151
|
Zhang Y, Sun W, Luan B, Li J, Luo D, Jiang Y, Wang L, Chen B. Topological Design of Unprecedented Metal-Organic Frameworks Featuring Multiple Anion Functionalities and Hierarchical Porosity for Benchmark Acetylene Separation. Angew Chem Int Ed Engl 2023; 62:e202309925. [PMID: 37458603 DOI: 10.1002/anie.202309925] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
Separation of acetylene (C2 H2 ) from carbon dioxide (CO2 ) or ethylene (C2 H4 ) is industrially important but still challenging so far. Herein, we developed two novel robust metal organic frameworks AlFSIX-Cu-TPBDA (ZNU-8) with znv topology and SIFSIX-Cu-TPBDA (ZNU-9) with wly topology for efficient capture of C2 H2 from CO2 and C2 H4 . Both ZNU-8 and ZNU-9 feature multiple anion functionalities and hierarchical porosity. Notably, ZNU-9 with more anionic binding sites and three distinct cages displays both an extremely large C2 H2 capacity (7.94 mmol/g) and a high C2 H2 /CO2 (10.3) or C2 H2 /C2 H4 (11.6) selectivity. The calculated capacity of C2 H2 per anion (4.94 mol/mol at 1 bar) is the highest among all the anion pillared metal organic frameworks. Theoretical calculation indicated that the strong cooperative hydrogen bonds exist between acetylene and the pillared SiF6 2- anions in the confined cavity, which is further confirmed by in situ IR spectra. The practical separation performance was explicitly demonstrated by dynamic breakthrough experiments with equimolar C2 H2 /CO2 mixtures and 1/99 C2 H2 /C2 H4 mixtures under various conditions with excellent recyclability and benchmark productivity of pure C2 H2 (5.13 mmol/g) or C2 H4 (48.57 mmol/g).
Collapse
Affiliation(s)
- Yuanbin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, P. R. China
| | - Wanqi Sun
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, P. R. China
| | - Binquan Luan
- IBM Thomas J. Watson Research, 10598, Yorktown Heights, NY, USA
| | - Jiahao Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, P. R. China
| | - Dong Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, 510632, Guangzhou, P. R. China
| | - Yunjia Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, P. R. China
| | - Lingyao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, P. R. China
| | - Banglin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, P. R. China
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou, China
| |
Collapse
|
152
|
Rajendran A, Subraveti SG, Pai KN, Prasad V, Li Z. How Can (or Why Should) Process Engineering Aid the Screening and Discovery of Solid Sorbents for CO 2 Capture? Acc Chem Res 2023; 56:2354-2365. [PMID: 37607397 DOI: 10.1021/acs.accounts.3c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
ConspectusAdsorption using solid sorbents is emerging as a serious contender to amine-based liquid absorption for postcombustion CO2 capture. In the last 20+ years, significant efforts have been invested in developing adsorption processes for CO2 capture. In particular, significant efforts have been invested in developing new adsorbents for this application. These efforts have led to the generation of hundreds of thousands of (hypothetical and real) adsorbents, e.g., zeolites and metal-organic frameworks (MOFs). Identifying the right adsorbent for CO2 capture remains a challenging task. Most studies are focused on identifying adsorbents based on certain adsorption metrics. Recent studies have demonstrated that the performance of an adsorbent is intimately linked to the process in which it is deployed. Any meaningful screening should thus consider the complexity of the process. However, simulation and optimization of adsorption processes are computationally intensive, as they constitute the simultaneous propagation of heat and mass transfer fronts; the process is cyclic, and there are no straightforward design tools, thereby making large-scale process-informed screening of sorbents prohibitive.This Account discusses four papers that develop computational methods to incorporate process-based evaluation for both bottom-up (chemistry to engineering) screening problems and top-down (engineering to chemistry) inverse problems. We discuss the development of the machine-assisted adsorption process learning and emulation (MAPLE) framework, a surrogate model based on deep artificial neural networks (ANNs) that can predict process-level performance by considering both process and material inputs. The framework, which has been experimentally validated, allows for reliable, process-informed screening of large adsorbent databases. We then discuss how process engineering tools can be used beyond adsorbent screening, i.e., to estimate the practically achievable performance and cost limits of pressure vacuum swing adsorption (PVSA) processes should the ideal bespoke adsorbent be made. These studies show what conditions stand-alone PVSA processes are attractive and when they should not be considered. Finally, recent developments in physics-informed neural networks (PINNS) enable the rapid solution of complex partial differential equations, providing tools to potentially identify optimal cycle configurations. Ultimately, we provide areas where further developments are required and emphasize the need for strong collaborations between chemists and chemical engineers to move rapidly from discovery to field trials, as we do not have much time to fulfill commitments to net-zero targets.
Collapse
Affiliation(s)
- Arvind Rajendran
- Donadeo Innovation Centre for Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Sai Gokul Subraveti
- Donadeo Innovation Centre for Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
- SINTEF Energy Research, Trondheim 7019, Norway
| | - Kasturi Nagesh Pai
- Donadeo Innovation Centre for Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
- Svante Structured Adsorbents Centre of Excellence, 3021 Underhill Ave, Burnaby, BC V5A 3C2, Canada
| | - Vinay Prasad
- Donadeo Innovation Centre for Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Zukui Li
- Donadeo Innovation Centre for Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
153
|
Li D, Dong H, Cao X, Wang W, Li C. Enhancing photosynthetic CO 2 fixation by assembling metal-organic frameworks on Chlorella pyrenoidosa. Nat Commun 2023; 14:5337. [PMID: 37660048 PMCID: PMC10475011 DOI: 10.1038/s41467-023-40839-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/12/2023] [Indexed: 09/04/2023] Open
Abstract
The CO2 concentration at ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is crucial to improve photosynthetic efficiency for biomass yield. However, how to concentrate and transport atmospheric CO2 towards the Rubisco carboxylation is a big challenge. Herein, we report the self-assembly of metal-organic frameworks (MOFs) on the surface of the green alga Chlorella pyrenoidosa that can greatly enhance the photosynthetic carbon fixation. The chemical CO2 concentrating approach improves the apparent photo conversion efficiency to about 1.9 folds, which is up to 9.8% in ambient air from an intrinsic 5.1%. We find that the efficient carbon fixation lies in the conversion of the captured CO2 to the transportable HCO3- species at bio-organic interface. This work demonstrates a chemical approach of concentrating atmospheric CO2 for enhancing biomass yield of photosynthesis.
Collapse
Affiliation(s)
- Dingyi Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Hong Dong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, China
| | - Xupeng Cao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wangyin Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, China.
| | - Can Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
154
|
Li Y, Bai Y, Wang Z, Gong Q, Li M, Bo Y, Xu H, Jiang G, Chi K. Exquisitely Constructing a Robust MOF with Dual Pore Sizes for Efficient CO 2 Capture. Molecules 2023; 28:6276. [PMID: 37687104 PMCID: PMC10488667 DOI: 10.3390/molecules28176276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Developing metal-organic framework (MOF) adsorbents with excellent performance and robust stability is of critical importance to reduce CO2 emissions yet challenging. Herein, a robust ultra-microporous MOF, Cu(bpfb)(bdc), with mixed ligands of N, N'-(1,4-phenylene)diisonicotinamide (bpfb), and 1,4-dicarboxybenzene (bdc) was delicately constructed. Structurally, this material possesses double-interpenetrated frameworks formed by two staggered, independent frameworks, resulting in two types of narrow ultra-micropores of 3.4 × 5.0 and 4.2 × 12.8 Å2, respectively. The above structural properties make its highly selective separation at 273~298 K with a CO2 capacity of 71.0~86.2 mg/g. Its adsorption heat over CO2 and IAST selectivity were calculated to be 27 kJ/mol and 52.2, respectively. Remarkably, cyclic breakthrough experiments corroborate its impressive performance in CO2/N2 separation in not only dry but also 75% RH humid conditions. Molecular simulation reveals that C-H···OCO2 in the pores plays a pivotal role in the high selectivity of CO2 adsorption. These results point out the huge potential application of this material for CO2/N2 separation.
Collapse
Affiliation(s)
- Yanxi Li
- CNPC Petrochemical Research Institute Company Limited, Beijing 102206, China (M.L.)
| | - Yuhua Bai
- CNPC Petrochemical Research Institute Company Limited, Beijing 102206, China (M.L.)
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Zhuozheng Wang
- CNPC Petrochemical Research Institute Company Limited, Beijing 102206, China (M.L.)
| | - Qihan Gong
- CNPC Petrochemical Research Institute Company Limited, Beijing 102206, China (M.L.)
| | - Mengchen Li
- CNPC Petrochemical Research Institute Company Limited, Beijing 102206, China (M.L.)
| | - Yawen Bo
- CNPC Petrochemical Research Institute Company Limited, Beijing 102206, China (M.L.)
| | - Hua Xu
- CNPC Petrochemical Research Institute Company Limited, Beijing 102206, China (M.L.)
| | - Guiyuan Jiang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Kebin Chi
- CNPC Petrochemical Research Institute Company Limited, Beijing 102206, China (M.L.)
| |
Collapse
|
155
|
Dong Q, Wan J, Chen H, Huang Y, Duan J. Highly Efficient CO 2 Capture from Wet-Hot Flue Gas by a Robust Trap-and-Flow Crystal. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39606-39613. [PMID: 37579213 DOI: 10.1021/acsami.3c09456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Highly selective CO2 capture from flue gas based on adsorption technology is among the largest challenge on the horizon, due to its high temperature (>333 K), lower partial pressure (0.1-0.2 bar), and competition from water. Due to the designable and tunable pore system, porous coordination polymers (PCPs) have been considered as the most exciting discoveries in porous materials. However, the rational design and function-led preparation of the pore system that permits highly selective CO2 capture from flue gas (CO2/N2/O2/CO/H2O) remains a great challenge. Herein, we report a highly selective CO2 capture from wet-hot (363 K, RH = 40%) flue gas by a robust trap-and-flow crystal (NTU-67). Crystallographic analysis showed that the flow channel provides plausible CO2 traffic, while the confined trap works as an accommodation for captured gas molecules. Further, the hydrophobic pore surface endows the function of the channels that are not influenced by hot moisture, a major obstacle to overcome direct CO2 capture by PCPs. The integral nature of NTU-67, including good stability in SO2, meets the key prerequisites that are usually considered for practical applications. The molecular insight and highly efficient CO2 capture make us believe that different nanospace with their own duties may be extended into ingenious design of more advanced adsorbents for cost-effective and promising for CO2 capture from flue gas.
Collapse
Affiliation(s)
- Qiubing Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Jingmeng Wan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Huanhao Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuhang Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jingui Duan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
156
|
Dong H, Li L, Li C. Controlled alkali etching of MOFs with secondary building units for low-concentration CO 2 capture. Chem Sci 2023; 14:8507-8513. [PMID: 37592979 PMCID: PMC10430719 DOI: 10.1039/d3sc03213b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Abstract
Low-concentration CO2 capture is particularly challenging because it requires highly selective adsorbents that can effectively capture CO2 from gas mixtures containing other components such as nitrogen and water vapor. In this study, we have successfully developed a series of controlled alkali-etched MOF-808-X (where X ranges from 0.04 to 0.10), the FT-IR and XPS characterizations revealed the presence of hydroxyl groups (-OH) on the zirconium clusters. Low-concentration CO2 capture experiments demonstrated improved CO2 capture performance of the MOF-808-X series compared to the pristine MOF-808 under dry conditions (400 ppm CO2). Among them, MOF-808-0.07 with abundant Zr-OH sites showed the highest CO2 capture capacity of 0.21 mmol g-1 under dry conditions, which is 70 times higher than that of pristine MOF-808. Additionally, MOF-808-0.07 exhibited fast adsorption kinetics, stable CO2 capture under humid air conditions (with a relative humidity of 30%), and stable regeneration even after 50 cycles of adsorption and desorption. In situ DRIFTS and 13C CP-MAS ssNMR characterizations revealed that the enhanced low-concentration CO2 capture is attributed to the formation of a stable six-membered ring structure through the interaction of intramolecular hydrogen bonds between neighboring Zr-OH sites via a chemisorption mechanism.
