151
|
The Interferon-Induced Exonuclease ISG20 Exerts Antiviral Activity through Upregulation of Type I Interferon Response Proteins. mSphere 2018; 3:3/5/e00209-18. [PMID: 30232164 PMCID: PMC6147134 DOI: 10.1128/msphere.00209-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The host immune responses to infection lead to the production of type I interferon (IFN), and the upregulation of interferon-stimulated genes (ISGs) reduces virus replication and virus dissemination within a host. Ectopic expression of the interferon-induced 20-kDa exonuclease ISG20 suppressed replication of chikungunya virus and Venezuelan equine encephalitis virus, two mosquito-vectored RNA alphaviruses. Since the replication of alphavirus genomes occurs exclusively in the cytoplasm, the mechanism of nucleus-localized ISG20 inhibition of replication is unclear. In this study, we determined that ISG20 acts as a master regulator of over 100 genes, many of which are ISGs. Specifically, ISG20 upregulated IFIT1 genes and inhibited translation of the alphavirus genome. Furthermore, IFIT1-sensitive alphavirus replication was increased in Isg20−/− mice compared to the replication of wild-type viruses but not in cells ectopically expressing ISG20. We propose that ISG20 acts as an indirect regulator of RNA virus replication in the cytoplasm through the upregulation of many other ISGs. Type I interferon (IFN)-stimulated genes (ISGs) have critical roles in inhibiting virus replication and dissemination. Despite advances in understanding the molecular basis of ISG restriction, the antiviral mechanisms of many remain unclear. The 20-kDa ISG ISG20 is a nuclear 3′–5′ exonuclease with preference for single-stranded RNA (ssRNA) and has been implicated in the IFN-mediated restriction of several RNA viruses. Although the exonuclease activity of ISG20 has been shown to degrade viral RNA in vitro, evidence has yet to be presented that virus inhibition in cells requires this activity. Here, we utilized a combination of an inducible, ectopic expression system and newly generated Isg20−/− mice to investigate mechanisms and consequences of ISG20-mediated restriction. Ectopically expressed ISG20 localized primarily to Cajal bodies in the nucleus and restricted replication of chikungunya and Venezuelan equine encephalitis viruses. Although restriction by ISG20 was associated with inhibition of translation of infecting genomic RNA, degradation of viral RNAs was not observed. Instead, translation inhibition of viral RNA was associated with ISG20-induced upregulation of over 100 other genes, many of which encode known antiviral effectors. ISG20 modulated the production of IFIT1, an ISG that suppresses translation of alphavirus RNAs. Consistent with this observation, the pathogenicity of IFIT1-sensitive alphaviruses was increased in Isg20−/− mice compared to that of wild-type viruses but not in cells ectopically expressing ISG20. Our findings establish an indirect role for ISG20 in the early restriction of RNA virus replication by regulating expression of other ISGs that inhibit translation and possibly other activities in the replication cycle. IMPORTANCE The host immune responses to infection lead to the production of type I interferon (IFN), and the upregulation of interferon-stimulated genes (ISGs) reduces virus replication and virus dissemination within a host. Ectopic expression of the interferon-induced 20-kDa exonuclease ISG20 suppressed replication of chikungunya virus and Venezuelan equine encephalitis virus, two mosquito-vectored RNA alphaviruses. Since the replication of alphavirus genomes occurs exclusively in the cytoplasm, the mechanism of nucleus-localized ISG20 inhibition of replication is unclear. In this study, we determined that ISG20 acts as a master regulator of over 100 genes, many of which are ISGs. Specifically, ISG20 upregulated IFIT1 genes and inhibited translation of the alphavirus genome. Furthermore, IFIT1-sensitive alphavirus replication was increased in Isg20−/− mice compared to the replication of wild-type viruses but not in cells ectopically expressing ISG20. We propose that ISG20 acts as an indirect regulator of RNA virus replication in the cytoplasm through the upregulation of many other ISGs.
Collapse
|
152
|
Zhang X, Huang Y, Wang M, Yang F, Wu C, Huang D, Xiong L, Wan C, Cheng J, Zhang R. Differences in genome characters and cell tropisms between two chikungunya isolates of Asian lineage and Indian Ocean lineage. Virol J 2018; 15:130. [PMID: 30126424 PMCID: PMC6102929 DOI: 10.1186/s12985-018-1024-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022] Open
Abstract
Background Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus within the family Togaviridae, which has attracted global attention due to its recent re-emergence. In one of our previous studies, we successfully isolated two CHIKV virus strains, SZ1050 and SZ1239, from the serum samples of two imported patients in 2010 and 2012, respectively. However, the differences in their genome characters and cell tropisms remain undefined. Methods We extracted the RNA of two CHIKV isolates and performed PCR to determine the sequence of the whole viral genomes. The genotypes were classified by phylogenetic analysis using the Mega 6.0 software. Furthermore, the cell tropisms of the two CHIKV isolates were evaluated in 13 cell lines. Results The lengths of the whole genomes for SZ1050 and SZ1239 were 11,844 nt and 12,000 nt, respectively. Phylogenetic analysis indicated that SZ1050 belonged to the Indian Ocean lineage (IOL), while SZ1239 was of the Asian lineage. Comparing to the prototype strain S27, a gap of 7 aa in the nsP3 gene and missing of one repeated sequence element (RSE) in the 3’ UTR were observed in SZ1239. The E1-A226V mutation was not detected in both strains. SZ1050 and SZ1239 could infect most of the evaluated mammalian epithelial cells. The K562 cells were permissive for both SZ1050 and SZ1239 while the U937 cells were refractory to both viruses. For Aedes cell lines C6/36 and Aag-2, both SZ1050 and SZ1239 were able to infect and replicate efficiently. Conclusions Compared to the prototype S27 virus, some deletions and mutations were found in the genomes of SZ1050 and SZ1239. Both viruses were susceptible to most evaluated epithelia or fibroblast cells and Aedes cell lines including C6/36 and Aag-2 in spite of marginal difference. Electronic supplementary material The online version of this article (10.1186/s12985-018-1024-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.,School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yalan Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Miao Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Fan Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Chunli Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Dana Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Linghong Xiong
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Chengsong Wan
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Renli Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| |
Collapse
|
153
|
The Methyltransferase-Like Domain of Chikungunya Virus nsP2 Inhibits the Interferon Response by Promoting the Nuclear Export of STAT1. J Virol 2018; 92:JVI.01008-18. [PMID: 29925658 DOI: 10.1128/jvi.01008-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has evolved effective mechanisms to counteract the type I interferon (IFN) response. Upon recognition of the virus, cells secrete IFNs, which signal through transmembrane receptors (IFNAR) to phosphorylate STAT proteins (pSTAT). pSTAT dimers are transported into the nucleus by importin-α5 and activate the transcription of IFN-stimulated genes (ISGs), increasing cellular resistance to infection. Subsequently, STAT proteins are shuttled back into the cytoplasm by the exportin CRM1. CHIKV nonstructural protein 2 (nsP2) reduces ISG expression by inhibiting general host cell transcription and by specifically reducing the levels of nuclear pSTAT1 via an unknown mechanism. To systematically examine where nsP2 acts within the JAK/STAT signaling cascade, we used two well-characterized mutants of nsP2, P718S and KR649AA. Both mutations abrogate nsP2's ability to shut off host transcription, but only the KR649AA mutant localizes exclusively to the cytoplasm and no longer specifically inhibits JAK/STAT signaling. These mutant nsP2 proteins did not differentially affect IFNAR expression levels or STAT1 phosphorylation in response to IFNs. Coimmunoprecipitation experiments showed that in the presence of nsP2, STAT1 still effectively bound importin-α5. Chemically blocking CRM1-mediated nuclear export in the presence of nsP2 additionally showed that nuclear translocation of STAT1 is not affected by nsP2. nsP2 putatively has five domains. Redirecting the nsP2 KR649AA mutant or just nsP2's C-terminal methyltransferase-like domain into the nucleus strongly reduced nuclear pSTAT in response to IFN stimulation. This demonstrates that the C-terminal domain of nuclear nsP2 specifically inhibits the IFN response by promoting the nuclear export of STAT1.IMPORTANCE Chikungunya virus is an emerging pathogen associated with large outbreaks on the African, Asian, European, and both American continents. In most patients, infection results in high fever, rash, and incapacitating (chronic) arthralgia. CHIKV effectively inhibits the first line of defense, the innate immune response. As a result, stimulation of the innate immune response with interferons (IFNs) is ineffective as a treatment for CHIKV disease. The IFN response requires an intact downstream signaling cascade called the JAK/STAT signaling pathway, which is effectively inhibited by CHIKV nonstructural protein 2 (nsP2) via an unknown mechanism. The research described here specifies where in the JAK/STAT signaling cascade the IFN response is inhibited and which protein domain of nsP2 is responsible for IFN inhibition. The results illuminate new aspects of antiviral defense and CHIKV counterdefense strategies and will direct the search for novel antiviral compounds.
Collapse
|
154
|
Supramaniam A, Lui H, Bellette BM, Rudd PA, Herrero LJ. How myeloid cells contribute to the pathogenesis of prominent emerging zoonotic diseases. J Gen Virol 2018; 99:953-969. [DOI: 10.1099/jgv.0.001024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Aroon Supramaniam
- 1Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| | - Hayman Lui
- 2School of Medicine, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| | | | - Penny A. Rudd
- 1Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| | - Lara J. Herrero
- 1Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia
- 2School of Medicine, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| |
Collapse
|
155
|
Abstract
Alphaviruses are transmitted to humans via bites of infected mosquitoes. Although alphaviruses have caused a wide range of outbreaks and crippling disease, the availability of licensed vaccines or antiviral therapies remains limited. Mosquito vectors such as Aedes and Culex are the main culprits in the transmission of alphaviruses. This review explores how mosquito saliva may promote alphavirus infection. Identifying the roles of mosquito-derived factors in alphavirus pathogenesis will generate novel tools to circumvent and control mosquito-borne alphavirus infections in humans.
Collapse
|
156
|
Chattopadhyay A, Aguilar PV, Bopp NE, Yarovinsky TO, Weaver SC, Rose JK. A recombinant virus vaccine that protects against both Chikungunya and Zika virus infections. Vaccine 2018; 36:3894-3900. [PMID: 29807712 DOI: 10.1016/j.vaccine.2018.05.095] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/30/2022]
Abstract
Chikungunya virus (CHIKV) and Zika virus (ZIKV) have recently expanded their range in the world and caused serious and widespread outbreaks of near pandemic proportions. There are no licensed vaccines that protect against these co-circulating viruses that are transmitted by invasive mosquito vectors. We report here on the development of a single-dose, bivalent experimental vaccine for CHIKV and ZIKV. This vaccine is based on a chimeric vesicular stomatitis virus (VSV) that expresses the CHIKV envelope polyprotein (E3-E2-6K-E1) in place of the VSV glycoprotein (G) and also expresses the membrane-envelope (ME) glycoproteins of ZIKV. This vaccine induced neutralizing antibody responses to both CHIKV and ZIKV in wild-type mice and in interferon receptor-deficient A129 mice, animal models for CHIKV and ZIKV infection. A single vaccination of A129 mice with the vector protected these mice against infection with both CHIKV and ZIKV. Our single-dose vaccine could provide durable, low-cost protection against both CHIKV and ZIKV for people traveling to or living in areas where both viruses are circulating, which include most tropical regions in the world.
