151
|
Qi X, Yang M, Stenberg J, Dey R, Fogwe L, Alam MS, Kimchi ET, Staveley-O'Carroll KF, Li G. Gut microbiota mediated molecular events and therapy in liver diseases. World J Gastroenterol 2020; 26:7603-7618. [PMID: 33505139 PMCID: PMC7789060 DOI: 10.3748/wjg.v26.i48.7603] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota is a community of microorganisms that reside in the gastrointestinal tract. An increasing number of studies has demonstrated that the gut-liver axis plays a critical role in liver homeostasis. Dysbiosis of gut microbiota can cause liver diseases, including nonalcoholic fatty liver disease and alcoholic liver disease. Preclinical and clinical investigations have substantiated that the metabolites and other molecules derived from gut microbiota and diet interaction function as mediators to cause liver fibrosis, cirrhosis, and final cancer. This effect has been demonstrated to be associated with dysregulation of intrahepatic immunity and liver metabolism. Targeting these findings have led to the development of novel preventive and therapeutic strategies. Here, we review the cellular and molecular mechanisms underlying gut microbiota-mediated impact on liver disease. We also summarize the advancement of gut microbiota-based therapeutic strategies in the control of liver diseases.
Collapse
Affiliation(s)
- Xiaoqiang Qi
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, United States
- VA Hospital, Harry S Truman Memorial VA Hospital, Columbia, MO 65201, United States
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, United States
- VA Hospital, Harry S Truman Memorial VA Hospital, Columbia, MO 65201, United States
| | - Joseph Stenberg
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
| | - Rahul Dey
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
| | - Leslie Fogwe
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
| | | | - Eric T Kimchi
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, United States
- VA Hospital, Harry S Truman Memorial VA Hospital, Columbia, MO 65201, United States
| | - Kevin F Staveley-O'Carroll
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, United States
- VA Hospital, Harry S Truman Memorial VA Hospital, Columbia, MO 65201, United States
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, United States
- VA Hospital, Harry S Truman Memorial VA Hospital, Columbia, MO 65201, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, United States
| |
Collapse
|
152
|
Kuchay MS, Choudhary NS, Mishra SK. Pathophysiological mechanisms underlying MAFLD. Diabetes Metab Syndr 2020; 14:1875-1887. [PMID: 32998095 DOI: 10.1016/j.dsx.2020.09.026] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS The pathophysiology underlying metabolic associated fatty liver disease (MAFLD) involves a multitude of interlinked processes, including insulin resistance (IR) underlying the metabolic syndrome, lipotoxicity attributable to the accumulation of toxic lipid species, infiltration of proinflammatory cells causing hepatic injury and ultimately leading to hepatic stellate cell (HSC) activation and fibrogenesis. The proximal processes, such as IR, lipid overload and lipotoxicity are relatively well established, but the downstream molecular mechanisms, such as inflammatory processes, hepatocyte lipoapoptosis, and fibrogenesis are incompletely understood. METHODS A literature search was performed with Medline (PubMed), Scopus and Google Scholar electronic databases till June 2020, using relevant keywords (nonalcoholic fatty liver disease; metabolic associated fatty liver disease; nonalcoholic steatohepatitis; NASH pathogenesis) to extract relevant studies describing pathogenesis of MAFLD/MASH. RESULTS Several studies have reported new concepts underlying pathophysiology of MAFLD. Activation of HSCs is the common final pathway for diverse signals from damaged hepatocytes and proinflammatory cells. Activated HSCs then secrete excess extracellular matrix (ECM) which accumulates and impairs structure and function of the liver. TAZ (a transcriptional regulator), hedgehog (HH) ligands, transforming growth factor-β (TGF-β), bone morphogenetic protein 8B (BMP8B) and osteopontin play important roles in activating these HSCs. Dysfunctional gut microbiome, dysregulated bile acid metabolism, endogenous alcohol production, and intestinal fructose handling, modify individual susceptibility to MASH. CONCLUSIONS Newer concepts of pathophysiology underlying MASH, such as TAZ/Ihh pathway, extracellular vesicles, microRNA, dysfunctional gut microbiome and intestinal fructose handling present promising targets for the development of therapeutic agents.
Collapse
Affiliation(s)
- Mohammad Shafi Kuchay
- Division of Endocrinology and Metabolism, Medanta the Medicity Hospital, Gurugram, 122001, Haryana, India.
| | - Narendra Singh Choudhary
- Institute of Digestive and Hepatobiliary Sciences, Medanta-The Medicity Hospital, Gurugram, 122001, Haryana, India
| | - Sunil Kumar Mishra
- Division of Endocrinology and Metabolism, Medanta the Medicity Hospital, Gurugram, 122001, Haryana, India
| |
Collapse
|
153
|
Ding WJ, Wu WJ, Chen YW, Chen HB, Fan JG, Qiao L. Expression of Notch family is altered in non‑alcoholic fatty liver disease. Mol Med Rep 2020; 22:1702-1708. [PMID: 32705262 PMCID: PMC7411296 DOI: 10.3892/mmr.2020.11249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to explore the dynamic relationship between Notch and non‑alcoholic fatty liver disease (NAFLD), both in vitro and in vivo. The LX2, Huh7 and MIHA hepatic cell lines were used to establish a cell steatosis model induced by palmitic acid (PA) at different concentrations (0.1, 0.25 and 0.5 mM). Cell proliferation and migration were assessed using a 5‑bromo‑2'‑deoxyuridine kit and a wound healing assay. The dosage of 0.25 mM PA for 36‑48 h treatment was chosen for subsequent experiments. Steatotic cells were identified by Oil Red O staining. Feeding mice a methionine‑choline‑deficient (MCD) diet is known induce a model of NAFLD, compared with a methionine‑choline‑sufficient (MCS) diet. Therefore, Notch family mRNA expression was evaluated in the liver of MCD‑fed mice at varying time points (days 5, 10, 21 and 70) using reverse transcription‑quantitative PCR. Notch expression levels were also assessed in cell lines at 12, 24, 36 and 48 h after PA treatment. Notch signaling molecules changed in the PA or MCD model over time. In vitro, the mRNA levels of Notch1, ‑2 and ‑4 increased in all cell lines after 12‑h PA treatment. At 24 h, these genes were upregulated only in LX2 cells, while showing a 'down‑up' pattern in MIHA cells (i.e. these genes were downregulated at 24 h but upregulated at 36 h). However, expression of Notch1, ‑2, ‑3 and ‑4 mRNA rose significantly in the early stage (day 10) of NAFLD. At week 3, the levels of Notch1 and ‑2 were higher in the MCD group than in the MCS group, while the reverse was observed for Notch3 and ‑4. Expression of these four genes increased again in the late stage (day 70) of NAFLD. Therefore, these results indicated that Notch family members Notch1‑4 were involved in the development of NAFLD and played an important role in steatosis in this model.
