151
|
Pradeu T, Thomma BPHJ, Girardin SE, Lemaitre B. The conceptual foundations of innate immunity: Taking stock 30 years later. Immunity 2024; 57:613-631. [PMID: 38599162 DOI: 10.1016/j.immuni.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
While largely neglected over decades during which adaptive immunity captured most of the attention, innate immune mechanisms have now become central to our understanding of immunology. Innate immunity provides the first barrier to infection in vertebrates, and it is the sole mechanism of host defense in invertebrates and plants. Innate immunity also plays a critical role in maintaining homeostasis, shaping the microbiota, and in disease contexts such as cancer, neurodegeneration, metabolic syndromes, and aging. The emergence of the field of innate immunity has led to an expanded view of the immune system, which is no longer restricted to vertebrates and instead concerns all metazoans, plants, and even prokaryotes. The study of innate immunity has given rise to new concepts and language. Here, we review the history and definition of the core concepts of innate immunity, discussing their value and fruitfulness in the long run.
Collapse
Affiliation(s)
- Thomas Pradeu
- CNRS UMR 5164 ImmunoConcept, University of Bordeaux, Bordeaux, France; Department of Biological and Medical Sciences, University of Bordeaux, Bordeaux, France; Presidential Fellow, Chapman University, Orange, CA, USA.
| | - Bart P H J Thomma
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
152
|
Rinaldi M, Pezone A, Quadrini GI, Abbadessa G, Laezza MP, Passaro ML, Porcellini A, Costagliola C. Targeting shared pathways in tauopathies and age-related macular degeneration: implications for novel therapies. Front Aging Neurosci 2024; 16:1371745. [PMID: 38633983 PMCID: PMC11021713 DOI: 10.3389/fnagi.2024.1371745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
The intricate parallels in structure and function between the human retina and the central nervous system designate the retina as a prospective avenue for understanding brain-related processes. This review extensively explores the shared physiopathological mechanisms connecting age-related macular degeneration (AMD) and proteinopathies, with a specific focus on tauopathies. The pivotal involvement of oxidative stress and cellular senescence emerges as key drivers of pathogenesis in both conditions. Uncovering these shared elements not only has the potential to enhance our understanding of intricate neurodegenerative diseases but also sets the stage for pioneering therapeutic approaches in AMD.
Collapse
Affiliation(s)
- Michele Rinaldi
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Antonio Pezone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Gaia Italia Quadrini
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Gianmarco Abbadessa
- Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Maria Paola Laezza
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Maria Laura Passaro
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | | | - Ciro Costagliola
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| |
Collapse
|
153
|
Zhang H, Dong N, Yao Y. Optimal strategy for treatment of sepsis based on the host inflammatory reaction and immune response. JOURNAL OF INTENSIVE MEDICINE 2024; 4:175-180. [PMID: 38681784 PMCID: PMC11043630 DOI: 10.1016/j.jointm.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/20/2023] [Accepted: 10/16/2023] [Indexed: 05/01/2024]
Affiliation(s)
- Hui Zhang
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Ning Dong
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Yongming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
154
|
Cajander S, Kox M, Scicluna BP, Weigand MA, Mora RA, Flohé SB, Martin-Loeches I, Lachmann G, Girardis M, Garcia-Salido A, Brunkhorst FM, Bauer M, Torres A, Cossarizza A, Monneret G, Cavaillon JM, Shankar-Hari M, Giamarellos-Bourboulis EJ, Winkler MS, Skirecki T, Osuchowski M, Rubio I, Bermejo-Martin JF, Schefold JC, Venet F. Profiling the dysregulated immune response in sepsis: overcoming challenges to achieve the goal of precision medicine. THE LANCET. RESPIRATORY MEDICINE 2024; 12:305-322. [PMID: 38142698 DOI: 10.1016/s2213-2600(23)00330-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 12/26/2023]
Abstract
Sepsis is characterised by a dysregulated host immune response to infection. Despite recognition of its significance, immune status monitoring is not implemented in clinical practice due in part to the current absence of direct therapeutic implications. Technological advances in immunological profiling could enhance our understanding of immune dysregulation and facilitate integration into clinical practice. In this Review, we provide an overview of the current state of immune profiling in sepsis, including its use, current challenges, and opportunities for progress. We highlight the important role of immunological biomarkers in facilitating predictive enrichment in current and future treatment scenarios. We propose that multiple immune and non-immune-related parameters, including clinical and microbiological data, be integrated into diagnostic and predictive combitypes, with the aid of machine learning and artificial intelligence techniques. These combitypes could form the basis of workable algorithms to guide clinical decisions that make precision medicine in sepsis a reality and improve patient outcomes.
Collapse
Affiliation(s)
- Sara Cajander
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Matthijs Kox
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Brendon P Scicluna
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei hospital, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Raquel Almansa Mora
- Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| | - Stefanie B Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ignacio Martin-Loeches
- St James's Hospital, Dublin, Ireland; Hospital Clinic, Institut D'Investigacions Biomediques August Pi i Sunyer, Universidad de Barcelona, Barcelona, Spain
| | - Gunnar Lachmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, Berlin, Germany
| | - Massimo Girardis
- Department of Intensive Care and Anesthesiology, University Hospital of Modena, Modena, Italy
| | - Alberto Garcia-Salido
- Hospital Infantil Universitario Niño Jesús, Pediatric Critical Care Unit, Madrid, Spain
| | - Frank M Brunkhorst
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Antoni Torres
- Pulmonology Department. Hospital Clinic of Barcelona, University of Barcelona, Ciberes, IDIBAPS, ICREA, Barcelona, Spain
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Guillaume Monneret
- Immunology Laboratory, Hôpital E Herriot - Hospices Civils de Lyon, Lyon, France; Université Claude Bernard Lyon-1, Hôpital E Herriot, Lyon, France
| | | | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | | | - Martin Sebastian Winkler
- Department of Anesthesiology and Intensive Care, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marcin Osuchowski
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Jesus F Bermejo-Martin
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain; School of Medicine, Universidad de Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabienne Venet
- Immunology Laboratory, Hôpital E Herriot - Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Ecole Normale Supeérieure de Lyon, Universiteé Claude Bernard-Lyon 1, Lyon, France.
| |
Collapse
|
155
|
Tangos M, Jarkas M, Akin I, El-Battrawy I, Hamdani N. Cardiac damage and tropism of severe acute respiratory syndrome coronavirus 2. Curr Opin Microbiol 2024; 78:102437. [PMID: 38394964 DOI: 10.1016/j.mib.2024.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Until now, the World Health Organization registered over 771 million cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection worldwide, of which 6.97 million resulted in death. Virus-related cardiovascular events and pre-existing heart problems have been identified as major contributing factors to global infection-related morbidity and mortality, emphasizing the necessity for risk assessment and future prevention. In this review, we highlight cardiac manifestations that might arise from an infection with SARS-CoV-2 and provide an overview of known comorbidities that worsen the outcome. Additionally, we aim to summarize the therapeutic strategies proposed to reverse virus-associated myocardial damage, which will be further highlighted in this review, with an outlook to successful recovery and prevention.
Collapse
Affiliation(s)
- Melina Tangos
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany; Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital of the Ruhr University Bochum, Bochum, Germany
| | - Muhammad Jarkas
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany; Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital of the Ruhr University Bochum, Bochum, Germany
| | - Ibrahim Akin
- First Department of Medicine, University Medical Centre Mannheim (UMM), Mannheim, Germany
| | - Ibrahim El-Battrawy
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany; Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology and Angiology, Bergmannsheil University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Nazha Hamdani
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany; Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital of the Ruhr University Bochum, Bochum, Germany; HCEMM-SU Cardiovascular Comorbidities Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; Department of Physiology, Cardiovascular Research Institute Maastricht University Maastricht, Maastricht, the Netherlands.
| |
Collapse
|
156
|
Fang Y, Xiang W, Cui J, Jiao B, Su X. Anti-Inflammatory Properties of the Citrus Flavonoid Diosmetin: An Updated Review of Experimental Models. Molecules 2024; 29:1521. [PMID: 38611801 PMCID: PMC11013832 DOI: 10.3390/molecules29071521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Inflammation is an essential contributor to various human diseases. Diosmetin (3',5,7-trihydroxy-4'-methoxyflavone), a citrus flavonoid, can be used as an anti-inflammatory agent. All the information in this article was collected from various research papers from online scientific databases such as PubMed and Web of Science. These studies have demonstrated that diosmetin can slow down the progression of inflammation by inhibiting the production of inflammatory mediators through modulating related pathways, predominantly the nuclear factor-κB (NF-κB) signaling pathway. In this review, we discuss the anti-inflammatory properties of diosmetin in cellular and animal models of various inflammatory diseases for the first time. We have identified some deficiencies in current research and offer suggestions for further advancement. In conclusion, accumulating evidence so far suggests a very important role for diosmetin in the treatment of various inflammatory disorders and suggests it is a candidate worthy of in-depth investigation.
Collapse
Affiliation(s)
- Yangyang Fang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; (Y.F.); (W.X.); (J.C.)
| | - Wei Xiang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; (Y.F.); (W.X.); (J.C.)
| | - Jinwei Cui
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; (Y.F.); (W.X.); (J.C.)
| | - Bining Jiao
- Key Laboratory of Quality and Safety Control for Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China;
| | - Xuesu Su
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; (Y.F.); (W.X.); (J.C.)
| |
Collapse
|
157
|
Šojat D, Volarić M, Keškić T, Volarić N, Cerovečki V, Trtica Majnarić L. Putting Functional Gastrointestinal Disorders within the Spectrum of Inflammatory Disorders Can Improve Classification and Diagnostics of These Disorders. Biomedicines 2024; 12:702. [PMID: 38540315 PMCID: PMC10967747 DOI: 10.3390/biomedicines12030702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 01/03/2025] Open
Abstract
The spectrum, intensity, and overlap of symptoms between functional gastrointestinal disorders (FGIDs) and other gastrointestinal disorders characterize patients with FGIDs, who are incredibly different in their backgrounds. An additional challenge with regard to the diagnosis of FGID and the applicability of a given treatment is the ongoing expansion of the risk factors believed to be connected to these disorders. Many cytokines and inflammatory cells have been found to cause the continuous existence of a low level of inflammation, which is thought to be a basic pathophysiological process. The idea of the gut-brain axis has been created to offer a basic framework for the complex interactions that occur between the nervous system and the intestinal functions, including the involvement of gut bacteria. In this review paper, we intend to promote the hypothesis that FGIDs should be seen through the perspective of the network of the neuroendocrine, immunological, metabolic, and microbiome pathways. This hypothesis arises from an increased understanding of chronic inflammation as a systemic disorder, that is omnipresent in chronic health conditions. A better understanding of inflammation's role in the pathogenesis of FGIDs can be achieved by clustering markers of inflammation with data indicating symptoms, comorbidities, and psycho-social factors. Finding subclasses among related entities of FGIDs may reduce patient heterogeneity and help clarify the pathophysiology of this disease to allow for better treatment.
Collapse
Affiliation(s)
- Dunja Šojat
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (D.Š.); (M.V.)
| | - Mile Volarić
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (D.Š.); (M.V.)
- Department of Gastroenterology and Hepatology, University Clinical Hospital Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina
| | - Tanja Keškić
- Department Biomedicine, Technology and Food Safety, Laboratory of Chemistry and Microbiology, Institute for Animal Husbandry, Autoput Belgrade-Zagreb 16, 11080 Belgrade, Serbia;
| | - Nikola Volarić
- Department of Physiology and Immunology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena ulica 21, 31000 Osijek, Croatia;
| | - Venija Cerovečki
- Department of Family Medicine, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia;
| | - Ljiljana Trtica Majnarić
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (D.Š.); (M.V.)
| |
Collapse
|
158
|
Sridhar GR, Gumpeny L. Emerging significance of butyrylcholinesterase. World J Exp Med 2024; 14:87202. [PMID: 38590305 PMCID: PMC10999061 DOI: 10.5493/wjem.v14.i1.87202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/04/2023] [Accepted: 01/05/2024] [Indexed: 03/19/2024] Open
Abstract
Butyrylcholinesterase (BChE; EC 3.1.1.8), an enzyme structurally related to acetylcholinesterase, is widely distributed in the human body. It plays a role in the detoxification of chemicals such as succinylcholine, a muscle relaxant used in anesthetic practice. BChE is well-known due to variant forms of the enzyme with little or no hydrolytic activity which exist in some endogamous communities and result in prolonged apnea following the administration of succinylcholine. Its other functions include the ability to hydrolyze acetylcholine, the cholinergic neurotransmitter in the brain, when its primary hydrolytic enzyme, acetylcholinesterase, is absent. To assess its potential roles, BChE was studied in relation to insulin resistance, type 2 diabetes mellitus, cognition, hepatic disorders, cardiovascular and cerebrovascular diseases, and inflammatory conditions. Individuals who lack the enzyme activity of BChE are otherwise healthy, until they are given drugs hydrolyzed by this enzyme. Therefore, BChE is a candidate for the study of loss-of-function mutations in humans. Studying individuals with variant forms of BChE can provide insights into whether they are protected against metabolic diseases. The potential utility of the enzyme as a biomarker for Alzheimer's disease and the response to its drug treatment can also be assessed.