Collapse
Affiliation(s)
- Anasuya Chattopadhyay
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Patricia V Aguilar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nathen E Bopp
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Timur O Yarovinsky
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Scott C Weaver
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - John K Rose
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
157
|
Abstract
Interferon alpha/beta (IFN-α/β) is a critical mediator of protection against most viruses, with host survival frequently impossible in its absence. Many studies have investigated the pathways involved in the induction of IFN-α/β after virus infection and the resultant upregulation of antiviral IFN-stimulated genes (ISGs) through IFN-α/β receptor complex signaling. However, other than examining the effects of genetic deletion of induction or effector pathway components, little is known regarding the functionality of these responses in intact hosts and whether host genetic or environmental factors might influence their potency. Here, we demonstrate that the IFN-α/β response against multiple arthropod-vectored viruses, which replicate over a wide temperature range, is extremely sensitive to fluctuations in temperature, exhibiting reduced antiviral efficacy at subnormal cellular temperatures and increased efficacy at supranormal temperatures. The effect involves both IFN-α/β and ISG upregulation pathways with a major aspect of altered potency reflecting highly temperature-dependent transcription of IFN response genes that leads to altered IFN-α/β and ISG protein levels. Discordantly, signaling steps prior to transcription that were examined showed the opposite effect from gene transcription, with potentiation at low temperature and inhibition at high temperature. Finally, we demonstrate that by lowering the temperature of mice, chikungunya arbovirus replication and disease are exacerbated in an IFN-α/β-dependent manner. This finding raises the potential for use of hyperthermia as a therapeutic modality for viral infections and in other contexts such as antitumor therapy. The increased IFN-α/β efficacy at high temperatures may also reflect an innate immune-relevant aspect of the febrile response. The interferon alpha/beta (IFN-α/β) response is a first-line innate defense against arthropod-borne viruses (arboviruses). Arboviruses, such as chikungunya virus (CHIKV), can infect cells and replicate across a wide temperature range due to their replication in both mammalian/avian and arthropod hosts. Accordingly, these viruses can cause human disease in tissues regularly exposed to temperatures below the normal mammalian core temperature, 37°C. We questioned whether temperature variation could affect the efficacy of IFN-α/β responses against these viruses and help to explain some aspects of human disease manifestations. We observed that IFN-α/β efficacy was dramatically lower at subnormal temperatures and modestly enhanced at febrile temperatures, with the effects involving altered IFN-α/β response gene transcription but not IFN-α/β pathway signaling. These results provide insight into the functioning of the IFN-α/β response in vivo and suggest that temperature elevation may represent an immune-enhancing therapeutic modality for a wide variety of IFN-α/β-sensitive infections and pathologies.
Collapse
|
158
|
Prophylactic Antiheparanase Activity by PG545 Is Antiviral In Vitro and Protects against Ross River Virus Disease in Mice. Antimicrob Agents Chemother 2018; 62:AAC.01959-17. [PMID: 29437628 DOI: 10.1128/aac.01959-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/15/2018] [Indexed: 02/06/2023] Open
Abstract
Recently we reported on the efficacy of pentosan polysulfate (PPS), a heparan sulfate mimetic, to reduce the recruitment of inflammatory infiltrates and protect the cartilage matrix from degradation in Ross River virus (RRV)-infected PPS-treated mice. Here, we describe both prophylactic and therapeutic treatment with PG545, a low-molecular-weight heparan sulfate mimetic, for arthritogenic alphaviral infection. We first assessed antiviral activity in vitro through a 50% plaque reduction assay. Increasing concentrations of PG545 inhibited plaque formation prior to viral adsorption in viral strains RRV T48, Barmah Forest virus 2193, East/Central/South African chikungunya virus (CHIKV), and Asian CHIKV, suggesting a strong antiviral mode of action. The viral particle-compound dissociation constant was then evaluated through isothermal titration calorimetry. Furthermore, prophylactic RRV-infected PG545-treated mice had reduced viral titers in target organs corresponding to lower clinical scores of limb weakness and immune infiltrate recruitment. At peak disease, PG545-treated RRV-infected mice had lower concentrations of the matrix-degrading enzyme heparanase in conjunction with a protective effect on tissue morphology, as seen in the histopathology of skeletal muscle. Enzyme-linked immunosorbent assay quantification of cartilage oligomeric matrix protein and cross-linked C-telopeptides of type II collagen as well as knee histopathology showed increased matrix protein degradation and cartilage erosion in RRV-infected phosphate-buffered saline-treated mice compared to their PG545-treated RRV-infected counterparts. Taken together, these findings suggest that PG545 has a direct antiviral effect on arthritogenic alphaviral infection and curtails RRV-induced inflammatory disease when administered as a prophylaxis.
Collapse
|
159
|
Prow NA, Liu L, Nakayama E, Cooper TH, Yan K, Eldi P, Hazlewood JE, Tang B, Le TT, Setoh YX, Khromykh AA, Hobson-Peters J, Diener KR, Howley PM, Hayball JD, Suhrbier A. A vaccinia-based single vector construct multi-pathogen vaccine protects against both Zika and chikungunya viruses. Nat Commun 2018; 9:1230. [PMID: 29581442 PMCID: PMC5964325 DOI: 10.1038/s41467-018-03662-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/01/2018] [Indexed: 01/09/2023] Open
Abstract
Zika and chikungunya viruses have caused major epidemics and are transmitted by Aedes aegypti and/or Aedes albopictus mosquitoes. The “Sementis Copenhagen Vector” (SCV) system is a recently developed vaccinia-based, multiplication-defective, vaccine vector technology that allows manufacture in modified CHO cells. Herein we describe a single-vector construct SCV vaccine that encodes the structural polyprotein cassettes of both Zika and chikungunya viruses from different loci. A single vaccination of mice induces neutralizing antibodies to both viruses in wild-type and IFNAR−/− mice and protects against (i) chikungunya virus viremia and arthritis in wild-type mice, (ii) Zika virus viremia and fetal/placental infection in female IFNAR−/− mice, and (iii) Zika virus viremia and testes infection and pathology in male IFNAR−/− mice. To our knowledge this represents the first single-vector construct, multi-pathogen vaccine encoding large polyproteins, and offers both simplified manufacturing and formulation, and reduced “shot burden” for these often co-circulating arboviruses. Zika and chikungunya virus are co-circulating in many regions and currently there is no approved vaccine for either virus. Here, the authors engineer one vaccinia virus based vaccine for both, Zika and chikungunya, and show protection from infection and pathogenesis in mice.
Collapse
Affiliation(s)
- Natalie A Prow
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia.,Australian Infectious Disease Research Centre, Brisbane, QLD, 4029 and 4072, Australia
| | - Liang Liu
- Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Eri Nakayama
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia.,Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Tamara H Cooper
- Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Preethi Eldi
- Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | | | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Thuy T Le
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Yin Xiang Setoh
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Alexander A Khromykh
- Australian Infectious Disease Research Centre, Brisbane, QLD, 4029 and 4072, Australia.,School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia.,Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | | | - John D Hayball
- Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia. .,Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia. .,Australian Infectious Disease Research Centre, Brisbane, QLD, 4029 and 4072, Australia.
| |
Collapse
|
160
|
Sukkaew A, Thanagith M, Thongsakulprasert T, Mutso M, Mahalingam S, Smith DR, Ubol S. Heterogeneity of clinical isolates of chikungunya virus and its impact on the responses of primary human fibroblast-like synoviocytes. J Gen Virol 2018. [PMID: 29517478 DOI: 10.1099/jgv.0.001039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Low-passage clinical isolates of chikungunya virus (CHIKV) were found to be a mixture of large- and small-plaque viruses, with small-plaque viruses being the predominant species. To investigate the contribution of plaque variants to the pathology of the joint, primary human fibroblast-like synoviocytes (HFLS) were used. Large- and small-plaque viruses were purified from two clinical isolates, CHIKV-031C and CHIKV-033C, and were designated CHIKV-031L and CHIKV-031S and CHIKV-033L and CHIKV-033S, respectively. The replication efficiencies of these viruses in HFLSs were compared and it was found that CHIKV-031S and CHIKV-033S replicated with the highest efficiency, while the parental clinical isolates had the lowest efficiency. Interestingly, the cytopathic effects (CPE) induced by these viruses correlated with neither the efficiency of replication nor the plaque size. The small-plaque viruses and the clinical isolates induced cell death rapidly, while large-plaque viruses induced slow CPE in which only 50 % of the cells in infected cultures were rounded up and detached on day 5 of infection. The production of proinflammatory cytokines and chemokines from infected HFLSs was evaluated. The results showed that the large-plaque viruses and the clinical isolates, but not small-plaque variants, were potent inducers of IL-6, IL-8 and MCP-1, and were able to migrate monocytes/macrophages efficiently. Sequencing data revealed a number of differences in amino acid sequences between the small- and large-plaque viruses. The results suggest that it is common for clinical isolates of CHIKV to be heterogeneous, while the variants may have distinct roles in the pathology of the joint.
Collapse
Affiliation(s)
- Apamas Sukkaew
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Rd., Ratchatewi, Bangkok 10400, Thailand
| | | | | | - Margit Mutso
- Institute for Glycomics, Griffith University, Southport, Gold Coast, QLD, Australia
| | - Suresh Mahalingam
- Institute for Glycomics, Griffith University, Southport, Gold Coast, QLD, Australia
| | - Duncan R Smith
- Center for Emerging and Neglected Infectious Diseases, Mahidol University, Salaya Campus, Nakornpathom, Thailand.,Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom, Thailand
| | - Sukathida Ubol
- Center for Emerging and Neglected Infectious Diseases, Mahidol University, Salaya Campus, Nakornpathom, Thailand.,Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Rd., Ratchatewi, Bangkok 10400, Thailand
| |
Collapse
|
161
|
Chikungunya Virus Strains Show Lineage-Specific Variations in Virulence and Cross-Protective Ability in Murine and Nonhuman Primate Models. mBio 2018; 9:mBio.02449-17. [PMID: 29511072 PMCID: PMC5844994 DOI: 10.1128/mbio.02449-17] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Chikungunya virus (CHIKV) is a reemerging arbovirus capable of causing explosive outbreaks of febrile illness, polyarthritis, and polyarthralgia, inflicting severe morbidity on affected populations. CHIKV can be genetically classified into 3 major lineages: West African (WA); East, Central, and South African (ECSA); Indian Ocean (IOL); and Asian. Additionally, the Indian Ocean (IOL) sublineage emerged within the ECSA clade and the Asian/American sublineage emerged within the Asian clade. While differences in epidemiological and pathological characteristics among outbreaks involving different CHIKV lineages and sublineages have been suggested, few targeted investigations comparing lineage virulence levels have been reported. We compared the virulence levels of CHIKV isolates representing all major lineages and sublineages in the type I interferon receptor-knockout A129 mouse model and found lineage-specific differences in virulence. We also evaluated the cross-protective efficacy of the IOL-derived, live-attenuated vaccine strain CHIKV/IRESv1 against the Asian/American CHIKV isolate YO123223 in both murine and nonhuman primate models, as well as the WA strain SH2830 in a murine model. The CHIKV/IRES vaccine provided protection both in mice and in nonhuman primate cohorts against Caribbean strain challenge and protected mice against WA challenge. Taken together, our data suggest that Asian/American CHIKV strains are less virulent than those in the Asian, ECSA, and WA lineages and that despite differences in virulence, IOL-based vaccine strains offer robust cross-protection against strains from other lineages. Further research is needed to elucidate the genetic basis for variation in CHIKV virulence in the A129 mouse model and to corroborate this variation with human pathogenicity. Chikungunya virus (CHIKV) is a reemerging human pathogen capable of causing debilitating and disfiguring polyarthritis, which can last for months to years after initial fever has resolved. There are four major genetic lineages of CHIKV, as well as two recently emerged sublineages, none of which have been evaluated for differences in virulence. Moreover, the ability of chikungunya vaccines to cross-protect against heterologous CHIKV lineages has not been explored. Therefore, we sought to compare the virulence levels among CHIKV lineages, as well as to evaluate the cross-protective efficacy of the CHIKV/IRESv1 vaccine candidate, in two different models of CHIKV infection. Our results suggest that, although significant differences in virulence were observed among CHIKV lineages, the CHIKV/IRESv1 vaccine elicits cross-lineage protective immunity. These findings provide valuable information for predicting the severity of CHIKV-associated morbidity in future outbreaks, as well as vaccine development considerations.