Collapse
Affiliation(s)
- Wen-Jin Ding
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Wei-Jie Wu
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Yuan-Wen Chen
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Han-Bei Chen
- Department of Endocrinology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Liang Qiao
- Storr Liver Unit, Westmead Institute for Medical Research, The Westmead Clinical School, Westmead Hospital, The University of Sydney, Westmead, New South Wales 2145, Australia
| |
Collapse
|
154
|
Yu J, Canalis E. Notch and the regulation of osteoclast differentiation and function. Bone 2020; 138:115474. [PMID: 32526405 PMCID: PMC7423683 DOI: 10.1016/j.bone.2020.115474] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/30/2022]
Abstract
Notch 1 through 4 are transmembrane receptors that play a pivotal role in cell differentiation and function; this review addresses the role of Notch signaling in osteoclastogenesis and bone resorption. Notch receptors are activated following interactions with their ligands of the Jagged and Delta-like families. In the skeleton, Notch signaling controls osteoclast differentiation and bone-resorbing activity either directly acting on osteoclast precursors, or indirectly acting on cells of the osteoblast lineage and cells of the immune system. NOTCH1 inhibits osteoclastogenesis, whereas NOTCH2 enhances osteoclast differentiation and function by direct and indirect mechanisms. NOTCH3 induces the expression of RANKL in osteoblasts and osteocytes and as a result induces osteoclast differentiation. There is limited expression of NOTCH4 in skeletal cells. Selected congenital disorders and skeletal malignancies are associated with dysregulated Notch signaling and enhanced bone resorption. In conclusion, Notch signaling is a critical pathway that controls osteoblast and osteoclast differentiation and function and regulates skeletal homeostasis in health and disease.
Collapse
Affiliation(s)
- Jungeun Yu
- Departments of Orthopaedic Surgery, UConn Musculoskeletal Institute, Farmington, CT 06030, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, USA
| | - Ernesto Canalis
- Departments of Orthopaedic Surgery, UConn Musculoskeletal Institute, Farmington, CT 06030, USA; Medicine, UConn Musculoskeletal Institute, Farmington, CT 06030, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, USA.
| |
Collapse
|
155
|
Liu Q, Yu J, Wang L, Tang Y, Zhou Q, Ji S, Wang Y, Santos L, Haeusler RA, Que J, Rajbhandari P, Lei X, Valenti L, Pajvani UB, Qin J, Qiang L. Inhibition of PU.1 ameliorates metabolic dysfunction and non-alcoholic steatohepatitis. J Hepatol 2020; 73:361-370. [PMID: 32135178 DOI: 10.1016/j.jhep.2020.02.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Obesity is a well-established risk factor for type 2 diabetes (T2D) and non-alcoholic steatohepatitis (NASH), but the underlying mechanisms remain incompletely understood. Herein, we aimed to identify novel pathogenic factors (and possible therapeutic targets) underlying metabolic dysfunction in the liver. METHODS We applied a tandem quantitative proteomics strategy to enrich and identify transcription factors (TFs) induced in the obese liver. We used flow cytometry of liver cells to analyze the source of the induced TFs. We employed conditional knockout mice, shRNA, and small-molecule inhibitors to test the metabolic consequences of the induction of identified TFs. Finally, we validated mouse data in patient liver biopsies. RESULTS We identified PU.1/SPI1, the master hematopoietic regulator, as one of the most upregulated TFs in livers from diet-induced obese (DIO) and genetically obese (db/db) mice. Targeting PU.1 in the whole liver, but not hepatocytes alone, significantly improved glucose homeostasis and suppressed liver inflammation. Consistently, treatment with the PU.1 inhibitor DB1976 markedly reduced inflammation and improved glucose homeostasis and dyslipidemia in DIO mice, and strongly suppressed glucose intolerance, liver steatosis, inflammation, and fibrosis in a dietary NASH mouse model. Furthermore, hepatic PU.1 expression was positively correlated with insulin resistance and inflammation in liver biopsies from patients. CONCLUSIONS These data suggest that the elevated hematopoietic factor PU.1 promotes liver metabolic dysfunction, and may be a useful therapeutic target for obesity, insulin resistance/T2D, and NASH. LAY SUMMARY Expression of the immune regulator PU.1 is increased in livers of obese mice and people. Blocking PU.1 improved glucose homeostasis, and reduced liver steatosis, inflammation and fibrosis in mouse models of non-alcoholic steatohepatitis. Inhibition of PU.1 is thus a potential therapeutic strategy for treating obesity-associated liver dysfunction and metabolic diseases.
Collapse
Affiliation(s)
- Qiongming Liu
- Naomi Berrie Diabetes Center, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, 10032, USA; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center at Beijing), Beijing 102206, China
| | - Junjie Yu
- Naomi Berrie Diabetes Center, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, USA
| | - Liheng Wang
- Naomi Berrie Diabetes Center, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, USA
| | - Yuliang Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Quan Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center at Beijing), Beijing 102206, China
| | - Shuhui Ji
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center at Beijing), Beijing 102206, China
| | - Yi Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Luis Santos
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Rebecca A Haeusler
- Naomi Berrie Diabetes Center, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, 10032, USA
| | - Jianwen Que
- Columbia Center for Human Development and Department of Medicine, Columbia University, New York, NY 10032
| | - Prashant Rajbhandari
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi Milano, and Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Policlinico, Milan, Italy
| | - Utpal B Pajvani
- Naomi Berrie Diabetes Center, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, USA.
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center at Beijing), Beijing 102206, China; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA.
| | - Li Qiang
- Naomi Berrie Diabetes Center, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, 10032, USA.
| |
Collapse
|
156
|
Auguet T, Bertran L, Binetti J, Aguilar C, Martínez S, Guiu-Jurado E, Sabench F, Adalid L, Porras JA, Riesco D, Del Castillo D, Richart C. Hepatocyte Notch Signaling Deregulation Related to Lipid Metabolism in Women with Obesity and Nonalcoholic Fatty Liver. Obesity (Silver Spring) 2020; 28:1487-1493. [PMID: 32657010 DOI: 10.1002/oby.22873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE This cohort study aimed to explore the relationship between the Notch signaling pathway and the degree of nonalcoholic fatty liver disease (NAFLD). Moreover, this study intended to investigate whether this pathway is related to hepatic lipid metabolism and Toll-like receptors (TLRs). METHODS This study used real-time polymerase chain reaction analysis to evaluate the hepatic expression level of all genes studied (Notch receptors NOTCH1, NOTCH2, NOTCH3, and NOTCH4, transcription factors HES1 and HES5, and Hes-related repressor proteins HEY1 and HEY2) in hepatic tissue from two cohorts: women with severe obesity (n = 57) and normal liver structure (n = 20) or NAFLD (n = 37). RESULTS In women with severe obesity and NAFLD, this study found downregulation of hepatic HES5 expression. This expression correlated positively with the hepatic expression of HES1, HEY1, and NOTCH3. This study also found a positive correlation between HES5 expression and sterol regulatory element-binding protein 1c (SREBP1c) and between NOTCH3 and several genes related to hepatic lipid metabolism (encoding liver X nuclear receptor α variant 1, farnesoid X nuclear receptor, SREBP1c, acetyl-CoA carboxylase 1, fatty acid synthase, peroxisome proliferator-activated receptor α, carnitine palmitoyltransferase 1, carnitine O-octanoyltransferase, ATP-binding cassette subfamily A member 1, and ATP-binding cassette subfamily G member 1). Finally, this study found a positive correlation between NOTCH2 and TLR2, TLR4, and TLR9 and a positive relationship between NOTCH1 and TLR9. CONCLUSIONS Taken together, these findings suggest that hepatic expression of Notch proteins and ligands in relation to lipid metabolism pathways in the liver could have a role in NAFLD pathogenesis.
