151
|
Angelov D, Lenouvel F, Hans F, Müller CW, Bouvet P, Bednar J, Moudrianakis EN, Cadet J, Dimitrov S. The histone octamer is invisible when NF-kappaB binds to the nucleosome. J Biol Chem 2004; 279:42374-82. [PMID: 15269206 DOI: 10.1074/jbc.m407235200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor NF-kappaB is involved in the transcriptional control of more than 150 genes, but the way it acts at the level of nucleosomal templates is not known. Here we report on a study examining the interaction of NF-kappaB p50 with its DNA recognition sequence in a positioned nucleosome. We demonstrate that NF-kappaB p50 was able to bind to the nucleosome with an apparent association constant close to that for free DNA. In agreement with this, the affinity of NF-kappaB p50 binding does not depend on the localization of its recognition sequence relative to the nucleosome dyad axis. In addition, the binding of NF-kappaB p50 does not induce eviction of histones and does not perturb the overall structure of the nucleosome. The NF-kappaB p50-nucleosome complex exhibits, however, local structural alterations within the NF-kappaB p50 recognition site. Importantly, these alterations were very similar to those found in the NF-kappaB p50-DNA complex. Our data suggest that NF-kappaB p50 can accommodate the distorted, bent DNA within the nucleosome. This peculiar property of NF-kappaB p50 might have evolved to meet the requirements for its function as a central switch for stress responses.
Collapse
Affiliation(s)
- Dimitar Angelov
- Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation, INSERM U309, Institut Albert Bonniot, Domaine de la Merci, 38706 La Tronche Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Belikov S, Astrand C, Holmqvist PH, Wrange O. Chromatin-mediated restriction of nuclear factor 1/CTF binding in a repressed and hormone-activated promoter in vivo. Mol Cell Biol 2004; 24:3036-47. [PMID: 15024090 PMCID: PMC371135 DOI: 10.1128/mcb.24.7.3036-3047.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) promoter-driven transcription is induced by glucocorticoid hormone via binding of the glucocorticoid receptor (GR). The MMTV promoter also harbors a binding site for nuclear factor 1 (NF1). NF1 and GR were expressed in Xenopus oocytes; this revealed GR-NF1 cooperativity both in terms of DNA binding and chromatin remodeling but not transcription. A fraction of NF1 sites were occupied in a hormone-dependent fashion, but a significant and NF1 concentration-dependent fraction were constitutively bound. Activation of the MMTV promoter resulted in an approximately 50-fold increase in the NF1 accessibility for its DNA site. The hormone-dependent component of NF1 binding was dissociated by addition of a GR antagonist; however, the antagonist RU486, which supports partial GR-DNA binding, also maintained partial NF1 binding. Hence GR-NF1 cooperativity is independent of agonist-driven chromatin remodeling. NF1 induced the formation of a micrococcal-nuclease-resistant protein-DNA complex containing the DNA segment from -185 to -55, the MMTV enhanceosome. Coexpression of NF1 and Oct1 resulted in a significant stimulation of hormone-induced MMTV transcription and also in increased basal transcription. We propose that hormone-independent NF1 binding may be involved in maintaining transcriptional competence and establishment of tissue-specific gene networks.