Collapse
|
162
|
Cavalheiro MG, Costa LSDA, Campos HS, Alves LS, Assunção-Miranda I, Poian ATDA. Macrophages as target cells for Mayaro virus infection: involvement of reactive oxygen species in the inflammatory response during virus replication. AN ACAD BRAS CIENC 2018; 88:1485-99. [PMID: 27627069 DOI: 10.1590/0001-3765201620150685] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/18/2016] [Indexed: 02/05/2023] Open
Abstract
Alphaviruses among the viruses that cause arthritis, consisting in a public health problem worldwide by causing localized outbreaks, as well as large epidemics in humans. Interestingly, while the Old World alphaviruses are arthritogenic, the New World alphaviruses cause encephalitis. One exception is Mayaro virus (MAYV), which circulates exclusively in South America but causes arthralgia and is phylogenetically related to the Old World alphaviruses. Although MAYV-induced arthritis in humans is well documented, the molecular and cellular factors that contribute to its pathogenesis are completely unknown. In this study, we demonstrated for the first time that macrophages, key players in arthritis development, are target cells for MAYV infection, which leads to cell death through apoptosis. We showed that MAYV replication in macrophage induced the expression of TNF, a cytokine that would contribute to pathogenesis of MAYV fever, since TNF promotes an inflammatory profile characteristic of arthritis. We also found a significant increase in the production of reactive oxygen species (ROS) at early times of infection, which coincides with the peak of virus replication and precedes TNF secretion. Treatment of the cells with antioxidant agents just after infection completely abolished TNF secretion, indicating an involvement of ROS in inflammation induced during MAYV infection.
Collapse
Affiliation(s)
- Mariana G Cavalheiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco E, Sala 18, 21941-902 Rio de Janeiro, RJ Brasil
| | - Leandro Silva DA Costa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco E, Sala 18, 21941-902 Rio de Janeiro, RJ Brasil
| | - Holmes S Campos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco E, Sala 18, 21941-902 Rio de Janeiro, RJ Brasil
| | - Letícia S Alves
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco I, Sala I0-55, 21941-902 Rio de Janeiro, RJ, Brasil
| | - Iranaia Assunção-Miranda
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco I, Sala I0-55, 21941-902 Rio de Janeiro, RJ, Brasil
| | - Andrea T DA Poian
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco E, Sala 18, 21941-902 Rio de Janeiro, RJ Brasil
| |
Collapse
|
163
|
Affiliation(s)
- Shefali Khanna Sharma
- Unit of Clinical Immunology and Rheumatology; Department of Internal Medicine; Postgraduate Institute of Medical Education and Research; Chandigarh India
| | - Sanjay Jain
- Unit of Clinical Immunology and Rheumatology; Department of Internal Medicine; Postgraduate Institute of Medical Education and Research; Chandigarh India
| |
Collapse
|
164
|
Antibody-mediated enhancement aggravates chikungunya virus infection and disease severity. Sci Rep 2018; 8:1860. [PMID: 29382880 PMCID: PMC5789897 DOI: 10.1038/s41598-018-20305-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/17/2018] [Indexed: 01/18/2023] Open
Abstract
The arthropod-transmitted chikungunya virus (CHIKV) causes a flu-like disease that is characterized by incapacitating arthralgia. The re-emergence of CHIKV and the continual risk of new epidemics have reignited research in CHIKV pathogenesis. Virus-specific antibodies have been shown to control virus clearance, but antibodies present at sub-neutralizing concentrations can also augment virus infection that exacerbates disease severity. To explore this occurrence, CHIKV infection was investigated in the presence of CHIKV-specific antibodies in both primary human cells and a murine macrophage cell line, RAW264.7. Enhanced attachment of CHIKV to the primary human monocytes and B cells was observed while increased viral replication was detected in RAW264.7 cells. Blocking of specific Fc receptors (FcγRs) led to the abrogation of these observations. Furthermore, experimental infection in adult mice showed that animals had higher viral RNA loads and endured more severe joint inflammation in the presence of sub-neutralizing concentrations of CHIKV-specific antibodies. In addition, CHIKV infection in 11 days old mice under enhancing condition resulted in higher muscles viral RNA load detected and death. These observations provide the first evidence of antibody-mediated enhancement in CHIKV infection and pathogenesis and could also be relevant for other important arboviruses such as Zika virus.
Collapse
|
165
|
Teo TH, Chan YH, Lee WWL, Lum FM, Amrun SN, Her Z, Rajarethinam R, Merits A, Rötzschke O, Rénia L, Ng LFP. Fingolimod treatment abrogates chikungunya virus-induced arthralgia. Sci Transl Med 2018; 9:9/375/eaal1333. [PMID: 28148838 DOI: 10.1126/scitranslmed.aal1333] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/30/2016] [Accepted: 12/02/2016] [Indexed: 12/30/2022]
Abstract
Chikungunya virus (CHIKV) is one of the many rheumatic arthropod-borne alphaviruses responsible for debilitating joint inflammation in humans. Despite the severity in many endemic regions, clinically approved intervention targeting the virus remains unavailable. CD4+ T cells have been shown to mediate CHIKV-induced joint inflammation in mice. We demonstrate here that transfer of splenic CD4+ T cells from virus-infected C57BL/6 mice into virus-infected T cell receptor-deficient (TCR-/-) mice recapitulated severe joint pathology including inflammation, vascular leakages, subcutaneous edema, and skeletal muscle necrosis. Proteome-wide screening identified dominant CD4+ T cell epitopes in nsP1 and E2 viral antigens. Transfer of nsP1- or E2-specific primary CD4+ T cell lines into CHIKV-infected TCR-/- recipients led to severe joint inflammation and vascular leakage. This pathogenic role of virus-specific CD4+ T cells in CHIKV infections led to the assessment of clinically approved T cell-suppressive drugs for disease intervention. Although drugs targeting interleukin-2 pathway were ineffective, treatment with fingolimod, an agonist of sphingosine 1-phosphate receptor, successfully abrogated joint pathology in CHIKV-infected animals by blocking the migration of CD4+ T cells into the joints without any effect on viral replication. These results set the stage for further clinical evaluation of fingolimod in the treatment of CHIKV-induced joint pathologies.
Collapse
Affiliation(s)
- Teck-Hui Teo
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Yi-Hao Chan
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Wendy W L Lee
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Fok-Moon Lum
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Siti Naqiah Amrun
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Zhisheng Her
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | | | - Andres Merits
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Olaf Rötzschke
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore.
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore. .,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Infection and Global Health, University of Liverpool, Liverpool, U.K
| |
Collapse
|
166
|
Haist KC, Burrack KS, Davenport BJ, Morrison TE. Inflammatory monocytes mediate control of acute alphavirus infection in mice. PLoS Pathog 2017; 13:e1006748. [PMID: 29244871 PMCID: PMC5747464 DOI: 10.1371/journal.ppat.1006748] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/29/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022] Open
Abstract
Chikungunya virus (CHIKV) and Ross River virus (RRV) are mosquito-transmitted alphaviruses that cause debilitating acute and chronic musculoskeletal disease. Monocytes are implicated in the pathogenesis of these infections; however, their specific roles are not well defined. To investigate the role of inflammatory Ly6ChiCCR2+ monocytes in alphavirus pathogenesis, we used CCR2-DTR transgenic mice, enabling depletion of these cells by administration of diptheria toxin (DT). DT-treated CCR2-DTR mice displayed more severe disease following CHIKV and RRV infection and had fewer Ly6Chi monocytes and NK cells in circulation and muscle tissue compared with DT-treated WT mice. Furthermore, depletion of CCR2+ or Gr1+ cells, but not NK cells or neutrophils alone, restored virulence and increased viral loads in mice infected with an RRV strain encoding attenuating mutations in nsP1 to levels detected in monocyte-depleted mice infected with fully virulent RRV. Disease severity and viral loads also were increased in DT-treated CCR2-DTR+;Rag1-/- mice infected with the nsP1 mutant virus, confirming that these effects are independent of adaptive immunity. Monocytes and macrophages sorted from muscle tissue of RRV-infected mice were viral RNA positive and had elevated expression of Irf7, and co-culture of Ly6Chi monocytes with RRV-infected cells resulted in induction of type I IFN gene expression in monocytes that was Irf3;Irf7 and Mavs-dependent. Consistent with these data, viral loads of the attenuated nsP1 mutant virus were equivalent to those of WT RRV in Mavs-/- mice. Finally, reconstitution of Irf3-/-;Irf7-/- mice with CCR2-DTR bone marrow rescued mice from severe infection, and this effect was reversed by depletion of CCR2+ cells, indicating that CCR2+ hematopoietic cells are capable of inducing an antiviral response. Collectively, these data suggest that MAVS-dependent production of type I IFN by monocytes is critical for control of acute alphavirus infection and that determinants in nsP1, the viral RNA capping protein, counteract this response. Mosquito-transmitted arthritogenic alphaviruses, such as chikungunya virus (CHIKV), Mayaro virus, and Ross River virus (RRV), cause large disease outbreaks. Infection with these viruses results in severe pain and inflammation in joints, tendons, and muscles, likely due to direct viral infection of these tissues, that can persist for years. Monocytes and macrophages have been implicated in the damaging effects of the inflammation, however, the role of these cell types in control of alphaviral infection are poorly understood. Using mouse models and an attenuated RRV with mutations in the nsP1 gene, we found that monocytes are critical to control acute infection and to reduce disease severity. Furthermore, we found that monocytes respond to virus-infected cells by increasing expression levels of type I interferon, a critical antiviral defense system. The induction of type I interferon in monocytes was dependent on MAVS, a signaling protein downstream of cytosolic viral RNA sensor proteins. Similar to monocytes, MAVS was required to control infection with the nsP1 mutant RRV. These studies suggest that monocytes control acute alphavirus infection and that determinants in nsP1, the viral RNA capping protein, counteract this response. Thus, therapeutic strategies targeting these cells for the treatment of these viral inflammatory diseases should do so without compromising their role in innate immunity.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Alphavirus Infections/immunology
- Alphavirus Infections/virology
- Animals
- Antigens, Ly/metabolism
- Chikungunya virus/immunology
- Chikungunya virus/pathogenicity
- Diphtheria Toxin/pharmacology
- Heparin-binding EGF-like Growth Factor/genetics
- Heparin-binding EGF-like Growth Factor/immunology
- Humans
- Inflammation/virology
- Interferon Regulatory Factor-3/deficiency
- Interferon Regulatory Factor-3/genetics
- Interferon Regulatory Factor-3/immunology
- Interferon Regulatory Factor-7/deficiency
- Interferon Regulatory Factor-7/genetics
- Interferon Regulatory Factor-7/immunology
- Interferon Type I/biosynthesis
- Interferon Type I/genetics
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Monocytes/drug effects
- Monocytes/immunology
- Monocytes/virology
- Receptors, CCR2/genetics
- Receptors, CCR2/metabolism
- Ross River virus/genetics
- Ross River virus/immunology
- Ross River virus/pathogenicity
- Viral Load
- Virulence/genetics
- Virulence/immunology
Collapse
Affiliation(s)
- Kelsey C. Haist
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Kristina S. Burrack
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Bennett J. Davenport
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
167
|
Ganesan VK, Duan B, Reid SP. Chikungunya Virus: Pathophysiology, Mechanism, and Modeling. Viruses 2017; 9:v9120368. [PMID: 29194359 PMCID: PMC5744143 DOI: 10.3390/v9120368] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 12/15/2022] Open
Abstract
Chikungunya virus (CHIKV), a mosquito-transmitted alphavirus, is recurring in epidemic waves. In the past decade and a half, the disease has resurged in several countries around the globe, with outbreaks becoming increasingly severe. Though CHIKV was first isolated in 1952, there remain significant gaps in knowledge of CHIKV biology, pathogenesis, transmission, and mechanism. Diagnosis is largely simplified and based on symptoms, while treatment is supportive rather than curative. Here we present an overview of the disease, the challenges that lie ahead for future research, and what directions current studies are headed towards, with emphasis on improvement of current animal models and potential use of 3D models.
