151
|
Allen D, Rosenberg M, Hendel A. Using Synthetically Engineered Guide RNAs to Enhance CRISPR Genome Editing Systems in Mammalian Cells. Front Genome Ed 2021; 2:617910. [PMID: 34713240 PMCID: PMC8525374 DOI: 10.3389/fgeed.2020.617910] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas9 is quickly revolutionizing the way we approach gene therapy. CRISPR-Cas9 is a complexed, two-component system using a short guide RNA (gRNA) sequence to direct the Cas9 endonuclease to the target site. Modifying the gRNA independent of the Cas9 protein confers ease and flexibility to improve the CRISPR-Cas9 system as a genome-editing tool. gRNAs have been engineered to improve the CRISPR system's overall stability, specificity, safety, and versatility. gRNAs have been modified to increase their stability to guard against nuclease degradation, thereby enhancing their efficiency. Additionally, guide specificity has been improved by limiting off-target editing. Synthetic gRNA has been shown to ameliorate inflammatory signaling caused by the CRISPR system, thereby limiting immunogenicity and toxicity in edited mammalian cells. Furthermore, through conjugation with exogenous donor DNA, engineered gRNAs have been shown to improve homology-directed repair (HDR) efficiency by ensuring donor proximity to the edited site. Lastly, synthetic gRNAs attached to fluorescent labels have been developed to enable highly specific nuclear staining and imaging, enabling mechanistic studies of chromosomal dynamics and genomic mapping. Continued work on chemical modification and optimization of synthetic gRNAs will undoubtedly lead to clinical and therapeutic benefits and, ultimately, routinely performed CRISPR-based therapies.
Collapse
Affiliation(s)
| | | | - Ayal Hendel
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
152
|
Dubrot J, Lane-Reticker SK, Kessler EA, Ayer A, Mishra G, Wolfe CH, Zimmer MD, Du PP, Mahapatra A, Ockerman KM, Davis TGR, Kohnle IC, Pope HW, Allen PM, Olander KE, Iracheta-Vellve A, Doench JG, Haining WN, Yates KB, Manguso RT. In vivo screens using a selective CRISPR antigen removal lentiviral vector system reveal immune dependencies in renal cell carcinoma. Immunity 2021; 54:571-585.e6. [PMID: 33497609 DOI: 10.1016/j.immuni.2021.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/20/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023]
Abstract
CRISPR-Cas9 genome engineering has increased the pace of discovery for immunology and cancer biology, revealing potential therapeutic targets and providing insight into mechanisms underlying resistance to immunotherapy. However, endogenous immune recognition of Cas9 has limited the applicability of CRISPR technologies in vivo. Here, we characterized immune responses against Cas9 and other expressed CRISPR vector components that cause antigen-specific tumor rejection in several mouse cancer models. To avoid unwanted immune recognition, we designed a lentiviral vector system that allowed selective CRISPR antigen removal (SCAR) from tumor cells. The SCAR system reversed immune-mediated rejection of CRISPR-modified tumor cells in vivo and enabled high-throughput genetic screens in previously intractable models. A pooled in vivo screen using SCAR in a CRISPR-antigen-sensitive renal cell carcinoma revealed resistance pathways associated with autophagy and major histocompatibility complex class I (MHC class I) expression. Thus, SCAR presents a resource that enables CRISPR-based studies of tumor-immune interactions and prevents unwanted immune recognition of genetically engineered cells, with implications for clinical applications.
Collapse
Affiliation(s)
- Juan Dubrot
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Emily A Kessler
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Austin Ayer
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gargi Mishra
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Clara H Wolfe
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Margaret D Zimmer
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter P Du
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Animesh Mahapatra
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kyle M Ockerman
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas G R Davis
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ian C Kohnle
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hans W Pope
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter M Allen
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kira E Olander
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arvin Iracheta-Vellve
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John G Doench
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - W Nicholas Haining
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA; Division of Pediatric Hematology and Oncology, Children's Hospital, Boston, MA, USA; Merck Research Laboratories, Boston, MA, USA
| | - Kathleen B Yates
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Robert T Manguso
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
153
|
Abstract
PURPOSE OF REVIEW In this work we briefly summarize the key features and currently available conventional therapies for the two main β-hemoglobinopathies, sickle cell disease (SCD) and β-thalassemia, and review the rapidly evolving field of novel and emerging genetic therapies to cure the disease. RECENT FINDINGS Gene therapy using viral vectors or designer nuclease-based gene editing is a relatively new field of medicine that uses the patient's own genetically modified cells to treat his or her own disease. Multiple different approaches are currently in development, and some have entered phase I clinical studies, including innovative therapies aiming at induction of fetal hemoglobin. SUMMARY Early short-term therapeutic benefit has been reported for some of the ongoing clinical trials, but confirmation of long-term safety and efficacy remains to be shown. Future therapies aiming at the targeted correction of specific disease-causing DNA mutations are emerging and will likely enter clinical testing in the near future.
Collapse
|
154
|
Frati G, Miccio A. A Genome Editing System for Therapeutical Targeting of Stem Cells. Methods Mol Biol 2021; 2185:383-398. [PMID: 33165862 DOI: 10.1007/978-1-0716-0810-4_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The CRISPR/Cas9 system can be exploited to disrupt genes or cis-regulatory elements in the genome of human hematopoietic stem cells. Here, we describe a protocol to deliver the CRISPR/Cas9 ribonucleoprotein complexes into primary human hematopoietic stem cells and to evaluate the engraftment and multilineage differentiation of edited cells in immunodeficient mice. This procedure allows the editing of a high proportion of long-term repopulating hematopoietic stem cells.
Collapse
|
155
|
Chen Q, Zhang Y, Yin H. Recent advances in chemical modifications of guide RNA, mRNA and donor template for CRISPR-mediated genome editing. Adv Drug Deliv Rev 2021; 168:246-258. [PMID: 33122087 DOI: 10.1016/j.addr.2020.10.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022]
Abstract
The discovery and applications of clustered regularly interspaced short palindromic repeat (CRISPR) systems have revolutionized our ability to track and manipulate specific nucleic acid sequences in many cell types of various organisms. The robustness and simplicity of these platforms have rapidly extended their applications from basic research to the development of therapeutics. However, many hurdles remain on the path to translation of the CRISPR systems to therapeutic applications: efficient delivery, detectable off-target effects, potential immunogenicity, and others. Chemical modifications provide a variety of protection options for guide RNA, Cas9 mRNA and donor templates. For example, chemically modified gRNA demonstrated enhanced on-target editing efficiency, minimized immune response and decreased off-target genome editing. In this review, we summarize the use of chemically modified nucleotides for CRISPR-mediated genome editing and emphasize open questions that remain to be addressed in clinical applications.
Collapse
Affiliation(s)
- Qiubing Chen
- Department of Urology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Pathology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Ying Zhang
- Medical Research Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
| | - Hao Yin
- Department of Urology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Pathology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
156
|
Li J, Røise JJ, He M, Das R, Murthy N. Non-viral strategies for delivering genome editing enzymes. Adv Drug Deliv Rev 2021; 168:99-117. [PMID: 32931860 DOI: 10.1016/j.addr.2020.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/02/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022]
Abstract
Genome-editing tools such as Cre recombinase (Cre), zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and most recently the clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein system have revolutionized biomedical research, agriculture, microbial engineering, and therapeutic development. Direct delivery of genome editing enzymes, as opposed to their corresponding DNA and mRNA precursors, is advantageous since they do not require transcription and/or translation. In addition, prolonged overexpression is a problem when delivering viral vector or plasmid DNA which is bypassed when delivering whole proteins. This lowers the risk of insertional mutagenesis and makes for relatively easier manufacturing. However, a major limitation of utilizing genome editing proteins in vivo is their low delivery efficiency, and currently the most successful strategy involves using potentially immunogenic viral vectors. This lack of safe and effective non-viral delivery systems is still a big hurdle for the clinical translation of such enzymes. This review discusses the challenges of non-viral delivery strategies of widely used genome editing enzymes, including Cre recombinase, ZFNs and TALENs, CRISPR/Cas9, and Cas12a (Cpf1) in their protein format and highlights recent innovations of non-viral delivery strategies which have the potential to overcome current delivery limitations and advance the clinical translation of genome editing.
Collapse
|
157
|
Papizan JB, Porter SN, Sharma A, Pruett-Miller SM. Therapeutic gene editing strategies using CRISPR-Cas9 for the β-hemoglobinopathies. J Biomed Res 2021; 35:115-134. [PMID: 33349624 PMCID: PMC8038529 DOI: 10.7555/jbr.34.20200096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
With advancements in gene editing technologies, our ability to make precise and efficient modifications to the genome is increasing at a remarkable rate, paving the way for scientists and clinicians to uniquely treat a multitude of previously irremediable diseases. CRISPR-Cas9, short for clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9, is a gene editing platform with the ability to alter the nucleotide sequence of the genome in living cells. This technology is increasing the number and pace at which new gene editing treatments for genetic disorders are moving toward the clinic. The β-hemoglobinopathies are a group of monogenic diseases, which despite their high prevalence and chronic debilitating nature, continue to have few therapeutic options available. In this review, we will discuss our existing comprehension of the genetics and current state of treatment for β-hemoglobinopathies, consider potential genome editing therapeutic strategies, and provide an overview of the current state of clinical trials using CRISPR-Cas9 gene editing.
