGENS: CLINICAL RESEARCH AND THERAPEUTICS 2021; 2:252-260. [PMID: 35024694 PMCID: PMC8744429 DOI: 10.1089/andro.2021.0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 01/28/2023]
Abstract
Transgender men (TM) experience an incongruence between the female sex assigned when they were born and their self-perceived male identity. Some TM seek for a gender affirming hormone treatment (GAHT) to induce a somatic transition from female to male through continuous administration of testosterone. GAHT seems to be relatively safe. However, testosterone produces structural changes in the brain as detected by quantitative magnetic resonance imaging. Mainly, it induces an increase in cortical volume and thickness and subcortical structural volume probably due to the anabolic effects. Animal models, specifically developed to test the anabolic hypothesis, suggest that testosterone and estradiol, its aromatized metabolite, participate in the control of astrocyte water trafficking, thereby controlling brain volume.
Collapse
Affiliation(s)
- Leire Zubiaurre-Elorza
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | - Sebastian Cerdán
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carme Uribe
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Carmen Pérez-Laso
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Alberto Marcos
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | | | - Rosa Fernandez
- Departamento de Psicología, Facultade de Ciencias da Educación, Universidade da Coruña, A Coruña, Spain
| | - Eduardo Pásaro
- Departamento de Psicología, Facultade de Ciencias da Educación, Universidade da Coruña, A Coruña, Spain
| | - Antonio Guillamon
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia, Madrid, Spain
| |
Collapse
|
173
|
Hakhamaneshi MS, Abdolahi A, Vahabzadeh Z, Abdi M, Andalibi P. Toll-Like Receptor 4: A Macrophage Cell Surface Receptor Is Activated By Trimethylamine-N-Oxide. CELL JOURNAL 2021; 23:516-522. [PMID: 34837678 PMCID: PMC8588815 DOI: 10.22074/cellj.2021.7849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/03/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Trimethylamine-N-Oxide (TMAO) is considered as a risk factor for atherosclerosis which further leads to inflammation during atherosclerosis. The exact mechanism(s) by which TMAO induces the inflammatory reactions remains to be determined. TMAO can cause the endoplasmic reticulum (ER) stress that triggers activation of Toll-Like Receptors (TLRs). In macrophages, this process stimulates the production of proinflammatory cytokines. This study designed to evaluate the expression level of TLR4 in TMAO-treated macrophages. MATERIALS AND METHODS In this experimental study, different concentrations of TMAO (37.5, 75, 150, and 300 μM) were exposed to murine macrophage (J774A.1 cell line) for 8, 18, 24, and 48 hours. The cells were also treated with 2.5 mM of 4-phenyl butyric acid as well as 2μg/ml of tunicamycin respectively as negative and positive controls for inducing ER-stress. We measured the viability of treated cells by the MTT test. Besides, the expression levels of TLR4 gene and protein were evaluated using western blotting and reverse transcription- quantitative polymerase chain reaction (RT-qPCR) analysis. One-Way ANOVA was used for statistical analysis. RESULTS No cell death was observed in treated cells. The cells treated with 150 and 300 μM doses of TMAO for 24 hours showed a significant elevation in the protein and/or mRNA levels of TLR4 when compared to normal control or tunicamycin-treated cells. CONCLUSION Our results may in part elucidate the mechanism by which TMAO induces the macrophage inflammatory reactions in response to the induction of ER stress, similar to what happens during atherosclerosis. It also provides documentation to support the direct contribution of TLR4 in TMAO-induced inflammation.
Collapse
Affiliation(s)
| | - Alina Abdolahi
- Department of Molecular Medicine and Genetics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zakaria Vahabzadeh
- Department of Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran. .,Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Abdi
- Cellular and Molecular Research Centre, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Pedram Andalibi
- Department of Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
174
|
Yang Z, Bai C, Wang P, Fu W, Wang L, Song Z, Xi X, Wu H, Zhang G, Wu J. Sandbur Drought Tolerance Reflects Phenotypic Plasticity Based on the Accumulation of Sugars, Lipids, and Flavonoid Intermediates and the Scavenging of Reactive Oxygen Species in the Root. Int J Mol Sci 2021; 22:ijms222312615. [PMID: 34884421 PMCID: PMC8657935 DOI: 10.3390/ijms222312615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
The perennial grass Cenchrus spinifex (common sandbur) is an invasive species that grows in arid and semi-arid regions due to its remarkable phenotypic plasticity, which confers the ability to withstand drought and other forms of abiotic stress. Exploring the molecular mechanisms of drought tolerance in common sandbur could lead to the development of new strategies for the protection of natural and agricultural environments from this weed. To determine the molecular basis of drought tolerance in C. spinifex, we used isobaric tags for relative and absolute quantitation (iTRAQ) to identify proteins differing in abundance between roots growing in normal soil and roots subjected to moderate or severe drought stress. The analysis of these proteins revealed that drought tolerance in C. spinifex primarily reflects the modulation of core physiological activities such as protein synthesis, transport and energy utilization as well as the accumulation of flavonoid intermediates and the scavenging of reactive oxygen species. Accordingly, plants subjected to drought stress accumulated sucrose, fatty acids, and ascorbate, shifted their redox potential (as determined by the NADH/NAD ratio), accumulated flavonoid intermediates at the expense of anthocyanins and lignin, and produced less actin, indicating fundamental reorganization of the cytoskeleton. Our results show that C. spinifex responds to drought stress by coordinating multiple metabolic pathways along with other adaptations. It is likely that the underlying metabolic plasticity of this species plays a key role in its invasive success, particularly in semi-arid and arid environments.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Y.); (C.B.); (W.F.); (Z.S.)
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (L.W.)
| | - Chao Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Y.); (C.B.); (W.F.); (Z.S.)
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing 100044, China
| | - Peng Wang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (L.W.)
- The State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Weidong Fu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Y.); (C.B.); (W.F.); (Z.S.)
| | - Le Wang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (L.W.)
| | - Zhen Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Y.); (C.B.); (W.F.); (Z.S.)
| | - Xin Xi
- Beijing Plant Protection Station, Beijing 100029, China;
| | - Hanwen Wu
- E.H. Graham Centre for Agricultural Innovation (A Collaborative Alliance between Charles Sturt University and the NSW Department of Primary Industries), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650, Australia;
| | - Guoliang Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Y.); (C.B.); (W.F.); (Z.S.)
- Correspondence: (G.Z.); (J.W.); Tel.: +86-82109570 (G.Z.); +86-64807375 (J.W.)
| | - Jiahe Wu
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (L.W.)
