151
|
Off-label mesenchymal stromal cell treatment in two infants with severe bronchopulmonary dysplasia: clinical course and biomarkers profile. Cytotherapy 2018; 20:1337-1344. [PMID: 30327248 DOI: 10.1016/j.jcyt.2018.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is the most prevalent sequelae of premature birth, for which therapeutic options are currently limited. Mesenchymal stromal cells (MSCs) are a potential therapy for prevention or reversal of BPD. SERIES OF CASES We report on two infants with severe BPD in whom off-label treatment with repeated intravenous doses of allogeneic bone marrow-derived MSCs were administered. We analyzed the temporal profile of serum and tracheal cytokines and growth factors as well as safety, tolerability and clinical response. The administration of repeated intravenous doses of MSCs in two human babies with severe and advanced BPD was feasible and safe and was associated with a decrease of pro-inflammatory molecules and lung injury biomarkers. Both patients were at very advanced stages of BPD with very severe lung fibrosis and did not survive the disease. CONCLUSIONS MSCs are a promising therapy for BPD, but they should be administered in early stages of the disease.
Collapse
|
152
|
Abstract
The genetic modification of human T lymphocytes with established non-viral methods is inefficient. Linear polyethylenimine (l-PEI), one of the most popular non-viral transfection agents for mammalian cells in general, only achieves transfection rates in the single digit percentage range for these cells. Here, a well-defined 24-armed poly(2-dimethylamino) ethyl methacrylate (PDMAEMA) nanostar (number average of the molecular weight: 755 kDa, polydispersity: <1.21) synthesized via atom transfer radical polymerization (ATRP) from a silsesquioxane initiator core is proposed as alternative. The agent is used to prepare polyplexes with plasmid DNA (pDNA). Under optimal conditions these polyplexes reproducibly transfect >80% of the cells from a human T-cell leukemia cell line (Jurkat cells) at viabilities close to 90%. The agent also promotes pDNA uptake when simply added to a mixture of cells and pDNA. This constitutes a particular promising approach for efficient transient transfection at large scale. Finally, preliminary experiments were carried out with primary T cells from two different donors. Results were again significantly better than for l-PEI, although further research into the response of individual T cells to the transfection agent will be necessary, before either method can be used to routinely transfect primary T lymphocytes.
Collapse
|
153
|
Vlăsceanu GM, Amărandi RM, Ioniță M, Tite T, Iovu H, Pilan L, Burns JS. Versatile graphene biosensors for enhancing human cell therapy. Biosens Bioelectron 2018; 117:283-302. [DOI: 10.1016/j.bios.2018.04.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/18/2018] [Accepted: 04/25/2018] [Indexed: 01/04/2023]
|
154
|
Xue K, Wang X, Yong PW, Young DJ, Wu YL, Li Z, Loh XJ. Hydrogels as Emerging Materials for Translational Biomedicine. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800088] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Kun Xue
- Institute of Materials Research and Engineering; Agency for Science,; Technology and Research; 2 Fusionopolis Way, #08-03 Innovis Singapore 138634 Singapore
| | - Xiaoyuan Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences; Xiamen University; Xiamen 361102 China
| | - Pei Wern Yong
- Department of Materials Science and Engineering; National University of Singapore; 9 Engineering Drive 1 Singapore 117575 Singapore
| | - David James Young
- Faculty of Science; Health, Education and Engineering; University of the Sunshine Coast; Maroochydore Queensland 4558 Australia
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences; Xiamen University; Xiamen 361102 China
| | - Zibiao Li
- Institute of Materials Research and Engineering; Agency for Science,; Technology and Research; 2 Fusionopolis Way, #08-03 Innovis Singapore 138634 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering; Agency for Science,; Technology and Research; 2 Fusionopolis Way, #08-03 Innovis Singapore 138634 Singapore
- Department of Materials Science and Engineering; National University of Singapore; 9 Engineering Drive 1 Singapore 117575 Singapore
- Singapore Eye Research Institute; 11 Third Hospital Avenue Singapore 168751 Singapore
| |
Collapse
|
155
|
de Wilde S, Coppens DG, Hoekman J, de Bruin ML, Leufkens HG, Guchelaar HJ, Meij P. EU decision-making for marketing authorization of advanced therapy medicinal products: a case study. Drug Discov Today 2018; 23:1328-1333. [DOI: 10.1016/j.drudis.2018.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/31/2018] [Accepted: 03/15/2018] [Indexed: 12/28/2022]
|
156
|
Sedlmayer F, Aubel D, Fussenegger M. Synthetic gene circuits for the detection, elimination and prevention of disease. Nat Biomed Eng 2018; 2:399-415. [PMID: 31011195 DOI: 10.1038/s41551-018-0215-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/05/2018] [Indexed: 12/13/2022]
Abstract
In living organisms, naturally evolved sensors that constantly monitor and process environmental cues trigger corrective actions that enable the organisms to cope with changing conditions. Such natural processes have inspired biologists to construct synthetic living sensors and signalling pathways, by repurposing naturally occurring proteins and by designing molecular building blocks de novo, for customized diagnostics and therapeutics. In particular, designer cells that employ user-defined synthetic gene circuits to survey disease biomarkers and to autonomously re-adjust unbalanced pathological states can coordinate the production of therapeutics, with controlled timing and dosage. Furthermore, tailored genetic networks operating in bacterial or human cells have led to cancer remission in experimental animal models, owing to the network's unprecedented specificity. Other applications of designer cells in infectious, metabolic and autoimmune diseases are also being explored. In this Review, we describe the biomedical applications of synthetic gene circuits in major disease areas, and discuss how the first genetically engineered devices developed on the basis of synthetic-biology principles made the leap from the laboratory to the clinic.
Collapse
Affiliation(s)
- Ferdinand Sedlmayer
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Dominique Aubel
- IUTA Département Génie Biologique, Université Claude Bernard Lyon 1, Lyon, France
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland. .,Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
157
|
Hassanzadeh P, Atyabi F, Dinarvand R. Tissue engineering: Still facing a long way ahead. J Control Release 2018; 279:181-197. [DOI: 10.1016/j.jconrel.2018.04.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 02/07/2023]
|
158
|
Nair RK, Christie C, Ju D, Shin D, Pomeroy A, Berg K, Peng Q, Hirschberg H. Enhancing the effects of chemotherapy by combined macrophage-mediated photothermal therapy (PTT) and photochemical internalization (PCI). Lasers Med Sci 2018; 33:1747-1755. [PMID: 29802587 DOI: 10.1007/s10103-018-2534-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/10/2018] [Indexed: 12/14/2022]
Abstract
Light-based treatment modalities such as photothermal therapy (PTT) or photochemical internalization (PCI) have been well documented both experimentally and clinically to enhance the efficacy of chemotherapy. The main purpose of this study was to examine the cytotoxic effects of silica-gold nanoshell (AuNS)-loaded macrophage-mediated (MaNS) PTT and bleomycin BLM-PCI on monolayers of squamous cell carcinoma cells. The two modalities were applied separately and in simultaneous combination. Two different wavelengths of light were employed simultaneously, one to activate a highly efficient PCI photosensitizer, AlPcS2a (670 nm) and the other for the MaNS-mediated PTT (810 nm), to evaluate the combined effects of these modalities. The results clearly demonstrated that macrophages could ingest sufficient numbers of silica-gold nanoshells for efficient near infrared (NIR) activated PTT. A significant synergistic effect of simultaneously applied combined PTT and PCI, compared to each modality applied separately, was achieved. Light-driven therapies have the advantage of site specificity, non-invasive and non-toxic application, require inexpensive equipment and can be given as repetitive treatment protocols.