Collapse
Affiliation(s)
- Gumpeny R Sridhar
- Department of Endocrinology and Diabetes, Endocrine and Diabetes Centre, Visakhapatnam 530002, Andhra Pradesh, India
| | - Lakshmi Gumpeny
- Department of Internal Medicine, Gayatri Vidya Parishad Institute of Healthcare and Medical Technology, Visakhapatnam 530048, Andhra Pradesh, India
| |
Collapse
|
159
|
de Jong MME, Chen L, Raaijmakers MHGP, Cupedo T. Bone marrow inflammation in haematological malignancies. Nat Rev Immunol 2024:10.1038/s41577-024-01003-x. [PMID: 38491073 DOI: 10.1038/s41577-024-01003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 03/18/2024]
Abstract
Tissue inflammation is a hallmark of tumour microenvironments. In the bone marrow, tumour-associated inflammation impacts normal niches for haematopoietic progenitor cells and mature immune cells and supports the outgrowth and survival of malignant cells residing in these niche compartments. This Review provides an overview of our current understanding of inflammatory changes in the bone marrow microenvironment of myeloid and lymphoid malignancies, using acute myeloid leukaemia and multiple myeloma as examples and highlights unique and shared features of inflammation in niches for progenitor cells and plasma cells. Importantly, inflammation exerts profoundly different effects on normal bone marrow niches in these malignancies, and we provide context for possible drivers of these divergent effects. We explore the role of tumour cells in inflammatory changes, as well as the role of cellular constituents of normal bone marrow niches, including myeloid cells and stromal cells. Integrating knowledge of disease-specific dynamics of malignancy-associated bone marrow inflammation will provide a necessary framework for future targeting of these processes to improve patient outcome.
Collapse
Affiliation(s)
- Madelon M E de Jong
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Lanpeng Chen
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Tom Cupedo
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
160
|
Egorov AI, Griffin SM, Styles JN, Kobylanski J, Klein J, Wickersham L, Ritter R, Sams E, Hudgens EE, Wade TJ. Time outdoors and residential greenness are associated with reduced systemic inflammation and allostatic load. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123408. [PMID: 38278402 DOI: 10.1016/j.envpol.2024.123408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Contacts with nature are linked with reduced morbidity and mortality. Hypothesized pathways include relaxation, physical activity, and improved immune function. This cross-sectional study of 320 adults in central North Carolina assessed health benefits of residential greenness using allostatic load (AL) and systemic inflammation (INFL) indices, composite biomarker-based measures of physiological dysregulation and inflammation, respectively. Distance-to-residence weighted tree cover and vegetated land cover measures were estimated within 500 m of each residence; 37 biomarkers of immune, neuroendocrine, cardiovascular, and metabolic functions were dichotomized at distribution or health-based cut-offs. AL was calculated as a sum of potentially unhealthy values of all biomarkers; INFL was based on a subset of 18 immune biomarkers. Regression analysis used generalized additive models for Poisson-distributed outcome. An interquartile range (IQR) increase in tree cover was associated with 0.89 (95 % Confidence Limits 0.82; 0.97) and 0.90 (0.79; 1.03)-fold change in AL and INFL, respectively. Greater daily outdoor time was associated with reduced AL and INFL, while leisure screen time, problems with sleeping, and common chronic infections were linked with increased AL and INFL. Among 138 individuals spending more than 1 h outdoors daily, an IQR increase in tree cover was associated with 0.76 (0.67; 0.86) and 0.81 (0.65; 1.02)-fold changes in AL and INFL, respectively. Among individuals with residential tree cover above the 50th percentile, spending more than 3 h outdoors daily was associated with 0.54 (0.37; 0.78) and 0.28 (0.15; 0.54)-fold changes in AL and INFL, respectively, compared to spending less than 30 min outdoors; there were no significant effects in the low tree cover stratum. Consistent but weaker effects were observed for vegetated land cover. Interaction effects of tree and vegetative cover and time spent outdoors on AL and INFL were statistically significant. This biomarker-based approach can help to assess public health benefits of green spaces.
Collapse
Affiliation(s)
- Andrey I Egorov
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Shannon M Griffin
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - Jennifer N Styles
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA; Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason Kobylanski
- ORAU Student Services Contractor, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jo Klein
- ORAU Student Services Contractor, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Lindsay Wickersham
- ORAU Student Services Contractor, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Rebecca Ritter
- ORAU Student Services Contractor, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Elizabeth Sams
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Edward E Hudgens
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Timothy J Wade
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
161
|
Qian L, Zhu Y, Deng C, Liang Z, Chen J, Chen Y, Wang X, Liu Y, Tian Y, Yang Y. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct Target Ther 2024; 9:50. [PMID: 38424050 PMCID: PMC10904817 DOI: 10.1038/s41392-024-01756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family (PGC-1s), consisting of three members encompassing PGC-1α, PGC-1β, and PGC-1-related coactivator (PRC), was discovered more than a quarter-century ago. PGC-1s are essential coordinators of many vital cellular events, including mitochondrial functions, oxidative stress, endoplasmic reticulum homeostasis, and inflammation. Accumulating evidence has shown that PGC-1s are implicated in many diseases, such as cancers, cardiac diseases and cardiovascular diseases, neurological disorders, kidney diseases, motor system diseases, and metabolic disorders. Examining the upstream modulators and co-activated partners of PGC-1s and identifying critical biological events modulated by downstream effectors of PGC-1s contribute to the presentation of the elaborate network of PGC-1s. Furthermore, discussing the correlation between PGC-1s and diseases as well as summarizing the therapy targeting PGC-1s helps make individualized and precise intervention methods. In this review, we summarize basic knowledge regarding the PGC-1s family as well as the molecular regulatory network, discuss the physio-pathological roles of PGC-1s in human diseases, review the application of PGC-1s, including the diagnostic and prognostic value of PGC-1s and several therapies in pre-clinical studies, and suggest several directions for future investigations. This review presents the immense potential of targeting PGC-1s in the treatment of diseases and hopefully facilitates the promotion of PGC-1s as new therapeutic targets.
Collapse
Affiliation(s)
- Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yanli Zhu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, 450052, China
| | - Junmin Chen
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xue Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yanqing Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China.
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
162
|
Perez-Shibayama C, Gil-Cruz C, Cadosch N, Lütge M, Cheng HW, De Martin A, Frischmann K, Joachimbauer A, Onder L, Papadopoulou I, Papadopoulou C, Ring S, Krebs P, Vu VP, Nägele MP, Rossi VA, Parianos D, Zsilavecz VW, Cooper LT, Flammer A, Ruschitzka F, Rainer PP, Schmidt D, Ludewig B. Bone morphogenic protein-4 availability in the cardiac microenvironment controls inflammation and fibrosis in autoimmune myocarditis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:301-316. [PMID: 39196111 PMCID: PMC11358008 DOI: 10.1038/s44161-024-00432-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/19/2024] [Indexed: 08/29/2024]
Abstract
Myocarditis is an inflammatory heart disease that leads to loss of cardiomyocytes and frequently precipitates fibrotic remodeling of the myocardium, culminating in heart failure. However, the molecular mechanisms underlying immune cell control and maintenance of tissue integrity in the inflamed cardiac microenvironment remain elusive. In this study, we found that bone morphogenic protein-4 (BMP4) gradients maintain cardiac tissue homeostasis by single-cell transcriptomics analyses of inflamed murine and human myocardial tissues. Cardiac BMP pathway dysregulation was reflected by reduced BMP4 serum concentration in patients with myocarditis. Restoration of BMP signaling by antibody-mediated neutralization of the BMP inhibitors gremlin-1 and gremlin-2 ameliorated T cell-induced myocardial inflammation in mice. Moreover, progression to inflammatory cardiomyopathy was blocked through the reduction of fibrotic remodeling and preservation of cardiomyocyte integrity. These results unveil the BMP4-gremlin axis as a druggable pathway for the treatment of myocardial inflammation, limiting the severe sequelae of cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Nadine Cadosch
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Mechthild Lütge
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Angelina De Martin
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Kira Frischmann
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Anna Joachimbauer
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Iliana Papadopoulou
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Chrysa Papadopoulou
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Sandra Ring
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Vivian P Vu
- Institute of Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Matthias P Nägele
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Valentina A Rossi
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Danaë Parianos
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | | | - Leslie T Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Andreas Flammer
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Frank Ruschitzka
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Peter P Rainer
- Division of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- St. Johann in Tirol General Hospital, St. Johann in Tirol, Austria
| | - Dörthe Schmidt
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
163
|
Yan Q, Gao C, Li M, Lan R, Wei S, Fan R, Cheng W. TRP Ion Channels in Immune Cells and Their Implications for Inflammation. Int J Mol Sci 2024; 25:2719. [PMID: 38473965 DOI: 10.3390/ijms25052719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
The transient receptor potential (TRP) ion channels act as cellular sensors and mediate a plethora of physiological processes, including somatosensation, proliferation, apoptosis, and metabolism. Under specific conditions, certain TRP channels are involved in inflammation and immune responses. Thus, focusing on the role of TRPs in immune system cells may contribute to resolving inflammation. In this review, we discuss the distribution of five subfamilies of mammalian TRP ion channels in immune system cells and how these ion channels function in inflammatory mechanisms. This review provides an overview of the current understanding of TRP ion channels in mediating inflammation and may offer potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Qiyue Yan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Chuanzhou Gao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Mei Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Rui Lan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Shaohan Wei
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Runsong Fan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Wei Cheng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
164
|
Makarenkov N, Haim Y, Yoel U, Pincu Y, Tarnovscki T, Liberty IF, Kukeev I, Baraf L, Dukhno O, Zilber O, Blüher M, Rudich A, Veksler-Lublinsky I. Circulating miRNAs Detect High vs Low Visceral Adipose Tissue Inflammation in Patients Living With Obesity. J Clin Endocrinol Metab 2024; 109:858-867. [PMID: 37713174 DOI: 10.1210/clinem/dgad550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
CONTEXT The severity of visceral adipose tissue (VAT) inflammation in individuals with obesity is thought to signify obesity subphenotype(s) associated with higher cardiometabolic risk. Yet, this tissue is not accessible for direct sampling in the nonsurgical patient. OBJECTIVE We hypothesized that circulating miRNAs (circ-miRs) could serve as biomarkers to distinguish human obesity subgroups with high or low extent of VAT inflammation. METHODS Discovery and validation cohorts of patients living with obesity undergoing bariatric surgery (n = 35 and 51, respectively) were included. VAT inflammation was classified into low/high based on an expression score derived from the messenger RNA levels of TNFA, IL6, and CCL2 (determined by reverse transcription polymerase chain reaction). Differentially expressed circ-miRs were identified, and their discriminative power to detect low/high VAT inflammation was assessed by receiver operating characteristic-area under the curve (ROC-AUC) analysis. RESULTS Fifty three out of 263 circ-miRs (20%) were associated with high-VAT inflammation according to Mann-Whitney analysis in the discovery cohort. Of those, 12 (12/53 = 23%) were differentially expressed according to Deseq2, and 6 significantly discriminated between high- and low-VAT inflammation with ROC-AUC greater than 0.8. Of the resulting 5 circ-miRs that were differentially abundant in all 3 statistical approaches, 3 were unaffected by hemolysis and validated in an independent cohort. Circ-miRs 181b-5p, 1306-3p, and 3138 combined with homeostatic model assessment of insulin resistance (HOMA-IR) exhibited ROC-AUC of 0.951 (95% CI, 0.865-1) and 0.808 (95% CI, 0.654-0.963) in the discovery and validation cohorts, respectively, providing strong discriminative power between participants with low- vs high-VAT inflammation. Predicted target genes of these miRNAs are enriched in pathways of insulin and inflammatory signaling, circadian entrainment, and cellular senescence. CONCLUSION Circ-miRs that identify patients with low- vs high-VAT inflammation constitute a putative tool to improve personalized care of patients with obesity.