Collapse
Affiliation(s)
- James B Papizan
- Department of Cellular and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shaina N Porter
- Department of Cellular and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Department of Cellular and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
158
|
Venkatesan V, Srinivasan S, Babu P, Thangavel S. Manipulation of Developmental Gamma-Globin Gene Expression: an Approach for Healing Hemoglobinopathies. Mol Cell Biol 2020; 41:e00253-20. [PMID: 33077498 PMCID: PMC7849396 DOI: 10.1128/mcb.00253-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
β-Hemoglobinopathies are the most common monogenic disorders, and a century of research has provided us with a better understanding of the attributes of these diseases. Allogenic stem cell transplantation was the only potentially curative option available for these diseases until the discovery of gene therapy. The findings on the protective nature of fetal hemoglobin in sickle cell disease (SCD) and thalassemia patients carrying hereditary persistence of fetal hemoglobin (HPFH) mutations has given us the best evidence that the cure for β-hemoglobinopathies remains hidden in the hemoglobin locus. The detailed understanding of the developmental gene regulation of gamma-globin (γ-globin) and the emergence of gene manipulation strategies offer us the opportunity for developing a γ-globin gene-modified autologous stem cell transplantation therapy. In this review, we summarize different therapeutic strategies that reactivate fetal hemoglobin for the gene therapy of β-hemoglobinopathies.
Collapse
Affiliation(s)
- Vigneshwaran Venkatesan
- Centre for Stem Cell Research (CSCR), InStem Bengaluru, Christian Medical College, Vellore, Tamil Nadu, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Saranya Srinivasan
- Centre for Stem Cell Research (CSCR), InStem Bengaluru, Christian Medical College, Vellore, Tamil Nadu, India
| | - Prathibha Babu
- Centre for Stem Cell Research (CSCR), InStem Bengaluru, Christian Medical College, Vellore, Tamil Nadu, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (CSCR), InStem Bengaluru, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
159
|
Abstract
Haematopoietic stem and progenitor cell (HSPC) gene therapy has emerged as an effective treatment modality for monogenic disorders of the blood system such as primary immunodeficiencies and β-thalassaemia. Medicinal products based on autologous HSPCs corrected using lentiviral and gammaretroviral vectors have now been approved for clinical use, and the site-specific genome modification of HSPCs using gene editing techniques such as CRISPR-Cas9 has shown great clinical promise. Preclinical studies have shown engineered HSPCs could also be used to cross-correct non-haematopoietic cells in neurodegenerative metabolic diseases. Here, we review the most recent advances in HSPC gene therapy and discuss emerging strategies for using HSPC gene therapy for a range of diseases.
Collapse
|
160
|
Cruz LJ, van Dijk T, Vepris O, Li TMWY, Schomann T, Baldazzi F, Kurita R, Nakamura Y, Grosveld F, Philipsen S, Eich C. PLGA-Nanoparticles for Intracellular Delivery of the CRISPR-Complex to Elevate Fetal Globin Expression in Erythroid Cells. Biomaterials 2020; 268:120580. [PMID: 33321292 DOI: 10.1016/j.biomaterials.2020.120580] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022]
Abstract
Ex vivo gene editing of CD34+ hematopoietic stem and progenitor cells (HSPCs) offers great opportunities to develop new treatments for a number of malignant and non-malignant diseases. Efficient gene-editing in HSPCs has been achieved using electroporation and/or viral transduction to deliver the CRISPR-complex, but cellular toxicity is a drawback of currently used methods. Nanoparticle (NP)-based gene-editing strategies can further enhance the gene-editing potential of HSPCs and provide a delivery system for in vivo application. Here, we developed CRISPR/Cas9-PLGA-NPs efficiently encapsulating Cas9 protein, single gRNA and a fluorescent probe. The initial 'burst' of Cas9 and gRNA release was followed by a sustained release pattern. CRISPR/Cas9-PLGA-NPs were taken up and processed by human HSPCs, without inducing cellular cytotoxicity. Upon escape from the lysosomal compartment, CRISPR/Cas9-PLGA-NPs-mediated gene editing of the γ-globin gene locus resulted in elevated expression of fetal hemoglobin (HbF) in primary erythroid cells. The development of CRISPR/Cas9-PLGA-NPs provides an attractive tool for the delivery of the CRISPR components to target HSPCs, and could provide the basis for in vivo treatment of hemoglobinopathies and other genetic diseases.
Collapse
Affiliation(s)
- Luis J Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Thamar van Dijk
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, the Netherlands
| | - Olena Vepris
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Tracy M W Y Li
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Timo Schomann
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, the Netherlands; Percuros B.V, Leiden, the Netherlands
| | - Fabio Baldazzi
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Ryo Kurita
- Central Blood Institute, Research and Development Department, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- RIKEN BioResource Research Center, Cell Engineering Division, National Research and Development Corporation, Tsukuba, Japan
| | - Frank Grosveld
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, the Netherlands
| | - Sjaak Philipsen
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, the Netherlands
| | - Christina Eich
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, the Netherlands.
| |
Collapse
|
161
|
Tran NT, Graf R, Wulf-Goldenberg A, Stecklum M, Strauß G, Kühn R, Kocks C, Rajewsky K, Chu VT. CRISPR-Cas9-Mediated ELANE Mutation Correction in Hematopoietic Stem and Progenitor Cells to Treat Severe Congenital Neutropenia. Mol Ther 2020; 28:2621-2634. [PMID: 32822592 PMCID: PMC7704744 DOI: 10.1016/j.ymthe.2020.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/09/2020] [Accepted: 08/05/2020] [Indexed: 01/08/2023] Open
Abstract
Severe congenital neutropenia (SCN) is a monogenic disorder. SCN patients are prone to recurrent life-threatening infections. The main causes of SCN are autosomal dominant mutations in the ELANE gene that lead to a block in neutrophil differentiation. In this study, we use CRISPR-Cas9 ribonucleoproteins and adeno-associated virus (AAV)6 as a donor template delivery system to repair the ELANEL172P mutation in SCN patient-derived hematopoietic stem and progenitor cells (HSPCs). We used a single guide RNA (sgRNA) specifically targeting the mutant allele, and an sgRNA targeting exon 4 of ELANE. Using the latter sgRNA, ∼34% of the known ELANE mutations can in principle be repaired. We achieved gene correction efficiencies of up to 40% (with sgELANE-ex4) and 56% (with sgELANE-L172P) in the SCN patient-derived HSPCs. Gene repair restored neutrophil differentiation in vitro and in vivo upon HSPC transplantation into humanized mice. Mature edited neutrophils expressed normal elastase levels and behaved normally in functional assays. Thus, we provide a proof of principle for using CRISPR-Cas9 to correct ELANE mutations in patient-derived HSPCs, which may translate into gene therapy for SCN.
Collapse
Affiliation(s)
- Ngoc Tung Tran
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Robin Graf
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | | | | | | | - Ralf Kühn
- iPS Cell Based Disease Modeling, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Christine Kocks
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; Transgenics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Klaus Rajewsky
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.
| | - Van Trung Chu
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; iPS Cell Based Disease Modeling, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.
| |
Collapse
|
162
|
Ma L, Ruan J, Song J, Wen L, Yang D, Zhao J, Xia X, Chen YE, Zhang J, Xu J. MiCas9 increases large size gene knock-in rates and reduces undesirable on-target and off-target indel edits. Nat Commun 2020; 11:6082. [PMID: 33247137 PMCID: PMC7695827 DOI: 10.1038/s41467-020-19842-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/29/2020] [Indexed: 01/09/2023] Open
Abstract
Gene editing nuclease represented by Cas9 efficiently generates DNA double strand breaks at the target locus, followed by repair through either the error-prone non-homologous end joining or the homology directed repair pathways. To improve Cas9's homology directed repair capacity, here we report the development of miCas9 by fusing a minimal motif consisting of thirty-six amino acids to spCas9. MiCas9 binds RAD51 through this fusion motif and enriches RAD51 at the target locus. In comparison to spCas9, miCas9 enhances double-stranded DNA mediated large size gene knock-in rates, systematically reduces off-target insertion and deletion events, maintains or increases single-stranded oligodeoxynucleotides mediated precise gene editing rates, and effectively reduces on-target insertion and deletion rates in knock-in applications. Furthermore, we demonstrate that this fusion motif can work as a "plug and play" module, compatible and synergistic with other Cas9 variants. MiCas9 and the minimal fusion motif may find broad applications in gene editing research and therapeutics.