Collapse
Affiliation(s)
- Hong Dong
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Lihua Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
157
|
Cao X, Gao Y, Li Y, Weragoda DM, Tian G, Zhang W, Zhang Z, Zhao X, Chen B. Research progress on MOFs and their derivatives as promising and efficient electrode materials for electrocatalytic hydrogen production from water. RSC Adv 2023; 13:24393-24411. [PMID: 37583672 PMCID: PMC10424057 DOI: 10.1039/d3ra04110g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023] Open
Abstract
Hydrogen energy is considered to be the most potential "ultimate energy source" due to its high combustion calorific value, cleanliness, and pollution-free characteristics. Furthermore, the production of hydrogen via the electrolysis of water has the advantages of simplicity, high efficiency, environmentally safe, and high-purity hydrogen. However, it is also associated with issues such as high-power consumption for the reaction and limited large-scale application of noble metal catalysts. Metal-organic frameworks (MOFs) are porous composite materials composed of metal ions and organic functional groups through orderly coordination with large specific surface areas and large porosity. Herein, we focus on the research status of MOFs and their transition metal derivatives for electrocatalytic water splitting to produce hydrogen and briefly describe the reaction mechanism and evaluation parameters of the electrocatalytic hydrogen evolution and oxygen evolution reactions. Furthermore, the relationship between the catalytic behavior and catalytic activity of different MOF-based catalysts and their morphology, elemental composition, and synthetic strategy is analyzed and discussed. The reasons for the excellent activity and poor stability of the original MOF materials for the electrolysis of water reaction are shown through analysis, and using various means to improve the catalytic activity by changing the electronic structure, active sites, and charge transfer rate, MOF-based catalysts were obtained. Finally, we present perspectives on the future development of MOFs for the electrocatalytic decomposition of water.
Collapse
Affiliation(s)
- Xuankai Cao
- Shandong Technology Innovation Center of Carbon Neutrality, School of Thermal Engineering, Shandong Jianzhu University Jinan 250013 China +8613864154887
| | - Yan Gao
- Shandong Technology Innovation Center of Carbon Neutrality, School of Thermal Engineering, Shandong Jianzhu University Jinan 250013 China +8613864154887
- Shandong Province Jinan Ecological and Environmental Monitoring Center Jinan 250101 China
- School of Mechanical Engineering Sciences, University of Surrey Guildford Surrey GU2 7XH UK
| | - Yanteng Li
- Shandong Technology Innovation Center of Carbon Neutrality, School of Thermal Engineering, Shandong Jianzhu University Jinan 250013 China +8613864154887
| | - Delika M Weragoda
- School of Mechanical Engineering Sciences, University of Surrey Guildford Surrey GU2 7XH UK
| | - Guohong Tian
- School of Mechanical Engineering Sciences, University of Surrey Guildford Surrey GU2 7XH UK
| | - Wenke Zhang
- Shandong Technology Innovation Center of Carbon Neutrality, School of Thermal Engineering, Shandong Jianzhu University Jinan 250013 China +8613864154887
| | - Zhanchao Zhang
- Shandong Province Jinan Ecological and Environmental Monitoring Center Jinan 250101 China
| | - Xudong Zhao
- Energy and Environmental Institute, University of Hull Hull HU6 7RX UK
| | - Baoming Chen
- Shandong Technology Innovation Center of Carbon Neutrality, School of Thermal Engineering, Shandong Jianzhu University Jinan 250013 China +8613864154887
| |
Collapse
|
158
|
Liu B, Chen X, Huang N, Liu S, Wang Y, Lan X, Wei F, Wang T. Imaging the dynamic influence of functional groups on metal-organic frameworks. Nat Commun 2023; 14:4835. [PMID: 37563138 PMCID: PMC10415300 DOI: 10.1038/s41467-023-40590-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Metal-organic frameworks (MOFs) with different functional groups have wide applications, while the understanding of functionalization influences remains insufficient. Previous researches focused on the static changes in electronic structure or chemical environment, while it is unclear in the aspect of dynamic influence, especially in the direct imaging of dynamic changes after functionalization. Here we use integrated differential phase contrast scanning transmission electron microscopy (iDPC-STEM) to directly 'see' the rotation properties of benzene rings in the linkers of UiO-66, and observe the high correlation between local rigidity and the functional groups on the organic linkers. The rigidity is then correlated to the macroscopic properties of CO2 uptake, indicating that functionalization can change the capability through not only static electronic effects, but also dynamic rotation properties. To the best of our knowledge this is the first example of a technique to directly image the rotation properties of linkers in MOFs, which provides an approach to study the local flexibility and paves the way for potential applications in capturing, separation and molecular machine.
Collapse
Affiliation(s)
- Boyang Liu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China.
- Ordos Laboratory, Ordos, Inner Mongolia, 017000, China.
| | - Ning Huang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Sinopec Economics and Development Research Institute Company Limited, Beijing, 100029, China
| | - Shaoxiong Liu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Yu Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Xiaocheng Lan
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Tiefeng Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
159
|
Zhu Z, Parker ST, Forse AC, Lee JH, Siegelman RL, Milner PJ, Tsai H, Ye M, Xiong S, Paley MV, Uliana AA, Oktawiec J, Dinakar B, Didas SA, Meihaus KR, Reimer JA, Neaton JB, Long JR. Cooperative Carbon Dioxide Capture in Diamine-Appended Magnesium-Olsalazine Frameworks. J Am Chem Soc 2023; 145:17151-17163. [PMID: 37493594 PMCID: PMC10416307 DOI: 10.1021/jacs.3c03870] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Indexed: 07/27/2023]
Abstract
Diamine-appended Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) metal-organic frameworks have emerged as promising candidates for carbon capture owing to their exceptional CO2 selectivities, high separation capacities, and step-shaped adsorption profiles, which arise from a unique cooperative adsorption mechanism resulting in the formation of ammonium carbamate chains. Materials appended with primary,secondary-diamines featuring bulky substituents, in particular, exhibit excellent stabilities and CO2 adsorption properties. However, these frameworks display double-step adsorption behavior arising from steric repulsion between ammonium carbamates, which ultimately results in increased regeneration energies. Herein, we report frameworks of the type diamine-Mg2(olz) (olz4- = (E)-5,5'-(diazene-1,2-diyl)bis(2-oxidobenzoate)) that feature diverse diamines with bulky substituents and display desirable single-step CO2 adsorption across a wide range of pressures and temperatures. Analysis of CO2 adsorption data reveals that the basicity of the pore-dwelling amine─in addition to its steric bulk─is an important factor influencing adsorption step pressure; furthermore, the amine steric bulk is found to be inversely correlated with the degree of cooperativity in CO2 uptake. One material, ee-2-Mg2(olz) (ee-2 = N,N-diethylethylenediamine), adsorbs >90% of the CO2 from a simulated coal flue stream and exhibits exceptional thermal and oxidative stability over the course of extensive adsorption/desorption cycling, placing it among top-performing adsorbents to date for CO2 capture from a coal flue gas. Spectroscopic characterization and van der Waals-corrected density functional theory calculations indicate that diamine-Mg2(olz) materials capture CO2 via the formation of ammonium carbamate chains. These results point more broadly to the opportunity for fundamentally advancing materials in this class through judicious design.
Collapse
Affiliation(s)
- Ziting Zhu
- Department
of Materials Science and Engineering, University
of California, Berkeley, California94720, United States
- Department
of Chemistry, University of California, Berkeley, California94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Surya T. Parker
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Alexander C. Forse
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California94720, United States
- Department
of Chemistry, University of California, Berkeley, California94720, United States
| | - Jung-Hoon Lee
- Department
of Physics, University of California, Berkeley, California94720, United States
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca L. Siegelman
- Department
of Chemistry, University of California, Berkeley, California94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Phillip J. Milner
- Department
of Chemistry, University of California, Berkeley, California94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Hsinhan Tsai
- Department
of Chemistry, University of California, Berkeley, California94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Mengshan Ye
- Department
of Chemistry, University of California, Berkeley, California94720, United States
| | - Shuoyan Xiong
- Department
of Chemistry, University of California, Berkeley, California94720, United States
| | - Maria V. Paley
- Department
of Chemistry, University of California, Berkeley, California94720, United States
| | - Adam A. Uliana
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Julia Oktawiec
- Department
of Chemistry, University of California, Berkeley, California94720, United States
| | - Bhavish Dinakar
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Stephanie A. Didas
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Katie R. Meihaus
- Department
of Chemistry, University of California, Berkeley, California94720, United States
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California94720, United States
| | - Jeffrey B. Neaton
- Department
of Physics, University of California, Berkeley, California94720, United States
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey R. Long
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California94720, United States
- Department
of Chemistry, University of California, Berkeley, California94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
160
|
Yu X, Gu J, Liu X, Chang Z, Liu Y. Exploring the Effect of Different Secondary Building Units as Lewis Acid Sites in MOF Materials for the CO 2 Cycloaddition Reaction. Inorg Chem 2023; 62:11518-11527. [PMID: 37437191 DOI: 10.1021/acs.inorgchem.3c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
In order to explore the catalytic effect of different Lewis acid sites (LASs) in the CO2 cycloaddition reaction, different secondary building units and N-rich organic ligand 4,4',4″-s-triazine-1,3,5-triyltri-p-aminobenzoate were assembled to construct six reported MOF materials: [Cu3(tatab)2(H2O)3]·8DMF·9H2O (1), [Cu3(tatab)2(H2O)3]·7.5H2O (2), [Zn4O(tatab)2]·3H2O·17DMF (3), [In3O(tatab)2(H2O)3](NO3)·15DMA (4), [Zr6O4(OH)7(tatab)(Htatab)3(H2O)3]·xGuest (5), and [Zr6O4(OH)4(tatab)4(H2O)3]·xGuest (6) (DMF = N,N-dimethylformamide, and DMA = N,N-dimethylacetamide). Large pore sizes of compound 2 enhance the concentration of substrates, and the multi-active sites inside its framework synergistically promote the process of the CO2 cycloaddition reaction. Such advantages endow compound 2 with the best catalytic performance among the six compounds and surpass many of the reported MOF-based catalysts. Meanwhile, the comparison of the catalytic efficiency indicated that Cu-paddlewheel and Zn4O display better catalytic performances than In3O and Zr6 cluster. The experiments investigate the catalytic effects of LAS types and prove that it is feasible to improve CO2 fixation property by introducing multi-active sites into MOFs.