Collapse
Affiliation(s)
- Vaishnavi K Ganesan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - St Patrick Reid
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
168
|
Chan Y, Ng LFP. Age has a role in driving host immunopathological response to alphavirus infection. Immunology 2017; 152:545-555. [PMID: 28744856 PMCID: PMC5680050 DOI: 10.1111/imm.12799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/15/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses are a group of arthropod-borne pathogens capable of causing a wide spectrum of clinical symptoms, ranging from milder symptoms like rashes, fever and polyarthralgia, to life-threatening encephalitis. This genus of viruses is prevalent globally, and can infect patients across a wide age range. Interestingly, disease severity of virus-infected patients is wide-ranging. Definitions of the pathogenesis of alphaviruses, as well as the host factors influencing disease severity, remain limited. The innate and adaptive immune systems are important host defences against alphavirus infections. Several reports have highlighted the roles of specific immune subsets in contributing to the immune pathogenesis of these viruses. However, immunosenescence, a gradual deterioration of the immune system brought about by the natural advancement of age, affects the functional roles of these immune subsets. This phenomenon compromises the host's ability to defend against alphavirus infection and pathogenesis. In addition, the lack of maturity in the immune system in newborns and infants also results in more severe disease outcomes. In this review, we will summarize the subtle yet diverse physiological changes in the immune system during aging, and how these changes underlie the differences in disease severity for common alphaviruses.
Collapse
Affiliation(s)
- Yi‐Hao Chan
- Singapore Immunology NetworkAgency for ScienceTechnology and Research (A*STAR)Singapore
- NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingapore
| | - Lisa F. P. Ng
- Singapore Immunology NetworkAgency for ScienceTechnology and Research (A*STAR)Singapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Institute of Infection and Global HealthUniversity of LiverpoolLiverpoolUK
- Present address:
8A Biomedical Grove, Biopolis#04‐06 Immunos138648Singapore
| |
Collapse
|
169
|
Prow NA, Tang B, Gardner J, Le TT, Taylor A, Poo YS, Nakayama E, Hirata TDC, Nakaya HI, Slonchak A, Mukhopadhyay P, Mahalingam S, Schroder WA, Klimstra W, Suhrbier A. Lower temperatures reduce type I interferon activity and promote alphaviral arthritis. PLoS Pathog 2017; 13:e1006788. [PMID: 29281739 PMCID: PMC5770078 DOI: 10.1371/journal.ppat.1006788] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/16/2018] [Accepted: 12/04/2017] [Indexed: 12/28/2022] Open
Abstract
Chikungunya virus (CHIKV) belongs to a group of mosquito-borne alphaviruses associated with acute and chronic arthropathy, with peripheral and limb joints most commonly affected. Using a mouse model of CHIKV infection and arthritic disease, we show that CHIKV replication and the ensuing foot arthropathy were dramatically reduced when mice were housed at 30°C, rather than the conventional 22°C. The effect was not associated with a detectable fever, but was dependent on type I interferon responses. Bioinformatics analyses of RNA-Seq data after injection of poly(I:C)/jetPEI suggested the unfolded protein response and certain type I interferon responses are promoted when feet are slightly warmer. The ambient temperature thus appears able profoundly to effect anti-viral activity in the periphery, with clear consequences for alphaviral replication and the ensuing arthropathy. These observations may provide an explanation for why alphaviral arthropathies are largely restricted to joints of the limbs and the extremities.
Collapse
Affiliation(s)
- Natalie A. Prow
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia
| | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Joy Gardner
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Thuy T. Le
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Adam Taylor
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Yee S. Poo
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Eri Nakayama
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Thiago D. C. Hirata
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Helder I. Nakaya
- School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | | | - Suresh Mahalingam
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Wayne A. Schroder
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - William Klimstra
- Department of Microbiology and Molecular Genetics Center for Vaccine Research University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia
| |
Collapse
|
170
|
Abstract
Chikungunya virus (CHIKV) is an arbovirus transmitted by Aedes mosquitos in tropical and subtropical regions across the
world. After decades of sporadic outbreaks, it re-emerged in Africa, Asia, India
Ocean and America suddenly, causing major regional epidemics recently and becoming a
notable global health problem. Infection by CHIKV results in a spectrum of clinical
diseases including an acute self-limiting febrile illness in most individuals, a
chronic phase of recurrent join pain in a proportion of patients, and long-term
arthralgia for months to years for the unfortunate few. No specific anti-viral drugs
or licensed vaccines for CHIKV are available so far. A better understanding of
virus-host interactions is essential for the development of therapeutics and
vaccines. To this end, we reviewed the existing knowledge on CHIKV’s epidemiology,
clinical presentation, molecular virology, diagnostic approaches, host immune
response, vaccine development, and available animal models. Such a comprehensive
overview, we believe, will shed lights on the promises and challenges in CHIKV
vaccine development.
Collapse
|
171
|
Thanapati S, Ganu MA, Tripathy AS. Differential inhibitory and activating NK cell receptor levels and NK/NKT-like cell functionality in chronic and recovered stages of chikungunya. PLoS One 2017; 12:e0188342. [PMID: 29182664 PMCID: PMC5705157 DOI: 10.1371/journal.pone.0188342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/06/2017] [Indexed: 11/18/2022] Open
Abstract
The role of natural killer (NK; CD3-CD56+)/NKT (CD3+CD56+)-like cells in chikungunya virus (CHIKV) disease progression/recovery remains unclear. Here, we investigated the expression profiles and function of NK and NKT-like cells from 35 chronic chikungunya patients, 30 recovered individuals, and 69 controls. Percentage of NKT-like cells was low in chronic chikungunya patients. NKp30+, CD244+, DNAM-1+, and NKG2D+ NK cell percentages were also lower (MFI and/or percentage), while those of CD94+ and NKG2A+ NKT-like cells were higher (MFI and/or percentage) in chronic patients than in recovered subjects. IFN-γ and TNF-α expression on NKT-like cells was high in the chronic patients, while only IFN-γ expression on NK cells was high in the recovered individuals. Furthermore, percentage of perforin+NK cells was low in the chronic patients. Lower cytotoxic activity was observed in the chronic patients than in the controls. CD107a expression on NK and NKT-like cells post anti-CD94/anti-NKG2A blocking was comparable among the patients and controls. Upregulated inhibitory and downregulated activating NK receptor expressions on NK/NKT-like cells, lower perforin+ and CD107a+NK cells are likely responsible for inhibiting the NK and NKT-like cell function in the chronic stage of chikungunya. Therefore, deregulation of NKR expression might underlie CHIKV-induced chronicity.
Collapse
Affiliation(s)
- Subrat Thanapati
- Hepatitis Group, National Institute of Virology, Pune, Pashan, Pune, Maharashtra, India
| | - Mohini A. Ganu
- Sanjeevan Hospital, Majage Nagar, Latur, Maharashtra, India
| | - Anuradha S. Tripathy
- Hepatitis Group, National Institute of Virology, Pune, Pashan, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
172
|
Characterization of large and small-plaque variants in the Zika virus clinical isolate ZIKV/Hu/S36/Chiba/2016. Sci Rep 2017; 7:16160. [PMID: 29170504 PMCID: PMC5701032 DOI: 10.1038/s41598-017-16475-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022] Open
Abstract
An Asian/American lineage Zika virus (ZIKV) strain ZIKV/Hu/S36/Chiba/2016 formed 2 types in plaque size, large and small. Genomic analysis of the plaque-forming clones obtained from the isolate indicated that the clones forming small plaques commonly had an adenine nucleotide at position 796 (230Gln in the amino acid sequence), while clones forming large plaques had a guanine nucleotide (230Arg) at the same position, suggesting that this position was associated with the difference in plaque size. Growth kinetics of a large-plaque clone was faster than that of a small-plaque clone in Vero cells. Recombinant ZIKV G796A/rZIKV-MR766, which carries a missense G796A mutation, was produced using an infectious molecular clone of the ZIKV MR766 strain rZIKV-MR766/pMW119-CMVP. The plaque size of the G796A mutant was significantly smaller than that of the parental strain. The G796A mutation clearly reduced the growth rate of the parental virus in Vero cells. Furthermore, the G796A mutation also decreased the virulence of the MR766 strain in IFNAR1 knockout mice. These results indicate that the amino acid variation at position 230 in the viral polyprotein, which is located in the M protein sequence, is a molecular determinant for plaque morphology, growth property, and virulence in mice of ZIKV.
