151
|
Lee H, Jang Y, Choe JK, Lee S, Song H, Lee JP, Lone N, Kim J. 3D-printed programmable tensegrity for soft robotics. Sci Robot 2020; 5:5/45/eaay9024. [DOI: 10.1126/scirobotics.aay9024] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 08/03/2020] [Indexed: 12/20/2022]
Abstract
Tensegrity structures provide both structural integrity and flexibility through the combination of stiff struts and a network of flexible tendons. These structures exhibit useful properties: high stiffness-to-mass ratio, controllability, reliability, structural flexibility, and large deployment. The integration of smart materials into tensegrity structures would provide additional functionality and may improve existing properties. However, manufacturing approaches that generate multimaterial parts with intricate three-dimensional (3D) shapes suitable for such tensegrities are rare. Furthermore, the structural complexity of tensegrity systems fabricated through conventional means is generally limited because these systems often require manual assembly. Here, we report a simple approach to fabricate tensegrity structures made of smart materials using 3D printing combined with sacrificial molding. Tensegrity structures consisting of monolithic tendon networks based on smart materials supported by struts could be realized without an additional post-assembly process using our approach. By printing tensegrity with coordinated soft and stiff elements, we could use design parameters (such as geometry, topology, density, coordination number, and complexity) to program system-level mechanics in a soft structure. Last, we demonstrated a tensegrity robot capable of walking in any direction and several tensegrity actuators by leveraging smart tendons with magnetic functionality and the programmed mechanics of tensegrity structures. The physical realization of complex tensegrity metamaterials with programmable mechanical components can pave the way toward more algorithmic designs of 3D soft machines.
Collapse
Affiliation(s)
- Hajun Lee
- School of Material Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Yeonwoo Jang
- School of Material Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Jun Kyu Choe
- School of Material Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Suwoo Lee
- School of Material Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Hyeonseo Song
- School of Material Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Jin Pyo Lee
- School of Material Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Nasreena Lone
- School of Material Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Jiyun Kim
- School of Material Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
- Center for Multidimensional Programmable Matter, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|
152
|
Li X, Fukuda T. Magnetically Guided Micromanipulation of Magnetic Microrobots for Accurate Creation of Artistic Patterns in Liquid Environment. MICROMACHINES 2020; 11:E697. [PMID: 32708505 PMCID: PMC7408011 DOI: 10.3390/mi11070697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/26/2023]
Abstract
In this paper, a magnetically guided micromanipulation method is proposed to accurately create artistic patterns with magnetic microrobots in a liquid environment for tissue engineering. A magnetically guided device is developed depend on symmetrical combination of square permanent magnets and array layout of soft magnetic wires, which changed the space distribution of magnetic field of conventional permanent magnet and generated powerful magnetic flux density and high magnetic field gradient. Furthermore, the morphological structure of the magnetic microrobot is flexibly adjusted via precise control of the volumetric flow rates inside the microfluidic device and the magnetic nanoparticles are taken along to enable its controllability by rapid magnetic response. And then, the spatial posture of the magnetic microrobot is contactless controlled by the magnetically guided manipulator and it is released under the influence of surface tension and gravity. Subsequently, the artistic fashions of the magnetic microrobots are precisely distributed via the dot-matrix magnetic flux density of the magnetically guided device. Finally, the experimental results herein demonstrate the accuracy and diversity of the pattern structures in the water and the developed method will be providing a new way for personalized functional scaffold construction.