Collapse
Affiliation(s)
- Rohit Kumar Nair
- Beckman Laser Institute and Medical Clinic, University of California, 1002 Health Sciences Rd, Irvine, CA, 92617, USA
| | - Catherine Christie
- Beckman Laser Institute and Medical Clinic, University of California, 1002 Health Sciences Rd, Irvine, CA, 92617, USA
| | - David Ju
- Beckman Laser Institute and Medical Clinic, University of California, 1002 Health Sciences Rd, Irvine, CA, 92617, USA
| | - Diane Shin
- Beckman Laser Institute and Medical Clinic, University of California, 1002 Health Sciences Rd, Irvine, CA, 92617, USA
| | - Aftin Pomeroy
- Beckman Laser Institute and Medical Clinic, University of California, 1002 Health Sciences Rd, Irvine, CA, 92617, USA
| | - Kristian Berg
- Department of Radiation Biology, University of Oslo, Montebello, 0310, Oslo, Norway
| | - Qian Peng
- Pathology Clinic, Rikshospitalet-Radiumhospitalet HF Medical Center, University of Oslo, Montebello, 0310, Oslo, Norway
| | - Henry Hirschberg
- Beckman Laser Institute and Medical Clinic, University of California, 1002 Health Sciences Rd, Irvine, CA, 92617, USA.
| |
Collapse
|
159
|
Abstract
Engineering synthetic gene regulatory circuits proceeds through iterative cycles of design, building, and testing. Initial circuit designs must rely on often-incomplete models of regulation established by fields of reductive inquiry—biochemistry and molecular and systems biology. As differences in designed and experimentally observed circuit behavior are inevitably encountered, investigated, and resolved, each turn of the engineering cycle can force a resynthesis in understanding of natural network function. Here, we outline research that uses the process of gene circuit engineering to advance biological discovery. Synthetic gene circuit engineering research has not only refined our understanding of cellular regulation but furnished biologists with a toolkit that can be directed at natural systems to exact precision manipulation of network structure. As we discuss, using circuit engineering to predictively reorganize, rewire, and reconstruct cellular regulation serves as the ultimate means of testing and understanding how cellular phenotype emerges from systems-level network function.
Collapse
Affiliation(s)
- Caleb J. Bashor
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;,
| | - James J. Collins
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;,
- Harvard–MIT Program in Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| |
Collapse
|
160
|
A decade of marketing approval of gene and cell-based therapies in the United States, European Union and Japan: An evaluation of regulatory decision-making. Cytotherapy 2018; 20:769-778. [PMID: 29730080 DOI: 10.1016/j.jcyt.2018.03.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 02/06/2023]
Abstract
There is a widely held expectation of clinical advance with the development of gene and cell-based therapies (GCTs). Yet, establishing benefits and risks is highly uncertain. We examine differences in decision-making for GCT approval between jurisdictions by comparing regulatory assessment procedures in the United States (US), European Union (EU) and Japan. A cohort of 18 assessment procedures was analyzed by comparing product characteristics, evidentiary and non-evidentiary factors considered for approval and post-marketing risk management. Product characteristics are very heterogeneous and only three products are marketed in multiple jurisdictions. Almost half of all approved GCTs received an orphan designation. Overall, confirmatory evidence or indications of clinical benefit were evident in US and EU applications, whereas in Japan approval was solely granted based on non-confirmatory evidence. Due to scientific uncertainties and safety risks, substantial post-marketing risk management activities were requested in the EU and Japan. EU and Japanese authorities often took unmet medical needs into consideration in decision-making for approval. These observations underline the effects of implemented legislation in these two jurisdictions that facilitate an adaptive approach to licensing. In the US, the recent assessments of two chimeric antigen receptor-T cell (CAR-T) products are suggestive of a trend toward a more permissive approach for GCT approval under recent reforms, in contrast to a more binary decision-making approach for previous approvals. It indicates that all three regulatory agencies are currently willing to take risks by approving GCTs with scientific uncertainties and safety risks, urging them to pay accurate attention to post-marketing risk management.
Collapse
|
161
|
Sun S, Hao H, Yang G, Zhang Y, Fu Y. Immunotherapy with CAR-Modified T Cells: Toxicities and Overcoming Strategies. J Immunol Res 2018; 2018:2386187. [PMID: 29850622 PMCID: PMC5932485 DOI: 10.1155/2018/2386187] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 02/07/2018] [Indexed: 12/11/2022] Open
Abstract
T cells modified via chimeric antigen receptors (CARs) have emerged as a promising treatment modality. Unparalleled clinical efficacy recently demonstrated in refractory B-cell malignancy has brought this new form of adoptive immunotherapy to the center stage. Nonetheless, its current success has also highlighted its potential treatment-related toxicities. The adverse events observed in the clinical trials are described in this review, after which, some innovative strategies developed to overcome these unwanted toxicities are outlined, including suicide genes, targeted activation, and other novel strategies.
Collapse
Affiliation(s)
- Shangjun Sun
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Oncology, Ansteel Group Hospital, Anshan, Liaoning 114000, China
| | - He Hao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Orthopedics, Ansteel Group Hospital, Anshan, Liaoning 114000, China
| | - Ge Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yang Fu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
162
|
Ho P, Chen YY. Synthetic Biology in Immunotherapy and Stem Cell Therapy Engineering. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Patrick Ho
- University of California; Department of Chemical and Biomolecular Engineering; 420 Westwood Plaza, Boelter Hall 5532, Los Angeles CA 90095 USA
| | - Yvonne Y. Chen
- University of California; Department of Chemical and Biomolecular Engineering; 420 Westwood Plaza, Boelter Hall 5532, Los Angeles CA 90095 USA
| |
Collapse
|
163
|
Peruzzotti-Jametti L, Bernstock JD, Vicario N, Costa ASH, Kwok CK, Leonardi T, Booty LM, Bicci I, Balzarotti B, Volpe G, Mallucci G, Manferrari G, Donegà M, Iraci N, Braga A, Hallenbeck JM, Murphy MP, Edenhofer F, Frezza C, Pluchino S. Macrophage-Derived Extracellular Succinate Licenses Neural Stem Cells to Suppress Chronic Neuroinflammation. Cell Stem Cell 2018; 22:355-368.e13. [PMID: 29478844 PMCID: PMC5842147 DOI: 10.1016/j.stem.2018.01.020] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/18/2017] [Accepted: 01/25/2018] [Indexed: 12/13/2022]
Abstract
Neural stem cell (NSC) transplantation can influence immune responses and suppress inflammation in the CNS. Metabolites, such as succinate, modulate the phenotype and function of immune cells, but whether and how NSCs are also activated by such immunometabolites to control immunoreactivity and inflammatory responses is unclear. Here, we show that transplanted somatic and directly induced NSCs ameliorate chronic CNS inflammation by reducing succinate levels in the cerebrospinal fluid, thereby decreasing mononuclear phagocyte (MP) infiltration and secondary CNS damage. Inflammatory MPs release succinate, which activates succinate receptor 1 (SUCNR1)/GPR91 on NSCs, leading them to secrete prostaglandin E2 and scavenge extracellular succinate with consequential anti-inflammatory effects. Thus, our work reveals an unexpected role for the succinate-SUCNR1 axis in somatic and directly induced NSCs, which controls the response of stem cells to inflammatory metabolic signals released by type 1 MPs in the chronically inflamed brain.
Collapse
Affiliation(s)
- Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK.
| | - Joshua D Bernstock
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK; Stroke Branch, National Institute of Neurological Disorders and Stroke, NIH (NINDS/NIH), Bethesda, MD, USA
| | - Nunzio Vicario
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Ana S H Costa
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Chee Keong Kwok
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Tommaso Leonardi
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Lee M Booty
- MRC Mitochondrial Biology Unit, Hills Road, University of Cambridge, Cambridge, UK
| | - Iacopo Bicci
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Beatrice Balzarotti
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Giulio Volpe
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Giulia Mallucci
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Giulia Manferrari
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Matteo Donegà
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Nunzio Iraci
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK; Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Via S. Sofia 97, Catania 95125, Italy
| | - Alice Braga
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - John M Hallenbeck
- Stroke Branch, National Institute of Neurological Disorders and Stroke, NIH (NINDS/NIH), Bethesda, MD, USA
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Hills Road, University of Cambridge, Cambridge, UK
| | - Frank Edenhofer
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany; Institute of Molecular Biology and CMBI, Genomics, Stem Cell Biology and Regenerative Medicine, Leopold-Franzens-University Innsbruck, Innsbruck, Austria.
| | - Christian Frezza
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK.
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
164
|
Kornete M, Marone R, Jeker LT. Highly Efficient and Versatile Plasmid-Based Gene Editing in Primary T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 200:2489-2501. [PMID: 29445007 DOI: 10.4049/jimmunol.1701121] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/22/2018] [Indexed: 12/31/2022]
Abstract
Adoptive cell transfer is an important approach for basic research and emerges as an effective treatment for various diseases, including infections and blood cancers. Direct genetic manipulation of primary immune cells opens up unprecedented research opportunities and could be applied to enhance cellular therapeutic products. In this article, we report highly efficient genome engineering in primary murine T cells using a plasmid-based RNA-guided CRISPR system. We developed a straightforward approach to ablate genes in up to 90% of cells and to introduce precisely targeted single nucleotide polymorphisms in up to 25% of the transfected primary T cells. We used gene editing-mediated allele switching to quantify homology-directed repair, systematically optimize experimental parameters, and map a native B cell epitope in primary T cells. Allele switching of a surrogate cell surface marker can be used to enrich cells, with successful simultaneous editing of a second gene of interest. Finally, we applied the approach to correct two disease-causing mutations in the Foxp3 gene. Repairing the cause of the scurfy syndrome, a 2-bp insertion in Foxp3, and repairing the clinically relevant Foxp3K276X mutation restored Foxp3 expression in primary T cells.