Collapse
Affiliation(s)
- Linyuan Ma
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Jinxue Ruan
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Luan Wen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Jiangyang Zhao
- Research & Development, ATGC Inc., 100 E Lancaster Avenue, LIMR Building Lab129, Wynnewood, PA, 19096, USA
| | - Xiaofeng Xia
- Research & Development, ATGC Inc., 100 E Lancaster Avenue, LIMR Building Lab129, Wynnewood, PA, 19096, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
163
|
Xie M, Viviani M, Fussenegger M. Engineering precision therapies: lessons and motivations from the clinic. Synth Biol (Oxf) 2020; 6:ysaa024. [PMID: 33817342 PMCID: PMC7998714 DOI: 10.1093/synbio/ysaa024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
In the past decade, gene- and cell-based therapies have been at the forefront of the biomedical revolution. Synthetic biology, the engineering discipline of building sophisticated 'genetic software' to enable precise regulation of gene activities in living cells, has been a decisive success factor of these new therapies. Here, we discuss the core technologies and treatment strategies that have already gained approval for therapeutic applications in humans. We also review promising preclinical work that could either enhance the efficacy of existing treatment strategies or pave the way for new precision medicines to treat currently intractable human conditions.
Collapse
Affiliation(s)
- Mingqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zheijang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zheijang, China
| | - Mirta Viviani
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zheijang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zheijang, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
164
|
Kotowski M, Sharma S. CRISPR-Based Editing Techniques for Genetic Manipulation of Primary T Cells. Methods Protoc 2020; 3:mps3040079. [PMID: 33217926 PMCID: PMC7720142 DOI: 10.3390/mps3040079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/15/2022] Open
Abstract
While clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing techniques have been widely adapted for use in immortalised immune cells, efficient manipulation of primary T cells has proved to be more challenging. Nonetheless, the rapid expansion of the CRISPR toolbox accompanied by the development of techniques for delivery of CRISPR components into primary T cells now affords the possibility to genetically manipulate primary T cells both with precision and at scale. Here, we review the key features of the techniques for primary T cell editing and discuss how the new generation of CRISPR-based tools may advance genetic engineering of these immune cells. This improved ability to genetically manipulate primary T cells will further enhance our fundamental understanding of cellular signalling and transcriptional networks in T cells and more importantly has the potential to revolutionise T cell-based therapies.
Collapse
|
165
|
Li J, Zhou Z, Sun HX, Ouyang W, Dong G, Liu T, Ge L, Zhang X, Liu C, Gu Y. Transcriptome Analyses of β-Thalassemia -28(A>G) Mutation Using Isogenic Cell Models Generated by CRISPR/Cas9 and Asymmetric Single-Stranded Oligodeoxynucleotides (assODNs). Front Genet 2020; 11:577053. [PMID: 33193694 PMCID: PMC7580707 DOI: 10.3389/fgene.2020.577053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/01/2020] [Indexed: 01/11/2023] Open
Abstract
β-thalassemia, caused by mutations in the human hemoglobin β (HBB) gene, is one of the most common genetic diseases in the world. The HBB -28(A>G) mutation is one of the five most common mutations in Chinese patients with β-thalassemia. However, few studies have been conducted to understand how this mutation affects the expression of pathogenesis-related genes, including globin genes, due to limited homozygote clinical materials. Therefore, we developed an efficient technique using CRISPR/Cas9 combined with asymmetric single-stranded oligodeoxynucleotides (assODNs) to generate a K562 cell model with HBB -28(A>G) named K562-28(A>G). Then, we systematically analyzed the differences between K562-28(A>G) and K562 at the transcriptome level by high-throughput RNA-seq before and after erythroid differentiation. We found that the HBB -28(A>G) mutation not only disturbed the transcription of HBB, but also decreased the expression of HBG, which may further aggravate the thalassemia phenotype and partially explain the more severe clinical outcome of β-thalassemia patients with the HBB -28(A>G) mutation. Moreover, we found that the K562-28(A>G) cell line is more sensitive to hypoxia and shows a defective erythrogenic program compared with K562 before differentiation. Importantly, all abovementioned abnormalities in K562-28(A>G) were reversed after correction of this mutation with CRISPR/Cas9 and assODNs, confirming the specificity of these phenotypes. Overall, this is the first time to analyze the effects of the HBB -28(A>G) mutation at the whole-transcriptome level based on isogenic cell lines, providing a landscape for further investigation of the mechanism of β-thalassemia with the HBB -28(A>G) mutation.
Collapse
Affiliation(s)
- Jing Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Ziheng Zhou
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Hai-Xi Sun
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Wenjie Ouyang
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Guoyi Dong
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Tianbin Liu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Lei Ge
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Xiuqing Zhang
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI-Shenzhen, Shenzhen, China
| | - Chao Liu
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Ying Gu
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
166
|
Mehravar M, Roshandel E, Salimi M, Chegeni R, Gholizadeh M, Mohammadi MH, Hajifathali A. Utilization of CRISPR/Cas9 gene editing in cellular therapies for lymphoid malignancies. Immunol Lett 2020; 226:71-82. [DOI: 10.1016/j.imlet.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
|
167
|
Desine S, Hollister BM, Abdallah KE, Persaud A, Hull SC, Bonham VL. The Meaning of Informed Consent: Genome Editing Clinical Trials for Sickle Cell Disease. AJOB Empir Bioeth 2020; 11:195-207. [PMID: 33044907 PMCID: PMC7710006 DOI: 10.1080/23294515.2020.1818876] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND A first therapeutic target of somatic genome editing (SGE) is sickle cell disease (SCD), the most commonly inherited blood disorders, affecting more than 100,000 individuals in the United States. Advancement of SGE is contingent on patient participation in first in human clinical trials. However, seriously ill patients may be vulnerable to overestimating the benefits of early phase studies while underestimating the risks. Therefore, ensuring potential clinical trial participants are fully informed prior to participating in a SGE clinical trial is critical. Methods: We conducted a mixed-methods study of adults with SCD as well as parents and physicians of individuals with SCD. Participants were asked to complete a genetic literacy survey, watch an educational video about genome editing, complete a two-part survey, and take part in focus group discussions. Focus groups addressed topics on clinical trials, ethics of gene editing, and what is not understood regarding gene editing. All focus groups were audio-recorded, transcribed, and analyzed using conventional content analysis techniques to identify major themes. Results: Our study examined the views of SCD stakeholders regarding what they want and need to know about genome editing to make an informed decision to participate in a SGE clinical trial. Prominent themes included stakeholders' desire to understand treatment side effects, mechanism of action of SGE, trial qualification criteria, and the impact of SGE on quality of life. In addition, some physicians expressed concerns about the extent to which their patients would understand concepts related to SGE; however, individuals with SCD demonstrated higher levels of genetic literacy than estimated by physicians. Conclusions: Designing ethically robust genome editing clinical trials for the SCD population will require, at a minimum, addressing the expressed information needs of the community through culturally sensitive engagement, so that they can make informed decisions to consider participation in clinical trials.
Collapse
Affiliation(s)
- Stacy Desine
- Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Brittany M. Hollister
- Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Khadijah E. Abdallah
- Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Anitra Persaud
- Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Sara Chandros Hull
- Department of Bioethics, Clinical Center, National Institutes of Health, Bethesda, MD
- Bioethics Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Vence L. Bonham
- Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
168
|
Ates I, Rathbone T, Stuart C, Bridges PH, Cottle RN. Delivery Approaches for Therapeutic Genome Editing and Challenges. Genes (Basel) 2020; 11:E1113. [PMID: 32977396 PMCID: PMC7597956 DOI: 10.3390/genes11101113] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Impressive therapeutic advances have been possible through the advent of zinc-finger nucleases and transcription activator-like effector nucleases. However, discovery of the more efficient and highly tailorable clustered regularly interspaced short palindromic repeats (CRISPR) and associated proteins (Cas9) has provided unprecedented gene-editing capabilities for treatment of various inherited and acquired diseases. Despite recent clinical trials, a major barrier for therapeutic gene editing is the absence of safe and effective methods for local and systemic delivery of gene-editing reagents. In this review, we elaborate on the challenges and provide practical considerations for improving gene editing. Specifically, we highlight issues associated with delivery of gene-editing tools into clinically relevant cells.
Collapse
Affiliation(s)
- Ilayda Ates
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (I.A.); (T.R.); (C.S.)
| | - Tanner Rathbone
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (I.A.); (T.R.); (C.S.)
| | - Callie Stuart
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (I.A.); (T.R.); (C.S.)
| | - P. Hudson Bridges
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Renee N. Cottle
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (I.A.); (T.R.); (C.S.)
| |
Collapse
|
169
|
Kohama Y, Higo S, Masumura Y, Shiba M, Kondo T, Ishizu T, Higo T, Nakamura S, Kameda S, Tabata T, Inoue H, Motooka D, Okuzaki D, Takashima S, Miyagawa S, Sawa Y, Hikoso S, Sakata Y. Adeno-associated virus-mediated gene delivery promotes S-phase entry-independent precise targeted integration in cardiomyocytes. Sci Rep 2020; 10:15348. [PMID: 32948788 PMCID: PMC7501291 DOI: 10.1038/s41598-020-72216-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Post-mitotic cardiomyocytes have been considered to be non-permissive to precise targeted integration including homology-directed repair (HDR) after CRISPR/Cas9 genome editing. Here, we demonstrate that direct delivery of large amounts of transgene encoding guide RNA (gRNA) and repair template DNA via intra-ventricular injection of adeno-associated virus (AAV) promotes precise targeted genome replacement in adult murine cardiomyocytes expressing Cas9. Neither systemic injection of AAV nor direct injection of adenovirus promotes targeted integration, suggesting that high copy numbers of single-stranded transgenes are required in cardiomyocytes. Notably, AAV-mediated targeted integration in cardiomyocytes both in vitro and in vivo depends on the Fanconi anemia pathway, a key component of the single-strand template repair mechanism. In human cardiomyocytes differentiated from induced pluripotent stem cells, AAV-mediated targeted integration fluorescently labeled Mlc2v protein after differentiation, independently of DNA synthesis, and enabled real-time detection of sarcomere contraction in monolayered beating cardiomyocytes. Our findings provide a wide range of applications for targeted genome replacement in non-dividing cardiomyocytes.