Collapse
Affiliation(s)
- Xingfu Li
- Chongqing Key Laboratory of Manufacturing Equipment Mechanism Design and Control, Chongqing Technology and Business University, Chongqing 400067, China
| | - Toshio Fukuda
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China;
| |
Collapse
|
153
|
Hu M, Ge X, Chen X, Mao W, Qian X, Yuan WE. Micro/Nanorobot: A Promising Targeted Drug Delivery System. Pharmaceutics 2020; 12:E665. [PMID: 32679772 PMCID: PMC7407549 DOI: 10.3390/pharmaceutics12070665] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022] Open
Abstract
Micro/nanorobot, as a research field, has attracted interest in recent years. It has great potential in medical treatment, as it can be applied in targeted drug delivery, surgical operation, disease diagnosis, etc. Differently from traditional drug delivery, which relies on blood circulation to reach the target, the designed micro/nanorobots can move autonomously, which makes it possible to deliver drugs to the hard-to-reach areas. Micro/nanorobots were driven by exogenous power (magnetic fields, light energy, acoustic fields, electric fields, etc.) or endogenous power (chemical reaction energy). Cell-based micro/nanorobots and DNA origami without autonomous movement ability were also introduced in this article. Although micro/nanorobots have excellent prospects, the current research is mainly based on in vitro experiments; in vivo research is still in its infancy. Further biological experiments are required to verify in vivo drug delivery effects of micro/nanorobots. This paper mainly discusses the research status, challenges, and future development of micro/nanorobots.
Collapse
Affiliation(s)
- Mengyi Hu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (M.H.); (X.C.)
| | - Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Xuan Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (M.H.); (X.C.)
| | - Wenwei Mao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (M.H.); (X.C.)
| | - Xiuping Qian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (M.H.); (X.C.)
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (M.H.); (X.C.)
| |
Collapse
|
154
|
Song H, Lee H, Lee J, Choe JK, Lee S, Yi JY, Park S, Yoo JW, Kwon MS, Kim J. Reprogrammable Ferromagnetic Domains for Reconfigurable Soft Magnetic Actuators. NANO LETTERS 2020; 20:5185-5192. [PMID: 32491865 DOI: 10.1021/acs.nanolett.0c01418] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Soft magnetic materials have shown promise in diverse applications due to their fast response, remote actuation, and large penetration range for various conditions. Herein, a new soft magnetic composite material capable of reprogramming its magnetization profile without changing intrinsic magnetic properties of embedded magnetic particles or the molecular property of base material is reported. This composite contains magnetic microspheres in an elastomeric matrix, and the magnetic microspheres are composed of ferromagnetic microparticles encapsulated with oligomeric-PEG. By controlling the encapsulating polymer phase transition, the magnetization profiles of the magnetic composite can be rewritten by physically realigning the ferromagnetic particles. Diverse magnetic actuators with reprogrammable magnetization profiles are developed to demonstrate the complete reprogramming of complex magnetization profile.
Collapse
Affiliation(s)
- Hyeonseo Song
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Hajun Lee
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Jaebyeong Lee
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Jun Kyu Choe
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Suwoo Lee
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Jee Yoon Yi
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Sunghoon Park
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Jung-Woo Yoo
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Min Sang Kwon
- Department of Material Science and Engineering, Seoul National University, Seoul 08826, South Korea
| | - Jiyun Kim
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|
155
|
Tang S, Zhang F, Gong H, Wei F, Zhuang J, Karshalev E, Esteban-Fernández de Ávila B, Huang C, Zhou Z, Li Z, Yin L, Dong H, Fang RH, Zhang X, Zhang L, Wang J. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci Robot 2020; 5:5/43/eaba6137. [DOI: 10.1126/scirobotics.aba6137] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/30/2020] [Indexed: 12/14/2022]
Abstract
Transforming natural cells into functional biocompatible robots capable of active movement is expected to enhance the functions of the cells and revolutionize the development of synthetic micromotors. However, present cell-based micromotor systems commonly require the propulsion capabilities of rigid motors, external fields, or harsh conditions, which may compromise biocompatibility and require complex actuation equipment. Here, we report on an endogenous enzyme-powered Janus platelet micromotor (JPL-motor) system prepared by immobilizing urease asymmetrically onto the surface of natural platelet cells. This Janus distribution of urease on platelet cells enables uneven decomposition of urea in biofluids to generate enhanced chemophoretic motion. The cell surface engineering with urease has negligible impact on the functional surface proteins of platelets, and hence, the resulting JPL-motors preserve the intrinsic biofunctionalities of platelets, including effective targeting of cancer cells and bacteria. The efficient propulsion of JPL-motors in the presence of the urea fuel greatly enhances their binding efficiency with these biological targets and improves their therapeutic efficacy when loaded with model anticancer or antibiotic drugs. Overall, asymmetric enzyme immobilization on the platelet surface leads to a biogenic microrobotic system capable of autonomous movement using biological fuel. The ability to impart self-propulsion onto biological cells, such as platelets, and to load these cellular robots with a variety of functional components holds considerable promise for developing multifunctional cell-based micromotors for a variety of biomedical applications.