Collapse
Affiliation(s)
- Mara Kornete
- Department of Biomedicine, Basel University Hospital and University of Basel, CH-4031 Basel, Switzerland; and Transplantation Immunology and Nephrology, Basel University Hospital, CH-4031 Basel, Switzerland
| | - Romina Marone
- Department of Biomedicine, Basel University Hospital and University of Basel, CH-4031 Basel, Switzerland; and Transplantation Immunology and Nephrology, Basel University Hospital, CH-4031 Basel, Switzerland
| | - Lukas T Jeker
- Department of Biomedicine, Basel University Hospital and University of Basel, CH-4031 Basel, Switzerland; and Transplantation Immunology and Nephrology, Basel University Hospital, CH-4031 Basel, Switzerland
| |
Collapse
|
165
|
Roybal KT, Lim WA. Synthetic Immunology: Hacking Immune Cells to Expand Their Therapeutic Capabilities. Annu Rev Immunol 2018; 35:229-253. [PMID: 28446063 DOI: 10.1146/annurev-immunol-051116-052302] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ability of immune cells to survey tissues and sense pathologic insults and deviations makes them a unique platform for interfacing with the body and disease. With the rapid advancement of synthetic biology, we can now engineer and equip immune cells with new sensors and controllable therapeutic response programs to sense and treat diseases that our natural immune system cannot normally handle. Here we review the current state of engineered immune cell therapeutics and their unique capabilities compared to small molecules and biologics. We then discuss how engineered immune cells are being designed to combat cancer, focusing on how new synthetic biology tools are providing potential ways to overcome the major roadblocks for treatment. Finally, we give a long-term vision for the use of synthetic biology to engineer immune cells as a general sensor-response platform to precisely detect disease, to remodel disease microenvironments, and to treat a potentially wide range of challenging diseases.
Collapse
Affiliation(s)
- Kole T Roybal
- Parker Institute for Cancer Immunotherapy, Department of Microbiology and Immunology, University of California, San Francisco, California 94143;
| | - Wendell A Lim
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158;
| |
Collapse
|
166
|
Li Z, Yu XF, Chu PK. Recent advances in cell-mediated nanomaterial delivery systems for photothermal therapy. J Mater Chem B 2018; 6:1296-1311. [DOI: 10.1039/c7tb03166a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell-mediated “Trojan Horse” delivery vehicles overcome the drug delivery barriers to transport nano-agents enhancing the efficiency of photothermal therapy.
Collapse
Affiliation(s)
- Zhibin Li
- Department of Physics and Department of Materials Science and Engineering
- City University of Hong Kong
- Kowloon
- China
- Center for Biomedical Materials and Interfaces
| | - Xue-Feng Yu
- Center for Biomedical Materials and Interfaces
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
- P. R. China
| | - Paul K. Chu
- Department of Physics and Department of Materials Science and Engineering
- City University of Hong Kong
- Kowloon
- China
| |
Collapse
|
167
|
Ee MT, Thébaud B. The Therapeutic Potential of Stem Cells for Bronchopulmonary Dysplasia: "It's About Time" or "Not so Fast" ? Curr Pediatr Rev 2018; 14:227-238. [PMID: 30205800 PMCID: PMC6416190 DOI: 10.2174/1573396314666180911100503] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/09/2018] [Accepted: 09/10/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVE While the survival of extremely premature infants has improved over the past decades, the rate of complications - especially for bronchopulmonary dysplasia (BPD) - remains unacceptably high. Over the past 50 years, no safe therapy has had a substantial impact on the incidence and severity of BPD. METHODS This may stem from the multifactorial disease pathogenesis and the increasing lung immaturity. Mesenchymal Stromal Cells (MSCs) display pleiotropic effects and show promising results in neonatal rodents in preventing or rescuing lung injury without adverse effects. Early phase clinical trials are now underway to determine the safety and efficacy of this therapy in extremely premature infants. RESULTS AND CONCLUSION This review summarizes our current knowledge about MSCs, their mechanism of action and the results of preclinical studies that provide the rationale for early phase clinical trials and discuss remaining gaps in our knowledge.
Collapse
Affiliation(s)
- Mong Tieng Ee
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada
| | - Bernard Thébaud
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada.,Sinclair Centre for Regenerative Medicine, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
168
|
Shin D, Christie C, Ju D, Nair RK, Molina S, Berg K, Krasieva TB, Madsen SJ, Hirschberg H. Photochemical internalization enhanced macrophage delivered chemotherapy. Photodiagnosis Photodyn Ther 2017; 21:156-162. [PMID: 29221858 DOI: 10.1016/j.pdpdt.2017.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/23/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Macrophage (Ma) vectorization of chemotherapeutic drugs has the advantage for cancer therapy in that it can actively target and maintain an elevated concentration of drugs at the tumor site, preventing their spread into healthy tissue. A potential drawback is the inability to deliver a sufficient number of drug-loaded Ma into the tumor, thus limiting the amount of active drug delivered. This study examined the ability of photochemical internalization (PCI) to enhance the efficacy of released drug by Ma transport. METHODS Tumor spheroids consisting of either F98 rat glioma cells or F98 cells combined with a subpopulation of empty or doxorubicin (DOX)-loaded mouse Ma (RAW264.7) were used as in vitro tumor models. PCI was performed with the photosensitizer AlPcS2a and laser irradiation at 670 nm. RESULTS RAW264.7 Ma pulsed with DOX released the majority of the incorporated DOX within two hours of incubation. PCI significantly increased the toxicity of DOX either as pure drug or derived from monolayers of DOX-loaded Ma. Significant growth inhibition of hybrid spheroids was also observed with PCI even at subpopulations of DOX-loaded Ma as low as 11% of the total initial hybrid spheroid cell number. CONCLUSION Results show that RAW264.7 Ma, pulsed with DOX, could effectively incorporate and release DOX. PCI significantly increased the ability of both free and Ma-released DOX to inhibit the growth of tumor spheroids in vitro. The growth of F98 + DOX loaded Ma hybrid spheroids were synergistically reduced by PCI, compared to either photodynamic therapy or released DOX acting alone.
Collapse
Affiliation(s)
- Diane Shin
- Beckman Laser Institute and Medical Clinic, University of California, Irvine 1002 Health Sciences Rd, Irvine, CA, 92617, United States.
| | - Catherine Christie
- Beckman Laser Institute and Medical Clinic, University of California, Irvine 1002 Health Sciences Rd, Irvine, CA, 92617, United States
| | - David Ju
- Beckman Laser Institute and Medical Clinic, University of California, Irvine 1002 Health Sciences Rd, Irvine, CA, 92617, United States
| | - Rohit Kumar Nair
- Beckman Laser Institute and Medical Clinic, University of California, Irvine 1002 Health Sciences Rd, Irvine, CA, 92617, United States
| | - Stephanie Molina
- Dept. of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas 4505 S. Maryland Pkwy, Las Vegas, NV, 89154-3037, United States
| | - Kristian Berg
- Dept. of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway
| | - Tatiana B Krasieva
- Beckman Laser Institute and Medical Clinic, University of California, Irvine 1002 Health Sciences Rd, Irvine, CA, 92617, United States
| | - Steen J Madsen
- Dept. of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas 4505 S. Maryland Pkwy, Las Vegas, NV, 89154-3037, United States
| | - Henry Hirschberg
- Beckman Laser Institute and Medical Clinic, University of California, Irvine 1002 Health Sciences Rd, Irvine, CA, 92617, United States
| |
Collapse
|
169
|
Thébaud B, Kourembanas S. Can We Cure Bronchopulmonary Dysplasia? J Pediatr 2017; 191:12-14. [PMID: 28942897 DOI: 10.1016/j.jpeds.2017.07.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/14/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Bernard Thébaud
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; Ottawa Hospital Research Institute, Sinclair Center for Regenerative Medicine, Ottawa, Ontario, Canada.