Collapse
Affiliation(s)
- Yasuaki Kohama
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shuichiro Higo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Medical Therapeutics for Heart Failure, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | - Yuki Masumura
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mikio Shiba
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takumi Kondo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takamaru Ishizu
- Higashiosaka City Medical Center, Higashiosaka, Osaka, 578-8588, Japan
| | - Tomoaki Higo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoki Nakamura
- Department of Medical Therapeutics for Heart Failure, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Satoshi Kameda
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoka Tabata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Inoue
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shungo Hikoso
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
170
|
Shin JJ, Schröder MS, Caiado F, Wyman SK, Bray NL, Bordi M, Dewitt MA, Vu JT, Kim WT, Hockemeyer D, Manz MG, Corn JE. Controlled Cycling and Quiescence Enables Efficient HDR in Engraftment-Enriched Adult Hematopoietic Stem and Progenitor Cells. Cell Rep 2020; 32:108093. [PMID: 32877675 PMCID: PMC7487781 DOI: 10.1016/j.celrep.2020.108093] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/07/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Genome editing often takes the form of either error-prone sequence disruption by non-homologous end joining (NHEJ) or sequence replacement by homology-directed repair (HDR). Although NHEJ is generally effective, HDR is often difficult in primary cells. Here, we use a combination of immunophenotyping, next-generation sequencing, and single-cell RNA sequencing to investigate and reprogram genome editing outcomes in subpopulations of adult hematopoietic stem and progenitor cells. We find that although quiescent stem-enriched cells mostly use NHEJ, non-quiescent cells with the same immunophenotype use both NHEJ and HDR. Inducing quiescence before editing results in a loss of HDR in all cell subtypes. We develop a strategy of controlled cycling and quiescence that yields a 6-fold increase in the HDR/NHEJ ratio in quiescent stem cells ex vivo and in vivo. Our results highlight the tension between editing and cellular physiology and suggest strategies to manipulate quiescent cells for research and therapeutic genome editing.
Collapse
Affiliation(s)
- Jiyung J Shin
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Francisco Caiado
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Stacia K Wyman
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Nicolas L Bray
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Matteo Bordi
- Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Mark A Dewitt
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jonathan T Vu
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Won-Tae Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Jacob E Corn
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
171
|
Martin RM, Ikeda K, Cromer MK, Uchida N, Nishimura T, Romano R, Tong AJ, Lemgart VT, Camarena J, Pavel-Dinu M, Sindhu C, Wiebking V, Vaidyanathan S, Dever DP, Bak RO, Laustsen A, Lesch BJ, Jakobsen MR, Sebastiano V, Nakauchi H, Porteus MH. Highly Efficient and Marker-free Genome Editing of Human Pluripotent Stem Cells by CRISPR-Cas9 RNP and AAV6 Donor-Mediated Homologous Recombination. Cell Stem Cell 2020; 24:821-828.e5. [PMID: 31051134 DOI: 10.1016/j.stem.2019.04.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 10/08/2018] [Accepted: 03/29/2019] [Indexed: 11/25/2022]
Abstract
Genome editing of human pluripotent stem cells (hPSCs) provides powerful opportunities for in vitro disease modeling, drug discovery, and personalized stem cell-based therapeutics. Currently, only small edits can be engineered with high frequency, while larger modifications suffer from low efficiency and a resultant need for selection markers. Here, we describe marker-free genome editing in hPSCs using Cas9 ribonucleoproteins (RNPs) in combination with AAV6-mediated DNA repair template delivery. We report highly efficient and bi-allelic integration frequencies across multiple loci and hPSC lines, achieving mono-allelic editing frequencies of up to 94% at the HBB locus. Using this method, we show robust bi-allelic correction of homozygous sickle cell mutations in a patient-derived induced PSC (iPSC) line. Thus, this strategy shows significant utility for generating hPSCs with large gene integrations and/or single-nucleotide changes at high frequency and without the need for introducing selection genes, enhancing the applicability of hPSC editing for research and translational uses.
Collapse
Affiliation(s)
- Renata M Martin
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Kazuya Ikeda
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - M Kyle Cromer
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Nobuko Uchida
- ReGen Med Division, BOCO Silicon Valley, Palo Alto, CA 94303, USA
| | | | - Rosa Romano
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Andrew J Tong
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Viktor T Lemgart
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Joab Camarena
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Mara Pavel-Dinu
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Camille Sindhu
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Volker Wiebking
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | - Daniel P Dever
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Rasmus O Bak
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Anders Laustsen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000 Aarhus C, Denmark; Aarhus Research Centre of Innate Immunology, Aarhus University, Wilhelm Meyers Alle 4, 8000 Aarhus C, Denmark
| | - Benjamin J Lesch
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Martin R Jakobsen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000 Aarhus C, Denmark; Aarhus Research Centre of Innate Immunology, Aarhus University, Wilhelm Meyers Alle 4, 8000 Aarhus C, Denmark
| | - Vittorio Sebastiano
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA 94305, USA
| | | | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
172
|
Modelling Epithelial Ovarian Cancer in Mice: Classical and Emerging Approaches. Int J Mol Sci 2020; 21:ijms21134806. [PMID: 32645943 PMCID: PMC7370285 DOI: 10.3390/ijms21134806] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022] Open
Abstract
High-grade serous epithelial ovarian cancer (HGSC) is the most aggressive subtype of epithelial ovarian cancer. The identification of germline and somatic mutations along with genomic information unveiled by The Cancer Genome Atlas (TCGA) and other studies has laid the foundation for establishing preclinical models with high fidelity to the molecular features of HGSC. Notwithstanding such progress, the field of HGSC research still lacks a model that is both robust and widely accessible. In this review, we discuss the recent advancements and utility of HGSC genetically engineered mouse models (GEMMs) to date. Further analysis and critique on alternative approaches to modelling HGSC considers technological advancements in somatic gene editing and modelling prototypic organs, capable of tumorigenesis, on a chip.
Collapse
|
173
|
Abstract
There is no shortage of enthusiasm for the clinical potential of CRISPR-based genome editing: many life-changing cures appear to be just around the corner. However, as mature genetic therapies reach the market, it seems that million-dollar price tags are the new normal. Several factors contribute to the extreme pricing of next-generation medicines, including the need to recoup development costs, the undeniable value of these powerful therapies, and the inherent technical challenges of manufacture and delivery. CRISPR technology has been hailed as a great leveler and a democratizing force in biomedicine. But for this principle to hold true in clinical contexts, therapeutic genome editing must avoid several pitfalls that could substantially limit access to its transformative potential, especially in the developing world.
Collapse
Affiliation(s)
- Ross C Wilson
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California
- California Institute for Quantitative Biosciences, California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California
| | - Dana Carroll
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
174
|
van Haasteren J, Li J, Scheideler OJ, Murthy N, Schaffer DV. The delivery challenge: fulfilling the promise of therapeutic genome editing. Nat Biotechnol 2020; 38:845-855. [PMID: 32601435 DOI: 10.1038/s41587-020-0565-5] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/19/2020] [Indexed: 12/15/2022]
Abstract
Genome editing has the potential to treat an extensive range of incurable monogenic and complex diseases. In particular, advances in sequence-specific nuclease technologies have dramatically accelerated the development of therapeutic genome editing strategies that are based on either the knockout of disease-causing genes or the repair of endogenous mutated genes. These technologies are progressing into human clinical trials. However, challenges remain before the therapeutic potential of genome editing can be fully realized. Delivery technologies that have serendipitously been developed over the past couple decades in the protein and nucleic acid delivery fields have been crucial to genome editing success to date, including adeno-associated viral and lentiviral vectors for gene therapy and lipid nanoparticle and other non-viral vectors for nucleic acid and protein delivery. However, the efficiency and tissue targeting capabilities of these vehicles must be further improved. In addition, the genome editing enzymes themselves need to be optimized, and challenges regarding their editing efficiency, specificity and immunogenicity must be addressed. Emerging protein engineering and synthetic chemistry approaches can offer solutions and enable the development of safe and efficacious clinical genome editing.