- Correspondence: (G.Z.); (J.W.); Tel.: +86-82109570 (G.Z.); +86-64807375 (J.W.)
| |
Collapse
|
175
|
Paul S, Paul S. Molecular insights into the urea-choline- O-sulfate interactions in aqueous solution. Phys Chem Chem Phys 2021; 23:25317-25334. [PMID: 34747954 DOI: 10.1039/d1cp02821a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Urea and choline-O-sulfate (COS) are both osmolytes, but have opposite effects on protein structure. Urea has been well-known for years to destabilize protein structure. Though COS has been revealed as an osmoprotective molecule against urea induced denaturation of proteins, the mechanism of this compensation is still unexplored. This study focuses on a theoretical investigation of the interdependent behavior of urea and COS in a mixture, to explore how urea becomes a weaker denaturing agent in the presence of COS. In this study, we have considered every possible interaction among the solute (urea and COS) and solvent (water) both at room temperature and high temperature, employing two different force field parameters i.e., CHARMM General Force Field parameters (CGenFF) and General AMBER Force Field (GAFF) parameters through classical molecular dynamics simulation studies. Different techniques have been used to analyze the average interactions between COS and urea as well as their solvation properties, which show that in the presence of COS, urea becomes a less effective denaturant than when alone. The water-water interaction shows that the mixed osmolyte solution of urea and COS strengthens the water hydrogen bonding network. The enhanced solvation of urea and COS in the urea-COS mixture and their mutual interactions, results in the exclusion of free urea as well as COS from the solution. This synergistic behavior of urea and COS could be the major reason behind COS counteracting urea's denaturation of proteins.
Collapse
Affiliation(s)
- Srijita Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
176
|
Mikucki EE, Lockwood BL. Local thermal environment and warming influence supercooling and drive widespread shifts in the metabolome of diapausing Pieris rapae butterflies. J Exp Biol 2021; 224:272603. [PMID: 34694403 DOI: 10.1242/jeb.243118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/21/2021] [Indexed: 11/20/2022]
Abstract
Global climate change has the potential to negatively impact biological systems as organisms are exposed to novel temperature regimes. Increases in annual mean temperature have been accompanied by disproportionate rates of change in temperature across seasons, and winter is the season warming most rapidly. Yet, we know relatively little about how warming will alter the physiology of overwintering organisms. Here, we simulated future warming conditions by comparing diapausing Pieris rapae butterfly pupae collected from disparate thermal environments and by exposing P. rapae pupae to acute and chronic increases in temperature. First, we compared internal freezing temperatures (supercooling points) of diapausing pupae that were developed in common-garden conditions but whose parents were collected from northern Vermont, USA, or North Carolina, USA. Matching the warmer winter climate of North Carolina, North Carolina pupae had significantly higher supercooling points than Vermont pupae. Next, we measured the effects of acute and chronic warming exposure in Vermont pupae and found that warming induced higher supercooling points. We further characterized the effects of chronic warming by profiling the metabolomes of Vermont pupae via untargeted LC-MS metabolomics. Warming caused significant changes in abundance of hundreds of metabolites across the metabolome. Notably, there were warming-induced shifts in key biochemical pathways, such as pyruvate metabolism, fructose and mannose metabolism, and β-alanine metabolism, suggesting shifts in energy metabolism and cryoprotection. These results suggest that warming affects various aspects of overwintering physiology in P. rapae and may be detrimental depending on the frequency and variation of winter warming events. Further research is needed to ascertain the extent to which the effects of warming are felt among a broader set of populations of P. rapae, and among other species, in order to better predict how insects may respond to changes in winter thermal environments.
Collapse
Affiliation(s)
- Emily E Mikucki
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Brent L Lockwood
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
177
|
Liang P, Saqib HSA, Lin Z, Zheng R, Qiu Y, Xie Y, Ma D, Shen Y. RNA-seq analyses of Marine Medaka (Oryzias melastigma) reveals salinity responsive transcriptomes in the gills and livers. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105970. [PMID: 34562875 DOI: 10.1016/j.aquatox.2021.105970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Increasing salinity levels in marine and estuarine ecosystems greatly influence developmental, physiological and molecular activities of inhabiting fauna. Marine medaka (Oryzias melastigma), a euryhaline research model, has extraordinary abilities to survive in a wide range of aquatic salinity. To elucidate how marine medaka copes with salinity differences, the responses of Oryzias melastigma after being transferred to different salt concentrations [0 practical salinity units (psu), 15 psu, 30 psu (control), 45 psu] were studied at developmental, histochemical and transcriptome levels in the gill and liver tissues. A greater number of gills differentially expressed genes (DEG) under 0 psu (609) than 15 psu (157) and 45 psu (312), indicating transcriptomic adjustments in gills were more sensitive to the extreme hypotonic environment. A greater number of livers DEGs were observed in 45 psu (1,664) than 0 psu (87) and L15 psu (512), suggesting that liver was more susceptible to hypertonic environment. Further functional analyses of DEGs showed that gills have a more immediate response, mainly in adjusting ion balance, immune and signal transduction. In contrast, DEGs in livers were involved in protein synthesis and processing. We also identified common DEGs in both gill and liver and found they were mostly involved in osmotic regulation of amino sugar and nucleotide sugar metabolism and steroid biosynthesis. Additionally, salinity stresses showed no significant effects on most developmental and histochemical parameters except increased heartbeat with increasing salinity and decreased glycogen after transferred from stable conditions (30 psu) to other salinity environments. These findings suggested that salinity-stress induced changes in gene expressions could reduce the effects on developmental and histochemical parameters. Overall, this study provides a useful resource for understanding the molecular mechanisms of fish responses to salinity stresses.
Collapse
Affiliation(s)
- Pingping Liang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Hafiz Sohaib Ahmed Saqib
- Guangdong Provincial Key Laboratory of Marine Biology, College of Science, Shantou University, Shantou 515063, China
| | - Zeyang Lin
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Ruping Zheng
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yuting Qiu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yuting Xie
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Dongna Ma
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yingjia Shen
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
178
|
Dong YW, Liao ML, Han GD, Somero GN. An integrated, multi-level analysis of thermal effects on intertidal molluscs for understanding species distribution patterns. Biol Rev Camb Philos Soc 2021; 97:554-581. [PMID: 34713568 DOI: 10.1111/brv.12811] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
Elucidating the physiological mechanisms that underlie thermal stress and discovering how species differ in capacities for phenotypic acclimatization and evolutionary adaptation to this stress is critical for understanding current latitudinal and vertical distribution patterns of species and for predicting their future state in a warming world. Such mechanistic analyses require careful choice of study systems (species and temperature-sensitive traits) and design of laboratory experiments that reflect the complexities of in situ conditions. Here, we critically review a wide range of studies of intertidal molluscs that provide mechanistic accounts of thermal effects across all levels of biological organization - behavioural, organismal, organ level, cellular, molecular, and genomic - and show how temperature-sensitive traits govern distribution patterns and capacities for coping with thermal stress. Comparisons of congeners from different thermal habitats are especially effective means for identifying adaptive variation. We employ these mechanistic analyses to illustrate how species differ in the severity of threats posed by rising temperature. Counterintuitively, we show that some of the most heat-tolerant species may be most threatened by increases in temperatures because of their small thermal safety margins and minimal abilities to acclimatize to higher temperatures. We discuss recent molecular biological and genomic studies that provide critical foundations for understanding the types of evolutionary changes in protein structure, RNA secondary structure, genome content, and gene expression capacities that underlie adaptation to temperature. Duplication of stress-related genes, as found in heat-tolerant molluscs, may provide enhanced capacity for coping with higher temperatures. We propose that the anatomical, behavioural, physiological, and genomic diversity found among intertidal molluscs, which commonly are of critical importance and high abundance in these ecosystems, makes this group of animals a highly appropriate study system for addressing questions about the mechanistic determinants of current and future distribution patterns of intertidal organisms.