Collapse
Affiliation(s)
- Songsong Tang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Fangyu Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Hua Gong
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Fanan Wei
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Jia Zhuang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Emil Karshalev
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Chuying Huang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhidong Zhou
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhengxing Li
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Lu Yin
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Haifeng Dong
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Ronnie H. Fang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
156
|
Zaben A, Kitenbergs G, Cēbers A. 3D motion of flexible ferromagnetic filaments under a rotating magnetic field. SOFT MATTER 2020; 16:4477-4483. [PMID: 32333752 DOI: 10.1039/d0sm00403k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ferromagnetic filaments in a rotating magnetic field are studied both numerically and experimentally. The filaments are made from micron-sized ferromagnetic particles linked with DNA strands. It is found that at low frequencies of the rotating field, a filament rotates synchronously with the field and beyond a critical frequency, it undergoes a transition to a three dimensional regime. In this regime the tips of the filament rotate synchronously with the field on circular trajectories in the plane parallel to the plane of the rotating field. The characteristics of this motion found numerically match the experimental data and allow us to obtain the physical properties of such filaments. We also discuss the differences in behaviour between magnetic rods and filaments and the applicability of filaments in mixing.
Collapse
Affiliation(s)
- Abdelqader Zaben
- MMML Lab, University of Latvia, Jelgavas 3, Riga, LV-1004, Latvia.
| | | | - Andrejs Cēbers
- MMML Lab, University of Latvia, Jelgavas 3, Riga, LV-1004, Latvia.
| |
Collapse
|
157
|
Wang X, Law J, Luo M, Gong Z, Yu J, Tang W, Zhang Z, Mei X, Huang Z, You L, Sun Y. Magnetic Measurement and Stimulation of Cellular and Intracellular Structures. ACS NANO 2020; 14:3805-3821. [PMID: 32223274 DOI: 10.1021/acsnano.0c00959] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
From single-pole magnetic tweezers to robotic magnetic-field generation systems, the development of magnetic micromanipulation systems, using electromagnets or permanent magnets, has enabled a multitude of applications for cellular and intracellular measurement and stimulation. Controlled by different configurations of magnetic-field generation systems, magnetic particles have been actuated by an external magnetic field to exert forces/torques and perform mechanical measurements on the cell membrane, cytoplasm, cytoskeleton, nucleus, intracellular motors, etc. The particles have also been controlled to generate aggregations to trigger cell signaling pathways and produce heat to cause cancer cell apoptosis for hyperthermia treatment. Magnetic micromanipulation has become an important tool in the repertoire of toolsets for cell measurement and stimulation and will continue to be used widely for further explorations of cellular/intracellular structures and their functions. Existing review papers in the literature focus on fabrication and position control of magnetic particles/structures (often termed micronanorobots) and the synthesis and functionalization of magnetic particles. Differently, this paper reviews the principles and systems of magnetic micromanipulation specifically for cellular and intracellular measurement and stimulation. Discoveries enabled by magnetic measurement and stimulation of cellular and intracellular structures are also summarized. This paper ends with discussions on future opportunities and challenges of magnetic micromanipulation in the exploration of cellular biophysics, mechanotransduction, and disease therapeutics.