Collapse
Affiliation(s)
- Nataly Makarenkov
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
- Department of Software & Information Systems Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
| | - Yulia Haim
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
| | - Uri Yoel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
- Endocrinology Unit, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Yair Pincu
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
| | - Tanya Tarnovscki
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
| | - Idit F Liberty
- Diabetes Clinic, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Ivan Kukeev
- Department of General Surgery B, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Lior Baraf
- Endocrinology Unit, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Oleg Dukhno
- Department of General Surgery B, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Oleg Zilber
- Goldman Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig 04103, Germany
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
| | - Isana Veksler-Lublinsky
- Department of Software & Information Systems Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
| |
Collapse
|
165
|
Shan Y, Xu L, Cui X, Wang E, Jiang F, Li J, Ouyang H, Yin T, Feng H, Luo D, Zhang Y, Li Z. A responsive cascade drug delivery scaffold adapted to the therapeutic time window for peripheral nerve injury repair. MATERIALS HORIZONS 2024; 11:1032-1045. [PMID: 38073476 DOI: 10.1039/d3mh01511d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Peripheral nerve injury (PNI) is a common clinical challenge, requiring timely and orderly initiation of synergistic anti-inflammatory and reparative therapy. Although the existing cascade drug delivery system can realize sequential drug release through regulation of the chemical structure of drug carriers, it is difficult to adjust the release kinetics of each drug based on the patient's condition. Therefore, there is an urgent need to develop a cascade drug delivery system that can dynamically adjust drug release and realize personalized treatment. Herein, we developed a responsive cascade drug delivery scaffold (RCDDS) which can adapt to the therapeutic time window, in which Vitamin B12 is used in early controllable release to suppress inflammation and nerve growth factor promotes regeneration by cascade loading. The RCDDS exhibited the ability to modulate the drug release kinetics by hierarchically opening polymer chains triggered by ultrasound, enabling real-time adjustment of the anti-inflammatory and neuroregenerative therapeutic time window depending on the patient's status. In the rat sciatic nerve injury model, the RCDDS group was able to achieve neural repair effects comparable to the autograft group in terms of tissue structure and motor function recovery. The development of the RCDDS provides a useful route toward an intelligent cascade drug delivery system for personalized therapy.
Collapse
Affiliation(s)
- Yizhu Shan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xi Cui
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Engui Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
| | - Fengying Jiang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiaxuan Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
| | - Han Ouyang
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hongqing Feng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
166
|
Salvan da Rosa J, Bramorski Mohr ET, Lubschinski TL, Vieira GN, Rossa TA, Mandolesi Sá M, Dalmarco EM. Interference in Macrophage Balance (M1/M2): The Mechanism of Action Responsible for the Anti-Inflammatory Effect of a Fluorophenyl-Substituted Imidazole. Mediators Inflamm 2024; 2024:9528976. [PMID: 38405621 PMCID: PMC10894048 DOI: 10.1155/2024/9528976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 02/27/2024] Open
Abstract
Traditionally, the treatment of inflammatory conditions has focused on the inhibition of inflammatory mediator production; however, many conditions are refractory to this classical approach. Recently, an alternative has been presented by researchers to solve this problem: The immunomodulation of cells closely related to inflammation. Hence, macrophages, a critical key in both innate and acquired immunity, have been presented as an alternative target for the development of new medicines. In this work, we tested the fluorophenyl-imidazole for its anti-inflammatory activity and possible immunomodulatory effect on RAW 264.7 macrophages. We also evaluated the anti-inflammatory effect of the compound, and the macrophage repolarization to M2 was confirmed by the ability of the compound to reduce the M1 markers TNF-α, IL-6, MCP-1, IL-12p70, IFN-γ, and TLR4, the high levels of p65 phosphorylated, iNOS and COX-2 mRNA expression, and the fact that the compound was not able to induce the production of M1 markers when used in macrophages without lipopolysaccharide (LPS) stimulation. Moreover, fluorophenyl-imidazole had the ability to increase the M2 markers IL-4, IL-13, CD206, apoptosis and phagocytosis levels, arginase-1, and FIZZ-1 mRNA expression before LPS stimulation. Similarly, it was also able to induce the production of these same M2 markers in macrophages without being induced with LPS. These results reinforce the affirmation that the fluorophenyl-imidazole has an important anti-inflammatory effect and demonstrates that this effect is due to immunomodulatory activity, having the ability to trigger a repolarization of macrophages from M1 to M2a. These facts suggest that this molecule could be used as an alternative scaffold for the development of a new medicine to treat inflammatory conditions, where the anti-inflammatory and proregenerative properties of M2a macrophages are desired.
Collapse
Affiliation(s)
- Julia Salvan da Rosa
- Department of Clinical Analysis, Center for Health Sciences, Campus Universitário—Trindade, Universidade Federal de Santa Catarina, Florianópolis 88040-970, SC, Brazil
| | - Eduarda Talita Bramorski Mohr
- Department of Clinical Analysis, Center for Health Sciences, Campus Universitário—Trindade, Universidade Federal de Santa Catarina, Florianópolis 88040-970, SC, Brazil
| | - Tainá Larissa Lubschinski
- Department of Clinical Analysis, Center for Health Sciences, Campus Universitário—Trindade, Universidade Federal de Santa Catarina, Florianópolis 88040-970, SC, Brazil
| | - Guilherme Nicácio Vieira
- Department of Clinical Analysis, Center for Health Sciences, Campus Universitário—Trindade, Universidade Federal de Santa Catarina, Florianópolis 88040-970, SC, Brazil
| | - Thais Andreia Rossa
- Department of Chemistry, Center for Physical and Mathematical Sciences, Campus Universitário—Trindade, Universidade Federal de Santa Catarina, Florianópolis 88040-970, SC, Brazil
| | - Marcus Mandolesi Sá
- Department of Chemistry, Center for Physical and Mathematical Sciences, Campus Universitário—Trindade, Universidade Federal de Santa Catarina, Florianópolis 88040-970, SC, Brazil
| | - Eduardo Monguilhott Dalmarco
- Department of Clinical Analysis, Center for Health Sciences, Campus Universitário—Trindade, Universidade Federal de Santa Catarina, Florianópolis 88040-970, SC, Brazil
| |
Collapse
|
167
|
Wu B, Wang J, Chen Y, Fu Y. Inflammation-Targeted Drug Delivery Strategies via Albumin-Based Systems. ACS Biomater Sci Eng 2024; 10:743-761. [PMID: 38194444 DOI: 10.1021/acsbiomaterials.3c01744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Albumin, being the most abundant serum protein, has the potential to significantly enhance the physicochemical properties of therapeutic payloads, thereby improving their pharmacological effects. Apart from its passive transport via the enhanced permeability and retention effect, albumin can actively accumulate in tumor microenvironments or inflammatory tissues via receptor-mediated processes. This unique property makes albumin a promising scaffold for targeted drug delivery. This review focuses on exploring different delivery strategies that combine albumin with drug payloads to achieve targeted therapy for inflammatory diseases. Also, albumin-derived therapeutic products on the market or undergoing clinical trials in the past decade have been summarized to gain insight into the future development of albumin-based drug delivery systems. Given the involvement of inflammation in numerous diseases, drug delivery systems utilizing albumin demonstrate remarkable advantages, including enhanced properties, improved in vivo behavior and efficacy. Albumin-based drug delivery systems have been demonstrated in clinical trials, while more advanced strategies for improving the capacity of drug delivery systems with the help of albumin remain to be discovered. This could pave the way for biomedical applications in more effective and precise treatments.
Collapse
Affiliation(s)
- Bangqing Wu
- Department of Pharmacy, Guiyang Public Health Clinical Center, Guiyang 550004, China
| | - Jingwen Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- Department of Pharmacy, Guiyang Public Health Clinical Center, Guiyang 550004, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
168
|
Filgueiras LA, de Andrade FDCP, Iwao Horita S, Shirsat SD, Achal V, Rai M, Henriques-Pons A, Mendes AN. Analysis of SIKVAV's receptor affinity, pharmacokinetics, and pharmacological characteristics: a matrikine with potent biological function. J Biomol Struct Dyn 2024:1-23. [PMID: 38345036 DOI: 10.1080/07391102.2024.2313709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/27/2024] [Indexed: 03/08/2025]
Abstract
Matrikines are biologically active peptides generated from fragments fragmentation of extracellular matrix components (ECM) that are functionally distinct from the original full-length molecule. The active matricryptic sites can be unmasked by ECM components enzymatic degradation or multimerization, heterotypic binding, adsorption to other molecules, cell-mediated mechanical forces, exposure to reactive oxygen species, ECM denaturation, and others. Laminin α1-derived peptide (SIKVAV) is a bioactive peptide derived from laminin-111 that participates in tumor development, cell proliferation, angiogenesis in various cell types. SIKVAV has also a potential pharmaceutical activity that may be used for tissue regeneration and bioengineering in Alzheimer's disease and muscular dystrophies. In this work, we made computational analyzes of SIKVAV regarding the ADMET panel, that stands for Administration, Distribution, Metabolism, Excretion, and Toxicity. Docking analyzes using the α3β1 and α6β1 integrin receptors were performed to fill in the gaps in the SIKVAV's signaling pathway and coupling tests showed that SIKVAV can interact with both receptors. Moreover, there is no indication of cytotoxicity, mutagenic or carcinogenic activity, skin or oral sensitivity. Our analysis suggests that SIKVAV has a high probability of interacting with peroxisome proliferator-activated receptor-gamma (NR-PPAR-γ), which has anti-inflammatory activity. The results of bioinformatics can help understand the participation of SIKVAV in homeostasis and influence the understanding of how this peptide can act as a biological asset in the control of dystrophies, neurodegenerative diseases, and tissue engineering.
Collapse
Affiliation(s)
- Livia Alves Filgueiras
- Laboratory of Innovation in Science and Technology - LACITEC, Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | | | - Samuel Iwao Horita
- Laboratory of Innovation in Therapies, Education, and Bioproducts - LITEB, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Shubhangi D Shirsat
- Laboratory of Innovation in Therapies, Education, and Bioproducts - LITEB, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Varenyam Achal
- Environmental Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, China
- Technion - Israel Institute of Technology, Haifa, Israel
| | - Mahendra Rai
- Department of Biotechnology, SGB Amravati University, Amravati, India
| | - Andrea Henriques-Pons
- Laboratory of Innovation in Therapies, Education, and Bioproducts - LITEB, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Anderson Nogueira Mendes
- Laboratory of Innovation in Science and Technology - LACITEC, Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
169
|
Pesold VV, Wendler O, Gröhn F, Mueller SK. Lymphatic Vessels in Chronic Rhinosinusitis. J Inflamm Res 2024; 17:865-880. [PMID: 38348276 PMCID: PMC10860572 DOI: 10.2147/jir.s436450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/30/2023] [Indexed: 02/15/2024] Open
Abstract
Purpose The purpose of this study was to analyze the nasal lymphatic system in order to uncover novel factors that might be involved in pathogenesis of chronic rhinosinusitis (CRS) with (CRSwNP) and without nasal polyps (CRSsNP). Patients and Methods Lymphatic vessels (LVs) and macrophages were localized and counted in the inferior and middle turbinate, the uncinate process and the ethmoid of CRSwNP and CRSsNP patients, the NP and the inferior turbinate of controls (n≥6 per group). Lysates of the same tissue types (n=7 per group) were analyzed for lymphatic vessel endothelial receptor 1 (LYVE-1), for matrix metalloproteinase 14 (MMP-14) and for Hyaluronic acid (HA) using ELISA. HA was localized in sections of CRSwNP NP, CRSsNP ethmoid and control inferior turbinate (n=6 per group). The results of HA levels were correlated to the number of macrophages in tissues. The nasal secretions of CRSwNP (n=28), CRSsNP (n=30), and control (n=30) patients were analyzed for LYVE-1 and HA using ELISA. Results The number of LVs was significantly lower in tissues of both CRS groups compared to the control. In the tissue lysates, LYVE-1 expression differed significantly between the CRSwNP tissues with a particularly high level in the NP. MMP-14 was significantly overexpressed in CRSwNP uncinate process. There were no significant differences in tissue HA expression. In the mucus LYVE-1 was significantly underexpressed in CRSsNP compared to CRSwNP and control, while HA was significantly underexpressed in both CRS groups. In the NP, HA and macrophages were accumulated particularly below the epithelium. Tissue levels of HA revealed a significant positive correlation with the number of macrophages. Conclusion CRS might be associated with an insufficient clearing of the nasal mucosa through the lymphatics. The accumulation of HA and macrophages might promote inflammation, fluid retention, and polyp formation. These results may provide novel CRS-associated factors.