Collapse
Affiliation(s)
- Teresa Auguet
- Department of Medicine and Surgery, Metabolic Diseases and Insulin Resistance Study Group (GEMMAIR) - AGAUR, Applied Medicine, Rovira i Virgili University (URV), Pere Virgili Health Research Institute (IISPV), Tarragona, Spain
- Joan XXIII University Hospital of Tarragona (HUJXXIII), Internal Medicine Service, Rovira i Virgili University (URV), Tarragona, Spain
| | - Laia Bertran
- Department of Medicine and Surgery, Metabolic Diseases and Insulin Resistance Study Group (GEMMAIR) - AGAUR, Applied Medicine, Rovira i Virgili University (URV), Pere Virgili Health Research Institute (IISPV), Tarragona, Spain
| | - Jessica Binetti
- Joan XXIII University Hospital of Tarragona (HUJXXIII), Internal Medicine Service, Rovira i Virgili University (URV), Tarragona, Spain
| | - Carmen Aguilar
- Department of Medicine and Surgery, Metabolic Diseases and Insulin Resistance Study Group (GEMMAIR) - AGAUR, Applied Medicine, Rovira i Virgili University (URV), Pere Virgili Health Research Institute (IISPV), Tarragona, Spain
| | - Salomé Martínez
- Department of Medicine and Surgery, Metabolic Diseases and Insulin Resistance Study Group (GEMMAIR) - AGAUR, Applied Medicine, Rovira i Virgili University (URV), Pere Virgili Health Research Institute (IISPV), Tarragona, Spain
- Joan XXIII University Hospital of Tarragona (HUJXXIII), Pathological Anatomy Service, Rovira i Virgili University (URV), Tarragona, Spain
| | - Esther Guiu-Jurado
- Leipzig University, Integrated Research and Treatment Center - Adiposity Diseases, Leipzig, Germany
| | - Fàtima Sabench
- Department of Medicine and Surgery, Metabolic Diseases and Insulin Resistance Study Group (GEMMAIR) - AGAUR, Applied Medicine, Rovira i Virgili University (URV), Pere Virgili Health Research Institute (IISPV), Tarragona, Spain
- Sant Joan University Hospital of Reus (HUSJR), Surgery Service, Rovira i Virgili University (URV), Department of Medicine and Surgery, Pere Virgili Health Research Institute (IISPV), Reus, Spain
| | - Laia Adalid
- Joan XXIII University Hospital of Tarragona (HUJXXIII), Pathological Anatomy Service, Rovira i Virgili University (URV), Tarragona, Spain
| | - José Antonio Porras
- Department of Medicine and Surgery, Metabolic Diseases and Insulin Resistance Study Group (GEMMAIR) - AGAUR, Applied Medicine, Rovira i Virgili University (URV), Pere Virgili Health Research Institute (IISPV), Tarragona, Spain
- Joan XXIII University Hospital of Tarragona (HUJXXIII), Internal Medicine Service, Rovira i Virgili University (URV), Tarragona, Spain
| | - David Riesco
- Joan XXIII University Hospital of Tarragona (HUJXXIII), Internal Medicine Service, Rovira i Virgili University (URV), Tarragona, Spain
| | - Daniel Del Castillo
- Department of Medicine and Surgery, Metabolic Diseases and Insulin Resistance Study Group (GEMMAIR) - AGAUR, Applied Medicine, Rovira i Virgili University (URV), Pere Virgili Health Research Institute (IISPV), Tarragona, Spain
- Sant Joan University Hospital of Reus (HUSJR), Surgery Service, Rovira i Virgili University (URV), Department of Medicine and Surgery, Pere Virgili Health Research Institute (IISPV), Reus, Spain
| | - Cristóbal Richart
- Department of Medicine and Surgery, Metabolic Diseases and Insulin Resistance Study Group (GEMMAIR) - AGAUR, Applied Medicine, Rovira i Virgili University (URV), Pere Virgili Health Research Institute (IISPV), Tarragona, Spain
| |
Collapse
|
157
|
Amor C, Feucht J, Leibold J, Ho YJ, Zhu C, Alonso-Curbelo D, Mansilla-Soto J, Boyer JA, Li X, Giavridis T, Kulick A, Houlihan S, Peerschke E, Friedman SL, Ponomarev V, Piersigilli A, Sadelain M, Lowe SW. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 2020; 583:127-132. [PMID: 32555459 PMCID: PMC7583560 DOI: 10.1038/s41586-020-2403-9] [Citation(s) in RCA: 633] [Impact Index Per Article: 126.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
Abstract
Cellular senescence is characterized by stable cell-cycle arrest and a secretory program that modulates the tissue microenvironment1,2. Physiologically, senescence serves as a tumour-suppressive mechanism that prevents the expansion of premalignant cells3,4 and has a beneficial role in wound-healing responses5,6. Pathologically, the aberrant accumulation of senescent cells generates an inflammatory milieu that leads to chronic tissue damage and contributes to diseases such as liver and lung fibrosis, atherosclerosis, diabetes and osteoarthritis1,7. Accordingly, eliminating senescent cells from damaged tissues in mice ameliorates the symptoms of these pathologies and even promotes longevity1,2,8-10. Here we test the therapeutic concept that chimeric antigen receptor (CAR) T cells that target senescent cells can be effective senolytic agents. We identify the urokinase-type plasminogen activator receptor (uPAR)11 as a cell-surface protein that is broadly induced during senescence and show that uPAR-specific CAR T cells efficiently ablate senescent cells in vitro and in vivo. CAR T cells that target uPAR extend the survival of mice with lung adenocarcinoma that are treated with a senescence-inducing combination of drugs, and restore tissue homeostasis in mice in which liver fibrosis is induced chemically or by diet. These results establish the therapeutic potential of senolytic CAR T cells for senescence-associated diseases.