Collapse
Affiliation(s)
- Yun-Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Ming-Ling Liao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Guo-Dong Han
- College of Life Science, Yantai University, Yantai, 264005, China
| | - George N Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California, 93950, U.S.A
| |
Collapse
|
179
|
Javanshad R, Venter AR. Effects of amino acid additives on protein solubility - insights from desorption and direct electrospray ionization mass spectrometry. Analyst 2021; 146:6592-6604. [PMID: 34586125 DOI: 10.1039/d1an01392k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naturally occurring amino acids have been broadly used as additives to improve protein solubility and inhibit aggregation. In this study, improvements in protein signal intensity obtained with the addition of L-serine, and structural analogs, to the desorption electrospray ionization mass spectrometry (DESI-MS) spray solvent were measured. The results were interpreted at the hand of proposed mechanisms of solution additive effects on protein solubility and dissolution. DESI-MS allows for these processes to be studied efficiently using dilute concentrations of additives and small amounts of proteins, advantages that represent real benefits compared to classical methods of studying protein stability and aggregation. We show that serine significantly increases the protein signal in DESI-MS when native proteins are undergoing unfolding during the dissolution process with an acidic solvent system (p-value = 0.0001), or with ammonium bicarbonate under denaturing conditions for proteins with high isoelectric points (p-value = 0.001). We establish that a similar increase in the protein signal cannot be observed with direct ESI-MS, and the observed increase is therefore not related to ionization processes or changes in the physical properties of the bulk solution. The importance of the presence of serine during protein conformational changes while undergoing dissolution is demonstrated through comparisons between the analyses of proteins deposited in native or unfolded states and by using native state-preserving and denaturing desorption solvents. We hypothesize that direct, non-covalent interactions involving all three functional groups of serine are involved in the beneficial effect on protein solubility and dissolution. Supporting evidence for a direct interaction include a reduction in efficacy with D-serine or the racemic mixture, indicating a non-bulk-solution physical property effect; insensitivity to the sample surface type or relative placement of serine addition; and a reduction in efficacy with any modifications to the serine structure, most notably the carboxyl functional group. An alternative hypothesis, also supported by some of our observations, could involve the role of serine clusters in the mechanism of solubility enhancement. Our study demonstrates the capability of DESI-MS together with complementary ESI-MS experiments as a novel tool for understanding protein solubility and dissolution and investigating the mechanism of action for solubility-enhancing additives.
Collapse
Affiliation(s)
- Roshan Javanshad
- Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008-5413, USA.
| | - Andre R Venter
- Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008-5413, USA.
| |
Collapse
|
180
|
Boosting the kinetic efficiency of formate dehydrogenase by combining the effects of temperature, high pressure and co-solvent mixtures. Colloids Surf B Biointerfaces 2021; 208:112127. [PMID: 34626897 DOI: 10.1016/j.colsurfb.2021.112127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
The application of co-solvents and high pressure has been shown to be an efficient means to modify the kinetics of enzyme-catalyzed reactions without compromising enzyme stability, which is often limited by temperature modulation. In this work, the high-pressure stopped-flow methodology was applied in conjunction with fast UV/Vis detection to investigate kinetic parameters of formate dehydrogenase reaction (FDH), which is used in biotechnology for cofactor recycling systems. Complementary FTIR spectroscopic and differential scanning fluorimetric studies were performed to reveal pressure and temperature effects on the structure and stability of the FDH. In neat buffer solution, the kinetic efficiency increases by one order of magnitude by increasing the temperature from 25° to 45 °C and the pressure from ambient up to the kbar range. The addition of particular co-solvents further doubled the kinetic efficiency of the reaction, in particular the compatible osmolyte trimethylamine-N-oxide and its mixtures with the macromolecular crowding agent dextran. The thermodynamic model PC-SAFT was successfully applied within a simplified activity-based Michaelis-Menten framework to predict the effects of co-solvents on the kinetic efficiency by accounting for interactions involving substrate, co-solvent, water, and FDH. Especially mixtures of the co-solvents at high concentrations were beneficial for the kinetic efficiency and for the unfolding temperature.
Collapse
|
181
|
Jas GS, Childs EW, Middaugh CR, Kuczera K. Probing the Internal Dynamics and Shape of Simple Peptides in Urea, Guanidinium Hydrochloride, and Proline Solutions with Time-Resolved Fluorescence Anisotropy and Atomistic Cosolvent Simulations. J Phys Chem B 2021; 125:10972-10984. [PMID: 34559968 DOI: 10.1021/acs.jpcb.1c06838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Picosecond time-resolved fluorescence anisotropy was used to measure the effect of denaturants and osmolytes on the reorientation dynamics of the simplest dipeptide. The solvent denaturants guanidinium hydrochloride (gdm), urea, and the osmolyte proline were used at several concentrations. Analysis of the concentration dependence of denaturants at a fixed temperature showed faster and slower reorientation time in two different denaturants at a nearly identical solvent viscosity (η). The reorientation time τ significantly deviates from Kramers' theory (τ ∝ η1) in the high friction limit for guanidinium and urea with r ≈ 0.4 and r ≈ 0.6 at pH 7.2, respectively. In proline, τ is nearly proportional to η. Atomistic molecular dynamics simulations of the dipeptide in identical cosolvents showed excellent agreement with the measured rotational orientation time. The dipeptide dihedral (ϕ, ψ) isomerization times in water and 6 M urea are almost identical and significantly slower in guanidinium. If a faster and slower reorientation time can be associated with the compact and expanded shapes, the fractional viscosity dependence for guanidinium and urea may result from the fact that internal dynamics of peptides in these cosolvents involve higher and lower internal friction within the dynamic elements.
Collapse
Affiliation(s)
- Gouri S Jas
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Ed W Childs
- Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia 30310, United States
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Krzysztof Kuczera
- Department of Chemistry and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
182
|
Roy S, Patra A, Palit DK, Mondal JA. Interaction of Zwitterionic Osmolyte Trimethylamine N-oxide (TMAO) with Molecular Hydrophobes: An Interplay of Hydrophobic and Electrostatic Interactions. J Phys Chem B 2021; 125:10939-10946. [PMID: 34570979 DOI: 10.1021/acs.jpcb.1c05694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interaction of trimethylamine N-oxide (TMAO) with charged/uncharged moieties of proteins and lipids is an important elementary step toward the multifaceted biofunctions of TMAO. Using minimum area Raman difference spectroscopy (MA-RDS) of aqueous TMAO (1.0 M) in the presence of deuterated molecular hydrophobes (e.g., deuterated tetramethylammonium cation (d-TMA+) and tert-butylalcohol (d-TBA)), we show that TMAO exhibits two distinct motifs of interaction with the cationic (d-TMA+) and uncharged (d-TBA) hydrophobes. Specifically, the trimethylammonium moiety of TMAO undergoes van der Waals attraction with the tert-butyl group of d-TBA, which is governed by their mutual hydrophobic interaction with water. This makes their methyl groups less exposed to water. In contrast, for the cationic hydrophobe (d-TMA+), TMAO interacts electrostatically via its negatively charged-oxygen, which in turn orients the TMAO-methyls away from the hydrophobe (d-TMA+), keeping them exposed to water.