Collapse
Affiliation(s)
- Vanessa-Vivien Pesold
- Department of Otolaryngology, Head and Neck Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, BY, Germany
| | - Olaf Wendler
- Department of Otolaryngology, Head and Neck Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, BY, Germany
| | - Franziska Gröhn
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, BY, Germany
| | - Sarina K Mueller
- Department of Otolaryngology, Head and Neck Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, BY, Germany
| |
Collapse
|
170
|
Barreiro-Sisto U, Fernández-Fariña S, González-Noya AM, Pedrido R, Maneiro M. Enemies or Allies? Hormetic and Apparent Non-Dose-Dependent Effects of Natural Bioactive Antioxidants in the Treatment of Inflammation. Int J Mol Sci 2024; 25:1892. [PMID: 38339170 PMCID: PMC10855620 DOI: 10.3390/ijms25031892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
This review aims to analyze the emerging number of studies on biological media that describe the unexpected effects of different natural bioactive antioxidants. Hormetic effects, with a biphasic response depending on the dose, or activities that are apparently non-dose-dependent, have been described for compounds such as resveratrol, curcumin, ferulic acid or linoleic acid, among others. The analysis of the reported studies confirms the incidence of these types of effects, which should be taken into account by researchers, discarding initial interpretations of imprecise methodologies or measurements. The incidence of these types of effects should enhance research into the different mechanisms of action, particularly those studied in the field of basic research, that will help us understand the causes of these unusual behaviors, depending on the dose, such as the inactivation of the signaling pathways of the immune defense system. Antioxidative and anti-inflammatory activities in biological media should be addressed in ways that go beyond a mere statistical approach. In this work, some of the research pathways that may explain the understanding of these activities are revised, paying special attention to the ability of the selected bioactive compounds (curcumin, resveratrol, ferulic acid and linoleic acid) to form metal complexes and the activity of these complexes in biological media.
Collapse
Affiliation(s)
- Uxía Barreiro-Sisto
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (U.B.-S.); (S.F.-F.)
| | - Sandra Fernández-Fariña
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (U.B.-S.); (S.F.-F.)
| | - Ana M. González-Noya
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Rosa Pedrido
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Marcelino Maneiro
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (U.B.-S.); (S.F.-F.)
| |
Collapse
|
171
|
Baron G, Altomare A, Della Vedova L, Gado F, Quagliano O, Casati S, Tosi N, Bresciani L, Del Rio D, Roda G, D'Amato A, Lammi C, Macorano A, Vittorio S, Vistoli G, Fumagalli L, Carini M, Leone A, Marino M, Del Bo' C, Miotto G, Ursini F, Morazzoni P, Aldini G. Unraveling the parahormetic mechanism underlying the health-protecting effects of grapeseed procyanidins. Redox Biol 2024; 69:102981. [PMID: 38104483 PMCID: PMC10770607 DOI: 10.1016/j.redox.2023.102981] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023] Open
Abstract
Proanthocyanidins (PACs), the predominant constituents within Grape Seed Extract (GSE), are intricate compounds composed of interconnected flavan-3-ol units. Renowned for their health-affirming properties, PACs offer a shield against a spectrum of inflammation associated diseases, such as diabetes, obesity, degenerations and possibly cancer. While monomeric and dimeric PACs undergo some absorption within the gastrointestinal tract, their larger oligomeric and polymeric counterparts are not bioavailable. However, higher molecular weight PACs engage with the colonic microbiota, fostering the production of bioavailable metabolites that undergo metabolic processes, culminating in the emergence of bioactive agents capable of modulating physiological processes. Within this investigation, a GSE enriched with polymeric PACs was employed to explore in detail their impact. Through comprehensive analysis, the present study unequivocally verified the gastrointestinal-mediated transformation of medium to high molecular weight polymeric PACs, thereby establishing the bioaccessibility of a principal catabolite termed 5-(3',4'-dihydroxyphenyl)-γ-valerolactone (VL). Notably, our findings, encompassing cell biology, chemistry and proteomics, converge to the proposal of the notion of the capacity of VL to activate, upon oxidation to the corresponding quinone, the nuclear factor E2-related factor 2 (Nrf2) pathway-an intricate process that incites cellular defenses and mitigates stress-induced responses, such as a challenge brought by TNFα. This mechanistic paradigm seamlessly aligns with the concept of para-hormesis, ultimately orchestrating the resilience to stress and the preservation of cellular redox equilibrium and homeostasis as benchmarks of health.
Collapse
Affiliation(s)
- G Baron
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - A Altomare
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - L Della Vedova
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - F Gado
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - O Quagliano
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - S Casati
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Luigi Mangiagalli 37, 20133, Milan, Italy
| | - N Tosi
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - L Bresciani
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - D Del Rio
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - G Roda
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - A D'Amato
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - C Lammi
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - A Macorano
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - S Vittorio
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - G Vistoli
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - L Fumagalli
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - M Carini
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - A Leone
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Via Sandro Botticelli 21, 20133, Milan, Italy; Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133, Milan, Italy
| | - M Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133, Milan, Italy
| | - C Del Bo'
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133, Milan, Italy
| | - G Miotto
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - F Ursini
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - P Morazzoni
- Divisione Nutraceutica, Distillerie Umberto Bonollo S.p.A, 35035, Mestrino, Italy
| | - G Aldini
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| |
Collapse
|
172
|
Fernández Miyakawa ME, Casanova NA, Kogut MH. How did antibiotic growth promoters increase growth and feed efficiency in poultry? Poult Sci 2024; 103:103278. [PMID: 38052127 PMCID: PMC10746532 DOI: 10.1016/j.psj.2023.103278] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023] Open
Abstract
It has been hypothesized that reducing the bioenergetic costs of gut inflammation as an explanation for the effect of antibiotic growth promoters (AGPs) on animal efficiency, framing some observations but not explaining the increase in growth rate or the prevention of infectious diseases. The host's ability to adapt to alterations in environmental conditions and to maintain health involves managing all physiological interactions that regulate homeostasis. Thus, metabolic pathways are vital in regulating physiological health as the energetic demands of the host guides most biological functions. Mitochondria are not only the metabolic heart of the cell because of their role in energy metabolism and oxidative phosphorylation, but also a central hub of signal transduction pathways that receive messages about the health and nutritional states of cells and tissues. In response, mitochondria direct cellular and tissue physiological alterations throughout the host. The endosymbiotic theory suggests that mitochondria evolved from prokaryotes, emphasizing the idea that these organelles can be affected by some antibiotics. Indeed, therapeutic levels of several antibiotics can be toxic to mitochondria, but subtherapeutic levels may improve mitochondrial function and defense mechanisms by inducing an adaptive response of the cell, resulting in mitokine production which coordinates an array of adaptive responses of the host to the stressor(s). This adaptive stress response is also observed in several bacteria species, suggesting that this protective mechanism has been preserved during evolution. Concordantly, gut microbiome modulation by subinhibitory concentration of AGPs could be the result of direct stimulation rather than inhibition of determined microbial species. In eukaryotes, these adaptive responses of the mitochondria to internal and external environmental conditions, can promote growth rate of the organism as an evolutionary strategy to overcome potential negative conditions. We hypothesize that direct and indirect subtherapeutic AGP regulation of mitochondria functional output can regulate homeostatic control mechanisms in a manner similar to those involved with disease tolerance.
Collapse
Affiliation(s)
- Mariano Enrique Fernández Miyakawa
- Institute of Pathobiology, National Institute of Agricultural Technology (INTA), Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina..
| | - Natalia Andrea Casanova
- Institute of Pathobiology, National Institute of Agricultural Technology (INTA), Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Michael H Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, USA
| |
Collapse
|
173
|
Wang L, Chen QG, Lu H. Jianpi Qinghua Formula Alleviates Diabetic Myocardial Injury Through Inhibiting JunB/c-Fos Expression. Curr Med Sci 2024; 44:144-155. [PMID: 38393526 DOI: 10.1007/s11596-024-2830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/10/2023] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Diabetic cardiomyopathy (DCM) represents a substantial risk factor for heart failure and increased mortality in individuals afflicted with diabetes mellitus (DM). DCM typically manifests as myocardial fibrosis, myocardial hypertrophy, and impaired left ventricular diastolic function. While the clinical utility of the Jianpi Qinghua (JPQH) formula has been established in treating diabetes and insulin resistance, its potential efficacy in alleviating diabetic cardiomyopathy remains uncertain. This study aims to investigate the impact and underlying molecular mechanisms of the JPQH formula (JPQHF) in ameliorating myocardial injury in nonobese diabetic rats, specifically focusing on apoptosis and inflammation. METHODS Wistar rats were assigned as the normal control group (CON), while Goto-Kakizaki (GK) rats were randomly divided into three groups: DM, DM treated with the JPQHF, and DM treated with metformin (MET). Following a 4-week treatment regimen, various biochemical markers related to glucose metabolism, cardiac function, cardiac morphology, and myocardial ultrastructure in GK rats were assessed. RNA sequencing was utilized to analyze differential gene expression and identify potential therapeutic targets. In vitro experiments involved high glucose to induce apoptosis and inflammation in H9c2 cells. Cell viability was evaluated using CCK-8 assay, apoptosis was monitored via flow cytometry, and the production of inflammatory cytokines was measured using quantitative real-time PCR (qPCR) and ELISA. Protein expression levels were determined by Western blotting analysis. The investigation also incorporated the use of MAPK inhibitors to further elucidate the mechanism at both the transcriptional and protein levels. RESULTS The JPQHF group exhibited significant reductions in interventricular septal thickness at end-systole (IVSs) and left ventricular internal diameter at end-systole and end-diastole (LVIDs and LVIDd). JPQHF effectively suppressed high glucose-induced activation of IL-1β and caspase 3 in cardiomyocytes. Furthermore, JPQHF downregulated the expression of myocardial JunB/c-Fos, which was upregulated in both diabetic rats and high glucose-treated H9c2 cells. CONCLUSION The JPQH formula holds promise in mitigating diabetic myocardial apoptosis and inflammation in cardiomyocytes by inhibiting JunB/c-Fos expression through suppressing the MAPK (p38 and ERK1/2) pathway.
Collapse
Affiliation(s)
- Lin Wang
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Qing-Guang Chen
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hao Lu
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
174
|
Wu Y, Fu W, Liu L, Jiang Y, Liu N, Fang M, Ye H, Li J, Chu Z, Qian H, Shao M. APTES-mediated Cu 2(OH) 3(NO 3) nanomaterials on the surface of silicone catheters for abscess. Colloids Surf B Biointerfaces 2024; 234:113734. [PMID: 38181690 DOI: 10.1016/j.colsurfb.2023.113734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
Metal-based nanomaterials have remarkable bactericidal effects; however, their toxicity cannot be disregarded. To address this concern, we developed a simple synthesis route for antibacterial catheters using metal-based nanomaterials to reduce toxicity while harnessing their excellent bactericidal properties. The grafting agent (3-aminopropyl)triethoxysilane (APTES) forms -NH2 groups on the catheter surface, onto which copper ions form a nanomaterial complex known as Cu2(OH)3(NO3) (defined as SA-Cu). The synthesized SA-Cu exhibited outstanding contact antibacterial effects, as observed through scanning electron microscopy (SEM), which revealed cell membrane crumbing and bacterial rupture on the catheter surface. Furthermore, SA-Cu exhibited excellent biosafety characteristics, as evidenced by the cell counting kit-8 (CCK-8) assay, which showed no significant cytotoxicity. SA-Cu demonstrated sustained antimicrobial capacity, with in vivo experiments demonstrating over 99% bactericidal efficacy against methicillin-resistant Staphylococcus aureus (MRSA) for two weeks. The transcriptome sequencing results suggested that SA-Cu may exert its bactericidal effects by interfering with histidine and purine metabolism in MRSA. This study presents a straightforward method for synthesizing antimicrobial silicone catheters containing copper nanomaterials using copper ions.