Collapse
Affiliation(s)
- Corina Amor
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Judith Feucht
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Josef Leibold
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Jui Ho
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Changyu Zhu
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Direna Alonso-Curbelo
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge Mansilla-Soto
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jacob A Boyer
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiang Li
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Theodoros Giavridis
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amanda Kulick
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shauna Houlihan
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ellinor Peerschke
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alessandra Piersigilli
- Laboratory of Comparative Pathology, Rockefeller University, Weill Cornell Medicine and Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
158
|
Novel use for old drugs: The emerging role of artemisinin and its derivatives in fibrosis. Pharmacol Res 2020; 157:104829. [DOI: 10.1016/j.phrs.2020.104829] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022]
|
159
|
Richter LR, Wan Q, Wen D, Zhang Y, Yu J, Kang JK, Zhu C, McKinnon EL, Gu Z, Qiang L, Pajvani UB. Targeted Delivery of Notch Inhibitor Attenuates Obesity-Induced Glucose Intolerance and Liver Fibrosis. ACS NANO 2020; 14:6878-6886. [PMID: 32441510 PMCID: PMC7444843 DOI: 10.1021/acsnano.0c01007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
As the prevalence of obesity-induced type 2 diabetes mellitus (T2DM) and nonalcoholic steatohepatitis (NASH) continue to increase, the need for pharmacologic therapies becomes urgent. However, endeavors to identify and develop novel therapeutic strategies for these chronic conditions are balanced by the need for safety, impeding clinical translation. One shared pathology of these two diseases is a maladaptive reactivation of the Notch signaling pathway in liver. Notch antagonism with γ-secretase inhibitors effectively suppresses hepatic glucose production and reduces liver fibrosis in NASH, but its extrahepatic side effects, particularly goblet cell metaplasia, limit therapeutic utility. To overcome this barrier, we developed a nanoparticle-mediated delivery system to target γ-secretase inhibitor to liver (GSI NPs). GSI NP application reduced hepatic glucose production in diet-induced obese mice and reduced hepatic fibrosis and inflammation in mice fed a NASH-provoking diet, without apparent gastrointestinal toxicity. By changing the delivery method, these results provide proof-of-concept for the repurposing of a previously intolerable medication to address unmet needs in the clinical landscape for obesity-induced T2DM and NASH.
Collapse
Affiliation(s)
| | | | - Di Wen
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, Jonsson Comprehensive Cancer Center and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, California 90095, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yuqi Zhang
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | | | | | - Changyu Zhu
- Department of Medicine, Columbia University, New York, New York 10032, United States
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Elizabeth L McKinnon
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, Jonsson Comprehensive Cancer Center and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, California 90095, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | | | | |
Collapse
|
160
|
Fujii H, Kawada N. The Role of Insulin Resistance and Diabetes in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:ijms21113863. [PMID: 32485838 PMCID: PMC7312931 DOI: 10.3390/ijms21113863] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) consists of the entire spectrum of fatty liver disease in patients without significant alcohol consumption, ranging from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) to cirrhosis, with NASH recently shown as an important cause of hepatocellular carcinoma (HCC). There is a close relationship between insulin resistance (IR) and NAFLD, with a five-fold higher prevalence of NAFLD in patients with type 2 diabetes (T2DM) compared to that in patients without T2DM. IR is involved in the progression of disease conditions such as steatosis and NASH, as well as hepatic fibrosis progression. The mechanisms underlying these processes involve genetic factors, hepatic fat accumulation, alterations in energy metabolism, and inflammatory signals derived from various cell types including immune cells. In NASH-associated fibrosis, the principal cell type responsible for extracellular matrix production is the hepatic stellate cell (HSC). HSC activation by IR involves “direct” and “indirect” pathways. This review will describe the molecular mechanisms of inflammation and hepatic fibrosis in IR, the relationship between T2DM and hepatic fibrosis, and the relationship between T2DM and HCC in patients with NAFLD.
Collapse
Affiliation(s)
- Hideki Fujii
- Department of Premier Preventive Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan;
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
- Correspondence: ; Tel.: +81-6-6645-3897
| | | |
Collapse
|
161
|
Kim K, Yu J, Kang JK, Morrow JP, Pajvani UB. Liver-selective γ-secretase inhibition ameliorates diet-induced hepatic steatosis, dyslipidemia and atherosclerosis. Biochem Biophys Res Commun 2020; 527:979-984. [PMID: 32439159 DOI: 10.1016/j.bbrc.2020.04.157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 01/05/2023]
Abstract
Hepatic γ-secretase regulates low-density lipoprotein receptor (LDLR) cleavage and degradation, affecting clearance of plasma triglyceride (TG)-rich lipoproteins (TRLs). In this study, we investigated whether γ-secretase inhibition modulates risk of Western (high-fat/sucrose and high-cholesterol)-type diet (WTD)-induced hepatic steatosis, dyslipidemia and atherosclerosis. We evaluated liver and plasma lipids in WTD-fed mice with hepatocyte-specific ablation of the non-redundant γ-secretase-targeting subunit Nicastrin (L-Ncst). In parallel, we investigated the effect of liver-selective Ncst antisense oligonucleotides (ASO) on lipid metabolism and atherosclerosis in wildtype (WT) and ApoE knockout (ApoE-/-) mice fed normal chow or WTD. WTD-fed L-Ncst and Ncst ASO-treated WT mice showed reduced total cholesterol and LDL-cholesterol (LDL-C), as well as reduced hepatic lipid content as compared to Cre- and control ASO-treated WT mice. Treatment of WTD-fed ApoE-/- mice with Ncst ASO markedly lowered total and LDL cholesterol, hepatic TG and attenuated atherosclerotic lesions in the aorta, as compared to control ASO-treated mice. L-Ncst and Ncst ASO similarly showed reduced plasma glucose as compared to control mice. In conclusion, inhibition of hepatic γ-secretase reduces plasma glucose, and attenuates WTD-induced dyslipidemia, hepatic fat accumulation and atherosclerosis, suggesting potential pleiotropic application for diet-induced metabolic dysfunction.
Collapse
Affiliation(s)
- KyeongJin Kim
- Department of Medicine, Columbia University, New York, NY, 10032, USA; Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, 22212, South Korea.
| | - Junjie Yu
- Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Jin Ku Kang
- Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - John P Morrow
- Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
162
|
Davies SP, Terry LV, Wilkinson AL, Stamataki Z. Cell-in-Cell Structures in the Liver: A Tale of Four E's. Front Immunol 2020; 11:650. [PMID: 32528462 PMCID: PMC7247839 DOI: 10.3389/fimmu.2020.00650] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
The liver is our largest internal organ and it plays major roles in drug detoxification and immunity, where the ingestion of extracellular material through phagocytosis is a critical pathway. Phagocytosis is the deliberate endocytosis of large particles, microbes, dead cells or cell debris and can lead to cell-in-cell structures. Various types of cell endocytosis have been recently described for hepatic epithelia (hepatocytes), which are non-professional phagocytes. Given that up to 80% of the liver comprises hepatocytes, the biological impact of cell-in-cell structures in the liver can have profound effects in liver regeneration, inflammation and cancer. This review brings together the latest reports on four types of endocytosis in the liver -efferocytosis, entosis, emperipolesis and enclysis, with a focus on hepatocyte biology.