Collapse
Affiliation(s)
- Subhadip Roy
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Trombay, Mumbai 400085, India
| | - Animesh Patra
- School of Chemistry, Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098, India
| | - Dipak K Palit
- School of Chemistry, Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098, India
| | - Jahur Alam Mondal
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Trombay, Mumbai 400085, India
| |
Collapse
|
183
|
Mojtabavi S, Jafari M, Samadi N, Mehrnejad F, Ali Faramarzi M. Insights into the Molecular-Level details of betaine interactions with Laccase under various thermal conditions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
184
|
Anaraki MT, Lysak DH, Downey K, Kock FVC, You X, Majumdar RD, Barison A, Lião LM, Ferreira AG, Decker V, Goerling B, Spraul M, Godejohann M, Helm PA, Kleywegt S, Jobst K, Soong R, Simpson MJ, Simpson AJ. NMR spectroscopy of wastewater: A review, case study, and future potential. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:121-180. [PMID: 34852923 DOI: 10.1016/j.pnmrs.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
NMR spectroscopy is arguably the most powerful tool for the study of molecular structures and interactions, and is increasingly being applied to environmental research, such as the study of wastewater. With over 97% of the planet's water being saltwater, and two thirds of freshwater being frozen in the ice caps and glaciers, there is a significant need to maintain and reuse the remaining 1%, which is a precious resource, critical to the sustainability of most life on Earth. Sanitation and reutilization of wastewater is an important method of water conservation, especially in arid regions, making the understanding of wastewater itself, and of its treatment processes, a highly relevant area of environmental research. Here, the benefits, challenges and subtleties of using NMR spectroscopy for the analysis of wastewater are considered. First, the techniques available to overcome the specific challenges arising from the nature of wastewater (which is a complex and dilute matrix), including an examination of sample preparation and NMR techniques (such as solvent suppression), in both the solid and solution states, are discussed. Then, the arsenal of available NMR techniques for both structure elucidation (e.g., heteronuclear, multidimensional NMR, homonuclear scalar coupling-based experiments) and the study of intermolecular interactions (e.g., diffusion, nuclear Overhauser and saturation transfer-based techniques) in wastewater are examined. Examples of wastewater NMR studies from the literature are reviewed and potential areas for future research are identified. Organized by nucleus, this review includes the common heteronuclei (13C, 15N, 19F, 31P, 29Si) as well as other environmentally relevant nuclei and metals such as 27Al, 51V, 207Pb and 113Cd, among others. Further, the potential of additional NMR methods such as comprehensive multiphase NMR, NMR microscopy and hyphenated techniques (for example, LC-SPE-NMR-MS) for advancing the current understanding of wastewater are discussed. In addition, a case study that combines natural abundance (i.e. non-concentrated), targeted and non-targeted NMR to characterize wastewater, along with in vivo based NMR to understand its toxicity, is included. The study demonstrates that, when applied comprehensively, NMR can provide unique insights into not just the structure, but also potential impacts, of wastewater and wastewater treatment processes. Finally, low-field NMR, which holds considerable future potential for on-site wastewater monitoring, is briefly discussed. In summary, NMR spectroscopy is one of the most versatile tools in modern science, with abilities to study all phases (gases, liquids, gels and solids), chemical structures, interactions, interfaces, toxicity and much more. The authors hope this review will inspire more scientists to embrace NMR, given its huge potential for both wastewater analysis in particular and environmental research in general.
Collapse
Affiliation(s)
- Maryam Tabatabaei Anaraki
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Daniel H Lysak
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Katelyn Downey
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Flávio Vinicius Crizóstomo Kock
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Department of Chemistry, Federal University of São Carlos-SP (UFSCar), São Carlos, SP, Brazil
| | - Xiang You
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Rudraksha D Majumdar
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Synex Medical, 2 Bloor Street E, Suite 310, Toronto, ON M4W 1A8, Canada
| | - Andersson Barison
- NMR Center, Federal University of Paraná, CP 19081, 81530-900 Curitiba, PR, Brazil
| | - Luciano Morais Lião
- NMR Center, Institute of Chemistry, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | | | - Venita Decker
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Manfred Spraul
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Paul A Helm
- Environmental Monitoring & Reporting Branch, Ontario Ministry of the Environment, Toronto M9P 3V6, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON M4V 1M2, Canada
| | - Karl Jobst
- Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Myrna J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Andre J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada.
| |
Collapse
|
185
|
Maiti A, Daschakraborty S. How Do Urea and Trimethylamine N-Oxide Influence the Dehydration-Induced Phase Transition of a Lipid Membrane? J Phys Chem B 2021; 125:10149-10165. [PMID: 34486370 DOI: 10.1021/acs.jpcb.1c05852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Living organisms are often exposed to extreme dehydration, which is detrimental to the structure and function of the cell membrane. The lipid membrane undergoes fluid-to-gel phase transition due to dehydration and thus loses fluidity and functionality. To protect the fluid phase of the bilayer these organisms adopt several strategies. Enhanced production of small polar organic solutes (also called osmolytes) is one such strategy. Urea and trimethylamine N-oxide (TMAO) are two osmolytes found in different organisms combating osmotic stress. Previous experiments have found that both these osmolytes have strong effects on lipid membrane under different hydration conditions. Urea prevents the dehydration-induced phase transition of the lipid membrane by directly interacting with the lipids, while TMAO does not inhibit the phase transition. To provide atomistic insights, we have carried out all-atom molecular dynamics (MD) simulation of a lipid membrane under varying hydration levels and studied the effect of these osmolytes on different structural and dynamic properties of the membrane. This study suggests that urea significantly inhibits the dehydration-induced fluid-to-gel phase transition by strongly interacting with the lipid membrane via hydrogen bonds, which balances the reduced lipid hydration due to the decreasing water content. In contrast, TMAO is excluded from the membrane surface due to unfavorable interaction with the lipids. This induces further dehydration of the lipids which reinforces the fluid-to-gel phase transition. We have also studied the counteractive role of TMAO on the effect of urea on lipid membrane when both the osmolytes are present. TMAO draws some urea molecules out of the membrane and thereby reduces the effect of urea on the lipid membrane at lower hydration levels. This is similar to the counteraction of urea's deleterious effects on protein by TMAO. All these observations are consistent with the experimental results and thus provide deep molecular insights into the role of these osmolytes in protecting the fluid phase of the membrane, the key survival strategy against osmotic-stress-induced dehydration.