Collapse
Affiliation(s)
- Yayun Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China
| | - Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Lin Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China
| | - Yechun Jiang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Nian Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China
| | - Ming Fang
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China
| | - Haoming Ye
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China
| | - Jun Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China
| | - Zhaoyou Chu
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| | - Min Shao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
175
|
Luo S, Liu Z, Jiao R, Li W, Sun J, Ma S, Song J, Chen Z. The associations of two novel inflammation indexes, systemic immune-inflammation index (SII) and system inflammation response index (SIRI), with periodontitis: evidence from NHANES 2009-2014. Clin Oral Investig 2024; 28:129. [PMID: 38300315 DOI: 10.1007/s00784-024-05529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
OBJECTIVES The research's goal is to look for any potential relationships between the systemic immune-inflammation index (SII) and the system inflammation response index (SIRI), along with inflammation indicators and the likelihood of periodontitis. METHODS Ten thousand two hundred eighty-two individuals in sum were determined to be eligible for this cross-sectional study from the National Health and Nutrition Examination Survey (NHANES) between 2009 and 2014. Multiple logistic regression, generalized additive model, smooth curve fitting, subgroup analysis, and interaction tests were done for analyzing the association between periodontitis and SII, SIRI, and other inflammatory indicators. RESULTS The analysis, adjusted for population weighting, revealed that individuals with moderate/severe periodontitis had SII levels of 545.46 (95% CI (529.10, 561.82), P = 0.0044) and SIRI levels of 1.33 (95% CI (1.29, 1.37), P < 0.0001). In a fully adjusted multivariate logistic regression model, SII was not sensibly associated with moderate/severe periodontitis among the continuous and quartile Q1-Q4 groups (OR = 0.97, 95% CI (0.91, 1.02)). The continuous variable of SIRI (OR = 1.11, 95% CI (1.06, 1.17)) and the quartile Q4 group (OR = 1.58, 95% CI (1.28, 1.94)) had a deemed significant positive association with moderate to severe periodontitis. In addition, other inflammatory indicators, especially NLR, PPN, PLR, MLR, PC, NC, and MC were observed to be notably involved moderate/severe periodontist in this research. CONCLUSION We explored the association between periodontitis and two novel comprehensive markers of inflammation (SII and SIRI). CLINICAL RELEVANCE These inflammatory markers are expected to serve as tools to assist clinicians in diagnosing periodontitis.
Collapse
Affiliation(s)
- Shiyi Luo
- Guizhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Zefei Liu
- Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Ruofeng Jiao
- Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
- Guiyang Hospital of Stomatology, Guiyang, 550005, Guizhou Province, China
| | - Wei Li
- Guiyang Hospital of Stomatology, Guiyang, 550005, Guizhou Province, China
| | - Jiangling Sun
- Guiyang Hospital of Stomatology, Guiyang, 550005, Guizhou Province, China
| | - Su Ma
- Guiyang Hospital of Stomatology, Guiyang, 550005, Guizhou Province, China
| | - Jukun Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou Province, China.
| | - Zhu Chen
- Guizhou University Medical College, Guiyang, 550025, Guizhou Province, China.
- Guiyang Hospital of Stomatology, Guiyang, 550005, Guizhou Province, China.
| |
Collapse
|
176
|
Song D, Niu J, Zhang Z, Sun Z, Wang D, Li J, Yang B, Ling N, Ji C. Purple Sweet Potato Polysaccharide Exerting an Anti-inflammatory Effect via a TLR-Mediated Pathway by Regulating Polarization and Inhibiting the Inflammasome Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2165-2177. [PMID: 38233194 DOI: 10.1021/acs.jafc.3c07511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Purple sweet potato polysaccharide (PSPP-1) is a novel glucan; this study aimed to examine the anti-inflammatory effect of PSPP-1 and elucidate its potential mechanisms. Lipopolysaccharide (LPS)-induced RAW264.7 was used as the model of inflammation, cell viability, and levels of nitric oxide (NO), reactive oxygen species (ROS), and calcium ion (Ca2+) were analyzed. ELISA and qPCR were used to assess the productions and mRNA expression of cytokines, and Western blotting was used to assess protein expressions in the TLR-mediated pathway, macrophage polarization, and inflammasome activation. The results demonstrated PSPP-1 inhibited cell proliferation and markedly decreased NO, ROS, and Ca2+ levels. Moreover, PSPP-1 suppressed the secretions and mRNA expressions of pro-inflammatory cytokines and increased those of anti-inflammatory cytokines. Furthermore, PSPP-1 could exert anti-inflammatory effects through different pathways mediated by both TLR2 and TLR4, which modulated the expressions of essential proteins in the myeloid differentiation factor 88 (MyD88)-dependent and toll/IL-1 receptor domain-containing adaptor-inducing interferon-β (TRIF)-dependent signaling pathways. PSPP-1 even regulated the polarization of M1/M2 macrophages and inhibited the nucleotide oligomerization domain-like receptor protein 3 (NLRP3) inflammasome activation. These findings indicate that PSPP-1 can suppress LPS-induced inflammation via multiple pathways and may be a potential agent for therapeutic inflammation-related pathophysiological processes and disorders.
Collapse
Affiliation(s)
- Dongxue Song
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Junbo Niu
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Ziyi Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Zhiwei Sun
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Di Wang
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Jun Li
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Bo Yang
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Na Ling
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Chenfeng Ji
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| |
Collapse
|
177
|
Iakunchykova O, Leonardsen EH, Wang Y. Genetic evidence for causal effects of immune dysfunction in psychiatric disorders: where are we? Transl Psychiatry 2024; 14:63. [PMID: 38272880 PMCID: PMC10810856 DOI: 10.1038/s41398-024-02778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
The question of whether immune dysfunction contributes to risk of psychiatric disorders has long been a subject of interest. To assert this hypothesis a plethora of correlative evidence has been accumulated from the past decades; however, a variety of technical and practical obstacles impeded on a cause-effect interpretation of these data. With the advent of large-scale omics technology and advanced statistical models, particularly Mendelian randomization, new studies testing this old hypothesis are accruing. Here we synthesize these new findings from genomics and genetic causal inference studies on the role of immune dysfunction in major psychiatric disorders and reconcile these new data with pre-omics findings. By reconciling these evidences, we aim to identify key gaps and propose directions for future studies in the field.
Collapse
Affiliation(s)
- Olena Iakunchykova
- Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Esten H Leonardsen
- Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Yunpeng Wang
- Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, 0317, Oslo, Norway.
| |
Collapse
|
178
|
Jaafar A, Zulkipli MA, Mohd Hatta FH, Jahidin AH, Abdul Nasir NA, Hazizul Hasan M. Therapeutic potentials of iridoids derived from Rubiaceae against in vitro and in vivo inflammation: A scoping review. Saudi Pharm J 2024; 32:101876. [PMID: 38226349 PMCID: PMC10788517 DOI: 10.1016/j.jsps.2023.101876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/15/2023] [Indexed: 01/17/2024] Open
Abstract
Acute inflammation may develop into chronic, life-threatening inflammation-related diseases if left untreated or if there are persistent triggering factors. Cancer, diabetes mellitus, stroke, cardiovascular diseases, and neurodegenerative disorders are some of the inflammation-related diseases affecting millions of people worldwide. Despite that, conventional medical therapy such as non-steroidal anti-inflammatory drugs (NSAIDs) is associated with serious adverse effects; hence, there is an urgent need for a newer and safer therapeutic alternative from natural sources. Iridoids are naturally occurring heterocyclic monoterpenoids commonly found in Rubiaceae plants. Plant extracts from the Rubiaceae family were demonstrated to have medicinal benefits against neurodegeneration, inflammation, oxidative stress, hyperglycaemia, and cancer. However, the therapeutic effects of natural iridoids derived from Rubiaceae as well as their prospective impacts on inflammation in vitro and in vivo have not been thoroughly explored. The databases of PubMed, Scopus, and Web of Science were searched for pertinent articles in accordance with PRISMA-ScR guidelines. A total of 31 pertinent articles from in vitro and in vivo studies on the anti-inflammatory potentials of iridoids from Rubiaceae were identified. According to current research, genipin, geniposide, and monotropein are the most researched iridoids from Rubiaceae that reduce inflammation. These iridoids primarily act by attenuating inflammatory cytokines and mediators via inhibition of the NF-κB signalling pathway in various disease models. A comprehensive overview of the current research on the anti-inflammatory properties of iridoids from the Rubiaceae family is presented in this review, highlighting the characteristics of the experimental models used as well as the mechanisms of action of these iridoids. To develop an alternative therapeutic agent from iridoids, more studies are needed to elucidate the effects and mechanism of action of iridoids in a wide variety of experimental models as well as in clinical studies pertaining to inflammation-related diseases.
Collapse
Affiliation(s)
- Aisyah Jaafar
- Department of Pharmacology and Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor, Malaysia
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Muhammad Amal Zulkipli
- Department of Pharmacology and Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor, Malaysia
| | - Fazleen Haslinda Mohd Hatta
- Department of Pharmacology and Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor, Malaysia
| | - Aisyah Hasyila Jahidin
- Department of Pharmacology and Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor, Malaysia
| | - Nurul Alimah Abdul Nasir
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Mizaton Hazizul Hasan
- Department of Pharmacology and Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor, Malaysia
| |
Collapse
|
179
|
Saad MI, Jenkins BJ. The protease ADAM17 at the crossroads of disease: revisiting its significance in inflammation, cancer, and beyond. FEBS J 2024; 291:10-24. [PMID: 37540030 DOI: 10.1111/febs.16923] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/04/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
The protease A Disintegrin And Metalloproteinase 17 (ADAM17) plays a central role in the pathophysiology of several diseases. ADAM17 is involved in the cleavage and shedding of at least 80 known membrane-tethered proteins, which subsequently modulate several intracellular signaling pathways, and therefore alter cell behavior. Dysregulated expression and/or activation of ADAM17 has been linked to a wide range of autoimmune and inflammatory diseases, cancer, and cardiovascular disease. In this review, we provide an overview of the current state of knowledge from preclinical models and clinical data on the diverse pathophysiological roles of ADAM17, and discuss the mechanisms underlying ADAM17-mediated protein shedding and the potential therapeutic implications of targeting ADAM17 in these diseases.
Collapse
Affiliation(s)
- Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic., Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic., Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic., Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic., Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, SA, Australia
| |
Collapse
|
180
|
Cardinali DP, Pandi-Perumal SR, Brown GM. Melatonin as a Chronobiotic and Cytoprotector in Non-communicable Diseases: More than an Antioxidant. Subcell Biochem 2024; 107:217-244. [PMID: 39693027 DOI: 10.1007/978-3-031-66768-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A circadian disruption, manifested by disturbed sleep and low-grade inflammation, is commonly seen in noncommunicable diseases (NCDs). Cardiovascular, respiratory and renal disorders, diabetes and the metabolic syndrome, cancer, and neurodegenerative diseases are among the most common NCDs prevalent in today's 24-h/7 days Society. The decline in plasma melatonin, which is a conserved phylogenetic molecule across all known aerobic creatures, is a constant feature in NCDs. The daily evening melatonin surge synchronizes both the central pacemaker located in the hypothalamic suprachiasmatic nuclei (SCN) and myriads of cellular clocks in the periphery ("chronobiotic effect"). Melatonin is the prototypical endogenous chronobiotic agent. Several meta-analyses and consensus studies support the use of melatonin to treat sleep/wake cycle disturbances associated with NCDs. Melatonin also has cytoprotective properties, acting primarily not only as an antioxidant by buffering free radicals, but also by regulating inflammation, down-regulating pro-inflammatory cytokines, suppressing low-grade inflammation, and preventing insulin resistance, among other effects. Melatonin's phylogenetic conservation is explained by its versatility of effects. In animal models of NCDs, melatonin treatment prevents a wide range of low-inflammation-linked alterations. As a result, the therapeutic efficacy of melatonin as a chronobiotic/cytoprotective drug has been proposed. Sirtuins 1 and 3 are at the heart of melatonin's chronobiotic and cytoprotective function, acting as accessory components or downstream elements of circadian oscillators and exhibiting properties such as mitochondrial protection. Allometric calculations based on animal research show that melatonin's cytoprotective benefits may require high doses in humans (in the 100 mg/day range). If melatonin is expected to improve health in NCDs, the low doses currently used in clinical trials (i.e., 2-10 mg) are unlikely to be beneficial. Multicentre double-blind studies are required to determine the potential utility of melatonin in health promotion. Moreover, melatonin dosage and levels used should be re-evaluated based on preclinical research information.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina.
| | - Seithikurippu R Pandi-Perumal
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Gregory M Brown
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
181
|
De Martin A, Stanossek Y, Pikor NB, Ludewig B. Protective fibroblastic niches in secondary lymphoid organs. J Exp Med 2024; 221:e20221220. [PMID: 38038708 PMCID: PMC10691961 DOI: 10.1084/jem.20221220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
Fibroblastic reticular cells (FRCs) are specialized fibroblasts of secondary lymphoid organs that provide the structural foundation of the tissue. Moreover, FRCs guide immune cells to dedicated microenvironmental niches where they provide lymphocytes and myeloid cells with homeostatic growth and differentiation factors. Inflammatory processes, including infection with pathogens, induce rapid morphological and functional adaptations that are critical for the priming and regulation of protective immune responses. However, adverse FRC reprogramming can promote immunopathological tissue damage during infection and autoimmune conditions and subvert antitumor immune responses. Here, we review recent findings on molecular pathways that regulate FRC-immune cell crosstalk in specialized niches during the generation of protective immune responses in the course of pathogen encounters. In addition, we discuss how FRCs integrate immune cell-derived signals to ensure protective immunity during infection and how therapies for inflammatory diseases and cancer can be developed through improved understanding of FRC-immune cell interactions.