Collapse
Affiliation(s)
- Xueyue Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiaming Gu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xinyao Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhiyong Chang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, P. R. China
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
161
|
Miao P, Li Y, Du Y. Dual-ligand 3D lammelar chiral metal-organic framework for capillary electrochromatographic enantioseparations. Mikrochim Acta 2023; 190:302. [PMID: 37464133 DOI: 10.1007/s00604-023-05890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
Dual-ligand metal-organic frameworks (MOFs) based on tryptophan and camphoric acid were designed and synthesized as the stationary phase of the capillary electrochromatography (CEC) system. This CEC system showed significantly improved enantioseparation ability for nine drugs, compared with the single-ligand MOF stationary phase. Characterization methods such as N2 adsorption-desorption isotherms and scanning electron microscopy proved that the dual-ligand MOFs possessed excellent 3D spatial structures (ligand ratio is 1:1) which ensured the enantioseparation capability of the CEC system. The influence of ligand types on the chiral selectivity of MOFs was explored using racemic phenylalaninol and its single enantiomers as models. When the chiral type of the ligands is consistent, the enantioseparation ability of the CEC system is better. The chromatographic conditions such as buffer concentration, buffer pH, organic solvent addition ratio, and applied voltage were optimized, and satisfactory repeatability and stability of the CEC system were verified. Additionally, the enantioseparation mechanism of the CEC system was discussed through adsorption kinetic experiments, adsorption isotherm fitting, and thermodynamics.
Collapse
Affiliation(s)
- Pandeng Miao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yuchen Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
162
|
Zhang L, He Z, Liu Y, You J, Lin L, Jia J, Chen S, Hua N, Ma LA, Ye X, Liu Y, Chen CX, Wang Q. A Robust Squarate-Cobalt Metal-Organic Framework for CO 2/N 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37327481 DOI: 10.1021/acsami.3c06530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The separation of CO2 from the industrial post-combustion flue gas is of great importance to reduce the increasingly serious greenhouse effect, yet highly challenging due to the extremely high stability, low cost, and high separation performance requirements for adsorbents under the practical operating conditions. Herein, we report a robust squarate-cobalt metal-organic framework (MOF), FJUT-3, featuring an ultra-small 1D square channel decorated with -OH groups, for CO2/N2 separation. Remarkably, FJUT-3 not only has excellent stability under harsh chemical conditions but also presents low-cost property for scale-up synthesis. Moreover, FJUT-3 shows excellent CO2 separation performance under various humid and temperature conditions confirmed by the transient breakthrough experiments, thus enabling FJUT-3 with adequate potentials for industrial CO2 capture and removal. The distinct CO2 adsorption mechanism is well elucidated by theoretical calculations, in which the hierarchical C···OCO2, C-O···CCO2, and O-H···OCO2 interactions play a vital synergistic role in the selective CO2 adsorption process.
Collapse
Affiliation(s)
- Lei Zhang
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Ziyu He
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Yupeng Liu
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Jianjun You
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Lang Lin
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Jihui Jia
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Song Chen
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Nengbin Hua
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Li-An Ma
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Xiaoyun Ye
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Yanrong Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Cheng-Xia Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qianting Wang
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| |
Collapse
|
163
|
Yang SQ, Krishna R, Chen H, Li L, Zhou L, An YF, Zhang FY, Zhang Q, Zhang YH, Li W, Hu TL, Bu XH. Immobilization of the Polar Group into an Ultramicroporous Metal-Organic Framework Enabling Benchmark Inverse Selective CO 2/C 2H 2 Separation with Record C 2H 2 Production. J Am Chem Soc 2023. [PMID: 37311069 DOI: 10.1021/jacs.3c03265] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
One-step harvest of high-purity light hydrocarbons without the desorption process represents an advanced and highly efficient strategy for the purification of target substances. The separation and purification of acetylene (C2H2) from carbon dioxide (CO2) by CO2-selective adsorbents are urgently demanded yet are very challenging owing to their similar physicochemical properties. Here, we employ the pore chemistry strategy to adjust the pore environment by immobilizing polar groups into an ultramicroporous metal-organic framework (MOF), achieving one-step manufacture of high-purity C2H2 from CO2/C2H2 mixtures. Embedding methyl groups into prototype stable MOF (Zn-ox-trz) not only changes the pore environment but also improves the discrimination of guest molecules. The methyl-functionalized Zn-ox-mtz thus exhibits the benchmark reverse CO2/C2H2 uptake ratio of 12.6 (123.32/9.79 cm3 cm-3) and an exceptionally high equimolar CO2/C2H2 selectivity of 1064.9 at ambient conditions. Molecular simulations reveal that the synergetic effect of pore confinement and surfaces decorated with methyl groups provides high recognition of CO2 molecules through multiple van der Waals interactions. The column breakthrough experiments suggest that Zn-ox-mtz dramatically achieved the one-step purification capacity of C2H2 from the CO2/C2H2 mixture with a record C2H2 productivity of 2091 mmol kg-1, surpassing all of the CO2-selective adsorbents reported so far. In addition, Zn-ox-mtz exhibits excellent chemical stability under different pH values of aqueous solutions (pH = 1-12). Moreover, the highly stable framework and excellent inverse selective CO2/C2H2 separation performance showcase its promising application as a C2H2 splitter for industrial manufacture. This work paves the way to developing reverse-selective adsorbents for the challenging gas separation process.
Collapse
Affiliation(s)
- Shan-Qing Yang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Rajamani Krishna
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Hongwei Chen
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Libo Li
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Lei Zhou
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Yi-Feng An
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Fei-Yang Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Qiang Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Ying-Hui Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Wei Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Tong-Liang Hu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| |
Collapse
|
164
|
Yu Q, Wang X, Wu W, Feng X, Kong D, Khan U, Ren X, Li L. In Situ Encapsulation of Graphene Quantum Dots in Highly Stable Porphyrin Metal-Organic Frameworks for Efficient Photocatalytic CO 2 Reduction. Molecules 2023; 28:4703. [PMID: 37375258 DOI: 10.3390/molecules28124703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/01/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Photocatalytic CO2 reduction to valuable hydrocarbon solar fuel is of great significance but still challenging. Strong CO2 enrichment ability and easily adjustable structures make metal-organic frameworks (MOFs) potential photocatalysts for CO2 conversion. Even though pure MOFs have the potential for photoreduction of CO2, the efficiency is still quite low due to rapid photogenerated electron-hole recombination and other drawbacks. In this work, graphene quantum dots (GQDs) were in situ encapsulated into highly stable MOFs via a solvothermal method for this challenging task. The GQDs@PCN-222 with encapsulated GQDs showed similar Powder X-ray Diffraction (PXRD) patterns to PCN-222, indicating the retained structure. The porous structure was also retained with a Brunauer-Emmett-Teller (BET) surface area of 2066 m2/g. After incorporation of GQDs, the shape of GQDs@PCN-222 particles remained, as revealed by the scanning electron microscope (SEM). As most of the GQDs were covered by thick PCN-222, it was hard to observe those GQDs using a transmission electron microscope (TEM) and a high-resolution transmission electron microscope (HRTEM) directly, the treatment of digested GQDs@PCN-222 particles by immersion in a 1 mM aqueous KOH solution can make the incorporated GQDs visible in TEM and HRTEM. The linker, deep purple porphyrins, make MOFs a highly visible light harvester up to 800 nm. The introduction of GQDs inside PCN-222 can effectively promote the spatial separation of the photogenerated electron-hole pairs during the photocatalytic process, which was proved by the transient photocurrent plot and photoluminescence emission spectra. Compared with pure PCN-222, the obtained GQDs@PCN-222 displayed dramatically enhanced CO production derived from CO2 photoreduction with 147.8 μmol/g/h in a 10 h period under visible light irradiation with triethanolamine (TEOA) as a sacrificial agent. This study demonstrated that the combination of GQDs and high light absorption MOFs provides a new platform for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Qin Yu
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xusheng Wang
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
- Tongxiang Research Institute, Zhejiang Sci-Tech University, Jiaxing 314500, China
- Zhejiang LINIX Motor Co., Ltd., Jinhua 322118, China
| | - Wenbin Wu
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinya Feng
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Deyu Kong
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Usman Khan
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaohui Ren
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lan Li
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
165
|
Zhu Z, Yang L, Xiong Z, Liu D, Hu B, Wang N, Ola O, Zhu Y. SiC@FeZnZiF as a Bifunctional Catalyst with Catalytic Activating PMS and Photoreducing Carbon Dioxide. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101664. [PMID: 37242081 DOI: 10.3390/nano13101664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
Herein, we encapsulated modified silicon carbide nanoparticles utilizing a metal-organic backbone. E-SiC-FeZnZIF composites were successfully prepared via Fe doping. The catalysis activity of this bifunctional composite material was evaluated by the degradation of tetracycline (THC) and carbamazepine (CBZ) and the reduction of carbon dioxide (CO2). Nano SiC has received widespread attention in advanced oxidation applications, especially in the catalytic activation of peroxymonosulfate (PMS). However, the inferior activity of SiC has severely restricted its practical use. In this study of dual functional composite materials, nano SiC was firstly etched under aqueous alkali. Then, zeolite imidazolate frame-8 (ZIF-8) was used for immobilization. The filling of the etched nano SiC with FeZnZiF was confirmed by SEM, XRD, FTIR, BET, and XPS analyses. In addition, E-SiC-FeZnZIF exhibited excellent catalytic activation of peroxymonosulfate (PMS) to oxidize water pollutants, which can degrade tetracycline hydrochloride (THC), achieving a removal rate of 72% within 60 min. Moreover, E-SiC-FeZnZIF exhibited a relatively high CO2 reduction rate with H2O. The yields of CO and CH4 were 0.085 and 0.509 μmol g-1, respectively, after 2 h, which are higher than that of 50 nm of commercial SiC (CO: 0.084 μmol g-1; CH4: 0.209 μmol g-1). This work provides a relatively convenient synthesis path for constructing metal skeleton composites for advanced oxidation and photocatalytic applications. This will have practical significance in protecting water bodies and reducing CO2, which are vital not only for maintaining the natural ecological balance and negative feedback regulation, but also for creating a new application carrier based on nano silicon carbide.
Collapse
Affiliation(s)
- Zhiqi Zhu
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, College of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Liaoliao Yang
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, College of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Zhaodong Xiong
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, College of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Daohan Liu
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, College of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Binbin Hu
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, College of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Nannan Wang
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, College of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Oluwafunmilola Ola
- Advanced Materials Group, Faculty of Engineering, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Yanqiu Zhu
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
| |
Collapse
|
166
|
He Y, Boone P, Lieber AR, Tong Z, Das P, Hornbostel KM, Wilmer CE, Rosi NL. Implementation of a Core-Shell Design Approach for Constructing MOFs for CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23337-23342. [PMID: 37141279 DOI: 10.1021/acsami.3c03457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Adsorption-based capture of CO2 from flue gas and from air requires materials that have a high affinity for CO2 and can resist water molecules that competitively bind to adsorption sites. Here, we present a core-shell metal-organic framework (MOF) design strategy where the core MOF is designed to selectively adsorb CO2, and the shell MOF is designed to block H2O diffusion into the core. To implement and test this strategy, we used the zirconium (Zr)-based UiO MOF platform because of its relative structural rigidity and chemical stability. Previously reported computational screening results were used to select optimal core and shell MOF compositions from a basis set of possible building blocks, and the target core-shell MOFs were prepared. Their compositions and structures were characterized using scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction. Multigas (CO2, N2, and H2O) sorption data were collected both for the core-shell MOFs and for the core and shell MOFs individually. These data were compared to determine whether the core-shell MOF architecture improved the CO2 capture performance under humid conditions. The combination of experimental and computational results demonstrated that adding a shell layer with high CO2/H2O diffusion selectivity can significantly reduce the effect of water on CO2 uptake.