Collapse
Affiliation(s)
- Archita Maiti
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India
| | | |
Collapse
|
186
|
The time course of molecular acclimation to seawater in a euryhaline fish. Sci Rep 2021; 11:18127. [PMID: 34518569 PMCID: PMC8438076 DOI: 10.1038/s41598-021-97295-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/17/2021] [Indexed: 11/25/2022] Open
Abstract
The Arabian pupfish, Aphanius dispar, is a euryhaline fish inhabiting both inland nearly-freshwater desert ponds and highly saline Red Sea coastal lagoons of the Arabian Peninsula. Desert ponds and coastal lagoons, located respectively upstream and at the mouths of dry riverbeds (“wadies”), have been found to potentially become connected during periods of intense rainfall, which could allow the fish to migrate between these different habitats. Flash floods would therefore flush Arabian pupfish out to sea, requiring a rapid acclimation to a greater than 40 ppt change in salinity. To investigate the molecular pathways of salinity acclimation during such events, a Red Sea coastal lagoon and a desert pond population were sampled, with the latter exposed to a rapid increase in water salinity. Changes in branchial gene expression were investigated via genome-wide transcriptome measurements over time from 6 h to 21 days. The two natural populations displayed basal differences in genes related to ion transport, osmoregulation and immune system functions. These mechanisms were also differentially regulated in seawater transferred fish, revealing their crucial role in long-term adaptation. Other processes were only transiently activated shortly after the salinity exposure, including cellular stress response mechanisms, such as molecular chaperone synthesis and apoptosis. Tissue remodelling processes were also identified as transient, but took place later in the timeline, suggesting their importance to long-term acclimation as they likely equip the fish with lasting adaptations to their new environment. The alterations in branchial functional pathways displayed by Arabian pupfish in response to salinity increases are diverse. These reveal a large toolkit of molecular processes important for adaptation to hyperosmolarity that allow for successful colonization to a wide variety of different habitats.
Collapse
|
187
|
Sundar S, Sandilya AA, Priya MH. Unraveling the Influence of Osmolytes on Water Hydrogen-Bond Network: From Local Structure to Graph Theory Analysis. J Chem Inf Model 2021; 61:3927-3944. [PMID: 34379415 DOI: 10.1021/acs.jcim.1c00527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water structure in aqueous osmolyte solutions, deduced from the slight alteration in the water-water radial distribution function, the decrease in water-water hydrogen bonding, and tetrahedral ordering based only on the orientation of nearest water molecules derived from the molecular dynamics simulations, appears to have been perturbed. A careful analysis, however, reveals that the hydrogen bonding and the tetrahedral ordering around a water molecule in binary solutions remain intact as in neat water when the contribution of osmolyte-water interactions is appropriately incorporated. Furthermore, the distribution of the water binding energies and the water excess chemical potential of solvation in solutions are also pretty much the same as in neat water. Osmolytes are, therefore, well integrated into the hydrogen-bond network of water. Indeed, osmolytes tend to preferentially hydrogen bond with water molecules and their interaction energies are strongly correlated to their hydrogen-bonding capability. The graph network analysis, further, illustrates that osmolytes act as hubs in the percolated hydrogen-bond network of solutions. The degree of hydrogen bonding of osmolytes predominantly determines all of the network properties. Osmolytes like ethanol that form fewer hydrogen bonds than a water molecule disrupt the water hydrogen-bond network, while other osmolytes that form more hydrogen bonds effectively increase the connectivity among water molecules. Our observation of minimal variation in the local structure and the vitality of osmolyte-water hydrogen bonds on the solution network properties clearly imply that the direct interaction between protein and osmolytes is solely responsible for the protein stability. Further, the relevance of hydrogen bonds on solution properties suggests that the hydrogen-bonding interaction among protein, water, and osmolyte could be the key determinant of the protein conformation in solutions.
Collapse
Affiliation(s)
- Smrithi Sundar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Avilasha A Sandilya
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - M Hamsa Priya
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
188
|
Ghosh UK, Islam MN, Siddiqui MN, Khan MAR. Understanding the roles of osmolytes for acclimatizing plants to changing environment: a review of potential mechanism. PLANT SIGNALING & BEHAVIOR 2021; 16:1913306. [PMID: 34134596 PMCID: PMC8244753 DOI: 10.1080/15592324.2021.1913306] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 05/30/2023]
Abstract
Abiotic stresses are significant environmental issues that restrict plant growth, productivity, and survival while also posing a threat to global food production and security. Plants produce compatible solutes known as osmolytes to adapt themselves in such changing environment. Osmolytes contribute to homeostasis maintenance, provide the driving gradient for water uptake, maintain cell turgor by osmotic adjustment, and redox metabolism to remove excess level of reactive oxygen species (ROS) and reestablish the cellular redox balance as well as protect cellular machinery from osmotic stress and oxidative damage. Perceiving the mechanisms how plants interpret environmental signals and transmit them to cellular machinery to activate adaptive responses is important for crop improvement programs to get stress-tolerant varieties. A large number of studies conducted in the last few decades have shown that osmolytes accumulate in plants and have strong associations with abiotic stress tolerance. Production of abundant osmolytes is needed for tolerance in many plant species. In addition, transgenic plants overexpressing genes for different osmolytes showed enhanced tolerance to various abiotic stresses. Many important aspects of their mechanisms of action are yet to be largely identified, especially regarding the relevance and relative contribution of specific osmolytes to the stress tolerance of a given species. Therefore, more efforts and resources should be invested in the study of the abiotic stress responses of plants in their natural habitats. The present review focuses on the possible roles and mechanisms of osmolytes and their association toward abiotic stress tolerance in plants. This review would help the readers in learning more about osmolytes and how they behave in changing environments as well as getting an idea of how this knowledge could be applied to develop stress tolerance in plants.
Collapse
Affiliation(s)
- Uttam Kumar Ghosh
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md. Nahidul Islam
- Department of Agro-Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md. Nurealam Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
- Institute of Crop Science and Resource Conservation (Inres)-plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Md. Arifur Rahman Khan
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
189
|
Aune K, Lee J, Prakash V, Bhat R, Andreu J, Monasterio O, Perez-Ramirez B, Shearwin K, Arakawa T, Carpenter J, Crowe J, Crowe L, Somero G, Gagnon P, Charles MT. A tribute to Dr. Serge N. Timasheff, our mentor. Biophys Rev 2021; 13:459-484. [PMID: 34471434 PMCID: PMC8355303 DOI: 10.1007/s12551-021-00814-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 10/20/2022] Open
Abstract
Dr. Serge N. Timasheff, our mentor and friend, passed away in 2019. This article is a collection of tributes from his postdoctoral fellows, friends, and daughter, who all have been associated with or influenced by him or his research. Dr. Timasheff is a pioneer of research on thermodynamic linkage between ligand interaction and macromolecular reaction. We all learned a great deal from Dr. Timasheff, not only about science but also about life.