Collapse
Affiliation(s)
- Angelina De Martin
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Yves Stanossek
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Natalia Barbara Pikor
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| |
Collapse
|
182
|
Bonam SR, Mastrippolito D, Georgel P, Muller S. Pharmacological targets at the lysosomal autophagy-NLRP3 inflammasome crossroads. Trends Pharmacol Sci 2024; 45:81-101. [PMID: 38102020 DOI: 10.1016/j.tips.2023.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Many aspects of cell homeostasis and integrity are maintained by the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome. The NLRP3 oligomeric protein complex assembles in response to exogenous and endogenous danger signals. This inflammasome has also been implicated in the pathogenesis of a range of disease conditions, particularly chronic inflammatory diseases. Given that NLRP3 modulates autophagy, which is also a key regulator of inflammasome activity, excessive inflammation may be controlled by targeting this intersecting pathway. However, specific niche areas of NLRP3-autophagy interactions and their reciprocal regulatory mechanisms remain underexplored. Consequently, we lack treatment methods specifically targeting this pivotal axis. Here, we discuss the potential of such strategies in the context of autoimmune and metabolic diseases and propose some research avenues.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Dylan Mastrippolito
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; Strasbourg Institute of Drug Discovery and Development (IMS), Strasbourg, France
| | - Philippe Georgel
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; Strasbourg Institute of Drug Discovery and Development (IMS), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, Strasbourg, France
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; Strasbourg Institute of Drug Discovery and Development (IMS), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, Strasbourg, France; University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.
| |
Collapse
|
183
|
Ciaunica A, Levin M, Rosas FE, Friston K. Nested Selves: Self-Organization and Shared Markov Blankets in Prenatal Development in Humans. Top Cogn Sci 2023. [PMID: 38158882 DOI: 10.1111/tops.12717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
The immune system is a central component of organismic function in humans. This paper addresses self-organization of biological systems in relation to-and nested within-other biological systems in pregnancy. Pregnancy constitutes a fundamental state for human embodiment and a key step in the evolution and conservation of our species. While not all humans can be pregnant, our initial state of emerging and growing within another person's body is universal. Hence, the pregnant state does not concern some individuals but all individuals. Indeed, the hierarchical relationship in pregnancy reflects an even earlier autopoietic process in the embryo by which the number of individuals in a single blastoderm is dynamically determined by cell- interactions. The relationship and the interactions between the two self-organizing systems during pregnancy may play a pivotal role in understanding the nature of biological self-organization per se in humans. Specifically, we consider the role of the immune system in biological self-organization in addition to neural/brain systems that furnish us with a sense of self. We examine the complex case of pregnancy, whereby two immune systems need to negotiate the exchange of resources and information in order to maintain viable self-regulation of nested systems. We conclude with a proposal for the mechanisms-that scaffold the complex relationship between two self-organising systems in pregnancy-through the lens of the Active Inference, with a focus on shared Markov blankets.
Collapse
Affiliation(s)
- Anna Ciaunica
- Centre for Philosophy of Science (CFCUL), University of Lisbon
- Institute of Cognitive Neuroscience, University College London
| | - Michael Levin
- Department of Biology and Allen Discovery Center, Tufts University
| | - Fernando E Rosas
- Department of Informatics, University of Sussex
- Centre for Complexity Science, Imperial College London
- Department of Brain Sciences, Imperial College London
- Centre for Eudaimonia and Human Flourishing, University of Oxford
| | - Karl Friston
- Welcome Centre for Human Neuroimaging, University College London
- VERSES AI Research Lab
| |
Collapse
|
184
|
Nedeljković N, Nikolić M, Čanović P, Zarić M, Živković Zarić R, Bošković J, Vesović M, Bradić J, Anđić M, Kočović A, Nikolić M, Jakovljević V, Vujić Z, Dobričić V. Synthesis, Characterization, and Investigation of Anti-Inflammatory and Cytotoxic Activities of Novel Thiourea Derivatives of Naproxen. Pharmaceutics 2023; 16:1. [PMID: 38276479 PMCID: PMC10820527 DOI: 10.3390/pharmaceutics16010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024] Open
Abstract
The objective of this study was to synthesize seven novel thiourea derivatives of naproxen (8-14), examine the anti-inflammatory activity of the newly synthesized compounds, investigate the cytotoxic potential of both sets of synthesized compounds (1-7 and 8-14), and select the most promising anti-inflammatory and antitumor drug candidates. The results of the in vivo anti-inflammatory study clearly showed that compounds 8 and 9 were capable of decreasing paw edema, as evident from a high percentage of inhibition (44.83% and 49.29%, respectively). In addition, the results of in vitro enzyme inhibition assays demonstrated that neither of the newly synthesized compounds reached 50% inhibition of 5-LOX at concentrations lower than 100 µM. In terms of antitumor potential, derivatives 3 and 8 exhibited strong cytotoxic effects on the HeLa cell line, suggesting the involvement of the extrinsic pathway of apoptosis. According to the overall results obtained for both sets of synthesized molecules, derivatives 4 and 8 can be underlined as molecules with the strongest anti-inflammatory activity, while derivatives 3 and 8 are the most promising cytotoxic agents.
Collapse
Affiliation(s)
- Nikola Nedeljković
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (N.N.); (M.V.); (J.B.); (M.A.); (A.K.)
| | - Miloš Nikolić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (N.N.); (M.V.); (J.B.); (M.A.); (A.K.)
| | - Petar Čanović
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia;
| | - Milan Zarić
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia;
| | - Radica Živković Zarić
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia;
| | - Jelena Bošković
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.B.); (Z.V.); (V.D.)
| | - Marina Vesović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (N.N.); (M.V.); (J.B.); (M.A.); (A.K.)
| | - Jovana Bradić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (N.N.); (M.V.); (J.B.); (M.A.); (A.K.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.N.); (V.J.)
| | - Marijana Anđić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (N.N.); (M.V.); (J.B.); (M.A.); (A.K.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.N.); (V.J.)
| | - Aleksandar Kočović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (N.N.); (M.V.); (J.B.); (M.A.); (A.K.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.N.); (V.J.)
| | - Marina Nikolić
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.N.); (V.J.)
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Vladimir Jakovljević
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.N.); (V.J.)
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University IM Sechenov, 119435 Moscow, Russia
| | - Zorica Vujić
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.B.); (Z.V.); (V.D.)
| | - Vladimir Dobričić
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.B.); (Z.V.); (V.D.)
| |
Collapse
|
185
|
Calder PC, Bach-Faig A, Bevacqua T, Caballero Lopez CG, Chen ZY, Connolly D, Koay WL, Meydani SN, Pinar AS, Ribas-Filho D, Pierre A. Vital role for primary healthcare providers: urgent need to educate the community about daily nutritional self-care to support immune function and maintain health. BMJ Nutr Prev Health 2023; 6:392-401. [PMID: 38618551 PMCID: PMC11009526 DOI: 10.1136/bmjnph-2023-000755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/22/2023] [Indexed: 04/16/2024] Open
Abstract
The importance of self-care to improve health and social well-being is well recognised. Nevertheless, there remains a need to encourage people to better understand how their body works, and how to keep it healthy. Because of its important role, part of this understanding should be based on why the immune system must be supported. This highly complex system is essential for defending against pathogens, but also for maintaining health throughout the body by preserving homeostasis and integrity. Accordingly, the immune system requires active management for optimal functioning and to reduce the risk of chronic diseases. In addition to regular exercise, healthy sleeping patterns, cultivating mental resilience, adequate nutrition through healthy and diverse dietary habits is key to the daily support of immune function. Diet and the immune system are closely intertwined, and a poor diet will impair immunity and increase the risk of acute and chronic diseases. To help elucidate the roles of primary healthcare providers in supporting individuals to engage in self-care, an international group of experts reviewed the evidence for the roles of the immune system in maintaining health and for nutrition in daily immune support, and discussed implications for population health and clinical practice.
Collapse
Affiliation(s)
- Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Reseaech Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Anna Bach-Faig
- Faculty of Health Sciences, Open University of Catalonia, Barcelona, Spain
- Food and Nutrition Area, Barcelona Official College of Pharmacists, Barcelona, Spain
| | | | | | - Zheng-Yu Chen
- International Pharmaceutical Federation, Shanghai, China
| | | | | | - Simin N Meydani
- Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | | | - Durval Ribas-Filho
- Padre Albino Foundation, Faculty of Medicine, Catanduva, São Paulo, Brazil
| | | |
Collapse
|
186
|
Ma Y, Sun T, Ren K, Min T, Xie X, Wang H, Xu G, Dang C, Zhang H. Applications of cold atmospheric plasma in immune-mediated inflammatory diseases via redox homeostasis: evidence and prospects. Heliyon 2023; 9:e22568. [PMID: 38107323 PMCID: PMC10724573 DOI: 10.1016/j.heliyon.2023.e22568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
As a representative technology in plasma medicine, cold atmospheric plasma (CAP) has beneficial outcomes in surface disinfection, wound repair, tissue regeneration, solid tumor therapy. Impact on immune response and inflammatory conditions was also observed in the process of CAP treatment. Relevant literatures were collected to assess efficacy and summarize possible mechanisms of the innovation. CAP mediates alteration in local immune microenvironment mainly through two ways. One is to down-regulate the expression level of several cytokines, impeding further conduction of immune or inflammatory signals. Intervening the functional phenotype of cells through different degree of oxidative stress is the other approach to manage the immune-mediated inflammatory disorders. A series of preclinical and clinical studies confirmed the therapeutic effect and side effects free of CAP. Moreover, several suggestions proposed in this manuscript might help to find directions for future investigation.
Collapse
Affiliation(s)
- Yuyi Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tuanhe Sun
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Kaijie Ren
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tianhao Min
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xin Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Haonan Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Guimin Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
187
|
Zhou CH, Yang H, Zou LF, Liu DF, Yu LZ, Cao HH, Deng LE, Wang ZW, Lu ZB, Liu JS. Ethyl Lithospermate Reduces Lipopolysaccharide-Induced Inflammation through Inhibiting NF-κB and STAT3 Pathways in RAW 264.7 Cells and Zebrafish. Chin J Integr Med 2023; 29:1111-1120. [PMID: 37610554 DOI: 10.1007/s11655-023-3643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE To explore the anti-inflammatory effects of ethyl lithospermate in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine-derived macrophages and zebrafish, and its underlying mechanisms. METHODS 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide (MTT) assays were performed to investigate the toxicity of ethyl lithospermate at different concentrations (12.5-100 µ mol/L) in RAW 264.7 cells. The cells were stimulated with LPS (100 ng/mL) for 12 h to establish an inflammation model in vitro, the production of pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor α (TNF-α) were assessed by enzyme linked immunosorbent assay (ELISA). Western blot was used to ascertain the protein expressions of signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa B (NF-κB) p65, phospho-STAT3 (p-STAT3, Tyr705), inhibitor of NF-κB (IκB) α, and phospho-I κB α (p-IκB α, Ser32), and confocal imaging was used to identify the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705). Additionally, the yolk sacs of zebrafish (3 days post fertilization) were injected with 2 nL LPS (0.5 mg/mL) to induce an inflammation model in vivo. Survival analysis, hematoxylin-eosin (HE) staining, observation of neutrophil migration, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to further study the anti-inflammatory effects of ethyl lithospermate and its probable mechanisms in vivo. RESULTS The non-toxic concentrations of ethyl lithospermate have been found to range from 12.5 to 100 µ mol/L. Ethyl lithospermate inhibited the release of IL-6 and TNF-α(P<0.05 or P<0.01), decreased IκBα degradation and phosphorylation (P<0.05) as well as the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705) in LPS-induced RAW 264.7 cells (P<0.01). Ethyl lithospermate also decreased inflammatory cells infiltration and neutrophil migration while increasing the survival rate of LPS-stimulated zebrafish (P<0.05 or P<0.01). In addition, ethyl lithospermate also inhibited the mRNA expression levels of of IL-6, TNF-α, IκBα, STAT3, and NF-κB in LPS-stimulated zebrafish (P<0.01). CONCLUSION Ethyl lithospermate exerts anti-Inflammatory effected by inhibiting the NF-κB and STAT3 signal pathways in RAW 264.7 macrophages and zebrafish.