| | - Stella Kourembanas
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|
170
|
Johnson MB, March AR, Morsut L. Engineering multicellular systems: using synthetic biology to control tissue self-organization. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017; 4:163-173. [PMID: 29308442 DOI: 10.1016/j.cobme.2017.10.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Marion B Johnson
- The Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine University of Southern California Keck School of Medicine 1425 San Pablo Avenue, BCC-507, Los Angeles, 90033, USA
| | - Alexander R March
- The Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine University of Southern California Keck School of Medicine 1425 San Pablo Avenue, BCC-507, Los Angeles, 90033, USA
| | - Leonardo Morsut
- The Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine University of Southern California Keck School of Medicine 1425 San Pablo Avenue, BCC-507, Los Angeles, 90033, USA
| |
Collapse
|
171
|
Wang Y, Wang M, Dong K, Ye H. Engineering Mammalian Designer Cells for the Treatment of Metabolic Diseases. Biotechnol J 2017; 13:e1700160. [PMID: 29144600 DOI: 10.1002/biot.201700160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/03/2017] [Indexed: 12/22/2022]
Abstract
Synthetic biology applies engineering principles to biological systems and has significantly advanced the design of synthetic gene circuits that can reprogram cell activities to perform new functions. The ability to engineer mammalian designer cells with robust therapeutic behaviors has brought new opportunities for treating metabolic diseases. In this review, the authors highlight the most recent advances in the development of synthetic designer cells uploaded with open- or closed-loop gene circuits for the treatment of metabolic disorders including diabetes, hypertension, hyperuricemia, and obesity, and discuss the current technologies and future perspectives in applying these designer cells for clinical applications. In the future, more and more rationally designed cells will be constructed and revolutionized to treat a number of metabolic disorders in an intelligent manner.
Collapse
Affiliation(s)
- Yidan Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Meiyan Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Kaili Dong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Haifeng Ye
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
172
|
Zimmermann S, Gretzinger S, Zimmermann PK, Bogsnes A, Hansson M, Hubbuch J. Cell Separation in Aqueous Two-Phase Systems - Influence of Polymer Molecular Weight and Tie-Line Length on the Resolution of Five Model Cell Lines. Biotechnol J 2017; 13. [PMID: 29087627 DOI: 10.1002/biot.201700250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 10/16/2017] [Indexed: 12/29/2022]
Abstract
The availability of clinical-scale downstream processing strategies for cell-based products presents a critical juncture between basic research and clinical development. Aqueous two-phase systems (ATPS) facilitate the label-free, scalable, and cost-effective separation of cells, and are a versatile tool for downstream processing of cell-based therapeutics. Here, we report the application of a previously developed robotic screening platform, here extended to enable a multiplexed high-throughput cell partitioning analysis in ATPS. We investigated the influence of polymer molecular weight and tie-line length on the resolution of five model cell lines in "charge-sensitive" polyethylene-glycol (PEG)-dextran ATPS. We show, how these factors influence cell partitioning, and that the combination of low molecular weight PEGs and high molecular weight dextrans enable the highest resolution of the five cell lines. Furthermore, we demonstrate that the separability of each cell line from the mixture is highly dependent on the polymer molecular weight composition and tie-line length. Using a countercurrent distribution model we demonstrate that our screenings yielded conditions that theoretically enable the isolation of four of the five cell lines with high purity (>99.9%) and yield.
Collapse
Affiliation(s)
- Sarah Zimmermann
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sarah Gretzinger
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Philipp K Zimmermann
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Are Bogsnes
- Biopharm Purification Development & Virology, Novo Nordisk A/SGentofte, Denmark
| | - Mattias Hansson
- Dr. M. Hansson, Diabetes Research, Novo Nordisk A/S, Måløv, Denmark
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
173
|
Coppens DG, De Bruin ML, Leufkens HG, Hoekman J. Global Regulatory Differences for Gene- and Cell-Based Therapies: Consequences and Implications for Patient Access and Therapeutic Innovation. Clin Pharmacol Ther 2017; 103:120-127. [DOI: 10.1002/cpt.894] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/12/2017] [Accepted: 10/01/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Delphi G.M. Coppens
- Utrecht/WHO Collaborating Centre for Pharmaceutical Policy and Regulation, Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Marie L. De Bruin
- Utrecht/WHO Collaborating Centre for Pharmaceutical Policy and Regulation, Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
- Copenhagen Centre for Regulatory Science (CORS), Department of Pharmacy; University of Copenhagen; Copenhagen Denmark
| | - Hubert G.M. Leufkens
- Utrecht/WHO Collaborating Centre for Pharmaceutical Policy and Regulation, Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Jarno Hoekman
- Utrecht/WHO Collaborating Centre for Pharmaceutical Policy and Regulation, Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
- Innovation Studies Group, Copernicus Institute for Sustainable Development; Utrecht University; Utrecht The Netherlands
| |
Collapse
|
174
|
Kim HJ, Cha GS, Joo JY, Lee J, Kim SJ, Lee J, Park SY, Choi J. Targeting the epitope spreader Pep19 by naïve human CD45RA + regulatory T cells dictates a distinct suppressive T cell fate in a novel form of immunotherapy. J Periodontal Implant Sci 2017; 47:292-311. [PMID: 29093987 PMCID: PMC5663667 DOI: 10.5051/jpis.2017.47.5.292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022] Open
Abstract
Purpose Beyond the limited scope of non-specific polyclonal regulatory T cell (Treg)-based immunotherapy, which depends largely on serendipity, the present study explored a target Treg subset appropriate for the delivery of a novel epitope spreader Pep19 antigen as part of a sophisticated form of immunotherapy with defined antigen specificity that induces immune tolerance. Methods Human polyclonal CD4+CD25+CD127lo− Tregs (127-Tregs) and naïve CD4+CD25+CD45RA+ Tregs (45RA-Tregs) were isolated and were stimulated with target peptide 19 (Pep19)-pulsed dendritic cells in a tolerogenic milieu followed by ex vivo expansion. Low-dose interleukin-2 (IL-2) and rapamycin were added to selectively exclude the outgrowth of contaminating effector T cells (Teffs). The following parameters were investigated in the expanded antigen-specific Tregs: the distinct expression of the immunosuppressive Treg marker Foxp3, epigenetic stability (demethylation in the Treg-specific demethylated region), the suppression of Teffs, expression of the homing receptors CD62L/CCR7, and CD95L-mediated apoptosis. The expanded Tregs were adoptively transferred into an NOD/scid/IL-2Rγ−/− mouse model of collagen-induced arthritis. Results Epitope-spreader Pep19 targeting by 45RA-Tregs led to an outstanding in vitro suppressive T cell fate characterized by robust ex vivo expansion, the salient expression of Foxp3, high epigenetic stability, enhanced T cell suppression, modest expression of CD62L/CCR7, and higher resistance to CD95L-mediated apoptosis. After adoptive transfer, the distinct fate of these T cells demonstrated a potent in vivo immunotherapeutic capability, as indicated by the complete elimination of footpad swelling, prolonged survival, minimal histopathological changes, and preferential localization of CD4+CD25+ Tregs at the articular joints in a mechanistic and orchestrated way. Conclusions We propose human naïve CD4+CD25+CD45RA+ Tregs and the epitope spreader Pep19 as cellular and molecular targets for a novel antigen-specific Treg-based vaccination against collagen-induced arthritis.
Collapse
Affiliation(s)
- Hyun-Joo Kim
- Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Pusan National University School of Dentistry, Yangsan, Korea
| | - Gil Sun Cha
- Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Pusan National University School of Dentistry, Yangsan, Korea
| | - Ji-Young Joo
- Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Pusan National University School of Dentistry, Yangsan, Korea
| | - Juyoun Lee
- Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Pusan National University School of Dentistry, Yangsan, Korea
| | - Sung-Jo Kim
- Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Pusan National University School of Dentistry, Yangsan, Korea
| | - Jeongae Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - So Youn Park
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| | - Jeomil Choi
- Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Pusan National University School of Dentistry, Yangsan, Korea
| |
Collapse
|
175
|
Sensing and responding to allergic response cytokines through a genetically encoded circuit. Nat Commun 2017; 8:1101. [PMID: 29062109 PMCID: PMC5653676 DOI: 10.1038/s41467-017-01211-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/30/2017] [Indexed: 12/18/2022] Open
Abstract
While constantly rising, the prevalence of allergies is globally one of the highest among chronic diseases. Current treatments of allergic diseases include the application of anti-histamines, immunotherapy, steroids, and anti-immunoglobulin E (IgE) antibodies. Here we report mammalian cells engineered with a synthetic signaling cascade able to monitor extracellular pathophysiological levels of interleukin 4 and interleukin 13, two main cytokines orchestrating allergic inflammation. Upon activation of transgenic cells by these cytokines, designed ankyrin repeat protein (DARPin) E2_79, a non-immunogenic protein binding human IgE, is secreted in a precisely controlled and reversible manner. Using human whole blood cell culturing, we demonstrate that the mammalian dual T helper 2 cytokine sensor produces sufficient levels of DARPin E2_79 to dampen histamine release in allergic subjects exposed to allergens. Hence, therapeutic gene networks monitoring disease-associated cytokines coupled with in situ production, secretion and systemic delivery of immunomodulatory biologics may foster advances in the treatment of allergies. The standard treatment for an allergic response is anti-histamines, steroids and anti-IgE antibodies. Here the authors present a genetic circuit that senses IL-4 and IL-13 and responses with DARPin production to bind IgE.