Collapse
|
173
|
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for several significant outbreaks of debilitating acute and chronic arthritis and arthralgia over the past decade. These include a recent outbreak in the Caribbean islands and the Americas that caused more than 1 million cases of viral arthralgia. Despite the major impact of CHIKV on global health, viral determinants that promote CHIKV-induced disease are incompletely understood. Most CHIKV strains contain a conserved opal stop codon at the end of the viral nsP3 gene. However, CHIKV strains that encode an arginine codon in place of the opal stop codon have been described, and deep-sequencing analysis of a CHIKV isolate from the Caribbean identified both arginine and opal variants within this strain. Therefore, we hypothesized that the introduction of the arginine mutation in place of the opal termination codon may influence CHIKV virulence. We tested this by introducing the arginine mutation into a well-characterized infectious clone of a CHIKV strain from Sri Lanka and designated this virus Opal524R. This mutation did not impair viral replication kinetics in vitro or in vivo. Despite this, the Opal524R virus induced significantly less swelling, inflammation, and damage within the feet and ankles of infected mice. Further, we observed delayed induction of proinflammatory cytokines and chemokines, as well as reduced CD4+ T cell and NK cell recruitment compared to those in the parental strain. Therefore, the opal termination codon plays an important role in CHIKV pathogenesis, independently of effects on viral replication. Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes significant outbreaks of viral arthralgia. Studies with CHIKV and other alphaviruses demonstrated that the opal termination codon within nsP3 is highly conserved. However, some strains of CHIKV and other alphaviruses contain mutations in the opal termination codon. These mutations alter the virulence of related alphaviruses in mammalian and mosquito hosts. Here, we report that a clinical isolate of a CHIKV strain from the recent outbreak in the Caribbean islands contains a mixture of viruses encoding either the opal termination codon or an arginine mutation. Mutating the opal stop codon to an arginine residue attenuates CHIKV-induced disease in a mouse model. Compared to infection with the opal-containing parental virus, infection with the arginine mutant causes limited swelling and inflammation, as well as dampened recruitment of immune mediators of pathology, including CD4+ T cells and NK cells. We propose that the opal termination codon plays an essential role in the induction of severe CHIKV disease.
Collapse
|
174
|
Interferon Regulatory Factor 1 Protects against Chikungunya Virus-Induced Immunopathology by Restricting Infection in Muscle Cells. J Virol 2017; 91:JVI.01419-17. [PMID: 28835505 DOI: 10.1128/jvi.01419-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/20/2017] [Indexed: 01/14/2023] Open
Abstract
The innate immune system protects cells against viral pathogens in part through the autocrine and paracrine actions of alpha/beta interferon (IFN-α/β) (type I), IFN-γ (type II), and IFN-λ (type III). The transcription factor interferon regulatory factor 1 (IRF-1) has a demonstrated role in shaping innate and adaptive antiviral immunity by inducing the expression of IFN-stimulated genes (ISGs) and mediating signals downstream of IFN-γ. Although ectopic expression experiments have suggested an inhibitory function of IRF-1 against infection of alphaviruses in cell culture, its role in vivo remains unknown. Here, we infected Irf1 -/- mice with two distantly related arthritogenic alphaviruses, chikungunya virus (CHIKV) and Ross River virus (RRV), and assessed the early antiviral functions of IRF-1 prior to induction of adaptive B and T cell responses. IRF-1 expression limited CHIKV-induced foot swelling in joint-associated tissues and prevented dissemination of CHIKV and RRV at early time points. Virological and histological analyses revealed greater infection of muscle tissues in Irf1 -/- mice than in wild-type mice. The antiviral actions of IRF-1 appeared to be independent of the induction of type I IFN or the effects of type II and III IFNs but were associated with altered local proinflammatory cytokine and chemokine responses and differential infiltration of myeloid cell subsets. Collectively, our in vivo experiments suggest that IRF-1 restricts CHIKV and RRV infection in stromal cells, especially muscle cells, and that this controls local inflammation and joint-associated swelling.IMPORTANCE Interferon regulatory factor 1 (IRF-1) is a transcription factor that regulates the expression of a broad range of antiviral host defense genes. In this study, using Irf1 -/- mice, we investigated the role of IRF-1 in modulating pathogenesis of two related arthritogenic alphaviruses, chikungunya virus and Ross River virus. Our studies show that IRF-1 controlled alphavirus replication and swelling in joint-associated tissues within days of infection. Detailed histopathological and virological analyses revealed that IRF-1 preferentially restricted CHIKV infection in cells of nonhematopoietic lineage, including muscle cells. The antiviral actions of IRF-1 resulted in decreased local inflammatory responses in joint-associated tissues, which prevented immunopathology.
Collapse
|
175
|
van Sluijs L, Pijlman GP, Kammenga JE. Why do Individuals Differ in Viral Susceptibility? A Story Told by Model Organisms. Viruses 2017; 9:E284. [PMID: 28973976 PMCID: PMC5691635 DOI: 10.3390/v9100284] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 01/30/2023] Open
Abstract
Viral susceptibility and disease progression is determined by host genetic variation that underlies individual differences. Genetic polymorphisms that affect the phenotype upon infection have been well-studied for only a few viruses, such as HIV-1 and Hepatitis C virus. However, even for well-studied viruses the genetic basis of individual susceptibility differences remains elusive. Investigating the effect of causal polymorphisms in humans is complicated, because genetic methods to detect rare or small-effect polymorphisms are limited and genetic manipulation is not possible in human populations. Model organisms have proven a powerful experimental platform to identify and characterize polymorphisms that underlie natural variations in viral susceptibility using quantitative genetic tools. We summarize and compare the genetic tools available in three main model organisms, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans, and illustrate how these tools can be applied to detect polymorphisms that determine the viral susceptibility. Finally, we analyse how candidate polymorphisms from model organisms can be used to shed light on the underlying mechanism of individual variation. Insights in causal polymorphisms and mechanisms underlying individual differences in viral susceptibility in model organisms likely provide a better understanding in humans.
Collapse
Affiliation(s)
- Lisa van Sluijs
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands.
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands.
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands.
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
176
|
Amdekar S, Parashar D, Alagarasu K. Chikungunya Virus-Induced Arthritis: Role of Host and Viral Factors in the Pathogenesis. Viral Immunol 2017; 30:691-702. [PMID: 28910194 DOI: 10.1089/vim.2017.0052] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chikungunya virus (CHIKV), a member of Alphavirus genus, is responsible for chikungunya fever (CHIKF), which is characterized by the presence of fever, rash, myalgia, and arthralgia. Reemergence of CHIKV has become a significant public health concern in Asian and African countries and is newly emerging in the Middle East, Pacific, American, and European countries. Cytokines, innate (monocytes, natural killer cells) and adaptive immune response (role of B cells and T cells i.e. CD4+ and CD8+), and/or viral factors contribute to CHIKV-induced arthritis. Vector factors such as vector competence (that includes extrinsic and intrinsic factors) and effect of genome mutations on viral replication and fitness in mosquitoes are responsible for the spread of virus, although they are not directly responsible for CHIKV-induced arthritis. CHIKV-induced arthritis mimics arthritis by involving joints and a common pattern of leukocyte infiltrate, cytokine production, and complement activation. Successful establishment of CHIKV infection and induction of arthritis depends on its ability to manipulate host cellular processes or host factors. CHIKV-induced joint damage is due to host inflammatory response mediated by macrophages, T cells, and antibodies, as well as the possible persistence of the virus in hidden sites. This review provides insight into mechanisms of CHIKV-induced arthritis. Understanding the pathogenesis of CHIKV-induced arthritis will help in developing novel strategies to predict and prevent the disease in virus-infected subjects and combat the disease, thereby decreasing the worldwide burden of the disease.
Collapse
Affiliation(s)
- Sarika Amdekar
- Dengue/Chikungunya Group, ICMR-National Institute of Virology , Pune, India
| | - Deepti Parashar
- Dengue/Chikungunya Group, ICMR-National Institute of Virology , Pune, India
| | | |
Collapse
|
177
|
Specific inhibition of NLRP3 in chikungunya disease reveals a role for inflammasomes in alphavirus-induced inflammation. Nat Microbiol 2017; 2:1435-1445. [DOI: 10.1038/s41564-017-0015-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 07/28/2017] [Indexed: 01/01/2023]
|
178
|
Yang S, Fink D, Hulse A, Pratt RD. Regulatory considerations in development of vaccines to prevent disease caused by Chikungunya virus. Vaccine 2017; 35:4851-4858. [PMID: 28760614 DOI: 10.1016/j.vaccine.2017.07.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/21/2017] [Accepted: 07/19/2017] [Indexed: 12/01/2022]
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus. Chikungunya disease (CHIK) in humans is characterized by sudden onset of high fever, cutaneous rash, myalgia and debilitating polyarthralgia. Until recently the virus was considered endemic to only Africa and Asia, but since 2004 CHIK has spread to previously non-endemic regions, including Europe and the Americas, thereby emerging as a global health threat. Although a variety of CHIKV vaccine candidates have been tested in animals, and a few have advanced to human clinical trials, no licensed vaccine is currently available for prevention of disease. In this article, we review recent efforts in CHIKV vaccine development and discuss regulatory considerations for CHIKV vaccine licensure under U.S. FDA regulations. Several licensure pathways are available, and the most appropriate licensure pathway for a CHIK vaccine will depend on the type of evidence that can be generated to demonstrate the vaccine's effectiveness. If "traditional approval" following demonstration of direct benefit in adequate and well-controlled clinical disease endpoint studies is not possible, the Accelerated Approval and Animal Rule pathways are potential alternatives. In terms of vaccine safety, the potential for vaccine associated arthralgia and antibody-dependent enhancement of infectivity and disease severity are important issues that should be addressed in both pre-clinical and clinical studies. CHIK vaccine developers are encouraged to communicate with the FDA during all stages of vaccine development.
Collapse
Affiliation(s)
- Sixun Yang
- Division of Vaccines and Related Product Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States.
| | - Doran Fink
- Division of Vaccines and Related Product Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Andrea Hulse
- Division of Vaccines and Related Product Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - R Douglas Pratt
- Division of Vaccines and Related Product Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| |
Collapse
|
179
|
Fox JM, Diamond MS. Immune-Mediated Protection and Pathogenesis of Chikungunya Virus. THE JOURNAL OF IMMUNOLOGY 2017; 197:4210-4218. [PMID: 27864552 DOI: 10.4049/jimmunol.1601426] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/13/2016] [Indexed: 01/16/2023]
Abstract
Chikungunya virus (CHIKV) is a re-emerging alphavirus that causes debilitating acute and chronic arthritis. Infection by CHIKV induces a robust immune response that is characterized by production of type I IFNs, recruitment of innate and adaptive immune cells, and development of neutralizing Abs. Despite this response, chronic arthritis can develop in some individuals, which may be due to a failure to eliminate viral RNA and Ag and/or persistent immune responses that cause chronic joint inflammation. In this review, based primarily on advances from recent studies in mice, we discuss the innate and adaptive immune factors that control CHIKV dissemination and clearance or contribute to pathogenesis.
Collapse
Affiliation(s)
- Julie M Fox
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; .,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110; and.,Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
180
|
Eldi P, Cooper TH, Liu L, Prow NA, Diener KR, Howley PM, Suhrbier A, Hayball JD. Production of a Chikungunya Vaccine Using a CHO Cell and Attenuated Viral-Based Platform Technology. Mol Ther 2017; 25:2332-2344. [PMID: 28720468 PMCID: PMC5628773 DOI: 10.1016/j.ymthe.2017.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/03/2017] [Accepted: 06/18/2017] [Indexed: 02/06/2023] Open
Abstract
Vaccinia-based systems have been extensively explored for the development of recombinant vaccines. Herein we describe an innovative vaccinia virus (VACV)-derived vaccine platform technology termed Sementis Copenhagen Vector (SCV), which was rendered multiplication-defective by targeted deletion of the essential viral assembly gene D13L. A SCV cell substrate line was developed for SCV vaccine production by engineering CHO cells to express D13 and the VACV host-range factor CP77, because CHO cells are routinely used for manufacture of biologics. To illustrate the utility of the platform technology, a SCV vaccine against chikungunya virus (SCV-CHIK) was developed and shown to be multiplication-defective in a range of human cell lines and in immunocompromised mice. A single vaccination of mice with SCV-CHIK induced antibody responses specific for chikungunya virus (CHIKV) that were similar to those raised following vaccination with a replication-competent VACV-CHIK and able to neutralize CHIKV. Vaccination also provided protection against CHIKV challenge, preventing both viremia and arthritis. Moreover, SCV retained capacity as an effective mouse smallpox vaccine. In summary, SCV represents a new and safe vaccine platform technology that can be manufactured in modified CHO cells, with pre-clinical evaluation illustrating utility for CHIKV vaccine design and construction.