Collapse
Affiliation(s)
- Joost van Haasteren
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Jie Li
- Department of Bioengineering, University of California, Berkeley, CA, USA.,Innovative Genomics Institute (IGI), University of California, Berkeley, CA, USA
| | | | - Niren Murthy
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA. .,Department of Bioengineering, University of California, Berkeley, CA, USA. .,Innovative Genomics Institute (IGI), University of California, Berkeley, CA, USA.
| | - David V Schaffer
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA. .,Department of Bioengineering, University of California, Berkeley, CA, USA. .,Innovative Genomics Institute (IGI), University of California, Berkeley, CA, USA. .,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA. .,Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA. .,Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
175
|
Humbert O, Samuelson C, Kiem HP. CRISPR/Cas9 for the treatment of haematological diseases: a journey from bacteria to the bedside. Br J Haematol 2020; 192:33-49. [PMID: 32506752 DOI: 10.1111/bjh.16807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/26/2022]
Abstract
Genome editing therapies represent a significant advancement in next-generation, precision medicine for the management of haematological diseases, and CRISPR/Cas9 has to date been the most successful implementation platform. From discovery in bacteria and archaea over three decades ago, through intensive basic research and pre-clinical development phases involving the modification of therapeutically relevant cell types, CRISPR/Cas9 genome editing is now being investigated in ongoing clinic trials. Despite the widespread enthusiasm brought by this new technology, significant challenges remain before genome editing can be routinely recommended and implemented in the clinic. These include risks of genotoxicity resulting from off-target DNA cleavage or chromosomal rearrangement, and suboptimal efficacy of homology-directed repair editing strategies, which thus limit therapeutic options. Practical hurdles such as high costs and inaccessibility to patients outside specialised centres must also be addressed. Future improvements in this rapidly developing field should circumvent current limitations with novel editing platforms and with the simplification of clinical protocols using in vivo delivery of editing reagents.
Collapse
Affiliation(s)
| | | | - Hans-Peter Kiem
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
176
|
Rose JC, Popp NA, Richardson CD, Stephany JJ, Mathieu J, Wei CT, Corn JE, Maly DJ, Fowler DM. Suppression of unwanted CRISPR-Cas9 editing by co-administration of catalytically inactivating truncated guide RNAs. Nat Commun 2020; 11:2697. [PMID: 32483117 PMCID: PMC7264211 DOI: 10.1038/s41467-020-16542-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
CRISPR-Cas9 nucleases are powerful genome engineering tools, but unwanted cleavage at off-target and previously edited sites remains a major concern. Numerous strategies to reduce unwanted cleavage have been devised, but all are imperfect. Here, we report that off-target sites can be shielded from the active Cas9•single guide RNA (sgRNA) complex through the co-administration of dead-RNAs (dRNAs), truncated guide RNAs that direct Cas9 binding but not cleavage. dRNAs can effectively suppress a wide-range of off-targets with minimal optimization while preserving on-target editing, and they can be multiplexed to suppress several off-targets simultaneously. dRNAs can be combined with high-specificity Cas9 variants, which often do not eliminate all unwanted editing. Moreover, dRNAs can prevent cleavage of homology-directed repair (HDR)-corrected sites, facilitating scarless editing by eliminating the need for blocking mutations. Thus, we enable precise genome editing by establishing a flexible approach for suppressing unwanted editing of both off-targets and HDR-corrected sites.
Collapse
Affiliation(s)
- John C Rose
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA.
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Nicholas A Popp
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Christopher D Richardson
- Innovative Genomics Initiative, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Jason J Stephany
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Julie Mathieu
- Department of Comparative Medicine, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Cindy T Wei
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Jacob E Corn
- Innovative Genomics Initiative, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
- Genetic Networks Program, Canadian Institute for Advanced Research, Toronto, ON, Canada.
| |
Collapse
|
177
|
Lin Y, Chen Z, Hu C, Chen ZS, Zhang L. Recent progress in antitumor functions of the intracellular antibodies. Drug Discov Today 2020; 25:1109-1120. [DOI: 10.1016/j.drudis.2020.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
|
178
|
Alagoz M, Kherad N. Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review). Int J Mol Med 2020; 46:521-534. [PMID: 32467995 PMCID: PMC7307811 DOI: 10.3892/ijmm.2020.4609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Genome editing techniques are considered to be one of the most challenging yet efficient tools for assisting therapeutic approaches. Several studies have focused on the development of novel methods to improve the efficiency of gene editing, as well as minimise their off-target effects. Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas9) is a tool that has revolutionised genome editing technologies. New applications of CRISPR/Cas9 in a broad range of diseases have demonstrated its efficiency and have been used in ex vivo models of somatic and pluripotent stem cells, as well as in in vivo animal models, and may eventually be used to correct defective genes. The focus of the present review was the recent applications of CRISPR/Cas9 and its contribution to the treatment of challenging human diseases, such as various types of cancer, neurodegenerative diseases and a broad spectrum of other disorders. CRISPR technology is a novel method for disease treatment, enhancing the effectiveness of drugs and improving the development of personalised medicine.
Collapse
Affiliation(s)
- Meryem Alagoz
- Molecular Biology and Genetics, Biruni Universitesi, Istanbul 34010, Turkey
| | - Nasim Kherad
- Molecular Biology and Genetics, Biruni Universitesi, Istanbul 34010, Turkey
| |
Collapse
|
179
|
Srifa W, Kosaric N, Amorin A, Jadi O, Park Y, Mantri S, Camarena J, Gurtner GC, Porteus M. Cas9-AAV6-engineered human mesenchymal stromal cells improved cutaneous wound healing in diabetic mice. Nat Commun 2020; 11:2470. [PMID: 32424320 PMCID: PMC7235221 DOI: 10.1038/s41467-020-16065-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
Human mesenchymal stromal cells (hMSCs) are a promising source for engineered cell-based therapies in which genetic engineering could enhance therapeutic efficacy and install novel cellular functions. Here, we describe an optimized Cas9-AAV6-based genome editing tool platform for site-specific mutagenesis and integration of up to more than 3 kilobases of exogenous DNA in the genome of hMSCs derived from the bone marrow, adipose tissue, and umbilical cord blood without altering their ex vivo characteristics. We generate safe harbor-integrated lines of engineered hMSCs and show that engineered luciferase-expressing hMSCs are transiently active in vivo in wound beds of db/db mice. Moreover, we generate PDGF-BB- and VEGFA-hypersecreting hMSC lines as short-term, local wound healing agents with superior therapeutic efficacy over wildtype hMSCs in the diabetic mouse model without replacing resident cells long-term. This study establishes a precise genetic engineering platform for genetic studies of hMSCs and development of engineered hMSC-based therapies.
Collapse
Affiliation(s)
- Waracharee Srifa
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Program in Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nina Kosaric
- Program in Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alvaro Amorin
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Othmane Jadi
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yujin Park
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sruthi Mantri
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joab Camarena
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Geoffrey C Gurtner
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Matthew Porteus
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
180
|
Chechik L, Martin O, Soutoglou E. Genome Editing Fidelity in the Context of DNA Sequence and Chromatin Structure. Front Cell Dev Biol 2020; 8:319. [PMID: 32457906 PMCID: PMC7225291 DOI: 10.3389/fcell.2020.00319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/09/2020] [Indexed: 12/29/2022] Open
Abstract
Genome editing by Clustered Regularly Inter Spaced Palindromic Repeat (CRISPR) associated (Cas) systems has revolutionized medical research and holds enormous promise for correcting genetic diseases. Understanding how these Cas nucleases work and induce mutations, as well as identifying factors that affect their efficiency and fidelity is key to developing this technology for therapeutic uses. Here, we discuss recent studies that reveal how DNA sequence and chromatin structure influences the different steps of genome editing. These studies also demonstrate that a deep understanding of the balance between error prone and error free DNA repair pathways is crucial for making genome editing a safe clinical tool, which does not induce further mutations to the genome.
Collapse
Affiliation(s)
- Lyuba Chechik
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de Recherche Scientifique, UMR 7104, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Ophelie Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de Recherche Scientifique, UMR 7104, Illkirch, France.,Université de Strasbourg, Strasbourg, France.,Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Evi Soutoglou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de Recherche Scientifique, UMR 7104, Illkirch, France.,Université de Strasbourg, Strasbourg, France.,Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
181
|
Shah F, Dwivedi M. Pathophysiology and recent therapeutic insights of sickle cell disease. Ann Hematol 2020; 99:925-935. [PMID: 32157419 DOI: 10.1007/s00277-020-03977-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Sickle cell disease (SCD) is an autosomal recessive blood disorder which occurs due to point mutation in the β-globin chain of hemoglobin. Since the past decades, various therapies have been put forth, which are based on obstructing pathophysiological mechanisms of SCD including inhibition of Gardos channel and cation fluxes which in turn prevents sickle erythrocyte destruction and dehydration. The pharmacological approaches are based on the mechanism of reactivating γ-globin expression by utilizing fetal hemoglobin (HbF)-inducing drugs such as hydroxyurea. In SCD, gene therapy could be considered as a promising tool which involves modifying mutation at the gene-specific target by either promoting insertion or deletion of globins. Although there are various therapies emerged so far in the treatment of SCD, many of them have faced a major setback in most of developing countries in terms of cost, unavailability of expertise, and suitable donor. Therefore, in addition to pathophysiological aspects, this review will discuss new advancements and approaches made in the therapeutic domain of SCD including a viewpoint of modulating hemoglobin in SCD by the intervention of probiotics.