Collapse
Affiliation(s)
- Scott P Davies
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Lauren V Terry
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Alex L Wilkinson
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Zania Stamataki
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,NIHR Birmingham Liver Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
163
|
Fried S, Gilboa D, Har-Zahav A, Lavrut PM, Du Y, Karjoo S, Russo P, Shamir R, Wells RG, Waisbourd-Zinman O. Extrahepatic cholangiocyte obstruction is mediated by decreased glutathione, Wnt and Notch signaling pathways in a toxic model of biliary atresia. Sci Rep 2020; 10:7599. [PMID: 32371929 PMCID: PMC7200694 DOI: 10.1038/s41598-020-64503-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Biliary atresia is a neonatal liver disease with extrahepatic bile duct obstruction and progressive liver fibrosis. The etiology and pathogenesis of the disease are unknown. We previously identified a plant toxin, biliatresone, responsible for biliary atresia in naturally-occurring animal models, that causes cholangiocyte destruction in in-vitro models. Decreases in reduced glutathione (GSH) mimic the effects of biliatresone, and agents that replenish cellular GSH ameliorate the effects of the toxin. The goals of this study were to define signaling pathways downstream of biliatresone that lead to cholangiocyte destruction and to determine their relationship to GSH. Using cholangiocyte culture and 3D cholangiocyte spheroid cultures, we found that biliatresone and decreases in GSH upregulated RhoU/Wrch1, a Wnt signaling family member, which then mediated an increase in Hey2 in the NOTCH signaling pathway, causing downregulation of the transcription factor Sox17. When these genes were up- or down-regulated, the biliatresone effect on spheroids was phenocopied, resulting in lumen obstruction. Biopsies of patients with biliary atresia demonstrated increased RhoU/Wrch1 and Hey2 expression in cholangiocytes. We present a novel pathway of cholangiocyte injury in a model of biliary atresia, which is relevant to human BA and may suggest potential future therapeutics.
Collapse
Affiliation(s)
- Sophia Fried
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dafna Gilboa
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Adi Har-Zahav
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Yu Du
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Sara Karjoo
- Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Pierre Russo
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Raanan Shamir
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rebecca G Wells
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Orith Waisbourd-Zinman
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel. .,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel. .,Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| |
Collapse
|
164
|
Wang X, Cai B, Yang X, Sonubi OO, Zheng Z, Ramakrishnan R, Shi H, Valenti L, Pajvani UB, Sandhu J, Infante RE, Radhakrishnan A, Covey DF, Guan KL, Buck J, Levin LR, Tontonoz P, Schwabe RF, Tabas I. Cholesterol Stabilizes TAZ in Hepatocytes to Promote Experimental Non-alcoholic Steatohepatitis. Cell Metab 2020; 31:969-986.e7. [PMID: 32259482 PMCID: PMC7313619 DOI: 10.1016/j.cmet.2020.03.010] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 01/04/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022]
Abstract
Incomplete understanding of how hepatosteatosis transitions to fibrotic non-alcoholic steatohepatitis (NASH) has limited therapeutic options. Two molecules that are elevated in hepatocytes in human NASH liver are cholesterol, whose mechanistic link to NASH remains incompletely understood, and TAZ, a transcriptional regulator that promotes fibrosis but whose mechanism of increase in NASH is unknown. We now show that increased hepatocyte cholesterol upregulates TAZ and promotes fibrotic NASH. ASTER-B/C-mediated internalization of plasma membrane cholesterol activates soluble adenylyl cyclase (sAC; ADCY10), triggering a calcium-RhoA-mediated pathway that suppresses β-TrCP/proteasome-mediated TAZ degradation. In mice fed with a cholesterol-rich NASH-inducing diet, hepatocyte-specific silencing of ASTER-B/C, sAC, or RhoA decreased TAZ and ameliorated fibrotic NASH. The cholesterol-TAZ pathway is present in primary human hepatocytes, and associations among liver cholesterol, TAZ, and RhoA in human NASH liver are consistent with the pathway. Thus, hepatocyte cholesterol contributes to fibrotic NASH by increasing TAZ, suggesting new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Bishuang Cai
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiaoming Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, PRC
| | - Oluwatoni O Sonubi
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ze Zheng
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rajasekhar Ramakrishnan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hongxue Shi
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano 20122, Italy; Translational Medicine - Transfusion Medicine and Hematology, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Utpal B Pajvani
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jaspreet Sandhu
- Department of Pathology and Laboratory Medicine, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90272, USA
| | - Rodney E Infante
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Douglas F Covey
- Department of Developmental Biology and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90272, USA
| | - Robert F Schwabe
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
165
|
Schwabe RF, Tabas I, Pajvani UB. Mechanisms of Fibrosis Development in Nonalcoholic Steatohepatitis. Gastroenterology 2020; 158:1913-1928. [PMID: 32044315 PMCID: PMC7682538 DOI: 10.1053/j.gastro.2019.11.311] [Citation(s) in RCA: 409] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease is the most prevalent liver disease worldwide, affecting 20%-25% of the adult population. In 25% of patients, nonalcoholic fatty liver disease progresses to nonalcoholic steatohepatitis (NASH), which increases the risk for the development of cirrhosis, liver failure, and hepatocellular carcinoma. In patients with NASH, liver fibrosis is the main determinant of mortality. Here, we review how interactions between different liver cells culminate in fibrosis development in NASH, focusing on triggers and consequences of hepatocyte-macrophage-hepatic stellate cell (HSC) crosstalk. We discuss pathways through which stressed and dead hepatocytes instigate the profibrogenic crosstalk with HSC and macrophages, including the reactivation of developmental pathways such as TAZ, Notch, and hedgehog; how clearance of dead cells in NASH via efferocytosis may affect inflammation and fibrogenesis; and insights into HSC and macrophage heterogeneity revealed by single-cell RNA sequencing. Finally, we summarize options to therapeutically interrupt this profibrogenic hepatocyte-macrophage-HSC network in NASH.
Collapse
Affiliation(s)
- Robert F Schwabe
- Department of Medicine, Columbia University, New York, New York; Institute of Human Nutrition, Columbia University, New York, New York.
| | - Ira Tabas
- Department of Medicine, Columbia University, New York, New York; Institute of Human Nutrition, Columbia University, New York, New York; Department of Physiology and Cellular Biophysics, Columbia University, New York, New York
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, New York; Institute of Human Nutrition, Columbia University, New York, New York
| |
Collapse
|
166
|
Lee S, Zhou P, Whyte S, Shin S. Adeno-Associated Virus Serotype 8-Mediated Genetic Labeling of Cholangiocytes in the Neonatal Murine Liver. Pharmaceutics 2020; 12:pharmaceutics12040351. [PMID: 32295003 PMCID: PMC7238059 DOI: 10.3390/pharmaceutics12040351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022] Open
Abstract
Determination of the cellular tropism of viral vectors is imperative for designing precise gene therapy. It has been widely accepted that transduction of hepatocytes using adeno-associated virus serotype 8 (AAV8) is a promising approach to correct inborn errors in neonates, but the type of neonatal hepatic cells transduced by AAV8 has not been thoroughly investigated. To address this question, we used a reporter mouse that carries Cre recombinase (Cre)-inducible yellow fluorescent protein (YFP). Our analysis primarily focused on cholangiocytes, given their pivotal roles in normal liver function and disease. We treated RosaYFP/+ mice at postnatal day 2 (P2) with AAV8-cytomegalovirus (CMV) promoter-Cre and analyzed livers at P10 and P56. The vast majority of HNF4α+ hepatocytes were labeled with YFP at both time points, and 11.6% and 24.4% of CK19+ cholangiocytes were marked at P10 and P56, respectively. We also detected YFP+ cells devoid of hepatocyte and cholangiocyte markers, and a subset of these cells expressed the endothelial and fibroblast marker CD34. Next, we used the hepatocyte-specific thyroxine-binding globulin (TBG) promoter. Surprisingly, AAV8-TBG-Cre marked 6.8% and 30.9% of cholangiocytes at P10 and P56, respectively. These results suggest that AAV8 can be a useful tool for targeting cholangiocytes in neonatal livers.