Collapse
|
176
|
Woodsworth DJ, Dreolini L, Abraham L, Holt RA. Targeted Cell-to-Cell Delivery of Protein Payloads via the Granzyme-Perforin Pathway. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 7:132-145. [PMID: 29201936 PMCID: PMC5700818 DOI: 10.1016/j.omtm.2017.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/05/2017] [Indexed: 12/19/2022]
Abstract
There is great potential for engineering cellular therapeutics by repurposing biological systems. Here, we report utilization of the granzyme-perforin pathway of cytotoxic lymphocytes as a cell-to-cell protein delivery module. We designed and constructed granzyme B-derived chaperone molecules fused to a fluorescent protein payload and expressed these constructs in natural killer (NK) cells. Using confocal microscopy and flow cytometry, we investigated the co-localization of the chaperones with lytic granules and the chaperone-mediated transfer of the fluorescent protein payload from NK to target cells in co-culture experiments. A synthetic chaperone consisting of the granzyme B ER signal peptide and a domain encompassing putative N-linked glycosylation sites in granzyme B is insufficient for payload transfer to target cells, whereas full-length granzyme B is sufficient for payload delivery. Combining our functional data with an analysis of the crystal structure of granzyme B suggests that the necessary motifs for granzyme B loading into lytic granules are dispersed throughout the primary amino acid sequence and are only functional when contiguous in the tertiary structure. These results illustrate that by using granzyme B as a molecular chaperone the granzyme-perforin pathway can be exploited as a programmable molecular delivery system for cell-based therapies.
Collapse
Affiliation(s)
- Daniel J. Woodsworth
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Lisa Dreolini
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Libin Abraham
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Robert A. Holt
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Corresponding author: Robert A. Holt, Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
177
|
Li Y, Yan X, Liu W, Zhou L, You Z, Du Y. 3D Microtissues for Injectable Regenerative Therapy and High-throughput Drug Screening. J Vis Exp 2017:55982. [PMID: 29053690 PMCID: PMC5752368 DOI: 10.3791/55982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
To upgrade traditional 2D cell culture to 3D cell culture, we have integrated microfabrication with cryogelation technology to produce macroporous microscale cryogels (microcryogels), which can be loaded with a variety of cell types to form 3D microtissues. Herein, we present the protocol to fabricate versatile 3D microtissues and their applications in regenerative therapy and drug screening. Size and shape-controllable microcryogels can be fabricated on an array chip, which can be harvested off-chip as individual cell-loaded carriers for injectable regenerative therapy or be further assembled on-chip into 3D microtissue arrays for high-throughput drug screening. Due to the high elastic nature of these microscale cryogels, the 3D microtissues exhibit great injectability for minimally invasive cell therapy by protecting cells from mechanical shear force during injection. This ensures enhanced cell survival and therapeutic effect in the mouse limb ischemia model. Meanwhile, assembly of 3D microtissue arrays in a standard 384-multi-well format facilitates the use of common laboratory facilities and equipment, enabling high-throughput drug screening on this versatile 3D cell culture platform.
Collapse
Affiliation(s)
- Yaqian Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases
| | - Xiaojun Yan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University
| | - Wei Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University
| | - Lyu Zhou
- Department of Biomedical Engineering, School of Medicine, Tsinghua University; School of Life Sciences, Tsinghua University
| | - Zhifeng You
- Department of Biomedical Engineering, School of Medicine, Tsinghua University
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases;
| |
Collapse
|
178
|
Abbina S, Siren EMJ, Moon H, Kizhakkedathu JN. Surface Engineering for Cell-Based Therapies: Techniques for Manipulating Mammalian Cell Surfaces. ACS Biomater Sci Eng 2017; 4:3658-3677. [DOI: 10.1021/acsbiomaterials.7b00514] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
179
|
Farías JG, Molina VM, Carrasco RA, Zepeda AB, Figueroa E, Letelier P, Castillo RL. Antioxidant Therapeutic Strategies for Cardiovascular Conditions Associated with Oxidative Stress. Nutrients 2017; 9:nu9090966. [PMID: 28862654 PMCID: PMC5622726 DOI: 10.3390/nu9090966] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress (OS) refers to the imbalance between the generation of reactive oxygen species (ROS) and the ability to scavenge these ROS by endogenous antioxidant systems, where ROS overwhelms the antioxidant capacity. Excessive presence of ROS results in irreversible damage to cell membranes, DNA, and other cellular structures by oxidizing lipids, proteins, and nucleic acids. Oxidative stress plays a crucial role in the pathogenesis of cardiovascular diseases related to hypoxia, cardiotoxicity and ischemia-reperfusion. Here, we describe the participation of OS in the pathophysiology of cardiovascular conditions such as myocardial infarction, anthracycline cardiotoxicity and congenital heart disease. This review focuses on the different clinical events where redox factors and OS are related to cardiovascular pathophysiology, giving to support for novel pharmacological therapies such as omega 3 fatty acids, non-selective betablockers and microRNAs.
Collapse
Affiliation(s)
- Jorge G Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Víctor M Molina
- Unidad de Cuidados Intensivos, Hospital de Niños Roberto del Río, Santiago 7500922, Chile.
- Unidad de Cuidados Intensivos Pediátricos, Hospital Clínico Pontificia Universidad Católica de Chile, Santiago 7500922, Chile.
| | - Rodrigo A Carrasco
- Laboratorio de Investigación Biomédica, Departamento de Medicina Interna, Hospital del Salvador, Santiago 7500922, Chile.
- Departamento de Cardiología, Clínica Alemana, Santiago 7500922, Chile.
| | - Andrea B Zepeda
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Elías Figueroa
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4780000, Chile.
- Núcleo de Investigación en Producción Alimentaria, BIOACUI, Escuela de Acuicultura, Universidad Católica de Temuco, Temuco 4780000, Chile.
| | - Pablo Letelier
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4780000, Chile.
- School of Health Sciences, Universidad Católica de Temuco, Temuco 4780000, Chile.
| | - Rodrigo L Castillo
- Laboratorio de Investigación Biomédica, Departamento de Medicina Interna, Hospital del Salvador, Santiago 7500922, Chile.
- Programa de Fisiopatología Oriente, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile.
| |
Collapse
|
180
|
Re A. Synthetic Gene Expression Circuits for Designing Precision Tools in Oncology. Front Cell Dev Biol 2017; 5:77. [PMID: 28894736 PMCID: PMC5581392 DOI: 10.3389/fcell.2017.00077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/16/2017] [Indexed: 01/21/2023] Open
Abstract
Precision medicine in oncology needs to enhance its capabilities to match diagnostic and therapeutic technologies to individual patients. Synthetic biology streamlines the design and construction of functionalized devices through standardization and rational engineering of basic biological elements decoupled from their natural context. Remarkable improvements have opened the prospects for the availability of synthetic devices of enhanced mechanism clarity, robustness, sensitivity, as well as scalability and portability, which might bring new capabilities in precision cancer medicine implementations. In this review, we begin by presenting a brief overview of some of the major advances in the engineering of synthetic genetic circuits aimed to the control of gene expression and operating at the transcriptional, post-transcriptional/translational, and post-translational levels. We then focus on engineering synthetic circuits as an enabling methodology for the successful establishment of precision technologies in oncology. We describe significant advancements in our capabilities to tailor synthetic genetic circuits to specific applications in tumor diagnosis, tumor cell- and gene-based therapy, and drug delivery.