Collapse
Affiliation(s)
- Yiwen He
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Paul Boone
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Austin R Lieber
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Zi Tong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Prasenjit Das
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Katherine M Hornbostel
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Christopher E Wilmer
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
- Department of Electrical and Computer Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
- Clinical and Translational Science Institute, University of Pittsburgh, Meyran Avenue, Suite 7057, Pittsburgh, Pennsylvania 15213, United States
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
167
|
Fu J, He Z, Schott E, Fei H, Tu M, Wu YN. Sequential Sol-Gel Self-Assembly and Nonclassical Gel-Crystal Transformation of the Metal-Organic Framework Gel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206718. [PMID: 36737849 DOI: 10.1002/smll.202206718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/05/2023] [Indexed: 05/04/2023]
Abstract
Metal-organic framework (MOF) gel, an emerging subtype of MOF structure, is unique in formation and function; however, its evolutionary process remains elusive. Here, the evolution of a model gel-based MOF, UiO-66(Zr) gel, is explored by demonstrating its sequential sol-gel self-assembly and nonclassical gel-crystal transformation. The control of the sol-gel process enables the observation and characterization of structures in each assembly stage (phase-separation, polycondensation, and hindered-crystallization) and facilitates the preparation of hierarchical materials with giant mesopores. The gelation mechanism is tentatively attributed to the formation of zirconium oligomers. By further utilizing the pre-synthesized gel, the nonclassical gel-crystal transformation is achieved by the modulation in an unconventional manner, which sheds light on crystal intermediates and distinct crystallization motions ("growth and splitting" and "aggregation and fusion"). The overall sol-gel and gel-crystal evolutions of UiO-66(Zr) enrich self-assembly and crystallization domains, inspire the design of functional structures, and demand more in-depth research on the intermediates in the future.
Collapse
Affiliation(s)
- Jiarui Fu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Ziyan He
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Eduardo Schott
- Department of Inorganic Chemistry of the Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, 7820436, Chile
| | - Honghan Fei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Min Tu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| |
Collapse
|
168
|
Gbe JLK, Ravi K, Tillous EK, Arya A, Grafouté M, Biradar AV. Designing of 3D Architecture Flower-like Mn-Promoted MgO and Its Application for CO 2 Adsorption and CO 2-Assisted Aerobic Oxidation of Alkylbenzenes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17879-17892. [PMID: 36995780 DOI: 10.1021/acsami.3c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Sustainable chemistry research prioritizes reducing atmospheric carbon dioxide, and one logical solution is to develop adsorbents suitable for carbon capture and utilization. In this work, a new family of three-dimensional (3D) flower-like Mn-promoted MgO was synthesized by the coprecipitation method and used as an adsorbent for CO2 capture and a catalyst for CO2 utilization. The scanning electron microscopy (SEM) analysis of the samples shows a 3D architecture composed of thin nanosheets. The X-ray diffraction (XRD) analysis confirms the presence of the MgO with a cubic structure, while X-ray photoelectron spectroscopy (XPS) reveals the existence of Mn particles as a combination of Mn3+ and Mn4+ ions on MgO. N2 adsorption-desorption experiments highlight the beneficial contribution of Mn particles to surface area enhancement and reveal the existence of mesopores. Furthermore, the designed 3D Mn-doped MgO as an adsorbent demonstrates its capability to improve the ability of MgO to adsorb CO2 (from 0.28 mmol/g for pure MgO to 0.74 mmol/g) in ambient conditions and it is regenerable up to 9 cycles with a slight variation after the third cycle. Moreover, Mn-doped MgO shows good catalyst activity for the oxidation of ethylbenzene derivatives to carbonyl compounds in the presence of CO2 and O2. Mn-15/MgO shows excellent catalytic behavior with a conversion of 97.4 and 100% selectivity. Also, it is regenerable with an insignificant decrease in conversion (∼11.63%) after seven cycles, while the selectivity of acetophenone remains stable. The analyses of the recycled sample suggest that the chemical compositions of Mn and Mg influence the catalytic activity of those Mn-promoted MgO materials. The role of CO2 gas in the aerobic oxidation of ethylbenzene to acetophenone has also been proved. Finally, the control experiments and EPR studies reveal that the reaction takes place through the formation of radicals.
Collapse
Affiliation(s)
- Jean-Louis K Gbe
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute (CSMCRI), Bhavnagar 364002, Gujarat, India
- Physics Department, Technology Laboratory, Felix Houphouet Boigny University of Cocody, Abidjan 00225, Côte d'Ivoire
| | - Krishnan Ravi
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute (CSMCRI), Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Eric Kessein Tillous
- Physics Department, Technology Laboratory, Felix Houphouet Boigny University of Cocody, Abidjan 00225, Côte d'Ivoire
| | - Aarti Arya
- AMS Lab, Separation Process Division, CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, Uttarakhand, India
| | - Moussa Grafouté
- Physics Department, Technology Laboratory, Felix Houphouet Boigny University of Cocody, Abidjan 00225, Côte d'Ivoire
| | - Ankush V Biradar
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute (CSMCRI), Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
169
|
Monjezi BH, Okur S, Limbach R, Chandresh A, Sen K, Hashem T, Schwotzer M, Wondraczek L, Wöll C, Knebel A. Fast Dynamic Synthesis of MIL-68(In) Thin Films in High Optical Quality for Optical Cavity Sensing. ACS NANO 2023; 17:6121-6130. [PMID: 36877629 DOI: 10.1021/acsnano.3c01558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fabrication of metal-organic framework (MOF) thin films rigidly anchored on suitable substrates is a crucial prerequisite for the integration of these porous hybrid materials into electronic and optical devices. Thus, far, the structural variety for MOF thin films available through layer-by-layer deposition was limited, as the preparation of those surface-anchored metal-organic frameworks (SURMOFs) has several requirements: mild conditions, low temperatures, day-long reaction times, and nonaggressive solvents. We herein present a fast method for the preparation of the MIL SURMOF on Au-surfaces under rather harsh conditions: Using a dynamic layer-by-layer synthesis for MIL-68(In), thin films of adjustable thickness between 50 and 2000 nm could be deposited within only 60 min. The MIL-68(In) thin film growth was monitored in situ using a quartz crystal microbalance. In-plane X-ray diffraction revealed oriented MIL-68(In) growth with the pore-channels of this interesting MOF aligned parallel to the support. Scanning electron microscopy data demonstrated an extraordinarily low roughness of the MIL-68(In) thin films. Mechanical properties and lateral homogeneity of the layer were probed through nanoindentation. These thin films showed extremely high optical quality. By applying a poly(methyl methacrylate) layer and further depositing an Au-mirror to the top, a MOF optical cavity was fabricated that can be used as a Fabry-Perot interferometer. The MIL-68(In)-based cavity showed a series of sharp resonances in the ultraviolet-visible regime. Changes in the refractive index of MIL-68(In) caused by exposure to volatile compounds led to pronounced position shifts of the resonances. Thus, these cavities are well suited to be used as optical read-out sensors.
Collapse
Affiliation(s)
- Bahram Hosseini Monjezi
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Salih Okur
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - René Limbach
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstraße 6, 07743 Jena, Germany
| | - Abhinav Chandresh
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Kaushik Sen
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Tawheed Hashem
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Matthias Schwotzer
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Lothar Wondraczek
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstraße 6, 07743 Jena, Germany
| | - Christof Wöll
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Alexander Knebel
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstraße 6, 07743 Jena, Germany
| |
Collapse
|
170
|
Cavallo M, Atzori C, Signorile M, Costantino F, Venturi DM, Koutsianos A, Lomachenko KA, Calucci L, Martini F, Giovanelli A, Geppi M, Crocellà V, Taddei M. Cooperative CO 2 adsorption mechanism in a perfluorinated Ce IV-based metal organic framework. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:5568-5583. [PMID: 36936468 PMCID: PMC10012411 DOI: 10.1039/d2ta09746j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Adsorbents able to uptake large amounts of gases within a narrow range of pressure, i.e., phase-change adsorbents, are emerging as highly interesting systems to achieve excellent gas separation performances with little energy input for regeneration. A recently discovered phase-change metal-organic framework (MOF) adsorbent is F4_MIL-140A(Ce), based on CeIV and tetrafluoroterephthalate. This MOF displays a non-hysteretic step-shaped CO2 adsorption isotherm, reaching saturation in conditions of temperature and pressure compatible with real life application in post-combustion carbon capture, biogas upgrading and acetylene purification. Such peculiar behaviour is responsible for the exceptional CO2/N2 selectivity and reverse CO2/C2H2 selectivity of F4_MIL-140A(Ce). Here, we combine data obtained from a wide pool of characterisation techniques - namely gas sorption analysis, in situ infrared spectroscopy, in situ powder X-ray diffraction, in situ X-ray absorption spectroscopy, multinuclear solid state nuclear magnetic resonance spectroscopy and adsorption microcalorimetry - with periodic density functional theory simulations to provide evidence for the existence of a unique cooperative CO2 adsorption mechanism in F4_MIL-140A(Ce). Such mechanism involves the concerted rotation of perfluorinated aromatic rings when a threshold partial pressure of CO2 is reached, opening the gate towards an adsorption site where CO2 interacts with both open metal sites and the fluorine atoms of the linker.