Collapse
Affiliation(s)
- Xian Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Junhui Law
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Mengxi Luo
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Zheyuan Gong
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Jiangfan Yu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Wentian Tang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Zhuoran Zhang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Xueting Mei
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Zongjie Huang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Lidan You
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
158
|
Sun HCM, Liao P, Wei T, Zhang L, Sun D. Magnetically Powered Biodegradable Microswimmers. MICROMACHINES 2020; 11:E404. [PMID: 32294955 PMCID: PMC7254493 DOI: 10.3390/mi11040404] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/28/2020] [Accepted: 04/10/2020] [Indexed: 01/31/2023]
Abstract
The propulsive efficiency and biodegradability of wireless microrobots play a significant role in facilitating promising biomedical applications. Mimicking biological matters is a promising way to improve the performance of microrobots. Among diverse locomotion strategies, undulatory propulsion shows remarkable efficiency and agility. This work proposes a novel magnetically powered and hydrogel-based biodegradable microswimmer. The microswimmer is fabricated integrally by 3D laser lithography based on two-photon polymerization from a biodegradable material and has a total length of 200 μm and a diameter of 8 μm. The designed microswimmer incorporates a novel design utilizing four rigid segments, each of which is connected to the succeeding segment by spring to achieve undulation, improving structural integrity as well as simplifying the fabrication process. Under an external oscillating magnetic field, the microswimmer with multiple rigid segments connected by flexible spring can achieve undulatory locomotion and move forward along with the directions guided by the external magnetic field in the low Reynolds number (Re) regime. In addition, experiments demonstrated that the microswimmer can be degraded successfully, which allows it to be safely applied in real-time in vivo environments. This design has great potential in future in vivo applications such as precision medicine, drug delivery, and diagnosis.
Collapse
Affiliation(s)
| | - Pan Liao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (P.L.); (T.W.)
| | - Tanyong Wei
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (P.L.); (T.W.)
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (P.L.); (T.W.)
| |
Collapse
|
159
|
Yu Y, Guo J, Wang Y, Shao C, Wang Y, Zhao Y. Bioinspired Helical Micromotors as Dynamic Cell Microcarriers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16097-16103. [PMID: 32181642 DOI: 10.1021/acsami.0c01264] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Micromotors have exhibited great potential in multidisciplinary nanotechnology, environmental science, and especially biomedical engineering due to their advantages of controllable motion, long lifetime, and high biocompatibility. Marvelous efforts focusing on endowing micromotors with novel characteristics and functionalities to promote their applications in biomedical engineering have been taken in recent years. Here, inspired by the flagellar motion of Escherichia coli, we present helical micromotors as dynamic cell microcarriers using simple microfluidic spinning technology. The morphologies of micromotors can be easily tailored because of the highly controllable and feasible fabrication process including microfluidic generation and manual dicing. Benefiting from the biocompatibility of the materials, the resultant helical micromotors could be ideal cell microcarriers that are suitable for cell seeding and further cultivation; the magnetic nanoparticle encapsulation imparts the helical micromotors with kinetic characteristics in response to mobile magnetic fields. Thus, the helical micromotors could be applied as dynamic cell culture blocks and further assembled to complex geometrical structures. The constructed structures out of cell-seeded micromotors could find practical potential in biomedical applications as the stack-shaped assembly embedded in the hydrogel may be used for tissue repairing and the tube-shaped assembly due to its resemblance to vascular structures in the microchannel for organ-on-a-chip study or blood vessel regeneration. These features manifest the possibility to broaden the biomedical application scope for micromotors.
Collapse
Affiliation(s)
- Yunru Yu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jiahui Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuetong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Changmin Shao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
160
|
Bioinspired reorientation strategies for application in micro/nanorobotic control. JOURNAL OF MICRO-BIO ROBOTICS 2020. [DOI: 10.1007/s12213-020-00130-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractEngineers have recently been inspired by swimming methodologies of microorganisms in creating micro-/nanorobots for biomedical applications. Future medicine may be revolutionized by the application of these small machines in diagnosing, monitoring, and treating diseases. Studies over the past decade have often concentrated on propulsion generation. However, there are many other challenges to address before the practical use of robots at the micro-/nanoscale. The control and reorientation ability of such robots remain as some of these challenges. This paper reviews the strategies of swimming microorganisms for reorientation, including tumbling, reverse and flick, direction control of helical-path swimmers, by speed modulation, using complex flagella, and the help of mastigonemes. Then, inspired by direction change in microorganisms, methods for orientation control for microrobots and possible directions for future studies are discussed. Further, the effects of solid boundaries on the swimming trajectories of microorganisms and microrobots are examined. In addition to propulsion systems for artificial microswimmers, swimming microorganisms are promising sources of control methodologies at the micro-/nanoscale.