Collapse
Affiliation(s)
- Angela Re
- Centre for Sustainable Future Technologies, Istituto Italiano di TecnologiaTorino, Italy
| |
Collapse
|
181
|
Passemard S, Szabó L, Noverraz F, Montanari E, Gonelle-Gispert C, Bühler LH, Wandrey C, Gerber-Lemaire S. Synthesis Strategies to Extend the Variety of Alginate-Based Hybrid Hydrogels for Cell Microencapsulation. Biomacromolecules 2017; 18:2747-2755. [PMID: 28742341 DOI: 10.1021/acs.biomac.7b00665] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The production of hydrogel microspheres (MS) for cell immobilization, maintaining the favorable properties of alginate gels but presenting enhanced performance in terms of in vivo durability and physical properties, is desirable to extend the therapeutic potential of cell transplantation. A novel type of hydrogel MS was produced by straightforward functionalization of sodium alginate (Na-alg) with heterotelechelic poly(ethylene glycol) (PEG) derivatives equipped with either end thiol or 1,2-dithiolane moieties. Activation of the hydroxyl moieties of the alginate backbone in the form of imidazolide intermediate allowed for fast conjugation to PEG oligomers through a covalent carbamate linkage. Evaluation of the modified alginates for the preparation of MS combining fast ionic gelation ability of the alginate carboxylate groups and slow covalent cross-linking provided by the PEG-end functionalities highlighted the influence of the chemical composition of the PEG-grafting units on the physical characteristics of the MS. The mechanical properties of the MS (resistance and shape recovery) and durability of PEG-grafted alginates in physiological environment can be adjusted by varying the nature of the end functionalities and the length of the PEG chains. In vitro cell microencapsulation studies and preliminary in vivo assessment suggested the potential of these hydrogels for cell transplantation applications.
Collapse
Affiliation(s)
- Solène Passemard
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne , EPFL SB ISIC LSPN, Station 6, CH-1015 Lausanne, Switzerland
| | - Luca Szabó
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne , EPFL SB ISIC LSPN, Station 6, CH-1015 Lausanne, Switzerland
| | - François Noverraz
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne , EPFL SB ISIC LSPN, Station 6, CH-1015 Lausanne, Switzerland
| | - Elisa Montanari
- University Hospital of Geneva, Surgical Research Unit , CMU-1, rue Gabrielle-Perret-Gentil, CH-1211 Geneva, Switzerland
| | - Carmen Gonelle-Gispert
- University Hospital of Geneva, Surgical Research Unit , CMU-1, rue Gabrielle-Perret-Gentil, CH-1211 Geneva, Switzerland
| | - Léo H Bühler
- University Hospital of Geneva, Surgical Research Unit , CMU-1, rue Gabrielle-Perret-Gentil, CH-1211 Geneva, Switzerland
| | - Christine Wandrey
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne , EPFL SB ISIC LSPN, Station 6, CH-1015 Lausanne, Switzerland
| | - Sandrine Gerber-Lemaire
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne , EPFL SB ISIC LSPN, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
182
|
Abstract
OBJECTIVE A vibratory vocal fold replacement would introduce a new treatment paradigm for structural vocal fold diseases such as scarring and lamina propria loss. This work implants a tissue-engineered replacement for vocal fold lamina propria and epithelium in rabbits and compares histology and function to injured controls and orthotopic transplants. Hypotheses were that the cell-based implant would engraft and control the wound response, reducing fibrosis and restoring vibration. STUDY DESIGN Translational research. METHODS Rabbit adipose-derived mesenchymal stem cells (ASC) were embedded within a three-dimensional fibrin gel, forming the cell-based outer vocal fold replacement (COVR). Sixteen rabbits underwent unilateral resection of vocal fold epithelium and lamina propria, as well as reconstruction with one of three treatments: fibrin glue alone with healing by secondary intention, replantation of autologous resected vocal fold cover, or COVR implantation. After 4 weeks, larynges were examined histologically and with phonation. RESULTS Fifteen rabbits survived. All tissues incorporated well after implantation. After 1 month, both graft types improved histology and vibration relative to injured controls. Extracellular matrix (ECM) of the replanted mucosa was disrupted, and ECM of the COVR implants remained immature. Immune reaction was evident when male cells were implanted into female rabbits. Best histologic and short-term vibratory outcomes were achieved with COVR implants containing male cells implanted into male rabbits. CONCLUSION Vocal fold cover replacement with a stem cell-based tissue-engineered construct is feasible and beneficial in acute rabbit implantation. Wound-modifying behavior of the COVR implant is judged to be an important factor in preventing fibrosis. LEVEL OF EVIDENCE NA. Laryngoscope, 128:153-159, 2018.
Collapse
Affiliation(s)
- Jennifer L Long
- Research Service, Greater Los Angeles VAHS, Los Angeles, California, U.S.A.,Department of Head and Neck Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California, U.S.A
| |
Collapse
|
183
|
Wang C, Ye Y, Hu Q, Bellotti A, Gu Z. Tailoring Biomaterials for Cancer Immunotherapy: Emerging Trends and Future Outlook. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28556553 DOI: 10.1002/adma.201606036] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/04/2017] [Indexed: 05/05/2023]
Abstract
Cancer immunotherapy, as a paradigm shift in cancer treatment, has recently received tremendous attention. The active cancer vaccination, immune checkpoint blockage (ICB) and chimeric antigen receptor (CAR) for T-cell-based adoptive cell transfer are among these developments that have achieved a significant increase in patient survival in clinical trials. Despite these advancements, emerging research at the interdisciplinary interface of cancer biology, immunology, bioengineering, and materials science is important to further enhance the therapeutic benefits and reduce side effects. Here, an overview of the latest studies on engineering biomaterials for the enhancement of anticancer immunity is given, including the perspectives of delivery of immunomodulatory therapeutics, engineering immune cells, and constructing immune-modulating scaffolds. The opportunities and challenges in this field are also discussed.
Collapse
Affiliation(s)
- Chao Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yanqi Ye
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Quanyin Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Adriano Bellotti
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
- Department of Medicine University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Medicine University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
184
|
Steinmeyer S, Howsmon DP, Alaniz RC, Hahn J, Jayaraman A. Empirical modeling of T cell activation predicts interplay of host cytokines and bacterial indole. Biotechnol Bioeng 2017; 114:2660-2667. [PMID: 28667749 DOI: 10.1002/bit.26371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/21/2017] [Accepted: 06/30/2017] [Indexed: 12/24/2022]
Abstract
Adoptive transfer of anti-inflammatory FOXP3+ Tregs has gained attention as a new therapeutic strategy for auto-inflammatory disorders such as Inflammatory Bowel Disease. The isolated cells are conditioned in vitro to obtain a sufficient number of anti-inflammatory FOXP3+ Tregs that can be reintroduced into the patient to potentially reduce the pathologic inflammatory response. Previous evidence suggests that microbiota metabolites can potentially condition cells during the in vitro expansion/differentiation step. However, the number of combinations of cytokines and metabolites that can be varied is large, preventing a purely experimental investigation which would determine optimal cell therapeutic outcomes. To address this problem, a combined experimental and modeling approached is investigated here: an artificial neural network model was trained to predict the steady-state T cell population phenotype after differentiation with a variety of host cytokines and the microbial metabolite indole. This artificial neural network model was able to both reliably predict the phenotype of these T cell populations and also uncover unexpected conditions for optimal Treg differentiation that were subsequently verified experimentally. Biotechnol. Bioeng. 2017;114: 2660-2667. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shelby Steinmeyer
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas
| | - Daniel P Howsmon
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., CBIS # 4213, Troy, New York, 12180.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Robert C Alaniz
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas
| | - Juergen Hahn
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., CBIS # 4213, Troy, New York, 12180.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York.,Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, 3122 TAMU Room 200, College Station, Texas, 77843
| |
Collapse
|
185
|
Abram DM, Fernandes LGR, Ramos Filho ACS, Simioni PU. The modulation of enzyme indoleamine 2,3-dioxygenase from dendritic cells for the treatment of type 1 diabetes mellitus. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2171-2178. [PMID: 28769554 PMCID: PMC5533566 DOI: 10.2147/dddt.s135367] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diabetes mellitus type 1 (DM1) is an autoimmune disease in which β-cells of the pancreas islet are destroyed by T lymphocytes. Specific T cells are activated by antigen-presenting cells, mainly dendritic cells (DCs). It is already known that the regulation of tryptophan pathway in DC can be a mechanism of immunomodulation. The enzyme indoleamine 2,3-dioxygenase (IDO) is present in many cells, including DC, and participates in the metabolism of the amino acid tryptophan. Recent studies suggest the involvement of IDO in the modulation of immune response, which became more evident after the in vitro demonstration of IDO production by DC and of the ability of these cells to inhibit lymphocyte function through the control of tryptophan metabolism. Current studies on immunotherapies describe the use of DC and IDO to control the progression of the immune response that triggers DM1. The initial results obtained are promising and indicate the possibility of developing therapies for the treatment or prevention of the DM1. Clinical trials using these cells in DM1 patients represent an interesting alternative treatment. However, clinical trials are still in the initial phase and a robust group of assays is necessary.