Collapse
Affiliation(s)
- Margherita Cavallo
- Dipartimento di Chimica, Centro di Riferimento NIS e INSTM, Università di Torino Via G. Quarello 15, I-10135 and Via P. Giuria 7 I-10125 Torino Italy
| | - Cesare Atzori
- Dipartimento di Chimica, Centro di Riferimento NIS e INSTM, Università di Torino Via G. Quarello 15, I-10135 and Via P. Giuria 7 I-10125 Torino Italy
- European Synchrotron Radiation Facility 71 Avenue des Martyrs, CS 40220 38043 Grenoble Cedex 9 France
| | - Matteo Signorile
- Dipartimento di Chimica, Centro di Riferimento NIS e INSTM, Università di Torino Via G. Quarello 15, I-10135 and Via P. Giuria 7 I-10125 Torino Italy
| | - Ferdinando Costantino
- Dipartimento di Chimica, Biologia e Biotecnologie, Unità di Ricerca INSTM, Università di Perugia Via Elce di Sotto 8 06123 Perugia Italy
| | - Diletta Morelli Venturi
- Dipartimento di Chimica, Biologia e Biotecnologie, Unità di Ricerca INSTM, Università di Perugia Via Elce di Sotto 8 06123 Perugia Italy
| | - Athanasios Koutsianos
- Centre for Research & Technology Hellas/Chemical Process and Energy Resources Institute 6th km. Charilaou-Thermis 57001 Greece
| | - Kirill A Lomachenko
- European Synchrotron Radiation Facility 71 Avenue des Martyrs, CS 40220 38043 Grenoble Cedex 9 France
| | - Lucia Calucci
- Istituto di Chimica dei Composti Organo Metallici, Unità di Ricerca INSTM, Consiglio Nazionale delle Ricerche Via Giuseppe Moruzzi 1 56124 Pisa Italy
- Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa (CISUP) 56126 Pisa Italy
| | - Francesca Martini
- Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa (CISUP) 56126 Pisa Italy
- Dipartimento di Chimica e Chimica Industriale, Unità di Ricerca INSTM, Università di Pisa Via Giuseppe Moruzzi 13 56124 Pisa Italy
| | - Andrea Giovanelli
- Dipartimento di Chimica e Chimica Industriale, Unità di Ricerca INSTM, Università di Pisa Via Giuseppe Moruzzi 13 56124 Pisa Italy
| | - Marco Geppi
- Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa (CISUP) 56126 Pisa Italy
- Dipartimento di Chimica e Chimica Industriale, Unità di Ricerca INSTM, Università di Pisa Via Giuseppe Moruzzi 13 56124 Pisa Italy
| | - Valentina Crocellà
- Dipartimento di Chimica, Centro di Riferimento NIS e INSTM, Università di Torino Via G. Quarello 15, I-10135 and Via P. Giuria 7 I-10125 Torino Italy
| | - Marco Taddei
- Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa (CISUP) 56126 Pisa Italy
- Dipartimento di Chimica e Chimica Industriale, Unità di Ricerca INSTM, Università di Pisa Via Giuseppe Moruzzi 13 56124 Pisa Italy
- Energy Safety Research Institute, Swansea University Fabian Way Swansea SA1 8EN UK
| |
Collapse
|
171
|
Hu L, Wu W, Gong L, Zhu H, Jiang L, Hu M, Lin D, Yang K. A Novel Aluminum-Based Metal-Organic Framework with Uniform Micropores for Trace BTEX Adsorption. Angew Chem Int Ed Engl 2023; 62:e202215296. [PMID: 36698285 DOI: 10.1002/anie.202215296] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Metal-organic frameworks (MOFs) are potential porous adsorbents for benzene, toluene, ethylbenzene and xylene (BTEX). A novel MOF, using low toxic aluminum (Al) as the metal, named as ZJU-620(Al), with uniform micropore size of 8.37±0.73 Å and specific surface area of 1347 m2 g-1 , was synthesized. It is constructed by one-dimensional rod-shaped AlO6 clusters, formate ligands and 4,4',4''-(2,4,6-trimethylbenzene-1,3,5-triyl) tribenzoic ligands. ZJU-620(Al) exhibits excellent chemical-thermal stability and adsorption for trace BTEX, e.g., benzene adsorption of 3.80 mmol g-1 at P/P0 =0.01 and 298 K, which is the largest one reported. Using Grand Canonical Monte Carlo simulations and Single-crystal X-ray diffraction analyses, it was observed that the excellent adsorption could be attributed to the high affinity of BTEX molecules in ZJU-620(Al) micropores because the kinetic diameters of BTEX are close up to the pore size of ZJU-620(Al).
Collapse
Affiliation(s)
- Laigang Hu
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Wenhao Wu
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Li Gong
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Hongxia Zhu
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Ling Jiang
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Min Hu
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China.,Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, 311200, Hangzhou, China
| |
Collapse
|
172
|
Tu S, Yu L, Liu J, Lin D, Wu Y, Li Z, Wang H, Xia Q. Efficient CO 2 Capture under Humid Conditions on a Novel Amide-Functionalized Fe- soc Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12240-12247. [PMID: 36821648 DOI: 10.1021/acsami.3c00096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
CO2 is the main source of the greenhouse gases, and its capture from flue gas under humid conditions is challenging but important for promoting carbon neutrality. Herein, we report a novel soc topology Fe-based metal-organic framework (Fe-dbai) with highly efficient postcombusion CO2 capture performance by integrating multiple specific functionalities, such as unsaturated metal sites and amide functional groups. The CO2 adsorption capacity and CO2/N2 selectivity of Fe-dbai are high up to 6.4 mmol/g and 64 (298 K, 1 bar), respectively, superior to many other reported MOFs. More importantly, the CO2 working capacity of Fe-dbai under 60% RH conditions preserves 94% of that under dry conditions in the breakthrough experiments of CO2/N2 (15:85, v/v) mixtures. The molecular simulation highlights that the electronegative amide CO- group has a good affinity for CO2 and can improve the interaction between Fe UMS and CO2. Although H2O molecules will occupy a small fraction of the adsorption sites, the confinement effect it produces can enhance the adsorption affinity of the framework for CO2, which results in Fe-dbai retaining most of the CO2 adsorption capacity under humid conditions. The excellent CO2 capture performance makes Fe-dbai a potential candidate for the practical application of CO2 capture.
Collapse
Affiliation(s)
- Shi Tu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, P. R. China
| | - Liang Yu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, P. R. China
- Shenzhen Polytechnic, Hoffmann Institute of Advanced Materials, 7098 Liuxian Boulevard, Shenzhen 518055, China
| | - Jiaqi Liu
- Shenzhen Polytechnic, Hoffmann Institute of Advanced Materials, 7098 Liuxian Boulevard, Shenzhen 518055, China
| | - Danxia Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, P. R. China
| | - Ying Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhong Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, P. R. China
| | - Hao Wang
- Shenzhen Polytechnic, Hoffmann Institute of Advanced Materials, 7098 Liuxian Boulevard, Shenzhen 518055, China
| | - Qibin Xia
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, P. R. China
| |
Collapse
|
173
|
Liu Y, Chang G, Zheng F, Chen L, Yang Q, Ren Q, Bao Z. Hybrid Hydrogen-Bonded Organic Frameworks: Structures and Functional Applications. Chemistry 2023; 29:e202202655. [PMID: 36414543 DOI: 10.1002/chem.202202655] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
As a new class of porous crystalline materials, hydrogen-bonded organic frameworks (HOFs) assembled from building blocks by hydrogen bonds have gained increasing attention. HOFs benefit from advantages including mild synthesis, easy purification, and good recyclability. However, some HOFs transform into unstable frameworks after desolvation, which hinders their further applications. Nowadays, the main challenges of developing HOFs lie in stability improvement, porosity establishment, and functionalization. Recently, more and more stable and permanently porous HOFs have been reported. Of all these design strategies, stronger charge-assisted hydrogen bonds and coordination bonds have been proven to be effective for developing stable, porous, and functional solids called hybrid HOFs, including ionic and metallized HOFs. This Review discusses the rational design synthesis principles of hybrid HOFs and their cutting-edge applications in selective inclusion, proton conduction, gas separation, catalysis and so forth.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China
| | - Ganggang Chang
- State Key Laboratory of Advanced Technology for, Materials Synthesis and Processing, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei Province, 430070, P.R. China
| | - Fang Zheng
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Lihang Chen
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| |
Collapse
|
174
|
Liu Q, Chen M, Chen G, Liu G, Xu R, Jin W. Molecular design of two-dimensional graphdiyne membrane for selective transport of CO2 and H2 over CH4, N2, and CO. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
175
|
Borzehandani MY, Jorabchi MN, Abdulmalek E, Abdul Rahman MB, Mohammad Latif MA. Exploring the Potential of a Highly Scalable Metal-Organic Framework CALF-20 for Selective Gas Adsorption at Low Pressure. Polymers (Basel) 2023; 15:760. [PMID: 36772061 PMCID: PMC9921038 DOI: 10.3390/polym15030760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
In this study, the ability of the highly scalable metal-organic framework (MOF) CALF-20 to adsorb polar and non-polar gases at low pressure was investigated using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations. The results from the simulated adsorption isotherms revealed that the highest loading was achieved for SO2 and Cl2, while the lowest loading was found for F2 molecules. The analysis of interaction energies indicated that SO2 molecules were able to form the strongest adsorbent-adsorbate interactions and had a tight molecular packing due to their polarity and angular structure. Additionally, Cl2 gas was found to be highly adsorbed due to its large van der Waals surface and strong chemical affinity in CALF-20 pores. MD simulations showed that SO2 and Cl2 had the lowest mobility inside CALF-20 pores. The values of the Henry coefficient and isosteric heat of adsorption confirmed that CALF-20 could selectively adsorb SO2 and Cl2. Based on the results, it was concluded that CALF-20 is a suitable adsorbent for SO2 and Cl2 but not for F2. This research emphasizes the importance of molecular size, geometry, and polarity in determining the suitability of a porous material as an adsorbent for specific adsorbates.
Collapse
Affiliation(s)
- Mostafa Yousefzadeh Borzehandani
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Foundry of Reticular Materials for Sustainability, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | | | - Emilia Abdulmalek
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Foundry of Reticular Materials for Sustainability, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Muhammad Alif Mohammad Latif
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Foundry of Reticular Materials for Sustainability, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
176
|
Miura H, Bon V, Senkovska I, Ehrling S, Bönisch N, Mäder G, Grünzner S, Khadiev A, Novikov D, Maity K, Richter A, Kaskel S. Spatiotemporal Design of the Metal-Organic Framework DUT-8(M). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207741. [PMID: 36349824 DOI: 10.1002/adma.202207741] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Switchable metal-organic frameworks (MOFs) change their structure in time and selectively open their pores adsorbing guest molecules, leading to highly selective separation, pressure amplification, sensing, and actuation applications. The 3D engineering of MOFs has reached a high level of maturity, but spatiotemporal evolution opens a new perspective toward engineering materials in the 4th dimension (time) by t-axis design, in essence exploiting the deliberate tuning of activation barriers. This work demonstrates the first example in which an explicit temporal engineering of a switchable MOF (DUT-8, [M1 M2 (2,6-ndc)2 dabco]n , 2,6-ndc = 2,6-naphthalene dicarboxylate, dabco = 1,4diazabicyclo[2.2.2]octane, M1 = Ni, M2 = Co) is presented. The temporal response is deliberately tuned by variations in cobalt content. A spectrum of advanced analytical methods is presented for analyzing the switching kinetics stimulated by vapor adsorption using in situ time-resolved techniques ranging from ensemble adsorption and advanced synchrotron X-ray diffraction experiments to individual crystal analysis. A novel analysis technique based on microscopic observation of individual crystals in a microfluidic channel reveals the lowest limit for adsorption switching reported so far. Differences in the spatiotemporal response of crystal ensembles originate from an induction time that varies statistically and widens characteristically with increasing cobalt content reflecting increasing activation barriers.
Collapse
Affiliation(s)
- Hiroki Miura
- Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
- Nippon Steel Corporation, 20-1 Shintomi, Futtsu, Chiba, 293-8511, Japan
| | - Volodymyr Bon
- Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
| | - Irena Senkovska
- Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
| | - Sebastian Ehrling
- 3P INSTRUMENTS GmbH & Co. KG, Branch office Leipzig, Bitterfelder Str. 1-5, 04129, Leipzig, Germany
| | - Nadine Bönisch
- Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
| | - Gerrit Mäder
- Fraunhofer Institute of Materials and Beam Technology, Wintergerbstr. 28, 01277, Dresden, Germany
| | - Stefan Grünzner
- Professur Mikrosystemtechnik, Technische Universität Dresden, 01062, Dresden, Germany
| | - Azat Khadiev
- P23 group, Petra III Synchrotron, DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Dmitri Novikov
- P23 group, Petra III Synchrotron, DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Kartik Maity
- Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
| | - Andreas Richter
- Professur Mikrosystemtechnik, Technische Universität Dresden, 01062, Dresden, Germany
| | - Stefan Kaskel
- Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
- Fraunhofer Institute of Materials and Beam Technology, Wintergerbstr. 28, 01277, Dresden, Germany
| |
Collapse
|
177
|
Perego J, Bezuidenhout CX, Bracco S, Piva S, Prando G, Aloisi C, Carretta P, Kaleta J, Le TP, Sozzani P, Daolio A, Comotti A. Benchmark Dynamics of Dipolar Molecular Rotors in Fluorinated Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202215893. [PMID: 36469012 DOI: 10.1002/anie.202215893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Fluorinated Metal-Organic Frameworks (MOFs), comprising a wheel-shaped ligand with geminal rotating fluorine atoms, produced benchmark mobility of correlated dipolar rotors at 2 K, with practically null activation energy (Ea =17 cal mol-1 ). 1 H T1 NMR revealed multiple relaxation phenomena due to the exchange among correlated dipole-rotor configurations. Synchrotron radiation X-ray diffraction at 4 K, Density Functional Theory, Molecular Dynamics and phonon calculations showed the fluid landscape and pointed out a cascade mechanism converting dipole configurations into each other. Gas accessibility, shown by hyperpolarized-Xe NMR, allowed for chemical stimuli intervention: CO2 triggered dipole reorientation, reducing their collective dynamics and stimulating a dipole configuration change in the crystal. Dynamic materials under limited thermal noise and high responsiveness enable the fabrication of molecular machines with low energy dissipation and controllable dynamics.