Collapse
Affiliation(s)
- Sanghoon Lee
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ping Zhou
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Senyo Whyte
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Molecular and Developmental Biology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Soona Shin
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Correspondence:
| |
Collapse
|
167
|
Kim K, Kim KH. Targeting of Secretory Proteins as a Therapeutic Strategy for Treatment of Nonalcoholic Steatohepatitis (NASH). Int J Mol Sci 2020; 21:ijms21072296. [PMID: 32225108 PMCID: PMC7177791 DOI: 10.3390/ijms21072296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is defined as a progressive form of nonalcoholic fatty liver disease (NAFLD) and is a common chronic liver disease that causes significant worldwide morbidity and mortality, and has no approved pharmacotherapy. Nevertheless, growing understanding of the molecular mechanisms underlying the development and progression of NASH has suggested multiple potential therapeutic targets and strategies to treat this disease. Here, we review this progress, with emphasis on the functional role of secretory proteins in the development and progression of NASH, in addition to the change of expression of various secretory proteins in mouse NASH models and human NASH subjects. We also highlight secretory protein-based therapeutic approaches that influence obesity-associated insulin resistance, liver steatosis, inflammation, and fibrosis, as well as the gut–liver and adipose–liver axes in the treatment of NASH.
Collapse
Affiliation(s)
- Kyeongjin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Inha-ro 100, Michuhol-gu, Incheon 22212, Korea
- Correspondence: (K.K.); (K.H.K.)
| | - Kook Hwan Kim
- Metabolic Diseases Research Center, GI Cell, Inc., B-1014, Tera Tower, Songpa-daero 167, Songpa-gu, Seoul 05855, Korea
- Correspondence: (K.K.); (K.H.K.)
| |
Collapse
|
168
|
Canalis E, Grossman TR, Carrer M, Schilling L, Yu J. Antisense oligonucleotides targeting Notch2 ameliorate the osteopenic phenotype in a mouse model of Hajdu-Cheney syndrome. J Biol Chem 2020; 295:3952-3964. [PMID: 31992595 PMCID: PMC7086019 DOI: 10.1074/jbc.ra119.011440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/24/2020] [Indexed: 12/23/2022] Open
Abstract
Notch receptors play critical roles in cell-fate decisions and in the regulation of skeletal development and bone remodeling. Gain-of-function NOTCH2 mutations can cause Hajdu-Cheney syndrome, an untreatable disease characterized by osteoporosis and fractures, craniofacial developmental abnormalities, and acro-osteolysis. We have previously created a mouse model harboring a point 6955C→T mutation in the Notch2 locus upstream of the PEST domain, and we termed this model Notch2tm1.1Ecan Heterozygous Notch2tm1.1Ecan mutant mice exhibit severe cancellous and cortical bone osteopenia due to increased bone resorption. In this work, we demonstrate that the subcutaneous administration of Notch2 antisense oligonucleotides (ASO) down-regulates Notch2 and the Notch target genes Hes-related family basic helix-loop-helix transcription factor with YRPW motif 1 (Hey1), Hey2, and HeyL in skeletal tissue from Notch2tm1.1Ecan mice. Results of microcomputed tomography experiments indicated that the administration of Notch2 ASOs ameliorates the cancellous osteopenia of Notch2tm1.1Ecan mice, and bone histomorphometry analysis revealed decreased osteoclast numbers in Notch2 ASO-treated Notch2tm1.1Ecan mice. Notch2 ASOs decreased the induction of mRNA levels of TNF superfamily member 11 (Tnfsf11, encoding the osteoclastogenic protein RANKL) in cultured osteoblasts and osteocytes from Notch2tm1.1Ecan mice. Bone marrow-derived macrophage cultures from the Notch2tm1.1Ecan mice displayed enhanced osteoclastogenesis, which was suppressed by Notch2 ASOs. In conclusion, Notch2tm1.1Ecan mice exhibit cancellous bone osteopenia that can be ameliorated by systemic administration of Notch2 ASOs.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut 06030
- Department of Medicine, UConn Health, Farmington, Connecticut 06030
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| | | | | | - Lauren Schilling
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| | - Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut 06030
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| |
Collapse
|
169
|
He T, Bai X, Jing J, Liu Y, Wang H, Zhang W, Li X, Li Y, Wang L, Xie S, Hu D. Notch signal deficiency alleviates hypertrophic scar formation after wound healing through the inhibition of inflammation. Arch Biochem Biophys 2020; 682:108286. [DOI: 10.1016/j.abb.2020.108286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/19/2022]
|
170
|
Soydemir S, Comella O, Abdelmottaleb D, Pritchett J. Does Mechanocrine Signaling by Liver Sinusoidal Endothelial Cells Offer New Opportunities for the Development of Anti-fibrotics? Front Med (Lausanne) 2020; 6:312. [PMID: 31998732 PMCID: PMC6962108 DOI: 10.3389/fmed.2019.00312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/11/2019] [Indexed: 01/17/2023] Open
Affiliation(s)
- Sumeyye Soydemir
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Olivia Comella
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Dina Abdelmottaleb
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - James Pritchett
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
171
|
ASTER JONC. NOTCH SIGNALING IN CONTEXT: BASIC AND TRANSLATIONAL IMPLICATIONS. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2020; 131:147-156. [PMID: 32675855 PMCID: PMC7358465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Notch receptors participate is a highly conserved signaling pathway that regulates numerous facets of cellular behavior, has protean roles during development and in adult tissue homeostasis, and is frequently dysregulated in human diseases, particularly cancer. These relationships to disease and the ability to modulate Notch signaling at multiple levels have engendered attempts to target Notch therapeutically, but incomplete understanding of the outcomes of Notch activation and on-target toxicity have stymied efforts to date. Using well-controlled experimental systems, we have pursued studies that seek to understand how Notch influences the behavior of different types of cancer cells. Our work suggests that Notch effects are defined by epigenetic landscapes that are "laid out" by upstream pioneer transcription factors, which act to delineate the outcome of Notch activation. These insights define some of the "rules" that govern Notch functions and constitute one step toward bringing safe and effective targeting of Notch to fruition.