Collapse
Affiliation(s)
- Débora Moitinho Abram
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Luis Gustavo Romani Fernandes
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil.,Department of Biomedical Science, Faculty of Americana, Americana, SP, Brazil
| | | | - Patrícia Ucelli Simioni
- Department of Biomedical Science, Faculty of Americana, Americana, SP, Brazil.,Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.,Department of Biochemistry and Microbiology, Institute of Biosciences, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| |
Collapse
|
186
|
Näkki S, Martinez JO, Evangelopoulos M, Xu W, Lehto VP, Tasciotti E. Chlorin e6 Functionalized Theranostic Multistage Nanovectors Transported by Stem Cells for Effective Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:23441-23449. [PMID: 28640590 PMCID: PMC5565768 DOI: 10.1021/acsami.7b05766] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Approaches to achieve site-specific and targeted delivery that provide an effective solution to reduce adverse, off target side effects are urgently needed for cancer therapy. Here, we utilized a Trojan-horse-like strategy to carry photosensitizer Chlorin e6 conjugated porous silicon multistage nanovectors with tumor homing mesenchymal stem cells for targeted photodynamic therapy and diagnosis. The inherent versatility of multistage nanovectors permitted the conjugation of photosensitizers to enable precise cell death induction (60%) upon photodynamic therapy, while simultaneously retaining the loading capacity to load various payloads, such as antitumor drugs and diagnostic nanoparticles. Furthermore, the mesenchymal stem cells that internalized the multistage nanovectors conserved their proliferation patterns and in vitro affinity to migrate and infiltrate breast cancer cells. In vivo administration of the mesenchymal stem cells carrying photosensitizer-conjugated multistage nanovectors in mice bearing a primary breast tumor confirmed their tropism toward cancer sites exhibiting similar targeting kinetics to control cells. In addition, this approach yielded in a > 70% decrease in local tumor cell viability after in vivo photodynamic therapy. In summary, these results show the proof-of-concept of how photosensitizer conjugated multistage nanovectors transported by stem cells can target tumors and be used for effective site-specific cancer therapy while potentially minimizing potential negative side effects.
Collapse
Affiliation(s)
- Simo Näkki
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, Kuopio 70211, Finland
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Jonathan O. Martinez
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Michael Evangelopoulos
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Wujun Xu
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, Kuopio 70211, Finland
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, Kuopio 70211, Finland
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
- Department of Orthopedics & Sports Medicine, Houston Methodist Hospital, 6445 Main Street, Houston, Texas 77030, United States
| |
Collapse
|
187
|
Smolkova B, Dusinska M, Gabelova A. Nanomedicine and epigenome. Possible health risks. Food Chem Toxicol 2017; 109:780-796. [PMID: 28705729 DOI: 10.1016/j.fct.2017.07.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/08/2017] [Indexed: 02/07/2023]
Abstract
Nanomedicine is an emerging field that combines knowledge of nanotechnology and material science with pharmaceutical and biomedical sciences, aiming to develop nanodrugs with increased efficacy and safety. Compared to conventional therapeutics, nanodrugs manifest higher stability and circulation time, reduced toxicity and improved targeted delivery. Despite the obvious benefit, the accumulation of imaging agents and nanocarriers in the body following their therapeutic or diagnostic application generates concerns about their safety for human health. Numerous toxicology studies have demonstrated that exposure to nanomaterials (NMs) might pose serious risks to humans. Epigenetic modifications, representing a non-genotoxic mechanism of toxicant-induced health effects, are becoming recognized as playing a potential causative role in the aetiology of many diseases including cancer. This review i) provides an overview of recent advances in medical applications of NMs and ii) summarizes current evidence on their possible epigenetic toxicity. To discern potential health risks of NMs, since current data are mostly based upon in vitro and animal models, a better understanding of functional relationships between NM exposure, epigenetic deregulation and phenotype is required.
Collapse
Affiliation(s)
- Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia.
| | - Maria Dusinska
- Health Effects Laboratory MILK, NILU- Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | - Alena Gabelova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
188
|
Mahou R, Zhang DK, Vlahos AE, Sefton MV. Injectable and inherently vascularizing semi-interpenetrating polymer network for delivering cells to the subcutaneous space. Biomaterials 2017; 131:27-35. [PMID: 28371625 DOI: 10.1016/j.biomaterials.2017.03.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 12/22/2022]
|
189
|
Whitaker WR, Shepherd ES, Sonnenburg JL. Tunable Expression Tools Enable Single-Cell Strain Distinction in the Gut Microbiome. Cell 2017; 169:538-546.e12. [PMID: 28431251 DOI: 10.1016/j.cell.2017.03.041] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/28/2017] [Accepted: 03/27/2017] [Indexed: 01/07/2023]
Abstract
Applying synthetic biology to engineer gut-resident microbes provides new avenues to investigate microbe-host interactions, perform diagnostics, and deliver therapeutics. Here, we describe a platform for engineering Bacteroides, the most abundant genus in the Western microbiota, which includes a process for high-throughput strain modification. We have identified a novel phage promoter and translational tuning strategy and achieved an unprecedented level of expression that enables imaging of fluorescent-protein-expressing Bacteroides stably colonizing the mouse gut. A detailed characterization of the phage promoter has provided a set of constitutive promoters that span over four logs of strength without detectable fitness burden within the gut over 14 days. These promoters function predictably over a 1,000,000-fold expression range in phylogenetically diverse Bacteroides species. With these promoters, unique fluorescent signatures were encoded to allow differentiation of six species within the gut. Fluorescent protein-based differentiation of isogenic strains revealed that priority of gut colonization determines colonic crypt occupancy.
Collapse
Affiliation(s)
- Weston R Whitaker
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Novome Biotechnologies, 100 Kimball Way, South San Francisco, San Francisco, CA 94080, USA
| | - Elizabeth Stanley Shepherd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
190
|
Pavesi A, Tan AT, Koh S, Chia A, Colombo M, Antonecchia E, Miccolis C, Ceccarello E, Adriani G, Raimondi MT, Kamm RD, Bertoletti A. A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors. JCI Insight 2017; 2:89762. [PMID: 28614795 DOI: 10.1172/jci.insight.89762] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 05/10/2017] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment imposes physical and functional constraints on the antitumor efficacy of adoptive T cell immunotherapy. Preclinical testing of different T cell preparations can help in the selection of efficient immune therapies, but in vivo models are expensive and cumbersome to develop, while classical in vitro 2D models cannot recapitulate the spatiotemporal dynamics experienced by T cells targeting cancer. Here, we describe an easily customizable 3D model, in which the tumor microenvironment conditions are modulated and the functionality of different T cell preparations is tested. We incorporate human cancer hepatocytes as a single cell or as tumor cell aggregates in a 3D collagen gel region of a microfluidic device. Human T cells engineered to express tumor-specific T cell receptors (TCR-T cells) are then added in adjacent channels. The TCR-T cells' ability to migrate and kill the tumor target and the profile of soluble factors were investigated under conditions of varying oxygen levels and in the presence of inflammatory cytokines. We show that only the 3D model detects the effect that oxygen levels and the inflammatory environment impose on engineered TCR-T cell function, and we also used the 3D microdevice to analyze the TCR-T cell efficacy in an immunosuppressive scenario. Hence, we show that our microdevice platform enables us to decipher the factors that can alter T cell function in 3D and can serve as a preclinical assay to tailor the most efficient immunotherapy configuration for a specific therapeutic goal.