Collapse
Affiliation(s)
- Preethi Eldi
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Tamara H Cooper
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Liang Liu
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Natalie A Prow
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia; Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Paul M Howley
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia; Sementis Ltd., Melbourne, VIC 3000, Australia.
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - John D Hayball
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia; Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
181
|
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus in the family Togaviridae that causes outbreaks of debilitating acute and chronic arthralgia in humans. Although historically associated with localized outbreaks in Africa and Asia, recent epidemics in the Indian Ocean region and the Americas have led to the recognition that CHIKV is capable of moving into previously unaffected areas and causing significant levels of human suffering. The severity of CHIKV rheumatic disease, which can severely impact life quality of infected individuals for weeks, months, or even years, combined with the explosive nature of CHIKV outbreaks and its demonstrated ability to quickly spread into new regions, has led to renewed interest in developing strategies for the prevention or treatment of CHIKV-induced disease. Therefore, this chapter briefly discusses the biology of CHIKV and the factors contributing to CHIKV dissemination, while also discussing the pathogenesis of CHIKV-induced disease and summarizing the status of efforts to develop safe and effective therapies and vaccines against CHIKV and related viruses.
Collapse
|
182
|
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne alphavirus that causes acute and chronic arthritis. The virus reemerged in the Indian Ocean islands in 2005-2006 and is responsible for outbreaks in the Caribbean islands and the Americas since late 2013. Despite the wealth of research over the past 10 years, there are no commercially available antiviral drugs or vaccines. Treatment usually involves analgesics, anti-inflammatory drugs, and supportive care. Most studies have been focused on understanding the pathogenesis of CHIKV infection through clinical observation and with animal models. In this review, the clinical manifestations of CHIKV that define the disease and the use of relevant animal models, from mice to nonhuman primates, are discussed. Understanding key cellular factors in CHIKV infection and the interplay with the immune system will aid in the development of preventive and therapeutic approaches to combat this painful viral disease in humans.
Collapse
Affiliation(s)
- Lisa F P Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648; .,Institute of Infection and Global Health, University of Liverpool, Liverpool L69 3BX, United Kingdom
| |
Collapse
|
183
|
DeZure AD, Berkowitz NM, Graham BS, Ledgerwood JE. Whole-Inactivated and Virus-Like Particle Vaccine Strategies for Chikungunya Virus. J Infect Dis 2017; 214:S497-S499. [PMID: 27920180 DOI: 10.1093/infdis/jiw352] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chikungunya virus (CHIKV) is a global public health threat, having been identified in >60 countries in Asia, Africa, Europe, and the Americas. There is no cure for or licensed vaccine against CHIKV infection. Initial attempts at CHIKV vaccine development began in the early 1960s. Whole-inactivated and virus-like particle (VLP) vaccines are 2 of the current approaches being evaluated. Success of these approaches is dependent on a safe, well-tolerated vaccine that is immunogenic and deployable in regard to manufacturing, stability, and delivery characteristics.
Collapse
Affiliation(s)
- Adam D DeZure
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Nina M Berkowitz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
184
|
Abstract
In 2013, a major chikungunya virus (CHIKV) epidemic reached the Americas. In the past 2 years, >1.7 million people have been infected. In light of the current epidemic, with millions of people in North and South America at risk, efforts to rapidly develop effective vaccines have increased. Here, we focus on CHIKV vaccines that use viral-vector technologies. This group of vaccine candidates shares an ability to potently induce humoral and cellular immune responses by use of highly attenuated and safe vaccine backbones. So far, well-described vectors such as modified vaccinia virus Ankara, complex adenovirus, vesicular stomatitis virus, alphavirus-based chimeras, and measles vaccine Schwarz strain (MV/Schw) have been described as potential vaccines. We summarize here the recent data on these experimental vaccines, with a focus on the preclinical and clinical activities on the MV/Schw-based candidate, which is the first CHIKV-vectored vaccine that has completed a clinical trial.
Collapse
Affiliation(s)
| | - Frédéric Tangy
- Viral Genomics and Vaccination Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| |
Collapse
|
185
|
Abstract
Chikungunya fever, an acute and often chronic arthralgic disease caused by the mosquito-borne chikungunya virus (CHIKV), has reemerged since 2004 to cause millions of cases. Because CHIKV exhibits limited antigenic diversity and is not known to be capable of reinfection, a vaccine could serve to both prevent disease and diminish human amplification during epidemic circulation. Here, we review the many promising vaccine platforms and candidates developed for CHIKV since the 1970s, including several in late preclinical or clinical development. We discuss the advantages and limitations of each, as well as the commercial and regulatory challenges to bringing a vaccine to market.
Collapse
Affiliation(s)
- Jesse H Erasmus
- Institute for Human Infections and Immunity.,Institute for Translational Science.,Sealy Center for Vaccine Development.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Shannan L Rossi
- Institute for Human Infections and Immunity.,Institute for Translational Science.,Sealy Center for Vaccine Development.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Scott C Weaver
- Institute for Human Infections and Immunity.,Institute for Translational Science.,Sealy Center for Vaccine Development.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| |
Collapse
|
186
|
Haese NN, Broeckel RM, Hawman DW, Heise MT, Morrison TE, Streblow DN. Animal Models of Chikungunya Virus Infection and Disease. J Infect Dis 2017; 214:S482-S487. [PMID: 27920178 DOI: 10.1093/infdis/jiw284] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chikungunya virus (CHIKV) is a reemerging alphavirus that causes acute febrile illness and severe joint pain in humans. Although acute symptoms often resolve within a few days, chronic joint and muscle pain can be long lasting. In the last decade, CHIKV has caused widespread outbreaks of unprecedented scale in the Americas, Asia, and the Indian Ocean island regions. Despite these outbreaks and the continued expansion of CHIKV into new areas, mechanisms of chikungunya pathogenesis and disease are not well understood. Experimental animal models are indispensable to the field of CHIKV research. The most commonly used experimental animal models of CHIKV infection are mice and nonhuman primates; each model has its advantages for studying different aspects of CHIKV disease. This review will provide an overview of animal models used to study CHIKV infection and disease and major advances in our understanding of chikungunya obtained from studies performed in these models.
Collapse
Affiliation(s)
- Nicole N Haese
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton
| | - Rebecca M Broeckel
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton
| | - David W Hawman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora
| | - Mark T Heise
- Departments of Genetics, Microbiology, and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton
| |
Collapse
|
187
|
De Novo Generation and Characterization of New Zika Virus Isolate Using Sequence Data from a Microcephaly Case. mSphere 2017; 2:mSphere00190-17. [PMID: 28529976 PMCID: PMC5437134 DOI: 10.1128/mspheredirect.00190-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 12/19/2022] Open
Abstract
The major complications of an ongoing Zika virus outbreak in the Americas and Asia are congenital defects caused by the virus’s ability to cross the placenta and infect the fetal brain. The ability to generate molecular tools to analyze viral isolates from the current outbreak is essential for furthering our understanding of how these viruses cause congenital defects. The majority of existing viral isolates and infectious cDNA clones generated from them have undergone various numbers of passages in cell culture and/or suckling mice, which is likely to result in the accumulation of adaptive mutations that may affect viral properties. The approach described herein allows rapid generation of new, fully functional Zika virus isolates directly from deep sequencing data from virus-infected tissues without the need for prior virus passaging and for the generation and propagation of full-length cDNA clones. The approach should be applicable to other medically important flaviviruses and perhaps other positive-strand RNA viruses. Zika virus (ZIKV) has recently emerged and is the etiological agent of congenital Zika syndrome (CZS), a spectrum of congenital abnormalities arising from neural tissue infections in utero. Herein, we describe the de novo generation of a new ZIKV isolate, ZIKVNatal, using a modified circular polymerase extension reaction protocol and sequence data obtained from a ZIKV-infected fetus with microcephaly. ZIKVNatal thus has no laboratory passage history and is unequivocally associated with CZS. ZIKVNatal could be used to establish a fetal brain infection model in IFNAR−/− mice (including intrauterine growth restriction) without causing symptomatic infections in dams. ZIKVNatal was also able to be transmitted by Aedes aegypti mosquitoes. ZIKVNatal thus retains key aspects of circulating pathogenic ZIKVs and illustrates a novel methodology for obtaining an authentic functional viral isolate by using data from deep sequencing of infected tissues. IMPORTANCE The major complications of an ongoing Zika virus outbreak in the Americas and Asia are congenital defects caused by the virus’s ability to cross the placenta and infect the fetal brain. The ability to generate molecular tools to analyze viral isolates from the current outbreak is essential for furthering our understanding of how these viruses cause congenital defects. The majority of existing viral isolates and infectious cDNA clones generated from them have undergone various numbers of passages in cell culture and/or suckling mice, which is likely to result in the accumulation of adaptive mutations that may affect viral properties. The approach described herein allows rapid generation of new, fully functional Zika virus isolates directly from deep sequencing data from virus-infected tissues without the need for prior virus passaging and for the generation and propagation of full-length cDNA clones. The approach should be applicable to other medically important flaviviruses and perhaps other positive-strand RNA viruses.
Collapse
|
188
|
Langsjoen RM, Auguste AJ, Rossi SL, Roundy CM, Penate HN, Kastis M, Schnizlein MK, Le KC, Haller SL, Chen R, Watowich SJ, Weaver SC. Host oxidative folding pathways offer novel anti-chikungunya virus drug targets with broad spectrum potential. Antiviral Res 2017; 143:246-251. [PMID: 28461071 DOI: 10.1016/j.antiviral.2017.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/05/2017] [Indexed: 11/15/2022]
Abstract
Alphaviruses require conserved cysteine residues for proper folding and assembly of the E1 and E2 envelope glycoproteins, and likely depend on host protein disulfide isomerase-family enzymes (PDI) to aid in facilitating disulfide bond formation and isomerization in these proteins. Here, we show that in human HEK293 cells, commercially available inhibitors of PDI or modulators thereof (thioredoxin reductase, TRX-R; endoplasmic reticulum oxidoreductin-1, ERO-1) inhibit the replication of CHIKV chikungunya virus (CHIKV) in vitro in a dose-dependent manner. Further, the TRX-R inhibitor auranofin inhibited Venezuelan equine encephalitis virus and the flavivirus Zika virus replication in vitro, while PDI inhibitor 16F16 reduced replication but demonstrated notable toxicity. 16F16 significantly altered the viral genome: plaque-forming unit (PFU) ratio of CHIKV in vitro without affecting relative intracellular viral RNA quantities and inhibited CHIKV E1-induced cell-cell fusion, suggesting that PDI inhibitors alter progeny virion infectivity through altered envelope function. Auranofin also increased the extracellular genome:PFU ratio but decreased the amount of intracellular CHIKV RNA, suggesting an alternative mechanism of action. Finally, auranofin reduced footpad swelling and viremia in the C57BL/6 murine model of CHIKV infection. Our results suggest that targeting oxidative folding pathways represents a potential new anti-alphavirus therapeutic strategy.