Collapse
Affiliation(s)
- Chun-Hong Zhou
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Hua Yang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Li-Fang Zou
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Di-Fa Liu
- State Key Laboratory of Innovative Natural Medicine and Traditional Chinese Medicine Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., Ganzhou, Jiangxi Province, 341000, China
| | - Lin-Zhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Hui-Hui Cao
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Li-E Deng
- Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong Province, 523076, China
| | - Zhang-Wei Wang
- State Key Laboratory of Innovative Natural Medicine and Traditional Chinese Medicine Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., Ganzhou, Jiangxi Province, 341000, China
| | - Zi-Bin Lu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jun-Shan Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
188
|
Dos Santos de Moraes PG, da Silva Santos IB, Silva VBG, Dede Oliveira FariasAguiar JCR, do Amaral Ferraz Navarro DM, de Oliveira AM, Dos Santos Correia MT, Costa WK, da Silva MV. Essential oil from leaves of Myrciaria floribunda (H. West ex Willd.) O. Berg has antinociceptive and anti-inflammatory potential. Inflammopharmacology 2023; 31:3143-3151. [PMID: 37498376 DOI: 10.1007/s10787-023-01300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Myrciaria floribunda is a plant that is distributed across different Brazilian biomes such as the Amazon, Caatinga, Cerrado, and Atlantic Forest, and it possesses antioxidant, antimicrobial, and anticancer properties. The antinociceptive and anti-inflammatory properties of the essential oil from M. floribunda leaves (MfEO) were examined in this study using mouse models. Gas chromatography-mass spectrometry was employed to describe the oil, and the results revealed that δ-cadinene, bicyclogermacrene, α-cadinol, and epi-α-muurolol predominated in the chemical profile. The oil stimulated a decrease in nociception in the chemical and thermal models used to evaluate acute antinociceptive activity. Findings from the use of pain pathway blockers to study the presumed underlying mechanism indicated opioid pathway activity. The anti-edematogenic effect, decreased cell migration, and generation of pro-inflammatory cytokines provided evidence of the anti-inflammatory potential of the essential oil from M. floribunda. According to this research, the essential oil from M. floribunda can effectively alleviate acute pain and inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wêndeo Kennedy Costa
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil.
| | - Márcia Vanusa da Silva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| |
Collapse
|
189
|
Li S, Ma Y, Chen W. Active ingredients of Erhuang Quzhi Granules for treating non-alcoholic fatty liver disease based on the NF-κB/NLRP3 pathway. Fitoterapia 2023; 171:105704. [PMID: 37858757 DOI: 10.1016/j.fitote.2023.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/25/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Erhuang Quzhi Granules (EQG), the Chinese herbal compound, has demonstrated significant clinical efficacy in treating non-alcoholic fatty liver disease (NAFLD). The mechanism of this treatment has been shown to involve the nuclear factor kappa B (NF-κB)/nod-like receptor thermal protein domain associated protein 3 (NLRP3) pathway. However, research on the material basis of EQG against NAFLD is still in its primary stages. Following these considerations, this study predicted and screened the active ingredients of EQG using the absorption, distribution, metabolism, and excretion (ADME) property evaluation tool and molecular docking. Then the levels of these active ingredients in EQG were measured using ultra-high-performance liquid chromatography (UHPLC). The efficacy of the active ingredients and their mechanisms were validated through both in vivo and in vitro experiments. The results indicate that the collected 12 components have favorable metabolic stability, are safe, and have drug-like properties. Aloe-emodin (AE), rhein (RH), curcumin (CUR), emodin (EM), and chrysophanol (CP) showed better binding affinity with TNF-α and Caspase-1 proteins. UHPLC analysis revealed that EQG contains AE, RH, CUR, EM, and CP. Cellular experiments proved that all these five ingredients reduce the accumulation of lipids and reactive oxygen species. In animal models of NAFLD, AE, and RH significantly improved the pathological symptoms of steatosis and fibrosis and reduced the levels of pro-inflammatory factors via the NF-κB/NLRP3 pathway. The results reveal the active ingredients of EQG for treating NAFLD based on the NF-κB/NLRP3 pathway and lay the foundation for the clinical promotion of EQG.
Collapse
Affiliation(s)
- Si Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Yue Ma
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Wen Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China.
| |
Collapse
|
190
|
Hu Y, Chakarov S. Eosinophils in obesity and obesity-associated disorders. DISCOVERY IMMUNOLOGY 2023; 2:kyad022. [PMID: 38567054 PMCID: PMC10917198 DOI: 10.1093/discim/kyad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/18/2023] [Accepted: 11/10/2023] [Indexed: 04/04/2024]
Abstract
Despite the rising prevalence and costs for the society, obesity etiology, and its precise cellular and molecular mechanisms are still insufficiently understood. The excessive accumulation of fat by adipocytes plays a key role in obesity progression and has many repercussions on total body physiology. In recent years the immune system as a gatekeeper of adipose tissue homeostasis has been evidenced and has become a focal point of research. Herein we focus on eosinophils, an important component of type 2 immunity, assuming fundamental, yet ill-defined, roles in the genesis, and progression of obesity and related metabolic disorders. We summarize eosinophilopoiesis and eosinophils recruitment into adipose tissue and discuss how the adipose tissue environments shape their function and vice versa. Finally, we also detail how obesity transforms the local eosinophil niche. Understanding eosinophil crosstalk with the diverse cell types within the adipose tissue environment will allow us to framework the therapeutic potential of eosinophils in obesity.
Collapse
Affiliation(s)
- Yanan Hu
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai, China
| | - Svetoslav Chakarov
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai, China
| |
Collapse
|
191
|
Luo Y, Liu H, Zhang Y, Liu Y, Liu S, Liu X, Luo E. Metal ions: the unfading stars of bone regeneration-from bone metabolism regulation to biomaterial applications. Biomater Sci 2023; 11:7268-7295. [PMID: 37800407 DOI: 10.1039/d3bm01146a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
In recent years, bone regeneration has emerged as a remarkable field that offers promising guidance for treating bone-related diseases, such as bone defects, bone infections, and osteosarcoma. Among various bone regeneration approaches, the metal ion-based strategy has surfaced as a prospective candidate approach owing to the extensive regulatory role of metal ions in bone metabolism and the diversity of corresponding delivery strategies. Various metal ions can promote bone regeneration through three primary strategies: balancing the effects of osteoblasts and osteoclasts, regulating the immune microenvironment, and promoting bone angiogenesis. In the meantime, the complex molecular mechanisms behind these strategies are being consistently explored. Moreover, the accelerated development of biomaterials broadens the prospect of metal ions applied to bone regeneration. This review highlights the potential of metal ions for bone regeneration and their underlying mechanisms. We propose that future investigations focus on refining the clinical utilization of metal ions using both mechanistic inquiry and materials engineering to bolster the clinical effectiveness of metal ion-based approaches for bone regeneration.
Collapse
Affiliation(s)
- Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Emergency, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
192
|
Mamuladze T, Kipnis J. Type 2 immunity in the brain and brain borders. Cell Mol Immunol 2023; 20:1290-1299. [PMID: 37429945 PMCID: PMC10616183 DOI: 10.1038/s41423-023-01043-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/16/2023] [Indexed: 07/12/2023] Open
Abstract
Recent research in neuroimmunology has revolutionized our understanding of the intricate interactions between the immune system and the central nervous system (CNS). The CNS, an "immune-privileged organ", is now known to be intimately connected to the immune system through different cell types and cytokines. While type 2 immune responses have traditionally been associated with allergy and parasitic infections, emerging evidence suggests that these responses also play a crucial role in CNS homeostasis and disease pathogenesis. Type 2 immunity encompasses a delicate interplay among stroma, Th2 cells, innate lymphoid type 2 cells (ILC2s), mast cells, basophils, and the cytokines interleukin (IL)-4, IL-5, IL-13, IL-25, TSLP and IL-33. In this review, we discuss the beneficial and detrimental roles of type 2 immune cells and cytokines in CNS injury and homeostasis, cognition, and diseases such as tumors, Alzheimer's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Tornike Mamuladze
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Immunology Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Immunology Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
193
|
Caronni N, La Terza F, Vittoria FM, Barbiera G, Mezzanzanica L, Cuzzola V, Barresi S, Pellegatta M, Canevazzi P, Dunsmore G, Leonardi C, Montaldo E, Lusito E, Dugnani E, Citro A, Ng MSF, Schiavo Lena M, Drago D, Andolfo A, Brugiapaglia S, Scagliotti A, Mortellaro A, Corbo V, Liu Z, Mondino A, Dellabona P, Piemonti L, Taveggia C, Doglioni C, Cappello P, Novelli F, Iannacone M, Ng LG, Ginhoux F, Crippa S, Falconi M, Bonini C, Naldini L, Genua M, Ostuni R. IL-1β + macrophages fuel pathogenic inflammation in pancreatic cancer. Nature 2023; 623:415-422. [PMID: 37914939 DOI: 10.1038/s41586-023-06685-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with high resistance to therapies1. Inflammatory and immunomodulatory signals co-exist in the pancreatic tumour microenvironment, leading to dysregulated repair and cytotoxic responses. Tumour-associated macrophages (TAMs) have key roles in PDAC2, but their diversity has prevented therapeutic exploitation. Here we combined single-cell and spatial genomics with functional experiments to unravel macrophage functions in pancreatic cancer. We uncovered an inflammatory loop between tumour cells and interleukin-1β (IL-1β)-expressing TAMs, a subset of macrophages elicited by a local synergy between prostaglandin E2 (PGE2) and tumour necrosis factor (TNF). Physical proximity with IL-1β+ TAMs was associated with inflammatory reprogramming and acquisition of pathogenic properties by a subset of PDAC cells. This occurrence was an early event in pancreatic tumorigenesis and led to persistent transcriptional changes associated with disease progression and poor outcomes for patients. Blocking PGE2 or IL-1β activity elicited TAM reprogramming and antagonized tumour cell-intrinsic and -extrinsic inflammation, leading to PDAC control in vivo. Targeting the PGE2-IL-1β axis may enable preventive or therapeutic strategies for reprogramming of immune dynamics in pancreatic cancer.
Collapse
Affiliation(s)
- Nicoletta Caronni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Federica La Terza
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco M Vittoria
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Barbiera
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Mezzanzanica
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Vincenzo Cuzzola
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Simona Barresi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Garett Dunsmore
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Carlo Leonardi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Montaldo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eleonora Lusito
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Erica Dugnani
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Citro
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Melissa S F Ng
- Singapore Immunology Network (SIgN), A*STAR, Singapore, Singapore
| | | | - Denise Drago
- Center for Omics Sciences (COSR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Annapaola Andolfo
- Center for Omics Sciences (COSR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Alessandro Scagliotti
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anna Mondino
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Lorenzo Piemonti
- Vita-Salute San Raffaele University, Milan, Italy
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Claudio Doglioni
- Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Matteo Iannacone
- Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Florent Ginhoux
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Singapore Immunology Network (SIgN), A*STAR, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Stefano Crippa
- Vita-Salute San Raffaele University, Milan, Italy
- Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Falconi
- Vita-Salute San Raffaele University, Milan, Italy
- Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Genua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
194
|
Bai Y, Yu EY, Liu Y, Jin H, Liu X, Wu X, Zhang M, Feng N, Huang P, Zhang H, Kwok RTK, Xia X, Li Y, Tang BZ, Wang H. Molecular Engineering of AIE Photosensitizers for Inactivation of Rabies Virus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303542. [PMID: 37431212 DOI: 10.1002/smll.202303542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/30/2023] [Indexed: 07/12/2023]
Abstract
Rabies is a zoonotic neurological disease caused by the rabies virus (RABV) that is fatal to humans and animals. While several post-infection treatment have been suggested, developing more efficient and innovative antiviral methods are necessary due to the limitations of current therapeutic approaches. To address this challenge, a strategy combining photodynamic therapy and immunotherapy, using a photosensitizer (TPA-Py-PhMe) with high type I and type II reactive oxygen species (ROS) generation ability is proposed. This approach can inactivate the RABV by killing the virus directly and activating the immune response. At the cellular level, TPA-Py-PhMe can reduce the virus titer under preinfection prophylaxis and postinfection treatment, with its antiviral effect mainly dependent on ROS and pro-inflammatory factors. Intriguingly, when mice are injected with TPA-Py-PhMe and exposed to white light irradiation at three days post-infection, the onset of disease is delayed, and survival rates improved to some extent. Overall, this study shows that photodynamic therapy and immunotherapy open new avenues for future antiviral research.