Collapse
Affiliation(s)
- Kirk Aune
- 7647 Cortana Drive, Granger, IN 46530 USA
| | - James Lee
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77059 USA
| | - V. Prakash
- Nutraceuticals and Nutritional Research Center, Ramaiah University of Applied Sciences, Bangalore, India
| | - Rajiv Bhat
- School of Biotechnology, Jawaharalal Nehru University, New Delhi, 110067 India
| | - Jose Andreu
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Octavio Monasterio
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Bernardo Perez-Ramirez
- CMC-Drug Device Integration, DP-Due Diligence, Biologics Drug Product Development & Manufacturing, Sanofi, 1 the Mountain Road, Framingham, MA 01701 USA
| | - Keith Shearwin
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, 5005 Australia
| | - Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Pantera Road, San Diego, CA 92130 USA
| | - John Carpenter
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology, University of Colorado Anshutz Medical Campus, Auroa, CO 80045 USA
| | - John Crowe
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616 USA
| | - Lois Crowe
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616 USA
| | - George Somero
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950 USA
| | - Pete Gagnon
- BIA Separations, Mirce 21, 5270, Ajdovscina, Slovenia
| | | |
Collapse
|
190
|
Lin CH, Yeh PL, Lee TH. Time-course changes in the regulation of ions and amino acids in the hard clam Meretrix lusoria upon lower salinity challenge. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:602-613. [PMID: 34254463 DOI: 10.1002/jez.2503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/27/2021] [Accepted: 06/16/2021] [Indexed: 11/06/2022]
Abstract
In this study, we examined ion and amino acid regulation in the gill and mantle of the hard clam Meretrix lusoria. We found that the osmolality and Na+ and Cl- concentrations of hard clam hemolymph were significantly reduced after transferring clams from the salinity of their natural habitat [20‰ saltwater (SW)] to a lower salinity environment (10‰ SW). Specific activities of Na+ , K+ -ATPase (NKA), which provides the driving force for the secondary ion transport associated with cell osmoregulation in gills and mantles, were unaffected during the acclimation to lower salinity. In contrast, there was a significant decline in the contents of free amino acids (FAAs) in the gills and mantles of hard clams during lower salinity acclimation. Taurine was established to be the dominant FAA, the content of which is considerably higher than that of other FAAs in the hard clam. Following acclimation to the lower salinity environment, mRNA expression of the taurine transporter (TAUT), which plays a pivotal role in regulating intracellular taurine contents, was significantly upregulated in the gill and downregulated in the mantle of hard clams at different time points. However, the relative abundance of TAUT protein in the gill and mantle was significantly increased after transfer from 20‰ SW to 10‰ SW, which may reflect feedback regulation in response to reduced taurine contents in the gill and mantle of hard clams. Collectively, the findings of this study provide important insights on the dynamic processes of ion and amino acid regulation in the peripheral tissues of bivalves.
Collapse
Affiliation(s)
- Chia-Hao Lin
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Po-Ling Yeh
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Tsung-Han Lee
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
191
|
Cozzolino S, Tortorella A, Del Vecchio P, Graziano G. General Counteraction Exerted by Sugars against Denaturants. Life (Basel) 2021; 11:652. [PMID: 34357025 PMCID: PMC8303697 DOI: 10.3390/life11070652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
The conformational stability of globular proteins is strongly influenced by the addition to water of different co-solutes. Some of the latter destabilize the native state, while others stabilize it. It is emerging that stabilizing agents are able to counteract the action of destabilizing agents. We have already provided experimental evidence that this counteraction is a general phenomenon and offered a rationalization. In the present work, we show that four different sugars, namely fructose, glucose, sucrose, and trehalose, counteract the effect of urea, tetramethylurea, sodium perchlorate, guanidinium chloride, and guanidinium thiocyanate despite the chemical and structural differences of those destabilizing agents. The rationalization we provide is as follows: (a) the solvent-excluded volume effect, a purely entropic effect, stabilizes the native state, whose solvent-accessible surface area is smaller than the one of denatured conformations; (b) the magnitude of the solvent-excluded volume effect increases markedly in ternary solutions because the experimental density of such solutions is larger than that of pure water.
Collapse
Affiliation(s)
- Serena Cozzolino
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, 80126 Napoli, Italy; (S.C.); (A.T.); (P.D.V.)
| | - Attila Tortorella
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, 80126 Napoli, Italy; (S.C.); (A.T.); (P.D.V.)
| | - Pompea Del Vecchio
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, 80126 Napoli, Italy; (S.C.); (A.T.); (P.D.V.)
| | - Giuseppe Graziano
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Francesco de Sanctis snc, 82100 Benevento, Italy
| |
Collapse
|
192
|
Li Y, Zhang J, Wang S, Zhang Y, Yang M. The Distribution and Origins of Pyrus hopeiensis-"Wild Plant With Tiny Population" Using Whole Genome Resequencing. FRONTIERS IN PLANT SCIENCE 2021; 12:668796. [PMID: 34220890 PMCID: PMC8250157 DOI: 10.3389/fpls.2021.668796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/28/2021] [Indexed: 06/13/2023]
Abstract
Pyrus hopeiensis is a valuable but endangered wild resource in the genus Pyrus. It has been listed as one of the 120 wild species with tiny population in China. The specie has been little studied. A preliminary study of propagation modes in P. hopeiensis was performed through seed propagation, hybridization, self-crossing trials, bud grafting, branch grafting, and investigations of natural growth. The results showed that the population size of P. hopeiensis was very small, the distribution range was limited, and the habitat was extremely degraded. In the wild population, natural hybridization and root tiller production were the major modes of propagation. Whole genome re-sequencing of the 23 wild and cultivated accessions from Pyrus species collected was performed using an Illumina HiSeq sequencing platform. The sequencing depth range was 26.56x-44.85x and the average sequencing depth was 32x. Phylogenetic tree and principal component analyses (PCA) based on SNPs showed that the wild Pyrus species, such as PWH06, PWH07, PWH09, PWH10, PWH13, and PWH17, were closely related to both P. hopeiensis HB-1 and P. hopeiensis HB-2. Using these results in combination with morphological characteristics, it speculated that P. hopeiensis populations may form a natural hybrid group with frequent gene exchanges between and within groups. A selective elimination analysis on the P. hopeiensis population were performed using Fst and π radio and a total of 381 overlapping genes including SAUR72, IAA20, HSFA2, and RKP genes were obtained. These genes were analyzed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) function enrichment. And four KEGG pathways, including lysine degradation, sphingolipid metabolism, other glycan degradation, and betaine biosynthesis were significantly enriched in the P. hopeiensis population. Our study provided information on genetic variation, evolutionary relationships, and gene enrichment in P. hopeiensis population. These data will help reveal the evolutionary history and origin of P. hopeiensis and provide guidelines for subsequent research on the locations of functional genes.
Collapse
Affiliation(s)
- Yongtan Li
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Jun Zhang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Shijie Wang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Yiwen Zhang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Minsheng Yang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| |
Collapse
|
193
|
Joshi PU, Turpeinen DG, Schroeder M, Jones B, Lyons A, Kriz S, Khaksari M, O'Hagan D, Nikam S, Heldt CL. Osmolyte enhanced aqueous two-phase system for virus purification. Biotechnol Bioeng 2021; 118:3251-3262. [PMID: 34129733 DOI: 10.1002/bit.27849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 01/15/2023]
Abstract
Due to the high variation in viral surface properties, a platform method for virus purification is still lacking. A potential alternative to the high-cost conventional methods is aqueous two-phase systems (ATPSs). However, optimizing virus purification in ATPS requires a large experimental design space, and the optimized systems are generally found to operate at high ATPS component concentrations. The high concentrations capitalize on hydrophobic and electrostatic interactions to obtain high viral particle yields. This study investigated using osmolytes as driving force enhancers to reduce the high concentration of ATPS components while maintaining high yields. The partitioning behavior of porcine parvovirus (PPV), a nonenveloped mammalian virus, and human immunodeficiency virus-like particle (HIV-VLP), a yeast-expressed enveloped VLP, were studied in a polyethylene glycol (PEG) 12 kDa-citrate system. The partitioning of the virus modalities was enhanced by osmoprotectants glycine and betaine, while trimethylamine N-oxide was ineffective for PPV. The increased partitioning to the PEG-rich phase pertained only to viruses, resulting in high virus purification. Recoveries were 100% for infectious PPV and 92% for the HIV-VLP, with high removal of the contaminant proteins and more than 60% DNA removal when glycine was added. The osmolyte-induced ATPS demonstrated a versatile method for virus purification, irrespective of the expression system.