Collapse
Affiliation(s)
- Firdosh Shah
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli-Mahuva Road, Dist. Surat, Tarsadi, Bardoli, Gujarat, 394350, India
| | - Mitesh Dwivedi
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli-Mahuva Road, Dist. Surat, Tarsadi, Bardoli, Gujarat, 394350, India.
| |
Collapse
|
182
|
Lee J, Bayarsaikhan D, Bayarsaikhan G, Kim JS, Schwarzbach E, Lee B. Recent advances in genome editing of stem cells for drug discovery and therapeutic application. Pharmacol Ther 2020; 209:107501. [DOI: 10.1016/j.pharmthera.2020.107501] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
|
183
|
Ali G, Tariq MA, Shahid K, Ahmad FJ, Akram J. Advances in genome editing: the technology of choice for precise and efficient β-thalassemia treatment. Gene Ther 2020; 28:6-15. [PMID: 32355226 DOI: 10.1038/s41434-020-0153-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 11/09/2022]
Abstract
Beta (β)-thalassemia is one of the most significant hemoglobinopathy worldwide. The high prevalence of the β-thalassemia carriers aggravates the disease burden for patients and national economies in the developing world. The survival of β-thalassemia patients solely relies on repeated transfusions, which eventually results into multi-organ damage. The fetal γ-globin genes are ordinarily silenced at birth and replaced by the adult β-globin genes. However, mutations that cause lifelong persistence of fetal γ-globin, ameliorate the debilitating effects of β-globin mutations. Therefore, therapeutically reactivating the fetal γ-globin gene is a prime focus of researchers. CRISPR/Cas9 is the most common approach to correct disease causative mutations or to enhance or disrupt the expression of proteins to mitigate the effects of the disease. CRISPR/cas9 and prime gene editing to correct mutations in hematopoietic stem cells of β-thalassemia patients has been considered a novel therapeutic approach for effective hemoglobin production. However, genome-editing technologies, along with all advantages, have shown some disadvantages due to either random insertions or deletions at the target site of edition or non-specific targeting in genome. Therefore, the focus of this review is to compare pros and cons of these editing technologies and to elaborate the retrospective scope of gene therapy for β-thalassemia patients.
Collapse
Affiliation(s)
- Gibran Ali
- Institute of Regenerative Medicine, Physiology and Cell Biology Department, University of Health Sciences Lahore, Khyaban-e-Jamia Punjab, Lahore, 54600, Pakistan.
| | - Muhammad Akram Tariq
- Institute of Regenerative Medicine, Physiology and Cell Biology Department, University of Health Sciences Lahore, Khyaban-e-Jamia Punjab, Lahore, 54600, Pakistan
| | - Kamran Shahid
- Department of Oncology Medicine, University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, 75708, TX, USA
| | - Fridoon Jawad Ahmad
- Institute of Regenerative Medicine, Physiology and Cell Biology Department, University of Health Sciences Lahore, Khyaban-e-Jamia Punjab, Lahore, 54600, Pakistan.
| | - Javed Akram
- University of Health Sciences Lahore, Khyaban-e-Jamia Punjab, Lahore, 54600, Pakistan
| |
Collapse
|
184
|
Wienert B, Nguyen DN, Guenther A, Feng SJ, Locke MN, Wyman SK, Shin J, Kazane KR, Gregory GL, Carter MAM, Wright F, Conklin BR, Marson A, Richardson CD, Corn JE. Timed inhibition of CDC7 increases CRISPR-Cas9 mediated templated repair. Nat Commun 2020; 11:2109. [PMID: 32355159 PMCID: PMC7193628 DOI: 10.1038/s41467-020-15845-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Repair of double strand DNA breaks (DSBs) can result in gene disruption or gene modification via homology directed repair (HDR) from donor DNA. Altering cellular responses to DSBs may rebalance editing outcomes towards HDR and away from other repair outcomes. Here, we utilize a pooled CRISPR screen to define host cell involvement in HDR between a Cas9 DSB and a plasmid double stranded donor DNA (dsDonor). We find that the Fanconi Anemia (FA) pathway is required for dsDonor HDR and that other genes act to repress HDR. Small molecule inhibition of one of these repressors, CDC7, by XL413 and other inhibitors increases the efficiency of HDR by up to 3.5 fold in many contexts, including primary T cells. XL413 stimulates HDR during a reversible slowing of S-phase that is unexplored for Cas9-induced HDR. We anticipate that XL413 and other such rationally developed inhibitors will be useful tools for gene modification.
Collapse
Affiliation(s)
- Beeke Wienert
- Innovative Genomics Institute, University of California, Berkeley, CA, 94703, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94703, USA
- Gladstone Institutes, San Francisco, CA, 94158, USA
| | - David N Nguyen
- Department of Microbiology and Immunology, University of California, San Francisco, CA, 94143, USA
- Diabetes Center, University of California, San Francisco, CA, 94143, USA
- Department of Medicine, University of California, San Francisco, CA, 94143, USA
| | - Alexis Guenther
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Sharon J Feng
- Innovative Genomics Institute, University of California, Berkeley, CA, 94703, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94703, USA
| | - Melissa N Locke
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94703, USA
| | - Stacia K Wyman
- Innovative Genomics Institute, University of California, Berkeley, CA, 94703, USA
| | - Jiyung Shin
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, 8093, Zurich, Switzerland
| | - Katelynn R Kazane
- Innovative Genomics Institute, University of California, Berkeley, CA, 94703, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94703, USA
| | | | | | - Francis Wright
- Department of Microbiology and Immunology, University of California, San Francisco, CA, 94143, USA
| | - Bruce R Conklin
- Gladstone Institutes, San Francisco, CA, 94158, USA
- Departments of Medicine, Ophthalmology, and Pharmacology, University of California, San Francisco, CA, 94143, USA
| | - Alex Marson
- Innovative Genomics Institute, University of California, Berkeley, CA, 94703, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, 94143, USA
- Diabetes Center, University of California, San Francisco, CA, 94143, USA
- Department of Medicine, University of California, San Francisco, CA, 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, 94129, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Chris D Richardson
- Innovative Genomics Institute, University of California, Berkeley, CA, 94703, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94703, USA.
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA.
| | - Jacob E Corn
- Innovative Genomics Institute, University of California, Berkeley, CA, 94703, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94703, USA.
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, 8093, Zurich, Switzerland.
| |
Collapse
|
185
|
Kalkan BM, Kala EY, Yuce M, Karadag Alpaslan M, Kocabas F. Development of gene editing strategies for human β-globin (HBB) gene mutations. Gene 2020; 734:144398. [PMID: 31987908 DOI: 10.1016/j.gene.2020.144398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 01/19/2023]
Abstract
Recent developments in gene editing technology have enabled scientists to modify DNA sequence by using engineered endonucleases. These gene editing tools are promising candidates for clinical applications, especially for treatment of inherited disorders like sickle cell disease (SCD). SCD is caused by a point mutation in human β-globin gene (HBB). Clinical strategies have demonstrated substantial success, however there is not any permanent cure for SCD available. CRISPR/Cas9 platform uses a single endonuclease and a single guide RNA (gRNA) to induce sequence-specific DNA double strand break (DSB). When this accompanies a repair template, it allows repairing the mutated gene. In this study, it was aimed to target HBB gene via CRISPR/Cas9 genome editing tool to introduce nucleotide alterations for efficient genome editing and correction of point mutations causing SCD in human cell line, by Homology Directed Repair (HDR). We have achieved to induce target specific nucleotide changes on HBB gene in the locus of mutation causing SCD. The effect of on-target activity of bone fide standard gRNA and newly developed longer gRNA were examined. It is observed that longer gRNA has higher affinity to target DNA while having the same performance for targeting and Cas9 induced DSBs. HDR mechanism was triggered by co-delivery of donor DNA repair templates in circular plasmid form. In conclusion, we have suggested methodological pipeline for efficient targeting with higher affinity to target DNA and generating desired modifications on HBB gene.