Collapse
Affiliation(s)
- Rose M Langsjoen
- Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Albert J Auguste
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Shannan L Rossi
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Christopher M Roundy
- Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Heidy N Penate
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Maria Kastis
- Center in Environmental Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Kevin C Le
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Sherry L Haller
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rubing Chen
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Stanley J Watowich
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Center in Environmental Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
189
|
Thanapati S, Ganu M, Giri P, Kulkarni S, Sharma M, Babar P, Ganu A, Tripathy AS. Impaired NK cell functionality and increased TNF-α production as biomarkers of chronic chikungunya arthritis and rheumatoid arthritis. Hum Immunol 2017; 78:370-374. [DOI: 10.1016/j.humimm.2017.02.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/06/2017] [Accepted: 02/11/2017] [Indexed: 01/16/2023]
|
190
|
Affiliation(s)
- David M Vu
- Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Drive, G312, Stanford, CA 94305, USA.
| | - Donald Jungkind
- St. George's University School of Medicine, Grenada, West Indies
| | - Angelle Desiree LaBeaud
- Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Drive, G312, Stanford, CA 94305, USA
| |
Collapse
|
191
|
Roques P, Ljungberg K, Kümmerer BM, Gosse L, Dereuddre-Bosquet N, Tchitchek N, Hallengärd D, García-Arriaza J, Meinke A, Esteban M, Merits A, Le Grand R, Liljeström P. Attenuated and vectored vaccines protect nonhuman primates against Chikungunya virus. JCI Insight 2017; 2:e83527. [PMID: 28352649 DOI: 10.1172/jci.insight.83527] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chikungunya virus (CHIKV) is rapidly spreading across the globe, and millions are infected. Morbidity due to this virus is a serious threat to public health, but at present, there is no vaccine against this debilitating disease. We have recently developed a number of vaccine candidates, and here we have evaluated 3 of them in a nonhuman primate model. A single immunization with an attenuated strain of CHIKV (Δ5nsP3), a homologous prime-boost immunization with a DNA-launched RNA replicon encoding CHIKV envelope proteins (DREP-E), and a DREP-E prime followed by a recombinant modified vaccinia virus Ankara encoding CHIKV capsid and envelope (MVA-CE) boost all induced protection against WT CHIKV infection. The attenuated Δ5nsP3 virus proved to be safe and did not show any clinical signs typically associated with WT CHIKV infections such as fever, skin rash, lymphopenia, or joint swelling. These vaccines are based on an East/Central/South African strain of Indian Ocean lineage, but they also generated neutralizing antibodies against an isolate of the Asian genotype that now is rapidly spreading across the Americas. These results form the basis for clinical development of an efficacious CHIKV vaccine that generates both humoral and cellular immunity with long-term immunological memory.
Collapse
Affiliation(s)
- Pierre Roques
- Université Paris Sud, UMR 1184, Orsay, France.,CEA, DSV/iMETI, Division of Immuno-Virology, IDMIT center.,Inserm, U1184, Center for immunology of viral infections and autoimmune diseases, Fontenay aux Roses, France
| | - Karl Ljungberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Beate M Kümmerer
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Leslie Gosse
- Université Paris Sud, UMR 1184, Orsay, France.,CEA, DSV/iMETI, Division of Immuno-Virology, IDMIT center.,Inserm, U1184, Center for immunology of viral infections and autoimmune diseases, Fontenay aux Roses, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris Sud, UMR 1184, Orsay, France.,CEA, DSV/iMETI, Division of Immuno-Virology, IDMIT center.,Inserm, U1184, Center for immunology of viral infections and autoimmune diseases, Fontenay aux Roses, France
| | - Nicolas Tchitchek
- Université Paris Sud, UMR 1184, Orsay, France.,CEA, DSV/iMETI, Division of Immuno-Virology, IDMIT center.,Inserm, U1184, Center for immunology of viral infections and autoimmune diseases, Fontenay aux Roses, France
| | - David Hallengärd
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Roger Le Grand
- Université Paris Sud, UMR 1184, Orsay, France.,CEA, DSV/iMETI, Division of Immuno-Virology, IDMIT center.,Inserm, U1184, Center for immunology of viral infections and autoimmune diseases, Fontenay aux Roses, France
| | - Peter Liljeström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
192
|
Trobaugh DW, Klimstra WB. Alphaviruses suppress host immunity by preventing myeloid cell replication and antagonizing innate immune responses. Curr Opin Virol 2017; 23:30-34. [PMID: 28288385 DOI: 10.1016/j.coviro.2017.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/10/2017] [Accepted: 02/16/2017] [Indexed: 12/21/2022]
Abstract
Alphaviruses are medically important mosquito-borne viruses that cause a range of diseases in humans from febrile illness to arthritis or encephalitis. The innate immune response functions to suppress virus replication through upregulation of antiviral molecules and contributes to development of the adaptive immune response. Myeloid cells act as master regulators of virus infection by initiating both the innate and adaptive immune responses. Alphaviruses are capable of antagonizing individual components of these responses to increase replicative fitness in vivo. However, recently, studies have demonstrated that some alphaviruses avoid myeloid cell replication altogether to achieve a similar effect. In this review, we summarize how alphaviruses evade myeloid cell infection and individual inductive mechanisms, thereby limiting the activation of the innate immune response.
Collapse
Affiliation(s)
- Derek W Trobaugh
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - William B Klimstra
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
193
|
Silva LA, Dermody TS. Chikungunya virus: epidemiology, replication, disease mechanisms, and prospective intervention strategies. J Clin Invest 2017; 127:737-749. [PMID: 28248203 PMCID: PMC5330729 DOI: 10.1172/jci84417] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chikungunya virus (CHIKV), a reemerging arbovirus, causes a crippling musculoskeletal inflammatory disease in humans characterized by fever, polyarthralgia, myalgia, rash, and headache. CHIKV is transmitted by Aedes species of mosquitoes and is capable of an epidemic, urban transmission cycle with high rates of infection. Since 2004, CHIKV has spread to new areas, causing disease on a global scale, and the potential for CHIKV epidemics remains high. Although CHIKV has caused millions of cases of disease and significant economic burden in affected areas, no licensed vaccines or antiviral therapies are available. In this Review, we describe CHIKV epidemiology, replication cycle, pathogenesis and host immune responses, and prospects for effective vaccines and highlight important questions for future research.
Collapse
|
194
|
Mutation of the N-Terminal Region of Chikungunya Virus Capsid Protein: Implications for Vaccine Design. mBio 2017; 8:mBio.01970-16. [PMID: 28223458 PMCID: PMC5358915 DOI: 10.1128/mbio.01970-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mosquito-transmitted chikungunya virus (CHIKV) is an arthritogenic alphavirus of the Togaviridae family responsible for frequent outbreaks of arthritic disease in humans. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleolus. In encephalitic alphaviruses, nuclear translocation induces host cell transcriptional shutoff; however, the role of capsid protein nucleolar localization in arthritogenic alphaviruses remains unclear. Using recombinant enhanced green fluorescent protein (EGFP)-tagged expression constructs and CHIKV infectious clones, we describe a nucleolar localization sequence (NoLS) in the N-terminal region of capsid protein, previously uncharacterized in CHIKV. Mutation of the NoLS by site-directed mutagenesis reduced efficiency of nuclear import of CHIKV capsid protein. In the virus, mutation of the capsid protein NoLS (CHIKV-NoLS) attenuated replication in mammalian and mosquito cells, producing a small-plaque phenotype. Attenuation of CHIKV-NoLS is likely due to disruption of the viral replication cycle downstream of viral RNA synthesis. In mice, CHIKV-NoLS infection caused no disease signs compared to wild-type CHIKV (CHIKV-WT)-infected mice; lack of disease signs correlated with significantly reduced viremia and decreased expression of proinflammatory factors. Mice immunized with CHIKV-NoLS, challenged with CHIKV-WT at 30 days postimmunization, develop no disease signs and no detectable viremia. Serum from CHIKV-NoLS-immunized mice is able to efficiently neutralize CHIKV infection in vitro. Additionally, CHIKV-NoLS-immunized mice challenged with the related alphavirus Ross River virus showed reduced early and peak viremia postchallenge, indicating a cross-protective effect. The high degree of CHIKV-NoLS attenuation may improve CHIKV antiviral and rational vaccine design. CHIKV is a mosquito-borne pathogen capable of causing explosive epidemics of incapacitating joint pain affecting millions of people. After a series of major outbreaks over the last 10 years, CHIKV and its mosquito vectors have been able to expand their range extensively, now making CHIKV a human pathogen of global importance. With no licensed vaccine or antiviral therapy for the treatment of CHIKV disease, there is a growing need to understand the molecular determinants of viral pathogenesis. These studies identify a previously uncharacterized nucleolar localization sequence (NoLS) in CHIKV capsid protein, begin a functional analysis of site-directed mutants of the capsid protein NoLS, and examine the effect of the NoLS mutation on CHIKV pathogenesis in vivo and its potential to influence CHIKV vaccine design. A better understanding of the pathobiology of CHIKV disease will aid the development of effective therapeutic strategies.
Collapse
|
195
|
RNA-Seq analysis of chikungunya virus infection and identification of granzyme A as a major promoter of arthritic inflammation. PLoS Pathog 2017; 13:e1006155. [PMID: 28207896 PMCID: PMC5312928 DOI: 10.1371/journal.ppat.1006155] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023] Open
Abstract
Chikungunya virus (CHIKV) is an arthritogenic alphavirus causing epidemics of acute and chronic arthritic disease. Herein we describe a comprehensive RNA-Seq analysis of feet and lymph nodes at peak viraemia (day 2 post infection), acute arthritis (day 7) and chronic disease (day 30) in the CHIKV adult wild-type mouse model. Genes previously shown to be up-regulated in CHIKV patients were also up-regulated in the mouse model. CHIKV sequence information was also obtained with up to ≈8% of the reads mapping to the viral genome; however, no adaptive viral genome changes were apparent. Although day 2, 7 and 30 represent distinct stages of infection and disease, there was a pronounced overlap in up-regulated host genes and pathways. Type I interferon response genes (IRGs) represented up to ≈50% of up-regulated genes, even after loss of type I interferon induction on days 7 and 30. Bioinformatic analyses suggested a number of interferon response factors were primarily responsible for maintaining type I IRG induction. A group of genes prominent in the RNA-Seq analysis and hitherto unexplored in viral arthropathies were granzymes A, B and K. Granzyme A-/- and to a lesser extent granzyme K-/-, but not granzyme B-/-, mice showed a pronounced reduction in foot swelling and arthritis, with analysis of granzyme A-/- mice showing no reductions in viral loads but reduced NK and T cell infiltrates post CHIKV infection. Treatment with Serpinb6b, a granzyme A inhibitor, also reduced arthritic inflammation in wild-type mice. In non-human primates circulating granzyme A levels were elevated after CHIKV infection, with the increase correlating with viral load. Elevated granzyme A levels were also seen in a small cohort of human CHIKV patients. Taken together these results suggest granzyme A is an important driver of arthritic inflammation and a potential target for therapy. Trial Registration: ClinicalTrials.gov NCT00281294 The largest chikungunya virus (CHIKV) epidemic ever recorded began in 2004 in Africa and spread across Asia reaching Europe and recently the Americas, with millions of cases reported. We undertook a detailed analysis of the mRNA expression profile during acute and chronic arthritis in an adult wild-type mouse model of CHIKV infection and disease. Gene induction profiles showed a high concordance with published human data, providing some validation of the mouse model. The host response was overwhelmingly dominated by type I interferon response genes, even after type I interferon induction was lost. The analysis also provided information on CHIKV RNA, with no adaptive viral genome changes identified. An important goal of the analysis was to identify new players in arthritic inflammation. Granzyme A was prominent in the RNA-Seq data and granzyme A deficient mice showed reduced arthritis, with no effects on viral loads. Arthritic disease could also be ameliorated in wild-type mice with a granzyme A inhibitor. Elevated circulating granzyme A levels were seen in non-human primates infected with CHIKV and in human CHIKV patients. Granzyme A thus emerges to be a major driver of CHIKV-mediated arthritic inflammation and a potential target for anti-inflammatory interventions.