Collapse
Affiliation(s)
- Yujie Bai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Eric Y Yu
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Yongsai Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Hongli Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xingqi Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiaoyu Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Mengyao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Pei Huang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Haili Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ryan T K Kwok
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Xianzhu Xia
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Yuanyuan Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ben Zhong Tang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
| | - Hualei Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| |
Collapse
|
195
|
Jiang H, Sathiyavimal S, Cai L, Devanesan S, Sayed SRM, Jhanani GK, Lin J. Tulsi (Ocimum sanctum) mediated Co nanoparticles with their anti-inflammatory, anti-cancer, and methyl orange dye adsorption properties. ENVIRONMENTAL RESEARCH 2023; 236:116749. [PMID: 37507040 DOI: 10.1016/j.envres.2023.116749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Nanotechnology is an emerging technology that uses medicinal plants to extract nanoparticles for conventional applications. In the present investigation, the medical plant Tulsi (Ocimum sanctum) has used in the synthesis of cobalt (Co) nanoparticles in a cost-effective, feasible process. The efficiency of nanoparticles in removing methyl orange dye was evaluated by analyzing their applications in wastewater treatment. An analysis of the anti-inflammatory and anti-cancer properties of Tulsi-mediated Co nanoparticles was conducted to examine their medical application. Morphological analysis of Co nanoparticles showed that the synthesized nanoparticles were in crystal shape with a mean particle size of 110 nm. A batch adsorption study has shown that incubation periods of 5 h, pH 2, temperatures of 70 °C, and adsorbent dosage of 125 μg/mL are optimal for removing methyl orange dye from wastewater. To examine the anti-inflammatory properties of Tulsi-mediated Co nanoparticles, protein denaturation and nitric oxide scavenging assays were performed. The maximum anti-inflammatory response was recorded at a concentration of 250 μg/mL of Co nanoparticles. MTT assays against MDA-MB-231 human breast cancer cells were used to evaluate the anti-cancer properties of Co nanoparticles. This study investigates the economical extraction of Co nanoparticles from tulsi and its potential use in wastewater purification and biomedical applications.
Collapse
Affiliation(s)
- Han Jiang
- PET Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Selvam Sathiyavimal
- University Centre for Research & Development, Chandigarh University, Mohali, 140103, India
| | - Liping Cai
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Shaban R M Sayed
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - G K Jhanani
- Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| | - Junqing Lin
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
196
|
Sun S, Liu F, Fan F, Chen N, Pan X, Wei Z, Zhang Y. Exploring the mechanism of atherosclerosis and the intervention of traditional Chinese medicine combined with mesenchymal stem cells based on inflammatory targets. Heliyon 2023; 9:e22005. [PMID: 38045166 PMCID: PMC10692769 DOI: 10.1016/j.heliyon.2023.e22005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease, which is the common pathological basis of cardiovascular and cerebrovascular diseases. The immune inflammatory response throughout the course of AS has been evidenced by studies, in which a large number of immune cells and inflammatory factors play a crucial role in the pathogenesis of AS. The inflammation related to AS is mainly mediated by inflammatory cytokines (IL-1β, IL-6, IL-18, TNF-α, hs-CRP, SAA), inflammatory enzymes (Lp-PLA2, sPLA2-IIA, MMPs), and inflammatory signaling pathways (P38 MAPK signaling pathway, NF-κB signaling pathway, TLR2/4 signaling pathway). It is involved in the pathophysiological process of AS, and the degree of inflammation measured by it can be used to evaluate the risk of progression of AS plaque instability. In recent years, traditional Chinese medicine (TCM) has shown the advantage of minimal side effects in immune regulation and has made some progress in the prevention and treatment of AS. Mesenchymal stem cells (MSCs), as self-renewal, highly differentiated, and pluripotent stem cells with anti-inflammatory properties and immune regulation, have been widely used for AS treatment. They also play an important inflammation-immune regulatory function in AS. Notably, in terms of regulating immune cells and inflammatory factors, compared with TCM and its compound, the combination therapy has obvious anti-inflammatory advantages over the use of MSCs alone. It is an important means to further improve the efficacy of AS and provides a new way for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Shibiao Sun
- Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Feixiang Liu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Feiyan Fan
- Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Na Chen
- Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Xiaolong Pan
- Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Zhihui Wei
- Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Yunke Zhang
- Henan University of Chinese Medicine, Zhengzhou 450000, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| |
Collapse
|
197
|
Splichalova A, Kindlova Z, Killer J, Neuzil Bunesova V, Vlkova E, Valaskova B, Pechar R, Polakova K, Splichal I. Commensal Bacteria Impact on Intestinal Toll-like Receptor Signaling in Salmonella-Challenged Gnotobiotic Piglets. Pathogens 2023; 12:1293. [PMID: 38003758 PMCID: PMC10675043 DOI: 10.3390/pathogens12111293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Gnotobiotic (GN) animals with simple and defined microbiota can help to elucidate host-pathogen interferences. Hysterectomy-derived germ-free (GF) minipigs were associated at 4 and 24 h post-hysterectomy with porcine commensal mucinolytic Bifidobacterium boum RP36 (RP36) strain or non-mucinolytic strain RP37 (RP37) or at 4 h post-hysterectomy with Lactobacillus amylovorus (LA). One-week-old GN minipigs were infected with Salmonella Typhimurium LT2 strain (LT2). We monitored histological changes in the ileum, mRNA expression of Toll-like receptors (TLRs) 2, 4, and 9 and their related molecules lipopolysaccharide-binding protein (LBP), coreceptors MD-2 and CD14, adaptor proteins MyD88 and TRIF, and receptor for advanced glycation end products (RAGE) in the ileum and colon. LT2 significantly induced expression of TLR2, TLR4, MyD88, LBP, MD-2, and CD14 in the ileum and TLR4, MyD88, TRIF, LBP, and CD14 in the colon. The LT2 infection also significantly increased plasmatic levels of inflammatory markers interleukin (IL)-6 and IL-12/23p40. The previous colonization with RP37 alleviated damage of the ileum caused by the Salmonella infection, and RP37 and LA downregulated plasmatic levels of IL-6. A defined oligo-microbiota composed of bacterial species with selected properties should probably be more effective in downregulating inflammatory response than single bacteria.
Collapse
Affiliation(s)
- Alla Splichalova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (A.S.); (Z.K.); (B.V.); (K.P.)
| | - Zdislava Kindlova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (A.S.); (Z.K.); (B.V.); (K.P.)
| | - Jiri Killer
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (J.K.); (V.N.B.); (E.V.); (R.P.)
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Vera Neuzil Bunesova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (J.K.); (V.N.B.); (E.V.); (R.P.)
| | - Eva Vlkova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (J.K.); (V.N.B.); (E.V.); (R.P.)
| | - Barbora Valaskova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (A.S.); (Z.K.); (B.V.); (K.P.)
| | - Radko Pechar
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (J.K.); (V.N.B.); (E.V.); (R.P.)
- Department of Research, Food Research Institute Prague, 102 00 Prague, Czech Republic
| | - Katerina Polakova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (A.S.); (Z.K.); (B.V.); (K.P.)
| | - Igor Splichal
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (A.S.); (Z.K.); (B.V.); (K.P.)
| |
Collapse
|
198
|
Dorrity TJ, Shin H, Wiegand KA, Aruda J, Closser M, Jung E, Gertie JA, Leone A, Polfer R, Culbertson B, Yu L, Wu C, Ito T, Huang Y, Steckelberg AL, Wichterle H, Chung H. Long 3'UTRs predispose neurons to inflammation by promoting immunostimulatory double-stranded RNA formation. Sci Immunol 2023; 8:eadg2979. [PMID: 37862432 PMCID: PMC11056275 DOI: 10.1126/sciimmunol.adg2979] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/18/2023] [Indexed: 10/22/2023]
Abstract
Loss of RNA homeostasis underlies numerous neurodegenerative and neuroinflammatory diseases. However, the molecular mechanisms that trigger neuroinflammation are poorly understood. Viral double-stranded RNA (dsRNA) triggers innate immune responses when sensed by host pattern recognition receptors (PRRs) present in all cell types. Here, we report that human neurons intrinsically carry exceptionally high levels of immunostimulatory dsRNAs and identify long 3'UTRs as giving rise to neuronal dsRNA structures. We found that the neuron-enriched ELAVL family of genes (ELAVL2, ELAVL3, and ELAVL4) can increase (i) 3'UTR length, (ii) dsRNA load, and (iii) activation of dsRNA-sensing PRRs such as MDA5, PKR, and TLR3. In wild-type neurons, neuronal dsRNAs signaled through PRRs to induce tonic production of the antiviral type I interferon. Depleting ELAVL2 in WT neurons led to global shortening of 3'UTR length, reduced immunostimulatory dsRNA levels, and rendered WT neurons susceptible to herpes simplex virus and Zika virus infection. Neurons deficient in ADAR1, a dsRNA-editing enzyme mutated in the neuroinflammatory disorder Aicardi-Goutières syndrome, exhibited intolerably high levels of dsRNA that triggered PRR-mediated toxic inflammation and neuronal death. Depleting ELAVL2 in ADAR1 knockout neurons led to prolonged neuron survival by reducing immunostimulatory dsRNA levels. In summary, neurons are specialized cells where PRRs constantly sense "self" dsRNAs to preemptively induce protective antiviral immunity, but maintaining RNA homeostasis is paramount to prevent pathological neuroinflammation.
Collapse
Affiliation(s)
- Tyler J. Dorrity
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Heegwon Shin
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kenenni A. Wiegand
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Justin Aruda
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael Closser
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neuroscience and Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
| | - Emily Jung
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jake A. Gertie
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Medical Scientist Training Program, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Amanda Leone
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Rachel Polfer
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Bruce Culbertson
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Medical Scientist Training Program, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Lisa Yu
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Christine Wu
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Takamasa Ito
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yuefeng Huang
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna-Lena Steckelberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neuroscience and Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
| | - Hachung Chung
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
199
|
Zhang X, Tang F, Shu W, Li D, Liu Y, Xiao H, Zhou J, Li P. Small-molecule fluorescent probes for bioactive species in inflammatory disease: arthritis, pneumonia and hepatitis. Analyst 2023; 148:5303-5321. [PMID: 37796086 DOI: 10.1039/d3an01289a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Inflammation as an adaptive response underlies a wide variety of physiological and pathological processes. The progression of inflammation is closely intertwined with various bioactive molecules. To dissect the biological mechanisms and physiopathological functions of these molecules, exploitation of versatile detection mean is of great importance. Fluorescence imaging technique has been widely employed to track bioactive species in living systems. As a result, many small-molecule fluorescent probes for bioactive species in inflammatory disease have been developed. However, this interesting and frontier topic hasn't been systematically categorized. Therefore, in this review, we have generalized the construction strategies and biological imaging applications of small-molecule fluorescent probes for various bioactive species, including reactive oxygen/nitrogen/sulfur species, enzyme, mainly in arthritis, pneumonia and hepatitis. Moreover, the future challenges in constructing novel fluorescent probes for inflammatory disease are also present. This review will facilitate the comprehension of superior fluorescent probes for active molecules associated with inflammation.
Collapse
Affiliation(s)
- Xiaolei Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Fuyan Tang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, P. R. China
| | - Dongpeng Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Yuying Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
200
|
Lin X, Xu Y, Tong T, Zhang J, He H, Yang L, Deng P, Yu Z, Pi H, Hong H, Zhou Z. Cadmium exposure disturbs myocardial lipid signature and induces inflammation in C57BL/6J mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115517. [PMID: 37776818 DOI: 10.1016/j.ecoenv.2023.115517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
Cadmium is a highly ubiquitous environmental pollutant that poses a serious threat to human health. In this study, we assessed the cardiotoxicity of Cd exposure and explored the possible mechanisms by which Cd exerts its toxic effects. The results demonstrated that exposure to Cd via drinking water containing CdCl2 10 mg/dL for eight consecutive weeks induced cardiac injury in C57BL/6J mice. The histopathological changes of myocardial hemolysis, widening of myocardial space, and fracture of myocardial fiber were observed. Meanwhile, elevated levels of cardiac enzyme markers and up-regulation of pro-apoptotic genes also indicated cardiac injury after Cd exposure. Non-targeted lipidomic analysis demonstrated that Cd exposure altered cardiac lipid metabolism, resulted in an increase in pro-inflammatory lipids, and changed lipid distribution abundance. In addition, Cd exposure affected the secretion of inflammatory cytokines by activating the NF-κB signaling pathway, leading to cardiac inflammation in mice. Taken together, results of our present study expand our understanding of Cd cardiotoxicity at the lipidomic level and provide new experimental evidence for uncovering the association of Cd exposure with cardiovascular diseases.
Collapse
Affiliation(s)
- Xiqin Lin
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yudong Xu
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tong Tong
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Zhang
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Haotian He
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingling Yang
- Department of Occupational Health, Army Medical University, Chongqing, China
| | - Ping Deng
- Department of Occupational Health, Army Medical University, Chongqing, China
| | - Zhengping Yu
- Department of Occupational Health, Army Medical University, Chongqing, China
| | - Huifeng Pi
- Department of Occupational Health, Army Medical University, Chongqing, China
| | - Huihui Hong
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China.
| | - Zhou Zhou
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China; Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|