Collapse
Affiliation(s)
- Jacopo Perego
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Charl X Bezuidenhout
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Silvia Bracco
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Sergio Piva
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Giacomo Prando
- Department of Physics, University of Pavia, Via Bassi 6, 27100, Pavia, Italy
| | - Cristian Aloisi
- Department of Physics, University of Pavia, Via Bassi 6, 27100, Pavia, Italy
| | - Pietro Carretta
- Department of Physics, University of Pavia, Via Bassi 6, 27100, Pavia, Italy
| | - Jiří Kaleta
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, 16000, Prague, Czech Republic
| | - Thi Phuong Le
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, 16000, Prague, Czech Republic
| | - Piero Sozzani
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Andrea Daolio
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Angiolina Comotti
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| |
Collapse
|
178
|
Zhang YZ, Kong XJ, Zhou WF, Li CH, Hu H, Hou H, Liu Z, Geng L, Huang H, Zhang X, Zhang DS, Li JR. Pore Environment Optimization of Microporous Metal-Organic Frameworks with Huddled Pyrazine Pillars for C 2H 2/CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4208-4215. [PMID: 36625524 DOI: 10.1021/acsami.2c19779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) have been proven promising in addressing many critical issues related to gas separation and purification. However, it remains a great challenge to optimize the pore environment of MOFs for purification of specific gas mixtures. Herein, we report the rational construction of three isostructural microporous MOFs with the 4,4',4"-tricarboxyltriphenylamine (H3TCA) ligand, unusual hexaprismane Ni6O6 cluster, and functionalized pyrazine pillars [PYZ-x, x = -H (DZU-10), -NH2 (DZU-11), and -OH (DZU-12)], where the building blocks of Ni6O6 clusters and huddled pyrazine pillars are reported in porous MOFs for the first time. These building blocks have enabled the resulting materials to exhibit good chemical stability and variable pore chemistry, which thus contribute to distinct performances toward C2H2/CO2 separation. Both single-component isotherms and dynamic column breakthrough experiments demonstrate that DZU-11 with the PYZ-NH2 pillar outperforms its hydrogen and hydroxy analogues. Density functional theory calculations reveal that the higher C2H2 affinity of DZU-11 over CO2 is attributed to multiple electrostatic interactions between C2H2 and the framework, including strong C≡C···H-N (2.80 Å) interactions. This work highlights the potential of pore environment optimization to construct smart MOF adsorbents for some challenging gas separations.
Collapse
Affiliation(s)
- Yong-Zheng Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Xiang-Jing Kong
- Bernal Institute and Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Wen-Feng Zhou
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Chun-Hui Li
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Hui Hu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Hengnuo Hou
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Zhongmin Liu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Longlong Geng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Xiuling Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Da-Shuai Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
179
|
Short G, Burentugs E, Proaño L, Moon HJ, Rim G, Nezam I, Korde A, Nair S, Jones CW. Single-Walled Zeolitic Nanotubes: Advantaged Supports for Poly(ethylenimine) in CO 2 Separation from Simulated Air and Flue Gas. JACS AU 2023; 3:62-69. [PMID: 36711098 PMCID: PMC9875257 DOI: 10.1021/jacsau.2c00553] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Previous research has demonstrated that amine polymers rich in primary and secondary amines supported on mesoporous substrates are effective, selective sorbent materials for removal of CO2 from simulated flue gas and air. Common substrates used include mesoporous alumina and silica (such as SBA-15 and MCM-41). Conventional microporous materials are generally less effective, since the pores are too small to support low volatility amines. Here, we deploy our newly discovered zeolite nanotubes, a first-of-their-kind quasi-1D hierarchical zeolite, as a substrate for poly(ethylenimine) (PEI) for CO2 capture from dilute feeds. PEI is impregnated into the zeolite at specific organic loadings. Thermogravimetric analysis and porosity measurements are obtained to determine organic loading, pore filling, and surface area of the supported PEI prior to CO2 capture studies. MCM-41 with comparable pore size and surface area is also impregnated with PEI to provide a benchmark material that allows for insight into the role of the zeolite nanotube intrawall micropores on CO2 uptake rates and capacities. Over a range of PEI loadings, from 20 to 70 w/w%, the zeolite allows for increased CO2 capture capacity over the mesoporous silica by ∼25%. Additionally, uptake kinetics for nanotube-supported PEI are roughly 4 times faster than that of a comparable PEI impregnated in SBA-15. It is anticipated that this new zeolite will offer numerous opportunities for engineering additional advantaged reaction and separation processes.
Collapse
|
180
|
Cheng H, Wang Q, Bai J. Ligand-Functional Groups Induced Tuning MOFs' 2D into 1D Pore Channels for Pipeline Natural Gas Purification. Chemistry 2023; 29:e202202047. [PMID: 36259356 DOI: 10.1002/chem.202202047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/07/2022]
Abstract
The solvothermal reactions of CoCl2 ⋅ 6H2 O, 3,5-pyridinedicarboxylic acid (H2 L) and isonicotinic acid (HL1 )/3-amino isonicotinic acid (HL2 )/3-chloro isonicotinic acid (HL3 ) successfully led to three tfz-d topological pillar-layer [Co4 (μ-F)2 (COO)6 (NC5 H4 )4 ] cluster-based MOFs, namely, [Co4 (μ-F)2 (L)2 (L1 )2 ⋅ 2DMA] ⋅ DMA ⋅ 2H2 O (SNNU-Bai76, SNNU-Bai=Shaanxi Normal University Bai's group), [Co4 (μ-F)2 (L)2 (L2 )2 ⋅ 2H2 O] ⋅ 2DMA ⋅ 2H2 O (SNNU-Bai77) and [Co4 (μ-F)2 (L)2 (L3 )2 ⋅ 2H2 O] ⋅ 2DMF ⋅ 2H2 O (SNNU-Bai78). With the 2D pore channels in SNNU-Bai76 and SNNU-Bai77 being tuned to the 1D pore channel in SNNU-Bai78, C3 H8 and C2 H6 adsorption uptakes are apparently improved and the IAST selectivities of C3 H8 /CH4 and C2 H6 /CH4 almost remain, which indicate that SNNU-Bai78 may be one potential separation material for the pipeline natural gas purification. These were further confirmed by the breakthrough experiments for the simulated pipeline natural gas (C3 H8 /C2 H6 /CH4 : 5/10/85 gas mixture) of three isostructural MOFs. Furthermore, GCMC simulations revealed that due to one of the pore channels blocked by Cl atoms in a couple of 3-chloro isonicotinic acid with the changed conformation as the pillar, the pore wall of the formed 1D pore channel in SNNU-Bai78 may interact with the adsorbed C3 H8 or C2 H6 molecule more strongly, for which more atoms of framework at the new adsorption site will interact with the adsorbed gas molecule by more intermolecular interactions. This was also evidenced by the increased binding energies, being consistent with the tuning of adsorption enthalpies for C3 H8 and C2 H6 gas molecules, and the reduced C3 H8 and C2 H6 gas diffusion coefficients in SNNU-Bai78. Very interestingly, this work is the first example of finely tuning the pore connectivity of MOFs toward strengthened host-guest interactions for the gas adsorption and separation.
Collapse
Affiliation(s)
- Hongtao Cheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Qian Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Junfeng Bai
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
181
|
Xue Z, Zheng JJ, Nishiyama Y, Yao MS, Aoyama Y, Fan Z, Wang P, Kajiwara T, Kubota Y, Horike S, Otake KI, Kitagawa S. Fine Pore-Structure Engineering by Ligand Conformational Control of Naphthalene Diimide-Based Semiconducting Porous Coordination Polymers for Efficient Chemiresistive Gas Sensing. Angew Chem Int Ed Engl 2023; 62:e202215234. [PMID: 36377418 DOI: 10.1002/anie.202215234] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Exploring new porous coordination polymers (PCPs) that have tunable structure and conductivity is attractive but remains challenging. Herein, fine pore structure engineering by ligand conformation control of naphthalene diimide (NDI)-based semiconducting PCPs with π stacking-dependent conductivity tunability is achieved. The π stacking distances and ligand conformation in these isoreticular PCPs were modulated by employing metal centers with different coordination geometries. As a result, three conjugated PCPs (Co-pyNDI, Ni-pyNDI, and Zn-pyNDI) with varying pore structure and conductivity were obtained. Their crystal structures were determined by three-dimensional electron diffraction. The through-space charge transfer and tunable pore structure in these PCPs result in modulated selectivity and sensitivity in gas sensing. Zn-pyNDI can serve as a room-temperature operable chemiresistive sensor selective to acetone.
Collapse
Affiliation(s)
- Ziqian Xue
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study,Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yusuke Nishiyama
- RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan.,JEOL Ltd., Musashino, Akishima, Tokyo 196-8558, Japan
| | - Ming-Shui Yao
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study,Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.,State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Zhongguancun Beiertiao No. 1, Haidian, Beijing, 100190, China
| | | | - Zeyu Fan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study,Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ping Wang
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study,Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Kajiwara
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study,Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiki Kubota
- Department of Physics, Graduate School of Science, Osaka Metropolitan University, 599-8531, Osaka, Japan
| | - Satoshi Horike
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study,Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study,Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study,Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
182
|
|
183
|
Metal-organic frameworks for the adsorptive removal of pharmaceutically active compounds (PhACs): Comparison to activated carbon. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
184
|
Wang X, Liu H, Zhang J, Chen S. Covalent organic frameworks (COFs): a promising CO 2 capture candidate material. Polym Chem 2023. [DOI: 10.1039/d2py01350a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Covalent organic frameworks (COFs) are an emerging kind of porous crystal material.
Collapse
Affiliation(s)
- Xiaoqiong Wang
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Haorui Liu
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jinrui Zhang
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Shuixia Chen
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
- Materials Science Institute, Sun Yat-Sen University, Guangzhou 510275, PR China
| |
Collapse
|
185
|
Pugh SM, Forse AC. Nuclear magnetic resonance studies of carbon dioxide capture. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 346:107343. [PMID: 36512903 DOI: 10.1016/j.jmr.2022.107343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Carbon dioxide capture is an important greenhouse gas mitigation technology that can help limit climate change. The design of improved capture materials requires a detailed understanding of the mechanisms by which carbon dioxide is bound. Nuclear magnetic resonance (NMR) spectroscopy methods have emerged as a powerful probe of CO2 sorption and diffusion in carbon capture materials. In this article, we first review the practical considerations for carrying out NMR measurements on capture materials dosed with CO2 and we then present three case studies that review our recent work on NMR studies of CO2 binding in metal-organic framework materials. We show that simple 13C NMR experiments are often inadequate to determine CO2 binding modes, but that more advanced experiments such as multidimensional NMR experiments and 17O NMR experiments can lead to more conclusive structural assignments. We further discuss how pulsed field gradient (PFG) NMR can be used to explore diffusion of adsorbed CO2 through the porous framework. Finally, we provide an outlook on the challenges and opportunities for the further development of NMR methodologies that can improve our understanding of carbon capture.