Collapse
Affiliation(s)
- JON C. ASTER
- Correspondence and reprint requests: Jon C. Aster, MD, PhD, Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115617-525-4370617-525-4422
| |
Collapse
|
172
|
Tillman EJ, Rolph T. FGF21: An Emerging Therapeutic Target for Non-Alcoholic Steatohepatitis and Related Metabolic Diseases. Front Endocrinol (Lausanne) 2020; 11:601290. [PMID: 33381084 PMCID: PMC7767990 DOI: 10.3389/fendo.2020.601290] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
The rising global prevalence of obesity, metabolic syndrome, and type 2 diabetes has driven a sharp increase in non-alcoholic fatty liver disease (NAFLD), characterized by excessive fat accumulation in the liver. Approximately one-sixth of the NAFLD population progresses to non-alcoholic steatohepatitis (NASH) with liver inflammation, hepatocyte injury and cell death, liver fibrosis and cirrhosis. NASH is one of the leading causes of liver transplant, and an increasingly common cause of hepatocellular carcinoma (HCC), underscoring the need for intervention. The complex pathophysiology of NASH, and a predicted prevalence of 3-5% of the adult population worldwide, has prompted drug development programs aimed at multiple targets across all stages of the disease. Currently, there are no approved therapeutics. Liver-related morbidity and mortality are highest in more advanced fibrotic NASH, which has led to an early focus on anti-fibrotic approaches to prevent progression to cirrhosis and HCC. Due to limited clinical efficacy, anti-fibrotic approaches have been superseded by mechanisms that target the underlying driver of NASH pathogenesis, namely steatosis, which drives hepatocyte injury and downstream inflammation and fibrosis. Among this wave of therapeutic mechanisms targeting the underlying pathogenesis of NASH, the hormone fibroblast growth factor 21 (FGF21) holds considerable promise; it decreases liver fat and hepatocyte injury while suppressing inflammation and fibrosis across multiple preclinical studies. In this review, we summarize preclinical and clinical data from studies with FGF21 and FGF21 analogs, in the context of the pathophysiology of NASH and underlying metabolic diseases.
Collapse
|
173
|
Salva-Pastor N, Chávez-Tapia NC, Uribe M, Nuño-Lámbarri N. Understanding the association of polycystic ovary syndrome and non-alcoholic fatty liver disease. J Steroid Biochem Mol Biol 2019; 194:105445. [PMID: 31381969 DOI: 10.1016/j.jsbmb.2019.105445] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 02/07/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among reproductive-age women. Patients with non-alcoholic fatty liver disease (NAFLD) often suffer from metabolic syndrome, atherosclerosis, ischemic heart disease, and extrahepatic tumors, conferring a lower survival than the general population; therefore it is crucial to study the association between NAFLD and PCOS since it remains poorly understood. Insulin resistance (IR) plays a central role in the pathogenesis of NAFLD and PCOS; also, hyperandrogenism enhances IR in these patients. IR, present in the NAFLD-PCOS association could decrease the hepatic production of sex hormone-binding globulin through a possible regulation mediated by hepatocyte nuclear factor 4 alpha. On the other hand, apoptotic processes initiated by androgens actively contribute to the progression of NAFLD. Considering the association between the two conditions, the screening of women with PCOS for the presence of NAFLD appears reasonable. The pathophysiological mechanisms of PCOS-NAFLD association and the initial approach will be reviewed here.
Collapse
Affiliation(s)
- Nicolás Salva-Pastor
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico; School of Medicine, Benemérita Universidad Autónoma de Puebla, 13 Sur 2702, Los Volcanes, Z.C. 72420, Puebla, Mexico.
| | - Norberto C Chávez-Tapia
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico; Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico.
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico.
| | - Natalia Nuño-Lámbarri
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico.
| |
Collapse
|
174
|
Yang T, Yuan P, Yang Y, Liang N, Wang Q, Li J, Lu R, Zhang H, Mu J, Yan Z, Chang H. NPAS2 Contributes to Liver Fibrosis by Direct Transcriptional Activation of Hes1 in Hepatic Stellate Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:1009-1022. [PMID: 31778954 PMCID: PMC6889679 DOI: 10.1016/j.omtn.2019.10.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/23/2019] [Indexed: 12/29/2022]
Abstract
Recently, emerging evidence shows that dysregulation of circadian genes is closely associated with liver fibrosis. However, how dysregulation of circadian genes promotes liver fibrosis is unknown. In this study, we show that neuronal PAS domain protein 2 (NPAS2), one of the core circadian molecules that has been shown to promote hepatocarcinoma cell proliferation, significantly contributed to liver fibrogenesis. NPAS2 is upregulated in hepatic stellate cells (HSCs) after fibrogenic injury, which subsequently contributes to the activation of HSCs. Mechanistically, NPAS2 plays a profibrotic role via direct transcriptional activation of hairy and enhancer of split 1 (Hes1), a critical transcriptor of Notch signaling for the fibrogenesis process, in HSCs. Our findings demonstrate that NPAS2 plays a critical role in liver fibrosis through direct transcriptional activation of Hes1, indicating that NPAS2 may serve as an important therapeutic target to reverse the progression of liver fibrosis.
Collapse
Affiliation(s)
- Tao Yang
- Department of Pain Treatment, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Peng Yuan
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yi Yang
- Department of Pain Treatment, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Ning Liang
- Department of General Surgery, The 75th Group Army Hospital, Dali, Yunnan 671000, China
| | - Qian Wang
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jing Li
- College and Hospital of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Rui Lu
- Department of Pain Treatment, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Hongxin Zhang
- Department of Pain Treatment, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jiao Mu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, China.
| | - Zhaoyong Yan
- Department of Pain Treatment, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China.
| | - Hulin Chang
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, China.
| |
Collapse
|
175
|
Adams JM, Jafar-Nejad H. The Roles of Notch Signaling in Liver Development and Disease. Biomolecules 2019; 9:biom9100608. [PMID: 31615106 PMCID: PMC6843177 DOI: 10.3390/biom9100608] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023] Open
Abstract
The Notch signaling pathway plays major roles in organ development across animal species. In the mammalian liver, Notch has been found critical in development, regeneration and disease. In this review, we highlight the major advances in our understanding of the role of Notch activity in proper liver development and function. Specifically, we discuss the latest discoveries on how Notch, in conjunction with other signaling pathways, aids in proper liver development, regeneration and repair. In addition, we review the latest in the role of Notch signaling in the pathogenesis of liver fibrosis and chronic liver disease. Finally, recent evidence has shed light on the emerging connection between Notch signaling and glucose and lipid metabolism. We hope that highlighting the major advances in the roles of Notch signaling in the liver will stimulate further research in this exciting field and generate additional ideas for therapeutic manipulation of the Notch pathway in liver diseases.