Collapse
|
196
|
Miner JJ, Cook LE, Hong JP, Smith AM, Richner JM, Shimak RM, Young AR, Monte K, Poddar S, Crowe JE, Lenschow DJ, Diamond MS. Therapy with CTLA4-Ig and an antiviral monoclonal antibody controls chikungunya virus arthritis. Sci Transl Med 2017; 9:eaah3438. [PMID: 28148840 PMCID: PMC5448557 DOI: 10.1126/scitranslmed.aah3438] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/21/2016] [Accepted: 12/02/2016] [Indexed: 12/12/2022]
Abstract
In 2013, chikungunya virus (CHIKV) transmission was documented in the Western Hemisphere, and the virus has since spread throughout the Americas with more than 1.8 million people infected in more than 40 countries. CHIKV targets the joints, resulting in symmetric polyarthritis that clinically mimics rheumatoid arthritis and can endure for months to years. At present, no approved treatment is effective in preventing or controlling CHIKV infection or disease. We treated mice with eight different disease-modifying antirheumatic drugs and identified CLTA4-Ig (abatacept) and tofacitinib as candidate therapies based on their ability to decrease acute joint swelling. CTLA4-Ig reduced T cell accumulation in the joints of infected animals without affecting viral infection. Whereas monotherapy with CTLA4-Ig or a neutralizing anti-CHIKV human monoclonal antibody provided partial clinical improvement, therapy with both abolished swelling and markedly reduced levels of chemokines, proinflammatory cytokines, and infiltrating leukocytes. Thus, combination CTLA4-Ig and antiviral antibody therapy controls acute CHIKV infection and arthritis and may be a candidate for testing in humans.
Collapse
Affiliation(s)
- Jonathan J Miner
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lindsey E Cook
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jun P Hong
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amber M Smith
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Justin M Richner
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Raeann M Shimak
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alissa R Young
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kristen Monte
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Subhajit Poddar
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James E Crowe
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Deborah J Lenschow
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
197
|
Mathew AJ, Ganapati A, Kabeerdoss J, Nair A, Gupta N, Chebbi P, Mandal SK, Danda D. Chikungunya Infection: a Global Public Health Menace. Curr Allergy Asthma Rep 2017; 17:13. [PMID: 28233156 DOI: 10.1007/s11882-017-0680-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chikungunya virus (CHIKV) has been involved in epidemics in African and Asian subcontinents and, of late, has transcended to affect the Americas. Aedes aegypti and Aedes albopictus are the major vectors for CHIKV infection, which results in dissemination of virus to various vital organs. Entry of virus into these tissues causes infiltration of innate immune cells, monocytes, macrophages, neutrophils, natural killer cells, and adaptive immune cells. Macrophages bearing the replicating virus, in turn, secrete pro-inflammatory cytokines IL-1β, TNF-α, and IL-17. Together, this pro-inflammatory milieu induces osteoclastogenesis, bone loss, and erosion. CHIKV is characterized by fever, headache, myalgia, rash, and symmetric polyarthritis, which is generally self-limiting. In a subset of cases, however, musculoskeletal symptoms may persist for up to 3-5 years. Viral culture and isolation from blood cells of infected patients are the gold standards for diagnosis of CHIKV. In routine practice, however, assays for anti-CHIKV IgM antibodies are used for diagnosis, as elevated levels in blood of infected patients are noted from 10 days following infection for up to 3-6 months. Early diagnosis of CHIKV is possible by nucleic acid detection techniques. Treatment of acute CHIKV is mainly symptomatic, with analgesics, non-steroidal anti-inflammatory agents (NSAIDs), and low-dose steroids. No vaccines or anti-viral medicines have been approved for clinical therapy in CHIKV as yet. Hydroxychloroquine and methotrexate have been used in chronic CHIKV infection with variable success.
Collapse
Affiliation(s)
- A J Mathew
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, 632 004, India
| | - A Ganapati
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, 632 004, India
| | - J Kabeerdoss
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, 632 004, India
| | - A Nair
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, 632 004, India
| | - N Gupta
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, 632 004, India
| | - P Chebbi
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, 632 004, India
| | - S K Mandal
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, 632 004, India
| | - Debashish Danda
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, 632 004, India.
| |
Collapse
|
198
|
Nayak TK, Mamidi P, Kumar A, Singh LPK, Sahoo SS, Chattopadhyay S, Chattopadhyay S. Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages. Viruses 2017; 9:v9010003. [PMID: 28067803 PMCID: PMC5294972 DOI: 10.3390/v9010003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/15/2022] Open
Abstract
Chikungunya virus (CHIKV) infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6) MHC-I/II and B7.2 (CD86) were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology.
Collapse
Affiliation(s)
- Tapas K Nayak
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha 752050, India.
| | - Prabhudutta Mamidi
- Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha 751023, India.
| | - Abhishek Kumar
- Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha 751023, India.
| | - Laishram Pradeep K Singh
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha 752050, India.
| | - Subhransu S Sahoo
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha 752050, India.
| | - Soma Chattopadhyay
- Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha 751023, India.
| | - Subhasis Chattopadhyay
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha 752050, India.
| |
Collapse
|
199
|
Abstract
Dengue viruses are the most important arboviral pathogens in the world, which have adapted to human transmission and replication over several hundred years and were initially recognized to cause outbreaks of clinical disease in tropical and subtropical countries by Aedes aegypti mosquitoes. Subsequent global expansion of dengue infection outbreaks has occurred, with millions of cases yearly, probably from a combination of factors including proliferation of international travel and trade, possibly global climate changes, adaptation of the vectors to new environment, and emergence of a new mosquito vector, Aedes albopictus. Chikungunya virus, also transmitted by Aedes mosquitoes, causes a very similar clinical disease but with more prominent arthralgia or arthritis and was originally described in Africa in the 1960s. After a quiescent period of several decades, it reemerged in Africa in 2004 and rapidly spread across the Indian Ocean to involve Asian countries and parts of Europe. However, the past 2 years have seen the emergence of chikungunya virus in the western hemisphere with major outbreaks in the Caribbean and the Americas. Similar to dengue virus, chikungunya virus has adapted to Ae. albopictus mosquitoes which can transmit the disease. Although dengue infection is a more deadly disease especially in young children, chikungunya infection can cause prolonged severe disability and occasionally rare fatalities from encephalitis. No specific treatment is available for either diseases, but development of an effective vaccine for dengue infection is in progress. Until 2007, Zika virus [also transmitted by Aedes species] was associated with only sporadic mild infections in Africa and Asia. In 2007, Zika virus for the first time caused an outbreak beyond Africa and Asia to the Yap Island in the Federated States of Micronesia. Since then Zika virus has spread to French Polynesia, New Caledonia, Cook Islands, and Easter Island in the southeastern Pacific Ocean [Chile] in 2014 and by 2015 to Brazil. By January 2016, it became evident that Zika virus had caused an explosive outbreak in the Americas and the Caribbean with over 30 countries affected. On February 1, 2016, the World Health Organization declared Zika outbreak a global public health emergency. Zika virus infection is most commonly asymptomatic, and 20% of patients may develop a mild viral disease, but of major concern is the reported association of microcephaly in infected pregnant women in Brazil. This chapter explores the history, epidemiology, pathogenesis, clinical features, treatment, and prevention of these rapidly emerging zoonoses.
Collapse
|
200
|
Rodríguez-Morales AJ, Cardona-Ospina JA, Fernanda Urbano-Garzón S, Sebastian Hurtado-Zapata J. Prevalence of Post-Chikungunya Infection Chronic Inflammatory Arthritis: A Systematic Review and Meta-Analysis. Arthritis Care Res (Hoboken) 2016; 68:1849-1858. [PMID: 27015439 DOI: 10.1002/acr.22900] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 03/15/2016] [Accepted: 03/22/2016] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To determine the percentage of patients who would develop chronic inflammatory rheumatism (CIR) following chikungunya (CHIK) virus disease. METHODS We conducted a systematic review of the literature in 3 databases (PubMed, Science Citation Index, and Scopus) to identify studies assessing the proportion of patients who progress to CHIK-CIR. We performed a random-effects model meta-analysis to calculate the pooled prevalence and 95% confidence intervals (95% CIs). A 2-tailed alpha level of 5% was used for hypothesis testing. Measures of heterogeneity, including Cochran's Q statistic, the I2 index, and the tau-squared test, were calculated and reported. Subgroup analyses were conducted by type of study and country, by studies evaluating chronic arthritis, and by studies with ≥200 patients and followup ≥18 months. Publication bias was assessed using a funnel-plot. RESULTS Up to June 15, 2015, our literature search yielded 578 citations. The pooled prevalence of CHIK-CIR in 18 selected studies among 5,702 patients was 40.22% (95% CI 31.11-49.34; τ2 = 0.0838). From studies derived from India, prevalence was 27.27% (95% CI 15.66-38.88; τ2 = 0.0411), while from France, prevalence was 50.25% (95% CI 25.38-75.12; τ2 = 0.1797). The prevalence of CHIK chronic arthritis was 13.66% (95% CI 9.31-18.00; τ2 = 0.0060). Considering just those studies with ≥200 patients assessed, prevalence was 34.14% (95% CI 23.99-44.29; τ2 = 0.0525). In studies with a followup ≥18 months, prevalence was 32.13% (95% CI 22.21-42.04; τ2 = 0.0453). CONCLUSION According to our results in the most conservative scenario, approximately 25% of CHIK cases would develop CHIK-CIR (34% if we just consider the most representative studies), and 14% would develop chronic arthritis.
Collapse
Affiliation(s)
- Alfonso J Rodríguez-Morales
- Research Group Public Health and Infection, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Risaralda, and Organización Latinoamericana para el Fomento de la Investigación en Salud, Bucaramanga, Santander, Colombia
| | - Jaime A Cardona-Ospina
- Research Group Public Health and Infection, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Risaralda, Colombia
| | - Sivia Fernanda Urbano-Garzón
- Research Group Public Health and Infection, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Risaralda, Colombia
| | - Juan Sebastian Hurtado-Zapata
- Research Group Public Health and Infection, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Risaralda, Colombia
| |
Collapse
|