Collapse
Affiliation(s)
- Pratik U Joshi
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA.,Health Research Institute, Michigan Technological University, Houghton, Michigan, USA
| | - Dylan G Turpeinen
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA.,Health Research Institute, Michigan Technological University, Houghton, Michigan, USA
| | - Michael Schroeder
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA
| | - Bianca Jones
- Department of Biochemistry, University of Detroit-Mercy, Detroit, Michigan, USA
| | - Audrey Lyons
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA
| | - Seth Kriz
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA.,Health Research Institute, Michigan Technological University, Houghton, Michigan, USA
| | - Maryam Khaksari
- Great Lakes Research Center, Michigan Technological University, Houghton, Michigan, USA
| | | | | | - Caryn L Heldt
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA.,Health Research Institute, Michigan Technological University, Houghton, Michigan, USA
| |
Collapse
|
194
|
Miyawaki O. Freezing and Ice Structure in Food. J JPN SOC FOOD SCI 2021. [DOI: 10.3136/nskkk.68.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Osato Miyawaki
- Ishikawa Prefectural University
- Resaech Laboratory for Water Science and Technology
| |
Collapse
|
195
|
Collet S, Bhaduri S, Kiyar M, T’Sjoen G, Mueller S, Guillamon A. Characterization of the 1H-MRS Metabolite Spectra in Transgender Men with Gender Dysphoria and Cisgender People. J Clin Med 2021; 10:2623. [PMID: 34198690 PMCID: PMC8232168 DOI: 10.3390/jcm10122623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 11/29/2022] Open
Abstract
Much research has been conducted on sexual differences of the human brain to determine whether and to what extent a brain gender exists. Consequently, a variety of studies using different neuroimaging techniques attempted to identify the existence of a brain phenotype in people with gender dysphoria (GD). However, to date, brain sexual differences at the metabolite level using magnetic resonance spectroscopy (1H-MRS) have not been explored in transgender people. In this study, 28 cisgender men (CM) and 34 cisgender women (CW) and 29 transgender men with GD (TMGD) underwent 1H-MRS at 3 Tesla MRI to characterize common brain metabolites. Specifically, levels of N-acetyl aspartate (NAA), choline (Cho), creatine (Cr), glutamate and glutamine (Glx), and myo-inositol + glycine (mI + Gly) were assessed in two brain regions, the amygdala-anterior hippocampus and the lateral parietal cortex. The results indicated a sex-assigned at birth pattern for Cho/Cr in the amygdala of TMGD. In the parietal cortex, a sex-assigned at birth and an intermediate pattern were found. Though assessed post-hoc, exploration of the age of onset of GD in TMGD demonstrated within-group differences in absolute NAA and relative Cho/Cr levels, suggestive for a possible developmental trend. While brain metabolite levels in TMGD resembled those of CW, some interesting findings, such as modulation of metabolite concentrations by age of onset of GD, warrant future inquiry.
Collapse
Affiliation(s)
- Sarah Collet
- Department of Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Sourav Bhaduri
- Department of Experimental Clinical and Health Psychology, Ghent University, 9000 Ghent, Belgium; (S.B.); (M.K.); (S.M.)
| | - Meltem Kiyar
- Department of Experimental Clinical and Health Psychology, Ghent University, 9000 Ghent, Belgium; (S.B.); (M.K.); (S.M.)
| | - Guy T’Sjoen
- Department of Endocrinology, Center for Sexology and Gender, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Sven Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, 9000 Ghent, Belgium; (S.B.); (M.K.); (S.M.)
- Department of Personality, Psychological Assessment and Treatment, University of Deusto, 48007 Bilbao, Spain
| | - Antonio Guillamon
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia, 28040 Madrid, Spain;
| |
Collapse
|
196
|
Hansen TB, Abdalas S, Al-Hilali I, Hansen LT. Predicting the effect of salt on heat tolerance of Listeria monocytogenes in meat and fish products. Int J Food Microbiol 2021; 352:109265. [PMID: 34116257 DOI: 10.1016/j.ijfoodmicro.2021.109265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/22/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Listeria monocytogenes is a potentially fatal foodborne pathogen that can be found in various ready-to-eat (RTE) products. It tolerates adverse conditions such as high salt concentrations and refrigerated storage, thus, the elimination of the pathogen in food processing often relies on heat processing. The objective of this study was to create a model to predict the effect of salt on heat tolerance of L. monocytogenes in meat and seafood products during heat treatments conducted at 57 to 65 °C to reduce numbers by ≥3 log10 cycles. Salt concentrations, up to 6% in the water phase (WPS%), were applied to cover a variety of lightly salted RTE meat and seafood products. The experimental work involved samples of ground pork tenderloin, ground chicken breast fillet and skinned, ground salmon fillet adjusted to different WPS% i.e., 3.6 and 5.2 WPS% for pork samples, 2.0, 3.0, 3.5 and 6.0 WPS% for chicken samples and 3.0 and 6.0 WPS% for salmon samples. All samples were inoculated with late-stationary phase L. monocytogenes cultures. For pork samples, a two-strain mixture of a pork isolate (MS22254) and an environmental isolate (MS22246) was applied. For chicken and salmon samples, a seafood isolate (MS22258) and isolate MS22246 was applied as single cultures. Samples were vacuum-packed in sterile bags, immerged in water bath, and held at constant temperatures of 57, 60 and 65 °C for pork samples and 58, 61 and 62.5 °C for chicken and salmon samples. For survivor curves, where at least 3 log10-reduction were obtained, heat tolerance was expressed as decimal reduction times, D-values. D-values were observed to increase with increasing WPS%. The effect of salt on heat tolerance of L. monocytogenes was defined as the relative increase (RI-value) in D-value obtained when salt had been added to the food. The effect of WPS% on RI-values was independent of heating temperatures, foods and strains. For secondary modelling, RI-values were transformed using the natural logarithm, ln(RI) and fitted to a linear model as a function of WPS%. Model validation, with 56 independent values collected from the scientific literature, resulted in bias and accuracy factors of 0.89 and 1.26, respectively, suggesting acceptable performance with tendency to slightly under-predict. The developed predictive model can be used to guide the design of heat processes for manufacturers of lightly preserved and mildly processed meat and seafood products requiring more than 3 log10 reduction of L. monocytogenes to ensure safety.