Collapse
|
161
|
Ren T, Chen P, Gu L, Ogut MG, Demirci U. Soft Ring-Shaped Cellu-Robots with Simultaneous Locomotion in Batches. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905713. [PMID: 31773837 DOI: 10.1002/adma.201905713] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/20/2019] [Indexed: 06/10/2023]
Abstract
Untethered mini-robots can move single cells or aggregates to build complex constructs in confined spaces and may enable various biomedical applications such as regenerative repair in medicine and biosensing in bioengineering. However, a significant challenge is the ability to control multiple microrobots simultaneously in the same space to operate toward a common goal in a distributed operation. A locomotion strategy that can simultaneously guide the formation and operation of multiple robots in response to a common acoustic stimulus is developed. The scaffold-free cellu-robots comprise only highly packed cells and eliminate the influence of supportive materials, making them less cumbersome during locomotion. The ring shape of the cellu-robot contributes to anisotropic cellular interactions which induce radial cellular orientation. Under a single stimulus, several cellu-robots form predetermined complex structures such as bracelet-like ring-chains which transform into a single new living entity through cell-cell interactions, migration or cellular extensions between cellu-robots.
Collapse
Affiliation(s)
- Tanchen Ren
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Pu Chen
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430050, China
| | - Longjun Gu
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Mehmet Giray Ogut
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| |
Collapse
|
162
|
Go G, Jeong SG, Yoo A, Han J, Kang B, Kim S, Nguyen KT, Jin Z, Kim CS, Seo YR, Kang JY, Na JY, Song EK, Jeong Y, Seon JK, Park JO, Choi E. Human adipose–derived mesenchymal stem cell–based medical microrobot system for knee cartilage regeneration in vivo. Sci Robot 2020; 5:5/38/eaay6626. [DOI: 10.1126/scirobotics.aay6626] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022]
Abstract
Targeted cell delivery by a magnetically actuated microrobot with a porous structure is a promising technique to enhance the low targeting efficiency of mesenchymal stem cell (MSC) in tissue regeneration. However, the relevant research performed to date is only in its proof-of-concept stage. To use the microrobot in a clinical stage, biocompatibility and biodegradation materials should be considered in the microrobot, and its efficacy needs to be verified using an in vivo model. In this study, we propose a human adipose–derived MSC–based medical microrobot system for knee cartilage regeneration and present an in vivo trial to verify the efficacy of the microrobot using the cartilage defect model. The microrobot system consists of a microrobot body capable of supporting MSCs, an electromagnetic actuation system for three-dimensional targeting of the microrobot, and a magnet for fixation of the microrobot to the damaged cartilage. Each component was designed and fabricated considering the accessibility of the patient and medical staff, as well as clinical safety. The efficacy of the microrobot system was then assessed in the cartilage defect model of rabbit knee with the aim to obtain clinical trial approval.
Collapse
|
163
|
Hwang J, Kim JY, Choi H. A review of magnetic actuation systems and magnetically actuated guidewire- and catheter-based microrobots for vascular interventions. INTEL SERV ROBOT 2020. [DOI: 10.1007/s11370-020-00311-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
164
|
Wolff N, Ciobanu V, Enachi M, Kamp M, Braniste T, Duppel V, Shree S, Raevschi S, Medina-Sánchez M, Adelung R, Schmidt OG, Kienle L, Tiginyanu I. Advanced Hybrid GaN/ZnO Nanoarchitectured Microtubes for Fluorescent Micromotors Driven by UV Light. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905141. [PMID: 31814275 DOI: 10.1002/smll.201905141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/13/2019] [Indexed: 06/10/2023]
Abstract
The development of functional microstructures with designed hierarchical and complex morphologies and large free active surfaces offers new potential for improvement of the pristine microstructures properties by the synergistic combination of microscopic as well as nanoscopic effects. In this contribution, dedicated methods of transmission electron microscopy (TEM) including tomography are used to characterize the complex hierarchically structured hybrid GaN/ZnO:Au microtubes containing a dense nanowire network on their interior. The presence of an epitaxially stabilized and chemically extremely stable ultrathin layer of ZnO on the inner wall of the produced GaN microtubes is evidenced. Gold nanoparticles initially trigger the catalytic growth of solid solution phase (Ga1- x Znx )(N1- x Ox ) nanowires into the interior space of the microtube, which are found to be terminated by AuGa-alloy nanodots coated in a shell of amorphous GaOx species after the hydride vapor phase epitaxy process. The structural characterization suggests that this hierarchical design of GaN/ZnO microtubes could offer the potential to exhibit improved photocatalytic properties, which are initially demonstrated under UV light irradiation. As a proof of concept, the produced microtubes are used as photocatalytic micromotors in the presence of hydrogen peroxide solution with luminescent properties, which are appealing for future environmental applications and active matter fundamental studies.