Collapse
Affiliation(s)
- Suzi M Pugh
- Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge CB21EW, UK
| | - Alexander C Forse
- Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge CB21EW, UK.
| |
Collapse
|
186
|
Mixed-matrix membranes based on novel hydroxamate metal–organic frameworks with two-dimensional layers for CO2/N2 separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
187
|
Striolo A, Huang S. Upcoming Transformations in Integrated Energy/Chemicals Sectors: Some Challenges and Several Opportunities. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:21527-21541. [PMID: 36605781 PMCID: PMC9806836 DOI: 10.1021/acs.jpcc.2c05192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The sociopolitical events over the past few years led to transformative changes in both the energy and chemical sectors. One of the most evident consequences of these events is the significant focus on sustainability. In fact, rather than an engaging discussion within elite social circles, the search for sustainability is now one of the hard requirements investors impose on companies. The concept of sustainability itself has developed since its inception, and now it encompasses environmental as well as socioeconomic aspects. The major players in the energy and chemical sectors seem to embrace these changes and the related challenges; in most cases, tangible ambitious goals have been proposed. For example, bp aims "to become a net zero company by 2050 or sooner, and to help the world get to net zero". Although tragic events such as the war in Ukraine directly affect global supply chains, leading to some reconsiderations in medium-term industrial and political strategies, trends and public demands seem determined to pursue ambitious sustainable goals, as tangible as the European Union's "Fit for 55" climate package, approved on May 12, 2022, which effectively bans internal combustion engines for new passenger cars and light commercial vehicles from 2035. These trends will likely lead to profound changes in both the chemical and energy sectors. While some predictions may miss the target, speculating about upcoming challenges and opportunities could help us prepare for the future. This is the purpose of this brief Perspective.
Collapse
Affiliation(s)
- Alberto Striolo
- School
of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
- Department
of Chemical Engineering, University College
London, London, U.K. WC1E 7JE
| | - Shanshan Huang
- Applied
Sciences, Innovation and Engineering, BP
International Ltd., Sunbury-On-Thames, U.K. TW16 7LN
| |
Collapse
|
188
|
Oktavian R, Schireman R, Glasby LT, Huang G, Zanca F, Fairen-Jimenez D, Ruggiero MT, Moghadam PZ. Computational Characterization of Zr-Oxide MOFs for Adsorption Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56938-56947. [PMID: 36516445 PMCID: PMC9801377 DOI: 10.1021/acsami.2c13391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Zr-oxide secondary building units construct metal-organic framework (MOF) materials with excellent gas adsorption properties and high mechanical, thermal, and chemical stability. These attributes have led Zr-oxide MOFs to be well-recognized for a wide range of applications, including gas storage and separation, catalysis, as well as healthcare domain. Here, we report structure search methods within the Cambridge Structural Database (CSD) to create a curated subset of 102 Zr-oxide MOFs synthesized to date, bringing a unique record for all researchers working in this area. For the identified structures, we manually corrected the proton topology of hydroxyl and water molecules on the Zr-oxide nodes and characterized their textural properties, Brunauer-Emmett-Teller (BET) area, and topology. Importantly, we performed systematic periodic density functional theory (DFT) calculations comparing 25 different combinations of basis sets and functionals to calculate framework partial atomic charges for use in gas adsorption simulations. Through experimental verification of CO2 adsorption in selected Zr-oxide MOFs, we demonstrate the sensitivity of CO2 adsorption predictions at the Henry's regime to the choice of the DFT method for partial charge calculations. We characterized Zr-MOFs for their CO2 adsorption performance via high-throughput grand canonical Monte Carlo (GCMC) simulations and revealed how the chemistry of the Zr-oxide node could have a significant impact on CO2 uptake predictions. We found that the maximum CO2 uptake is obtained for structures with the heat of adsorption values >25 kJ/mol and the largest cavity diameters of ca. 6-7 Å. Finally, we introduced augmented reality (AR) visualizations as a means to bring adsorption phenomena alive in porous adsorbents and to dynamically explore gas adsorption sites in MOFs.
Collapse
Affiliation(s)
- Rama Oktavian
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
| | - Raymond Schireman
- Department
of Chemistry, University of Vermont, Burlington, Vermont 05405, United States
| | - Lawson T. Glasby
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
| | - Guanming Huang
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
| | - Federica Zanca
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
| | - David Fairen-Jimenez
- Department
of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Michael T. Ruggiero
- Department
of Chemistry, University of Vermont, Burlington, Vermont 05405, United States
| | - Peyman Z. Moghadam
- Department
of Chemical Engineering, University College
London, London WC1E 7JE, U.K.
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
| |
Collapse
|
189
|
Jo D, Lee SK, Cho KH, Yoon JW, Lee UH. An Amine-Functionalized Ultramicroporous Metal-Organic Framework for Postcombustion CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56707-56714. [PMID: 36516324 DOI: 10.1021/acsami.2c15476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Among the most promising methods by which to capture CO2 from flue gas, the emission of which has accelerated global warming, is energy-efficient physisorption using metal-organic framework (MOF) adsorbents. Here, we present a novel cuprous-based ultramicroporous MOF, Cu(adci)-2 (adci- = 2-amino-4,5-dicyanoimidazolate), which was rationally synthesized by combining two strategies to design MOF physisorbents for enhanced CO2 capturing, i.e., aromatic amine functionalization and the introduction of ultramicroporosity (pore size <7 Å). Synchrotron powder X-ray diffraction and a Rietveld analysis reveal that the Cu(adci)-2 structure has one-dimensional square-shaped channels, in each of which all affiliated ligands, specifically NH2 groups at the 2-position of the imidazolate ring, have the same orientation, with a pair of NH2 groups therefore facing each other on opposite sides of the channel walls. While Cu(adci)-2 exhibits a high CO2 adsorption capacity (2.01 mmol g-1 at 298 K and 15 kPa) but a low zero-coverage isosteric heat of adsorption (27.5 kJ mol-1), breakthrough experiments under dry and 60% relative humidity conditions show that its CO2 capture ability is retained even in the presence of high amounts of moisture. In a Monte Carlo simulation and a radial distribution analysis, the preferential CO2 binding site of Cu(adci)-2 was predicted to be between two ligands, forming a sandwich-like structure and implying that its CO2 adsorption properties originate from the enhancement of Lewis base-acid and London dispersion interactions due to the amino groups and ultramicroporosity, respectively.
Collapse
Affiliation(s)
- Donghui Jo
- Petrochemical Catalyst Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon34114, Republic of Korea
| | - Su-Kyung Lee
- Petrochemical Catalyst Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon34114, Republic of Korea
| | - Kyung Ho Cho
- Petrochemical Catalyst Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon34114, Republic of Korea
| | - Ji Woong Yoon
- Petrochemical Catalyst Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon34114, Republic of Korea
| | - U-Hwang Lee
- Petrochemical Catalyst Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon34114, Republic of Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon34113, Republic of Korea
| |
Collapse
|
190
|
Cao Z, Cai X, Feltrin AC, Feng P, Kaiser A, Akhtar F. Calcium/strontium chloride impregnated zeolite A and X granules as optimized ammonia sorbents. RSC Adv 2022; 12:34910-34917. [PMID: 36540240 PMCID: PMC9727750 DOI: 10.1039/d2ra02981b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/19/2022] [Indexed: 08/15/2023] Open
Abstract
Calcium chloride (CaCl2) impregnated zeolite A and strontium chloride (SrCl2) impregnated zeolite A and X composite granules were evaluated as ammonia sorbents for automotive selective catalytic reduction systems. The SrCl2-impregnated zeolite A granules showed a 14% increase in ammonia uptake capacity (8.39 mmol g-1) compared to zeolite A granules (7.38 mmol g-1). Furthermore, composite granules showed 243% faster kinetics of ammonia sorption (0.24 mmol g-1 min-1) compared to SrCl2 (0.07 mmol g-1 min-1) in the first 20 min. The composite CaCl2/SrCl2 impregnated zeolite A granules combined the advantages of the zeolites and CaCl2/SrCl2, where the rapid physisorption from zeolites can reduce the ammonia loading and release time, and chemisorption from the CaCl2/SrCl2 offers abundant ammonia capacity. Moreover, by optimizing the content of SrCl2 loading, the composite granules maintained the granular form with a crushing load of 17 N per granule after ammonia sorption-desorption cycles. Such structurally stable composite sorbents offer an opportunity for fast ammonia loading/release in automotive selective catalytic reduction systems.
Collapse
Affiliation(s)
- Zhejian Cao
- Division of Materials Science, Luleå University of Technology 971 87 Luleå Sweden
| | - Xiaoping Cai
- School of Materials Science and Physics, China University of Mining and Technology 221116 Xuzhou People's Republic of China
| | - Ana Carolina Feltrin
- Division of Materials Science, Luleå University of Technology 971 87 Luleå Sweden
| | - Peizhong Feng
- School of Materials Science and Physics, China University of Mining and Technology 221116 Xuzhou People's Republic of China
| | - Andreas Kaiser
- Department of Energy Conversion, Technical University of Denmark 2800 Kgs. Lyngby Denmark
| | - Farid Akhtar
- Division of Materials Science, Luleå University of Technology 971 87 Luleå Sweden
| |
Collapse
|
191
|
Sheng K, Huang XQ, Wang R, Wang WZ, Gao ZY, Tung CH, Sun D. Decagram-Scale Synthesis of Heterometallic Ag/Ti Cluster as Sustainable Catalyst for Selective Oxidation of Sulfides. J Catal 2022. [DOI: 10.1016/j.jcat.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
192
|
Zhang Y, Shi W, Zhang S, Zhao S, Yang B, Chang B. Rational design of β-cyclodextrins-derived hierarchically porous carbons for CO2 capture: The roles of surface chemistry and porosity on CO2 capture. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
193
|
Li X, Liu J, Zhou K, Ullah S, Wang H, Zou J, Thonhauser T, Li J. Tuning Metal–Organic Framework (MOF) Topology by Regulating Ligand and Secondary Building Unit (SBU) Geometry: Structures Built on 8-Connected M 6 (M = Zr, Y) Clusters and a Flexible Tetracarboxylate for Propane-Selective Propane/Propylene Separation. J Am Chem Soc 2022; 144:21702-21709. [DOI: 10.1021/jacs.2c09487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Xingyu Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong 518055, P. R. China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jiaqi Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong 518055, P. R. China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong 518055, P. R. China
| | - Saif Ullah
- Department of Physics and Center for functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong 518055, P. R. China
| | - Jizhao Zou
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Timo Thonhauser
- Department of Physics and Center for functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Jing Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong 518055, P. R. China
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
194
|
Evans HA, Mullangi D, Deng Z, Wang Y, Peh SB, Wei F, Wang J, Brown CM, Zhao D, Canepa P, Cheetham AK. Aluminum formate, Al(HCOO) 3: An earth-abundant, scalable, and highly selective material for CO 2 capture. SCIENCE ADVANCES 2022; 8:eade1473. [PMID: 36322645 PMCID: PMC10942769 DOI: 10.1126/sciadv.ade1473] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
A combination of gas adsorption and gas breakthrough measurements show that the metal-organic framework, Al(HCOO)3 (ALF), which can be made inexpensively from commodity chemicals, exhibits excellent CO2 adsorption capacities and outstanding CO2/N2 selectivity that enable it to remove CO2 from dried CO2-containing gas streams at elevated temperatures (323 kelvin). Notably, ALF is scalable, readily pelletized, stable to SO2 and NO, and simple to regenerate. Density functional theory calculations and in situ neutron diffraction studies reveal that the preferential adsorption of CO2 is a size-selective separation that depends on the subtle difference between the kinetic diameters of CO2 and N2. The findings are supported by additional measurements, including Fourier transform infrared spectroscopy, thermogravimetric analysis, and variable temperature powder and single-crystal x-ray diffraction.