Collapse
Affiliation(s)
- Tina Beck Hansen
- The National Food Institute, Technical University of Denmark, Division for Microbiology and Production, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark.
| | - Somaya Abdalas
- The National Food Institute, Technical University of Denmark, Division for Microbiology and Production, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| | - Iman Al-Hilali
- The National Food Institute, Technical University of Denmark, Division for Microbiology and Production, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| | - Lisbeth Truelstrup Hansen
- The National Food Institute, Technical University of Denmark, Division for Microbiology and Production, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
197
|
Sun X, Tu K, Li L, Wu B, Wu L, Liu Z, Zhou L, Tian J, Yang A. Integrated transcriptome and metabolome analysis reveals molecular responses of the clams to acute hypoxia. MARINE ENVIRONMENTAL RESEARCH 2021; 168:105317. [PMID: 33819872 DOI: 10.1016/j.marenvres.2021.105317] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Mudflat shellfish have evolved well-adapted strategies for coping with dynamic environmental fluxes and stressful conditions, including oxygen availability. The Manila clams Ruditapes philippinarum are worldwide cultured shellfish in marine intertidal zone, which usually encounter great risk of acute hypoxia exposure in coastal habitats. To reveal the effects of acute hypoxia on metabolic changes of the clams, we performed the integrated analysis of transcriptomics and metabolomics to investigate the global changes of genes and metabolites during acute hypoxia stress at the whole-organism level. The comparative transcriptome analysis reveals that the clams show the remarkable depression in a variety of biological performance, such as metabolic rates, neuronal activity, biomineralization activity, and cell proliferation and differentiation at the hypoxic condition. The metabolomic analysis reveals that amino acid metabolism plays a critical role in the metabolic changes of the clams in response to acute hypoxia. A variety of free amino acids may not only be served as the potential osmolytes for osmotic regulation, but also may contribute to energy production during the acute hypoxia exposure. The metabolite analysis also reveals several important biomarkers for metabolic changes, and provides new insights into how clams deal with acute hypoxia. These findings suggest that clams may get through acute hypoxia stress by the adaptive metabolic strategy to survive short-period of acute hypoxia which is likely to occur in their typical habitat. The present findings will not only shed lights on the molecular and metabolic mechanisms of adaptive strategies under stressful conditions, but also provide the signaling metabolites to assess the physiological states of clams in aquaculture.
Collapse
Affiliation(s)
- Xiujun Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Kang Tu
- Putian Institute of Aquaculture Science of Fujian Province, Putian, 351100, China
| | - Li Li
- Marine Biology Institute of Shandong Province, Qingdao, 266104, China
| | - Biao Wu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Lei Wu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zhihong Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Liqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jiteng Tian
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Aiguo Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
198
|
Holland SI, Ertan H, Montgomery K, Manefield MJ, Lee M. Novel dichloromethane-fermenting bacteria in the Peptococcaceae family. THE ISME JOURNAL 2021; 15:1709-1721. [PMID: 33452483 PMCID: PMC8163858 DOI: 10.1038/s41396-020-00881-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/29/2020] [Accepted: 12/09/2020] [Indexed: 01/29/2023]
Abstract
Dichloromethane (DCM; CH2Cl2) is a toxic groundwater pollutant that also has a detrimental effect on atmospheric ozone levels. As a dense non-aqueous phase liquid, DCM migrates vertically through groundwater to low redox zones, yet information on anaerobic microbial DCM transformation remains scarce due to a lack of cultured organisms. We report here the characterisation of DCMF, the dominant organism in an anaerobic enrichment culture (DFE) capable of fermenting DCM to the environmentally benign product acetate. Stable carbon isotope experiments demonstrated that the organism assimilated carbon from DCM and bicarbonate via the Wood-Ljungdahl pathway. DCMF is the first anaerobic DCM-degrading population also shown to metabolise non-chlorinated substrates. It appears to be a methylotroph utilising the Wood-Ljungdahl pathway for metabolism of methyl groups from methanol, choline, and glycine betaine. The flux of these substrates from subsurface environments may either directly (DCM, methanol) or indirectly (choline, glycine betaine) affect the climate. Community profiling and cultivation of cohabiting taxa in culture DFE without DCMF suggest that DCMF is the sole organism in this culture responsible for substrate metabolism, while the cohabitants persist via necromass recycling. Genomic and physiological evidence support placement of DCMF in a novel genus within the Peptococcaceae family, 'Candidatus Formimonas warabiya'.
Collapse
Affiliation(s)
- Sophie I Holland
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Haluk Ertan
- Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Kate Montgomery
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Michael J Manefield
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Matthew Lee
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
199
|
Morcillo RJL, Manzanera M. The Effects of Plant-Associated Bacterial Exopolysaccharides on Plant Abiotic Stress Tolerance. Metabolites 2021; 11:337. [PMID: 34074032 PMCID: PMC8225083 DOI: 10.3390/metabo11060337] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) are beneficial soil microorganisms that can stimulate plant growth and increase tolerance to biotic and abiotic stresses. Some PGPR are capable of secreting exopolysaccharides (EPS) to protect themselves and, consequently, their plant hosts against environmental fluctuations and other abiotic stresses such as drought, salinity, or heavy metal pollution. This review focuses on the enhancement of plant abiotic stress tolerance by bacterial EPS. We provide a comprehensive summary of the mechanisms through EPS to alleviate plant abiotic stress tolerance, including salinity, drought, temperature, and heavy metal toxicity. Finally, we discuss how these abiotic stresses may affect bacterial EPS production and its role during plant-microbe interactions.
Collapse
Affiliation(s)
- Rafael J L Morcillo
- Institute for Water Research, Department of Microbiology, University of Granada, 18003 Granada, Spain
| | - Maximino Manzanera
- Institute for Water Research, Department of Microbiology, University of Granada, 18003 Granada, Spain
| |
Collapse
|
200
|
Song X, An L, Wang M, Chen J, Liu Z, Yao L. Osmolytes Can Destabilize Proteins in Cells by Modulating Electrostatics and Quinary Interactions. ACS Chem Biol 2021; 16:864-871. [PMID: 33843182 DOI: 10.1021/acschembio.1c00024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although numerous in vitro studies have shown that osmolytes are capable of stabilizing proteins, their effect on protein folding in vivo has been less understood. In this work, we investigated the effect of osmolytes, including glycerol, sorbitol, betaine, and taurine, on the folding of a protein GB3 variant in E. coli cells using NMR spectroscopy. 400 mM osmolytes were added to E. coli cells; only glycerol stabilizes the folded protein, whereas betaine and taurine considerably destabilize the protein through modulating folding and unfolding rates. Further investigation indicates that betaine and taurine can enhance the quinary interaction between the protein and cellular environment and manifestly weaken the electrostatic attraction in protein salt bridges. The combination of the two factors causes destabilization of the protein in E. coli cells. These factors counteract the preferential exclusion mechanism that is adopted by osmolytes to stabilize proteins.
Collapse
Affiliation(s)
- Xiangfei Song
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liaoyuan An
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengting Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Zhijun Liu
- National Facility for Protein Science, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | | |
Collapse
|