Collapse
Affiliation(s)
- Niklas Wolff
- Synthesis and Real Structure, Institute for Materials Science, Kiel University, Kaiserstraße 2, 24143, Kiel, Germany
| | - Vladimir Ciobanu
- National Center for Materials Study and Testing, Technical University of Moldova, Stefan cel Mare 168, Chisinau, 2004, Moldova
| | - Mihail Enachi
- National Center for Materials Study and Testing, Technical University of Moldova, Stefan cel Mare 168, Chisinau, 2004, Moldova
| | - Marius Kamp
- Synthesis and Real Structure, Institute for Materials Science, Kiel University, Kaiserstraße 2, 24143, Kiel, Germany
| | - Tudor Braniste
- National Center for Materials Study and Testing, Technical University of Moldova, Stefan cel Mare 168, Chisinau, 2004, Moldova
| | - Viola Duppel
- Nanochemistry, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Sindu Shree
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstraße 2, 24143, Kiel, Germany
| | - Simion Raevschi
- Department of Physics and Engineering, State University of Moldova, Alexei Mateevici Str. 60, Chisinau, 2009, Moldova
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences (IIN), Leibniz IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
| | - Rainer Adelung
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstraße 2, 24143, Kiel, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences (IIN), Leibniz IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Reichenhainer Straße 70, 09107, Chemnitz, Germany
| | - Lorenz Kienle
- Synthesis and Real Structure, Institute for Materials Science, Kiel University, Kaiserstraße 2, 24143, Kiel, Germany
| | - Ion Tiginyanu
- National Center for Materials Study and Testing, Technical University of Moldova, Stefan cel Mare 168, Chisinau, 2004, Moldova
- Academy of Sciences of Moldova, Stefan cel Mare av. 1, Chisinau, 2001, Moldova
| |
Collapse
|
165
|
Azizi A, Tremblay CC, Gagné K, Martel S. Using the fringe field of a clinical MRI scanner enables robotic navigation of tethered instruments in deeper vascular regions. Sci Robot 2019; 4:4/36/eaax7342. [PMID: 33137734 DOI: 10.1126/scirobotics.aax7342] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022]
Abstract
Navigating tethered instruments through the vasculatures to reach deeper physiological locations presently inaccessible would extend the applicability of many medical interventions, including but not limited to local diagnostics, imaging, and therapies. Navigation through narrower vessels requires minimizing the diameter of the instrument, resulting in a decrease of its stiffness until steerability becomes unpractical, while pushing the instrument at the insertion site to counteract the friction forces from the vessel walls caused by the bending of the instrument. To reach beyond the limit of using a pushing force alone, we report a method relying on a complementary directional pulling force at the tip created by gradients resulting from the magnetic fringe field emanating outside a clinical magnetic resonance imaging (MRI) scanner. The pulling force resulting from gradients exceeding 2 tesla per meter in a space that supports human-scale interventions allows the use of smaller magnets, such as the deformable spring as described here, at the tip of the instrument. Directional forces are achieved by robotically positioning the patient at predetermined successive locations inside the fringe field, a method that we refer to as fringe field navigation (FFN). We show through in vitro and in vivo experiments that x-ray-guided FFN could navigate microguidewires through complex vasculatures well beyond the limit of manual procedures and existing magnetic platforms. Our approach facilitated miniaturization of the instrument by replacing the torque from a relatively weak magnetic field with a configuration designed to exploit the superconducting magnet-based directional forces available in clinical MRI rooms.