Collapse
Affiliation(s)
- Hayden A. Evans
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Dinesh Mullangi
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Zeyu Deng
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Yuxiang Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Fengxia Wei
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Craig M. Brown
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Pieremanuele Canepa
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Anthony K. Cheetham
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
195
|
Li X, Bian H, Huang W, Yan B, Wang X, Zhu B. A review on anion-pillared metal–organic frameworks (APMOFs) and their composites with the balance of adsorption capacity and separation selectivity for efficient gas separation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
196
|
Li YZ, Krishna R, Xu F, Zhang WF, Sui Y, Hou L, Wang YY, Zhu Z. A novel C2H2-selective microporous Cd-MOF for C2H2/C2H4 and C2H2/CO2 separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
197
|
Chiu NC, Loughran RP, Gładysiak A, Vismara R, Park AHA, Stylianou KC. Wet flue gas CO 2 capture and utilization using one-dimensional metal-organic chains. NANOSCALE 2022; 14:14962-14969. [PMID: 36200609 DOI: 10.1039/d2nr04156a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, we describe the use of an ultramicroporous metal-organic framework (MOF) with a composition of [Ni3(pzdc)2(ade)2(H2O)1.5]·(H2O)1.3 (pzdc: 3,5-pyrazole dicarboxylic acid; ade: adenine), for the selective capture of carbon dioxide (CO2) from wet flue gas followed by its conversion to value-added products. This MOF is comprised of one-dimensional Ni(II)-pyrazole dicarboxylate-adenine chains; through pi-pi stacking and H-bonding interactions, these one-dimensional chains stack into a three-dimensional supramolecular structure with a one-dimensional pore network. Upon heating, our MOF undergoes a color change from light blue to lavender, indicating a change in the coordination geometry of Ni(II). Variable temperature ultraviolet-visible (UV/vis) spectroscopy data revealed a blue shift of the d-d transitions, suggesting a change in the Ni-coordination geometry from octahedral to a mixture of square planar and square pyramidal. The removal of the water molecules coordinated to Ni(II) leads to the generation of a MOF with open Ni(II) sites. Nitrogen isotherms collected at 77 K and 1 bar revealed that this MOF is microporous with a pore volume of 0.130 cm3 g-1. Carbon dioxide isotherms show a step in the uptake at low pressure, after which the CO2 uptake is saturated. The step in the CO2 uptake is likely attributable to the rearrangement of the three-dimensional supramolecular structure to accommodate CO2 within its pores. The affinity of this MOF for CO2 is 35.5 kJ mol-1 at low loadings, and it increases to 41.9 kJ mol-1 at high loadings. While our MOF is porous to CO2 and water (H2O) at 298 K, it is not porous to N2, and the CO2/N2 selectivity increases from 28.5 to 31.5 as a function of pressure. Breakthrough experiments reveal that this MOF can capture CO2 from dry and wet flue gas with uptake capacities of 1.48 ± 0.01 and 1.14 ± 0.06 mmol g-1, respectively. The MOF can be regenerated and reused at least three times, demonstrating consistent CO2 uptake capacities. Upon understanding the sorption behavior of this MOF, catalysis experiments show that the MOF is catalytically active in the fixation of CO2 into an epoxide ring for the formation of a cyclic carbonate. The turnover frequency for this reaction is 21.95 ± 0.03 h-1. The MOF showed no catalytic deterioration after two cycles and maintained comparable catalytic activity when dry and wet CO2/N2 mixtures were used. This highlights that both N2 and H2O do not dramatically affect the catalytic activity of our MOF toward CO2 fixation.
Collapse
Affiliation(s)
- Nan Chieh Chiu
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon, USA.
| | - Ryan P Loughran
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon, USA.
| | - Andrzej Gładysiak
- Department of Earth and Environmental Engineering, Department of Chemical Engineering, Lenfest Center for Sustainable Energy, Columbia University, New York, USA
| | - Rebecca Vismara
- Departamento de Química Inorgánica, Universidad de Granada, 18071 Granada, Spain
| | - Ah-Hyung Alissa Park
- Department of Earth and Environmental Engineering, Department of Chemical Engineering, Lenfest Center for Sustainable Energy, Columbia University, New York, USA
| | - Kyriakos C Stylianou
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon, USA.
| |
Collapse
|
198
|
He C, Zhao X, Huo M, Dai W, Cheng X, Yang J, Miao Y, Xiao S. Surface, Interface and Structure Optimization of Metal-Organic Frameworks: Towards Efficient Resourceful Conversion of Industrial Waste Gases. CHEM REC 2022:e202200211. [PMID: 36193960 DOI: 10.1002/tcr.202200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/14/2022] [Indexed: 11/09/2022]
Abstract
Industrial waste gas emissions from fossil fuel over-exploitation have aroused great attention in modern society. Recently, metal-organic frameworks (MOFs) have been developed in the capture and catalytic conversion of industrial exhaust gases such as SO2 , H2 S, NOx , CO2 , CO, etc. Based on these resourceful conversion applications, in this review, we summarize the crucial role of the surface, interface, and structure optimization of MOFs for performance enhancement. The main points include (1) adsorption enhancement of target molecules by surface functional modification, (2) promotion of catalytic reaction kinetics through enhanced coupling in interfaces, and (3) adaptive matching of guest molecules by structural and pore size modulation. We expect that this review will provide valuable references and illumination for the design and development of MOF and related materials with excellent exhaust gas treatment performance.
Collapse
Affiliation(s)
- Chengpeng He
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China.,College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, China
| | - Xiuwen Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Mengjia Huo
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Wenrui Dai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xuejian Cheng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Junhe Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China.,Prytula Igor Collaborate Innovation Center for Diamond, Shanghai Jian Qiao University, Shanghai, 201306, China
| | - Yingchun Miao
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, China
| | - Shuning Xiao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
199
|
Zhao L, Bian J, Zhang X, Bai L, Xu L, Qu Y, Li Z, Li Y, Jing L. Construction of Ultrathin S-Scheme Heterojunctions of Single Ni Atom Immobilized Ti-MOF and BiVO 4 for CO 2 Photoconversion of nearly 100% to CO by Pure Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205303. [PMID: 35986557 DOI: 10.1002/adma.202205303] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/10/2022] [Indexed: 06/15/2023]
Abstract
To rationally design single-atom metal-organic framework (MOF)-involving photocatalysts remains an ongoing challenge for efficient CO2 conversion. Here, cuppy microstructures, consisting of a Ti(IV)-oxo node and three linked carboxylic moieties, in the single-coordination-layer Ti2 (H2 dobdc)3 MOF (NTU-9) are exploited to immobilize abundant single Ni(II) sites (Ni@MOF). The coupling of Ni@MOF with BiVO4 (BVO) nanosheets by H-bonding-induced assembly process obtains wide-spectrum 2D heterojunctions. The optimal heterojunction exhibits competitive performance and enables around 66-fold CO2 conversion of that for BVO nanoparticles by pure water, with nearly 100% CO selectivity. The exceptional photoactivity is attributed to favorable S-scheme charge transfer from BVO to MOF then to single Ni(II) sites. Noteworthily, single Ni(II) sites anchored by the Ti(IV)-oxo node and vicinal carboxylic moieties serving as a unique local microenvironment (LME) are found to synergistically catalyze CO2 conversion. Specifically, the hydroxyl groups of carboxylic moieties can form H-bonds with CO2 to promote its adsorption on single Ni(II) sites, and also can provide accessible protons to facilitate H-assisted CO2 reduction. Moreover, the CO desorption and subsequent CO2 adsorption on single Ni(II) sites with LME is proved to be thermodynamically favored, and hence dominates the high CO selectivity. This work highlights the significance of modulating the LME of single atoms to rationally design photocatalysts for realizing carbon neutralization.
Collapse
Affiliation(s)
- Lina Zhao
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Ji Bian
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Xianfa Zhang
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Linlu Bai
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Linyao Xu
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Yang Qu
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Zhijun Li
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Yuxin Li
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Liqiang Jing
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| |
Collapse
|
200
|
Bui A, Guillen SG, Sua A, Nguyen TC, Ruiz A, Carachure L, Weber MD, Cortez A, Tian F. Iron-containing metal-organic framework thin film as a drug delivery system. Colloids Surf A Physicochem Eng Asp 2022; 650:129611. [PMID: 35860194 PMCID: PMC9289567 DOI: 10.1016/j.colsurfa.2022.129611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Selective bulk metal-organic frameworks (MOFs) have exhibited great potential in biomedical applications. However, topical treatments and drug elution coatings will require uniform films as drug delivery systems. This work studies the use of surface supportive MOF thin films for drug loading and releasing. More specifically, we focus on an iron-containing MOF, MIL-88B(Fe), on a COOH-terminated self-assembled monolayer (SAM) modified Au surface for encapsulating ibuprofen as a model drug. A combined experimental and computational approach was employed to study the fabrication of MIL-88B(Fe) film on functionalized Au surfaces. We used several surface characterization techniques, including infrared spectroscopy and scanning electron microscopy, to confirm the chemical composition and morphological changes of the surface after each modification step. The resulting MIL-88B(Fe) thin film was found capable of loading 8.7 wt% of ibuprofen using quartz crystal microbalance analysis. Moreover, we applied cluster simulations to study the binding mechanisms of MIL-88B(Fe) and its interactions with ibuprofen based on the density functional theory (DFT). The unsaturated Fe site was confirmed kinetically more favorable to bind to the COOH-end group on the SAM. Hydrogen bonding and π-CH interactions between ibuprofen and MIL-88B(Fe) promote ibuprofen being retained inside of the cages of MIL-88B(Fe).
Collapse
Affiliation(s)
- Angela Bui
- Department of Chemistry and Biochemistry, California State University
Long Beach, Long Beach, CA 90840, USA
| | - Steven G. Guillen
- Department of Chemistry and Biochemistry, California State University
Long Beach, Long Beach, CA 90840, USA
| | - Andy Sua
- Department of Chemistry and Biochemistry, California State University
Long Beach, Long Beach, CA 90840, USA
| | - Travis C. Nguyen
- Department of Chemistry and Biochemistry, California State University
Long Beach, Long Beach, CA 90840, USA
| | - Angel Ruiz
- Department of Chemistry and Biochemistry, California State University
Long Beach, Long Beach, CA 90840, USA
| | - Lester Carachure
- Department of Chemistry and Biochemistry, California State University
Long Beach, Long Beach, CA 90840, USA
| | - Mark D.R. Weber
- Department of Chemistry and Biochemistry, California State University
Long Beach, Long Beach, CA 90840, USA
| | - Araseli Cortez
- Department of Chemistry and Biochemistry, California State University
Long Beach, Long Beach, CA 90840, USA
| | - Fangyuan Tian
- Department of Chemistry and Biochemistry, California State University
Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|