Collapse
Affiliation(s)
- Batuhan Mert Kalkan
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey; Koc University, Istanbul, Turkey
| | - Ezgi Yagmur Kala
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey; Koc University, Istanbul, Turkey
| | - Melek Yuce
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey; Department of Medical Biology and Genetics, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Medine Karadag Alpaslan
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey; Department of Medical Genetics, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Fatih Kocabas
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
186
|
Bou-Fakhredin R, Tabbikha R, Daadaa H, Taher AT. Emerging therapies in β-thalassemia: toward a new era in management. Expert Opin Emerg Drugs 2020; 25:113-122. [DOI: 10.1080/14728214.2020.1752180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rayan Bou-Fakhredin
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rami Tabbikha
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hisham Daadaa
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali T. Taher
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
187
|
Zeng J, Wu Y, Ren C, Bonanno J, Shen AH, Shea D, Gehrke JM, Clement K, Luk K, Yao Q, Kim R, Wolfe SA, Manis JP, Pinello L, Joung JK, Bauer DE. Therapeutic base editing of human hematopoietic stem cells. Nat Med 2020; 26:535-541. [PMID: 32284612 PMCID: PMC7869435 DOI: 10.1038/s41591-020-0790-y] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
Base editing by nucleotide deaminases linked to programmable DNA-binding proteins represents a promising approach to permanently remedy blood disorders, although its application in engrafting hematopoietic stem cells (HSCs) remains unexplored. In this study, we purified A3A (N57Q)-BE3 base editor for ribonucleoprotein (RNP) electroporation of human-peripheral-blood-mobilized CD34+ hematopoietic stem and progenitor cells (HSPCs). We observed frequent on-target cytosine base edits at the BCL11A erythroid enhancer at +58 with few indels. Fetal hemoglobin (HbF) induction in erythroid progeny after base editing or nuclease editing was similar. A single therapeutic base edit of the BCL11A enhancer prevented sickling and ameliorated globin chain imbalance in erythroid progeny from sickle cell disease and β-thalassemia patient-derived HSPCs, respectively. Moreover, efficient multiplex editing could be achieved with combined disruption of the BCL11A erythroid enhancer and correction of the HBB -28A>G promoter mutation. Finally, base edits could be produced in multilineage-repopulating self-renewing human HSCs with high frequency as assayed in primary and secondary recipient animals resulting in potent HbF induction in vivo. Together, these results demonstrate the potential of RNP base editing of human HSPCs as a feasible alternative to nuclease editing for HSC-targeted therapeutic genome modification.
Collapse
Affiliation(s)
- Jing Zeng
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Yuxuan Wu
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Chunyan Ren
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jasmine Bonanno
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Anne H Shen
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Devlin Shea
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jason M Gehrke
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Kendell Clement
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Kevin Luk
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
| | - Qiuming Yao
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Rachel Kim
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Chemistry, Wellesley College, Wellesley, MA, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
| | - John P Manis
- Department of Laboratory Medicine, Boston Children's Hospital, Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Luca Pinello
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - J Keith Joung
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
188
|
Wang J, Zhang C, Feng B. The rapidly advancing Class 2 CRISPR-Cas technologies: A customizable toolbox for molecular manipulations. J Cell Mol Med 2020; 24:3256-3270. [PMID: 32037739 PMCID: PMC7131926 DOI: 10.1111/jcmm.15039] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
The CRISPR-Cas technologies derived from bacterial and archaeal adaptive immune systems have emerged as a series of groundbreaking nucleic acid-guided gene editing tools, ultimately standing out among several engineered nucleases because of their high efficiency, sequence-specific targeting, ease of programming and versatility. Facilitated by the advancement across multiple disciplines such as bioinformatics, structural biology and high-throughput sequencing, the discoveries and engineering of various innovative CRISPR-Cas systems are rapidly expanding the CRISPR toolbox. This is revolutionizing not only genome editing but also various other types of nucleic acid-guided manipulations such as transcriptional control and genomic imaging. Meanwhile, the adaptation of various CRISPR strategies in multiple settings has realized numerous previously non-existing applications, ranging from the introduction of sophisticated approaches in basic research to impactful agricultural and therapeutic applications. Here, we summarize the recent advances of CRISPR technologies and strategies, as well as their impactful applications.
Collapse
Affiliation(s)
- Jingyi Wang
- Key Laboratory for Regenerative Medicine, Ministry of EducationSchool of Biomedical Sciences, Faculty of MedicineCUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Chenzi Zhang
- Key Laboratory for Regenerative Medicine, Ministry of EducationSchool of Biomedical Sciences, Faculty of MedicineCUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative Medicine (iTERM)The Chinese University of Hong KongHong Kong SARChina
| | - Bo Feng
- Key Laboratory for Regenerative Medicine, Ministry of EducationSchool of Biomedical Sciences, Faculty of MedicineCUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative Medicine (iTERM)The Chinese University of Hong KongHong Kong SARChina
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of SciencesGuangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangzhouChina
| |
Collapse
|
189
|
Zhang ZY, Thrasher AJ, Zhang F. Gene therapy and genome editing for primary immunodeficiency diseases. Genes Dis 2020; 7:38-51. [PMID: 32181274 PMCID: PMC7063425 DOI: 10.1016/j.gendis.2019.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
In past two decades the gene therapy using genetic modified autologous hematopoietic stem cells (HSCs) transduced with the viral vector has become a promising alternative option for treating primary immunodeficiency diseases (PIDs). Despite of some pitfalls at early stage clinical trials, the field of gene therapy has advanced significantly in the last decade with improvements in viral vector safety, preparatory regime for manufacturing high quality virus, automated CD34 cell purification. Hence, the overall outcome from the clinical trials for the different PIDs has been very encouraging. In addition to the viral vector based gene therapy, the recent fast moving forward developments in genome editing using engineered nucleases in HSCs has provided a new promising platform for the treatment of PIDs. This review provides an overall outcome and progress in gene therapy clinical trials for SCID-X, ADA-SCID, WAS, X- CGD, and the recent developments in genome editing technology applied in HSCs for developing potential therapy, particular in the key studies for PIDs.
Collapse
Affiliation(s)
- Zhi-Yong Zhang
- Department of Immunology and Rheumatology, Children's Hospital of Chongqing Medical University, China
| | - Adrian J. Thrasher
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University Colleage London, UK
| | - Fang Zhang
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University Colleage London, UK
| |
Collapse
|
190
|
Abstract
Currently, despite the use of a preventive vaccine for several decades as well as the use of effective and well-tolerated viral suppressive medications since 1998, approximately 250 million people remain infected with the virus that causes hepatitis B worldwide. Hepatitis C virus (HCV) and hepatitis B virus (HBV) are the leading causes of liver cancer and overall mortality globally, surpassing malaria and tuberculosis. Linkage to care is estimated to be very poor both in developing countries and in high-income countries, such as the United States, countries in Western Europe, and Japan. In the United States, by CDC estimates, only one-third of HBV-infected patients or less are aware of their infection. Some reasons for these low rates of surveillance, diagnosis, and treatment include the asymptomatic nature of chronic hepatitis B until the very late stages, a lack of curative therapy with a finite treatment duration, a complex natural history, and a lack of knowledge about the disease by both care providers and patients. In the last 5 years, more attention has been focused on the important topics of HBV screening, diagnosis of HBV infection, and appropriate linkage to care. There have also been rapid clinical developments toward a functional cure of HBV infection, with novel compounds currently being in various phases of progress. Despite this knowledge, many of the professional organizations provide guidelines focused only on specific questions related to the treatment of HBV infection. This focus leaves a gap for care providers on the other HBV-related issues, which include HBV's epidemiological profile, its natural history, how it interacts with other viral hepatitis diseases, treatments, and the areas that still need to be addressed in order to achieve HBV elimination by 2030. Thus, to fill these gaps and provide a more comprehensive and relevant document to regions worldwide, we have taken a global approach by using the findings of global experts on HBV as well as citing major guidelines and their various approaches to addressing HBV and its disease burden.
Collapse
|
191
|
|
192
|
Leonard A, Tisdale J, Abraham A. Curative options for sickle cell disease: haploidentical stem cell transplantation or gene therapy? Br J Haematol 2020; 189:408-423. [PMID: 32034776 DOI: 10.1111/bjh.16437] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Haematopoietic stem cell transplantation (HSCT) is curative in sickle cell disease (SCD); however, the lack of available matched donors makes this therapy out of reach for the majority of patients with SCD. Alternative donor sources such as haploidentical HSCT expand the donor pool to nearly all patients with SCD, with recent data showing high overall survival, limited toxicities, and effective reduction in acute and chronic graft-versus-host disease (GVHD). Simultaneously, multiple gene therapy strategies are entering clinical trials with preliminary data showing their success, theoretically offering all patients yet another curative strategy without the morbidity and mortality of GVHD. As improvements are made for alternative donors in the allogeneic setting and as data emerge from gene therapy trials, the optimal curative strategy for any individual patient with SCD will be determined by many critical factors including efficacy, transplant morbidity and mortality, safety, patient disease status and preference, cost and applicability. Haploidentical may be the preferred choice now based mostly on availability of data; however, gene therapy is closing the gap and may ultimately prove to be the better option. Progress in both strategies, however, makes cure more attainable for the individual with SCD.