Collapse
Affiliation(s)
- Joshua M Adams
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hamed Jafar-Nejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
176
|
Yang YM, Noureddin M, Liu C, Ohashi K, Kim SY, Ramnath D, Powell EE, Sweet MJ, Roh YS, Hsin IF, Deng N, Liu Z, Liang J, Mena E, Shouhed D, Schwabe RF, Jiang D, Lu SC, Noble PW, Seki E. Hyaluronan synthase 2-mediated hyaluronan production mediates Notch1 activation and liver fibrosis. Sci Transl Med 2019; 11:eaat9284. [PMID: 31189722 PMCID: PMC6589184 DOI: 10.1126/scitranslmed.aat9284] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/14/2019] [Indexed: 01/18/2023]
Abstract
Hyaluronan (HA), a major extracellular matrix glycosaminoglycan, is a biomarker for cirrhosis. However, little is known about the regulatory and downstream mechanisms of HA overproduction in liver fibrosis. Hepatic HA and HA synthase 2 (HAS2) expression was elevated in both human and murine liver fibrosis. HA production and liver fibrosis were reduced in mice lacking HAS2 in hepatic stellate cells (HSCs), whereas mice overexpressing HAS2 had exacerbated liver fibrosis. HAS2 was transcriptionally up-regulated by transforming growth factor-β through Wilms tumor 1 to promote fibrogenic, proliferative, and invasive properties of HSCs via CD44, Toll-like receptor 4 (TLR4), and newly identified downstream effector Notch1. Inhibition of HA synthesis by 4-methylumbelliferone reduced HSC activation and liver fibrosis in mice. Our study provides evidence that HAS2 actively synthesizes HA in HSCs and that it promotes HSC activation and liver fibrosis through Notch1. Targeted HA inhibition may have potential to be an effective therapy for liver fibrosis.
Collapse
Affiliation(s)
- Yoon Mee Yang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- College of Pharmacy, Kangwon National University, Chuncheon 24341, South Korea
| | - Mazen Noureddin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Cheng Liu
- Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Koichiro Ohashi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - So Yeon Kim
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Divya Ramnath
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Elizabeth E Powell
- Centre for Liver Disease Research, University of Queensland, Brisbane, Queensland, Australia
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Queensland 4102, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yoon Seok Roh
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Pharmacy, Chungbuk National University College of Pharmacy, Cheongju, Chungbuk 28160, South Korea
| | - I-Fang Hsin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nan Deng
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zhenqiu Liu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jiurong Liang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Edward Mena
- California Liver Research Institute, Pasadena, CA 91105, USA
| | - Daniel Shouhed
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Dianhua Jiang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shelly C Lu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W Noble
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ekihiro Seki
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
177
|
Marchisello S, Di Pino A, Scicali R, Urbano F, Piro S, Purrello F, Rabuazzo AM. Pathophysiological, Molecular and Therapeutic Issues of Nonalcoholic Fatty Liver Disease: An Overview. Int J Mol Sci 2019; 20:ijms20081948. [PMID: 31010049 PMCID: PMC6514656 DOI: 10.3390/ijms20081948] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic Fatty Liver Disease (NAFLD) represents the leading cause of liver disease in developed countries but its diffusion is currently also emerging in Asian countries, in South America and in other developing countries. It is progressively becoming one of the main diseases responsible for hepatic insufficiency, hepatocarcinoma and the need for orthotopic liver transplantation. NAFLD is linked with metabolic syndrome in a close and bidirectional relationship. To date, NAFLD is a diagnosis of exclusion, and liver biopsy is the gold standard for diagnosis. NAFLD pathogenesis is complex and multifactorial, mainly involving genetic, metabolic and environmental factors. New concepts are constantly arising in the literature promising new diagnostic and therapeutic tools. One of the challenges will be to better characterize not only NAFLD development but overall NAFLD progression, in order to better identify NAFLD patients at higher risk of metabolic, cardiovascular and neoplastic complications. This review analyses NAFLD epidemiology and the different prevalence of the disease in distinct groups, particularly according to sex, age, body mass index, type 2 diabetes and dyslipidemia. Furthermore, the work expands on the pathophysiology of NAFLD, examining multiple-hit pathogenesis and the role of different factors in hepatic steatosis development and progression: genetics, metabolic factors and insulin resistance, diet, adipose tissue, gut microbiota, iron deposits, bile acids and circadian clock. In conclusion, the current available therapies for NAFLD will be discussed.
Collapse
Affiliation(s)
- Simona Marchisello
- Department of Clinical and Molecular Medicine, University of Catania, Catania 95100, Italy.
| | - Antonino Di Pino
- Department of Clinical and Molecular Medicine, University of Catania, Catania 95100, Italy.
| | - Roberto Scicali
- Department of Clinical and Molecular Medicine, University of Catania, Catania 95100, Italy.
| | - Francesca Urbano
- Department of Clinical and Molecular Medicine, University of Catania, Catania 95100, Italy.
| | - Salvatore Piro
- Department of Clinical and Molecular Medicine, University of Catania, Catania 95100, Italy.
| | - Francesco Purrello
- Department of Clinical and Molecular Medicine, University of Catania, Catania 95100, Italy.
| | - Agata Maria Rabuazzo
- Department of Clinical and Molecular Medicine, University of Catania, Catania 95100, Italy.
| |
Collapse
|
178
|
Affiliation(s)
- Stefano Romeo
- From the Department of Molecular and Clinical Medicine, University of Gothenburg, and the Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden; and the Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
179
|
Gharaibeh NE, Rahhal MN, Rahimi L, Ismail-Beigi F. SGLT-2 inhibitors as promising therapeutics for non-alcoholic fatty liver disease: pathophysiology, clinical outcomes, and future directions. Diabetes Metab Syndr Obes 2019; 12:1001-1012. [PMID: 31308716 PMCID: PMC6613609 DOI: 10.2147/dmso.s212715] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is increasingly recognized as a major expanding national and international health problem. Despite numerous investigations using a variety of therapeutic agents, the positive result on any single medication has not been established enough to gain widespread approval. This is in part related to concerns regarding side effects of agents, but is also related to the complex etiology of NAFLD. An often discussed question has been whether insulin resistance that is frequently present in those with NAFLD is a cause of NAFLD or is merely associated with the condition. Nevertheless, it is clear that a very high proportion of patients with NAFLD are obese, have elements of metabolic syndrome, or have type 2 diabetes (T2DM). Also, much progress has been made toward a better understanding of the pathophysiology of NAFLD. Life-style interventions resulting in weight loss remain the foundation for the prevention and treatment of NAFLD. In addition, agents such as Vitamin E and pioglitazone as well as other glycemia-lowering agents including Glucagon Like Peptide-1 (GLP-1) receptor agonists and Sodium Glucose Contransporter-2 inhibitors (SGLT-2i(s)) exhibit positive effects on the clinical course of NAFLD. This narrative review summarizes the current understanding of the diagnosis, epidemiology, and pathophysiology of NAFLD and specifically focuses on the efficacy of SGLT2i(s) as a potentially promising group of agents for the management of patients with NAFLD.
Collapse
Affiliation(s)
- Naser Eddin Gharaibeh
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
- Correspondence: Naser Eddin GharaibehDepartment of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, 10900 Euclid Ave., Cleveland, OH44106-4951, USATel +1 443 983 8045Fax +1 216 844 3120Email
| | - Marie-Noel Rahhal
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Leili Rahimi
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Faramarz Ismail-Beigi
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| |
Collapse
|