Collapse
Affiliation(s)
- Andrea Pavesi
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore.,BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Anthony T Tan
- Emerging Infectious Disease Program, Duke-NUS Graduate Medical School, Singapore
| | - Sarene Koh
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Adeline Chia
- Emerging Infectious Disease Program, Duke-NUS Graduate Medical School, Singapore
| | - Marta Colombo
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milan, Italy
| | - Emanuele Antonecchia
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milan, Italy
| | - Carlo Miccolis
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milan, Italy
| | - Erica Ceccarello
- Emerging Infectious Disease Program, Duke-NUS Graduate Medical School, Singapore
| | - Giulia Adriani
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Manuela T Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milan, Italy
| | - Roger D Kamm
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, Singapore.,MechanoBiology Laboratory, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Antonio Bertoletti
- Emerging Infectious Disease Program, Duke-NUS Graduate Medical School, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| |
Collapse
|
191
|
Park GK, Hoseok, Kim GS, Hwang NS, Choi HS. Optical spectroscopic imaging for cell therapy and tissue engineering. APPLIED SPECTROSCOPY REVIEWS 2017; 53:360-375. [PMID: 29563664 PMCID: PMC5858719 DOI: 10.1080/05704928.2017.1328428] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Cell-based therapies hold great potential to treat a wide range of human diseases, yet the mechanisms responsible for cell migration and homing are not fully understood. Emerging molecular imaging technology enables in vivo tracking of transplanted cells and their therapeutic efficacy, which together will improve the clinical outcome of cell-based therapy. Particularly, optical imaging provides highly sensitive, safe (non-radioactive), cost-effective, and fast solutions for real-time cellular trafficking compared to other conventional molecular imaging modalities. This review provides a comprehensive overview of current advances in optical imaging for cell-based therapy and tissue engineering. We discuss different types of fluorescent probes and their labeling methods with a special focus on cardiovascular disease, cancer immunotherapy, and tissue regeneration. In addition, advantages and limitations of optical imaging-based cell tracking strategies along with the future perspectives to translate this imaging technique for a clinical realm are discussed.
Collapse
Affiliation(s)
- G. Kate Park
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Interdisciplinary Program in Bioengineering, School of Chemical and Biological Engineering, Institute of Chemical Processes, BioMAX Institute, Seoul National University, Seoul, South Korea
| | - Hoseok
- Department of Thoracic and Cardiovascular Surgery, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Gaon Sandy Kim
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Nathaniel S. Hwang
- Interdisciplinary Program in Bioengineering, School of Chemical and Biological Engineering, Institute of Chemical Processes, BioMAX Institute, Seoul National University, Seoul, South Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
192
|
Xue S, Yin J, Shao J, Yu Y, Yang L, Wang Y, Xie M, Fussenegger M, Ye H. A Synthetic-Biology-Inspired Therapeutic Strategy for Targeting and Treating Hepatogenous Diabetes. Mol Ther 2017; 25:443-455. [PMID: 28153094 DOI: 10.1016/j.ymthe.2016.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022] Open
Abstract
Hepatogenous diabetes is a complex disease that is typified by the simultaneous presence of type 2 diabetes and many forms of liver disease. The chief pathogenic determinant in this pathophysiological network is insulin resistance (IR), an asymptomatic disease state in which impaired insulin signaling in target tissues initiates a variety of organ dysfunctions. However, pharmacotherapies targeting IR remain limited and are generally inapplicable for liver disease patients. Oleanolic acid (OA) is a plant-derived triterpenoid that is frequently used in Chinese medicine as a safe but slow-acting treatment in many liver disorders. Here, we utilized the congruent pharmacological activities of OA and glucagon-like-peptide 1 (GLP-1) in relieving IR and improving liver and pancreas functions and used a synthetic-biology-inspired design principle to engineer a therapeutic gene circuit that enables a concerted action of both drugs. In particular, OA-triggered short human GLP-1 (shGLP-1) expression in hepatogenous diabetic mice rapidly and simultaneously attenuated many disease-specific metabolic failures, whereas OA or shGLP-1 monotherapy failed to achieve corresponding therapeutic effects. Collectively, this work shows that rationally engineered synthetic gene circuits are capable of treating multifactorial diseases in a synergistic manner by multiplexing the targeting efficacies of single therapeutics.
Collapse
Affiliation(s)
- Shuai Xue
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Jianli Yin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Jiawei Shao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yuanhuan Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Linfeng Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yidan Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Mingqi Xie
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China; Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Haifeng Ye
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| |
Collapse
|
193
|
Gilad AA, Shapiro MG. Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging. Mol Imaging Biol 2017; 19:373-378. [PMID: 28213833 PMCID: PMC6058969 DOI: 10.1007/s11307-017-1062-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.
Collapse
Affiliation(s)
- Assaf A Gilad
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
- Heritage Medical Research Institute, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
194
|
de Wilde S, Guchelaar HJ, Zandvliet ML, Meij P. Understanding clinical development of chimeric antigen receptor T cell therapies. Cytotherapy 2017; 19:703-709. [DOI: 10.1016/j.jcyt.2017.03.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 10/19/2022]
|
195
|
Lim WA, June CH. The Principles of Engineering Immune Cells to Treat Cancer. Cell 2017; 168:724-740. [PMID: 28187291 DOI: 10.1016/j.cell.2017.01.016] [Citation(s) in RCA: 788] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/12/2017] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Abstract
Chimeric antigen receptor (CAR) T cells have proven that engineered immune cells can serve as a powerful new class of cancer therapeutics. Clinical experience has helped to define the major challenges that must be met to make engineered T cells a reliable, safe, and effective platform that can be deployed against a broad range of tumors. The emergence of synthetic biology approaches for cellular engineering is providing us with a broadly expanded set of tools for programming immune cells. We discuss how these tools could be used to design the next generation of smart T cell precision therapeutics.
Collapse
Affiliation(s)
- Wendell A Lim
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, UCSF Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Carl H June
- Center for Cellular Immunotherapies, the Department of Pathology and Laboratory Medicine at the Perelman School of Medicine, and the Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
196
|
Gomelsky M. Photoactivated cells link diagnosis and therapy. Sci Transl Med 2017; 9:eaan3936. [PMID: 28446687 DOI: 10.1126/scitranslmed.aan3936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/18/2022]
Abstract
A semiautonomous system enables implanted photoactivated cells to produce glucose-lowering hormones and maintain glucose homeostasis in diabetic mice (Shao et al, this issue).
Collapse
Affiliation(s)
- Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
197
|
Shao J, Xue S, Yu G, Yu Y, Yang X, Bai Y, Zhu S, Yang L, Yin J, Wang Y, Liao S, Guo S, Xie M, Fussenegger M, Ye H. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Sci Transl Med 2017; 9:9/387/eaal2298. [DOI: 10.1126/scitranslmed.aal2298] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/03/2017] [Indexed: 12/16/2022]
|
198
|
Ausländer S, Ausländer D, Fussenegger M. Synthetische Biologie - die Synthese der Biologie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Simon Ausländer
- Department of Biosystems Science and Engineering; ETH Zürich; Mattenstrasse 26 4058 Basel Schweiz
| | - David Ausländer
- Department of Biosystems Science and Engineering; ETH Zürich; Mattenstrasse 26 4058 Basel Schweiz
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering; ETH Zürich; Mattenstrasse 26 4058 Basel Schweiz
- Faculty of Science; Universität Basel; Mattenstrasse 26 4058 Basel Schweiz
| |
Collapse
|
199
|
Ausländer S, Ausländer D, Fussenegger M. Synthetic Biology-The Synthesis of Biology. Angew Chem Int Ed Engl 2017; 56:6396-6419. [PMID: 27943572 DOI: 10.1002/anie.201609229] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/17/2016] [Indexed: 01/01/2023]
Abstract
Synthetic biology concerns the engineering of man-made living biomachines from standardized components that can perform predefined functions in a (self-)controlled manner. Different research strategies and interdisciplinary efforts are pursued to implement engineering principles to biology. The "top-down" strategy exploits nature's incredible diversity of existing, natural parts to construct synthetic compositions of genetic, metabolic, or signaling networks with predictable and controllable properties. This mainly application-driven approach results in living factories that produce drugs, biofuels, biomaterials, and fine chemicals, and results in living pills that are based on engineered cells with the capacity to autonomously detect and treat disease states in vivo. In contrast, the "bottom-up" strategy seeks to be independent of existing living systems by designing biological systems from scratch and synthesizing artificial biological entities not found in nature. This more knowledge-driven approach investigates the reconstruction of minimal biological systems that are capable of performing basic biological phenomena, such as self-organization, self-replication, and self-sustainability. Moreover, the syntheses of artificial biological units, such as synthetic nucleotides or amino acids, and their implementation into polymers inside living cells currently set the boundaries between natural and artificial biological systems. In particular, the in vitro design, synthesis, and transfer of complete genomes into host cells point to the future of synthetic biology: the creation of designer cells with tailored desirable properties for biomedicine and biotechnology.
Collapse
Affiliation(s)
- Simon Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - David Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland.,Faculty of Science, University of Basel, Mattenstrasse 26, 4058, Basel, Switzerland
| |
Collapse
|
200
|
Wang Z, Xia J, Tran Hoang P, Sun L, Luo S, Cheng Z, Ren Y, Liu T, Guan J. Fabrication of carbon nanotube-laden microdevices for Raman labeling of macrophages. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa6207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|