Collapse
Affiliation(s)
- Alexis Leonard
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI) and National Institute of Diabetes, Digestive, and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA.,Division of Hematology, Center for Cancer and Blood Disorders, Children's National Health System, Washington, DC, USA.,Blood and Marrow Transplantation, Center for Cancer and Blood Disorders, Children's National Health System, Washington, DC, USA
| | - John Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI) and National Institute of Diabetes, Digestive, and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Allistair Abraham
- Blood and Marrow Transplantation, Center for Cancer and Blood Disorders, Children's National Health System, Washington, DC, USA
| |
Collapse
|
193
|
Javidi-Parsijani P, Lyu P, Makani V, Sarhan WM, Yoo KW, El-Korashi L, Atala A, Lu B. CRISPR/Cas9 increases mitotic gene conversion in human cells. Gene Ther 2020; 27:281-296. [PMID: 32020049 DOI: 10.1038/s41434-020-0126-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/09/2020] [Accepted: 01/27/2020] [Indexed: 12/25/2022]
Abstract
Gene conversion is a process of transferring genetic material from one homologous sequence to another. Most reported gene conversions are meiotic although mitotic gene conversion is also described. When using CRISPR/Cas9 to target the human hemoglobin subunit beta (HBB) gene, hemoglobin subunit delta (HBD) gene footprints were observed in HBB gene. However, it is unclear whether these were the results of gene conversion or PCR-mediated sequence shuffling between highly homologous sequences. Here we provide evidence that the HBD footprints in HBB were indeed results of gene conversion. We demonstrated that the CRISPR/Cas9 facilitated unidirectional sequence transfer from the homologous gene without double-strand breaks (DSB) to the one with DSBs, and showed that the rates of HBD footprint in HBB were positively correlated to the HBB insertion and deletion rates. We further showed that when targeting HBD gene, HBB footprints could also be observed in HBD gene. The mitotic gene conversion was observed not only in immortalized HEK293T cells, but also in human primary cells. Our work reveals mitotic gene conversion as an often overlooked effect of CRISPR/Cas9-mediated genome editing.
Collapse
Affiliation(s)
- Parisa Javidi-Parsijani
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Pin Lyu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Vishruti Makani
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Walaa Mohamed Sarhan
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Kyung Whan Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Lobna El-Korashi
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Baisong Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA.
| |
Collapse
|
194
|
Lentiviral and genome-editing strategies for the treatment of β-hemoglobinopathies. Blood 2020; 134:1203-1213. [PMID: 31467062 DOI: 10.1182/blood.2019000949] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
β-Thalassemia and sickle cell disease (SCD) are the most prevalent monogenic diseases. These disorders are caused by quantitative or qualitative defects in the production of adult hemoglobin. Gene therapy is a potential treatment option for patients lacking an allogenic compatible hematopoietic stem cell (HSC) donor. New-generation lentiviral vectors (LVs) carrying a β-globin-like gene have revolutionized this field by allowing effective HSC transduction, with no evidence of genotoxicity to date. Several clinical trials with different types of vector are underway worldwide; the initial results are encouraging with regard to the sustained production of therapeutic hemoglobin, improved biological parameters, a lower transfusion requirement, and better quality of life. Long-term follow-up studies will confirm the safety of LV-based gene therapy. The optimization of patient conditioning, HSC harvesting, and HSC transduction has further improved the therapeutic potential of this approach. Novel LV-based strategies for reactivating endogenous fetal hemoglobin (HbF) are also promising, because elevated HbF levels can reduce the severity of both β-thalassemia and SCD. Lastly, genome-editing approaches designed to correct the disease-causing mutation or reactivate HbF are currently under investigation. Here, we discuss the clinical outcomes of current LV-based gene addition trials and the promising advantages of novel alternative therapeutic strategies.
Collapse
|
195
|
Haeussler M. CRISPR off-targets: a question of context. Cell Biol Toxicol 2020; 36:5-9. [PMID: 31734746 PMCID: PMC7056574 DOI: 10.1007/s10565-019-09497-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Maximilian Haeussler
- Genomics Institute, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
196
|
Weber L, Frati G, Felix T, Hardouin G, Casini A, Wollenschlaeger C, Meneghini V, Masson C, De Cian A, Chalumeau A, Mavilio F, Amendola M, Andre-Schmutz I, Cereseto A, El Nemer W, Concordet JP, Giovannangeli C, Cavazzana M, Miccio A. Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype. SCIENCE ADVANCES 2020; 6:eaay9392. [PMID: 32917636 PMCID: PMC7015694 DOI: 10.1126/sciadv.aay9392] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/25/2019] [Indexed: 05/02/2023]
Abstract
Sickle cell disease (SCD) is caused by a single amino acid change in the adult hemoglobin (Hb) β chain that causes Hb polymerization and red blood cell (RBC) sickling. The co-inheritance of mutations causing fetal γ-globin production in adult life hereditary persistence of fetal Hb (HPFH) reduces the clinical severity of SCD. HPFH mutations in the HBG γ-globin promoters disrupt binding sites for the repressors BCL11A and LRF. We used CRISPR-Cas9 to mimic HPFH mutations in the HBG promoters by generating insertions and deletions, leading to disruption of known and putative repressor binding sites. Editing of the LRF-binding site in patient-derived hematopoietic stem/progenitor cells (HSPCs) resulted in γ-globin derepression and correction of the sickling phenotype. Xenotransplantation of HSPCs treated with gRNAs targeting the LRF-binding site showed a high editing efficiency in repopulating HSPCs. This study identifies the LRF-binding site as a potent target for genome-editing treatment of SCD.
Collapse
Affiliation(s)
- Leslie Weber
- Laboratory of Human Lymphohematopoiesis, INSERM UMR1163, Paris, France
- Paris Diderot University-Sorbonne Paris Cité, Paris, France
- Laboratory of chromatin and gene regulation during development, INSERM UMR1163, Paris, France
| | - Giacomo Frati
- Laboratory of chromatin and gene regulation during development, INSERM UMR1163, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Tristan Felix
- Laboratory of chromatin and gene regulation during development, INSERM UMR1163, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Giulia Hardouin
- Laboratory of chromatin and gene regulation during development, INSERM UMR1163, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | | | - Clara Wollenschlaeger
- Laboratory of chromatin and gene regulation during development, INSERM UMR1163, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Vasco Meneghini
- Laboratory of chromatin and gene regulation during development, INSERM UMR1163, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Cecile Masson
- Paris-Descartes Bioinformatics Platform, Imagine Institute, Paris 75015, France
| | - Anne De Cian
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris, France
| | - Anne Chalumeau
- Laboratory of Human Lymphohematopoiesis, INSERM UMR1163, Paris, France
- Laboratory of chromatin and gene regulation during development, INSERM UMR1163, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Fulvio Mavilio
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Audentes Therapeutics, San Francisco, CA, USA
| | | | - Isabelle Andre-Schmutz
- Laboratory of Human Lymphohematopoiesis, INSERM UMR1163, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | | | - Wassim El Nemer
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. de la Réunion, Univ. des Antilles, Paris, France
- Institut National de la Transfusion Sanguine, F-75015 Paris, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Jean-Paul Concordet
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris, France
| | | | - Marina Cavazzana
- Laboratory of Human Lymphohematopoiesis, INSERM UMR1163, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Annarita Miccio
- Laboratory of chromatin and gene regulation during development, INSERM UMR1163, Paris, France.
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
197
|
Amirkhanov RN, Stepanov GA. Systems of Delivery of CRISPR/Cas9 Ribonucleoprotein Complexes for Genome Editing. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019060025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
198
|
Poletto E, Baldo G, Gomez-Ospina N. Genome Editing for Mucopolysaccharidoses. Int J Mol Sci 2020; 21:E500. [PMID: 31941077 PMCID: PMC7014411 DOI: 10.3390/ijms21020500] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
Genome editing holds the promise of one-off and potentially curative therapies for many patients with genetic diseases. This is especially true for patients affected by mucopolysaccharidoses as the disease pathophysiology is amenable to correction using multiple approaches. Ex vivo and in vivo genome editing platforms have been tested primarily on MSPI and MPSII, with in vivo approaches having reached clinical testing in both diseases. Though we still await proof of efficacy in humans, the therapeutic tools established for these two diseases should pave the way for other mucopolysaccharidoses. Herein, we review the current preclinical and clinical development studies, using genome editing as a therapeutic approach for these diseases. The development of new genome editing platforms and the variety of genetic modifications possible with each tool provide potential applications of genome editing for mucopolysaccharidoses, which vastly exceed the potential of current approaches. We expect that in a not-so-distant future, more genome editing-based strategies will be established, and individual diseases will be treated through multiple approaches.
Collapse
Affiliation(s)
- Edina Poletto
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Porto Alegre 90035-007, Brazil; (E.P.); (G.B.)
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Guilherme Baldo
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Porto Alegre 90035-007, Brazil; (E.P.); (G.B.)
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | | |
Collapse
|
199
|
Banan M. Recent advances in CRISPR/Cas9-mediated knock-ins in mammalian cells. J Biotechnol 2020; 308:1-9. [DOI: 10.1016/j.jbiotec.2019.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 12/16/2022]
|
200
|
Advances in genome editing through control of DNA repair pathways. Nat Cell Biol 2019; 21:1468-1478. [PMID: 31792376 DOI: 10.1038/s41556-019-0425-z] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 10/25/2019] [Indexed: 02/06/2023]
Abstract
Eukaryotic cells deploy overlapping repair pathways to resolve DNA damage. Advancements in genome editing take advantage of these pathways to produce permanent genetic changes. Despite recent improvements, genome editing can produce diverse outcomes that can introduce risks in clinical applications. Although homology-directed repair is attractive for its ability to encode precise edits, it is particularly difficult in human cells. Here we discuss the DNA repair pathways that underlie genome editing and strategies to favour various outcomes.
Collapse
|