Collapse
Affiliation(s)
- Arash Azizi
- Nanorobotics Laboratory, Department of Computer and Software Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Charles C Tremblay
- Nanorobotics Laboratory, Department of Computer and Software Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Kévin Gagné
- Nanorobotics Laboratory, Department of Computer and Software Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Sylvain Martel
- Nanorobotics Laboratory, Department of Computer and Software Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada.
| |
Collapse
|
166
|
Gyak K, Jeon S, Ha L, Kim S, Kim J, Lee K, Choi H, Kim D. Magnetically Actuated SiCN-Based Ceramic Microrobot for Guided Cell Delivery. Adv Healthc Mater 2019; 8:e1900739. [PMID: 31596550 DOI: 10.1002/adhm.201900739] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/18/2019] [Indexed: 01/22/2023]
Abstract
A silicon carbonitride (SICN) ceramic microrobot, biocompatible and magnetically activable, is developed for the delivery of viable cells to defective tissue by sequential steps of microstructuring, magnetization, and cell loading. The ceramic carrier of porous cylindrical framework is fabricated by 3D laser lithography using a photocurable preceramic polymer, chemically modified polyvinylsilazane, and subsequent pyrolysis at 600 °C under an inert atmosphere. Magnetic nanoparticles (MNP) are integrated into the surface-modified ceramic carrier by thiol-ene click reaction. Finally, the microrobot is loaded with fibroblast cells, which can be guided by a rotating external magnetic field. The proposed ceramic microrobot is mechanically durable, adequately controllable with external magnetic field, and quite compatible with mammalian cells.
Collapse
Affiliation(s)
- Ki‐Won Gyak
- Center for Intelligent Microprocess of Pharmaceutical SynthesisDepartment of Chemical EngineeringPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Sungwoong Jeon
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno jungang‐daero, Hyeonpung‐eup, Dalseong‐Gun Daegu 42988 Republic of Korea
| | - Laura Ha
- Center for Intelligent Microprocess of Pharmaceutical SynthesisDepartment of Chemical EngineeringPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Sangwon Kim
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno jungang‐daero, Hyeonpung‐eup, Dalseong‐Gun Daegu 42988 Republic of Korea
| | - Jin‐young Kim
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno jungang‐daero, Hyeonpung‐eup, Dalseong‐Gun Daegu 42988 Republic of Korea
| | - Kwang‐Sup Lee
- Department of Advanced Materials and Chemical EngineeringHannam University Daejeon 34430 South Korea
| | - Hongsoo Choi
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno jungang‐daero, Hyeonpung‐eup, Dalseong‐Gun Daegu 42988 Republic of Korea
| | - Dong‐Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical SynthesisDepartment of Chemical EngineeringPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| |
Collapse
|
167
|
Sonntag L, Simmchen J, Magdanz V. Nano-and Micromotors Designed for Cancer Therapy. Molecules 2019; 24:E3410. [PMID: 31546857 PMCID: PMC6767050 DOI: 10.3390/molecules24183410] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
Research on nano- and micromotors has evolved into a frequently cited research area with innovative technology envisioned for one of current humanities' most deadly problems: cancer. The development of cancer targeting drug delivery strategies involving nano-and micromotors has been a vibrant field of study over the past few years. This review aims at categorizing recent significant results, classifying them according to the employed propulsion mechanisms starting from chemically driven micromotors, to field driven and biohybrid approaches. In concluding remarks of section 2, we give an insight into shape changing micromotors that are envisioned to have a significant contribution. Finally, we critically discuss which important aspects still have to be addressed and which challenges still lie ahead of us.
Collapse
Affiliation(s)
- Luisa Sonntag
- Chair of Physical Chemistry, TU Dresden, 01062 Dresden, Germany.
| | - Juliane Simmchen
- Chair of Physical Chemistry, TU Dresden, 01062 Dresden, Germany.
| | | |
Collapse
|