Collapse
Affiliation(s)
- Sergey Belikov
- Department of Cell and Molecular Biology, The Medical Nobel Institute, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | | | |
Collapse
|
153
|
Lu J, Pazin MJ, Ravid K. Properties of ets-1 binding to chromatin and its effect on platelet factor 4 gene expression. Mol Cell Biol 2004; 24:428-41. [PMID: 14673175 PMCID: PMC303331 DOI: 10.1128/mcb.24.1.428-441.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ets-1 is important for transcriptional regulation in several hematopoietic lineages, including megakaryocytes. Some transcription factors bind to naked DNA and chromatin with different affinities, while others do not. In the present study we used the megakaryocyte-specific promoters platelet factor 4 (PF4), and glycoprotein IIb (GPIIb) as model systems to explore the properties of Ets-1 binding to chromatin. Chromatin immunoprecipitation assays indicated that Ets-1 binds to proximal regions in the PF4 and GPIIb promoters in vivo. In vitro and in vivo experiments showed that Ets-1 binding to chromatin on lineage-specific promoters does not require lineage-specific factors. Moreover, this binding shows the same order of affinity as the binding to naked DNA and does not require ATP-dependent or Sarkosyl-sensitive factors. The effect of Ets-1 binding on promoter activity was examined using the PF4 promoter as a model. We identified a novel Ets-1 site (at -50), and a novel Sarkosyl-sensitive DNase I-hypersensitive site generated by Ets-1 binding to chromatin, which significantly affect PF4 promoter activity. Taken together, our results suggest a model by which Ets-1 binds to chromatin without the need for lineage-specific accessory factors, and Ets-1 binding induces changes in chromatin and affects transactivation, which are essential for PF4 promoter activation.
Collapse
Affiliation(s)
- Jun Lu
- Department of Biochemistry, Cancer Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
154
|
Ishii H, Sen R, Pazin MJ. Combinatorial control of DNase I-hypersensitive site formation and erasure by immunoglobulin heavy chain enhancer-binding proteins. J Biol Chem 2003; 279:7331-8. [PMID: 14660676 DOI: 10.1074/jbc.m308973200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNase I-hypersensitive sites in cellular chromatin are usually believed to be nucleosome-free regions generated by transcription factor binding. Using a cell-free system we show that hypersensitivity does not simply correlate with the number of DNA-bound proteins. Specifically, the leucine zipper containing basic helix-loop-helix protein TFE3 was sufficient to induce a DNase I-hypersensitive site at the immunoglobulin heavy chain micro enhancer in vitro. TFE3 enhanced binding of an ETS protein PU.1 to the enhancer. However, PU.1 binding erased the DNase I-hypersensitive site without abolishing TFE3 binding. Furthermore, TFE3 binding enhanced transcription in the presence and absence of a hypersensitive site, whereas endonuclease accessibility correlated strictly with DNase I hypersensitivity. We infer that chromatin constraints for transcription and nuclease sensitivity can differ.
Collapse
Affiliation(s)
- Haruhiko Ishii
- Graduate Program in Biophysics and Structural Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
155
|
Akitaya T, Tsumoto K, Yamada A, Makita N, Kubo K, Yoshikawa K. NTP concentration switches transcriptional activity by changing the large-scale structure of DNA. Biomacromolecules 2003; 4:1121-5. [PMID: 12959573 DOI: 10.1021/bm034017w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is becoming clearer that genetic activity is closely associated with the intracellular energy state. However, the mechanisms of this association are still unclear. In this study, we focused on large-scale changes in the structure of DNA to examine the effect of the NTP concentration on the transcription reaction with T7 RNA polymerase and compared the results with long duplex DNA to those with a short persistent-length(1) fragment. The transcriptional activity dramatically changed only for long duplex DNA within a narrow range of NTP concentrations associated with changes in the large-scale structure of DNA. This result suggests that the energy state may play an essential role in regulating ON/OFF switching on transcriptional activity.
Collapse
Affiliation(s)
- Tatsuo Akitaya
- Department of Physics, Graduate School of Science, Kyoto University, and CREST, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
156
|
Morse RH. Getting into chromatin: how do transcription factors get past the histones? Biochem Cell Biol 2003; 81:101-12. [PMID: 12897843 DOI: 10.1139/o03-039] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transcriptional activators and the general transcription machinery must gain access to DNA that in eukaryotes may be packaged into nucleosomes. In this review, I discuss this problem from the standpoint of the types of chromatin structures that these DNA-binding proteins may encounter, and the mechanisms by which they may contend with various chromatin structures. The discussion includes consideration of experiments in which chromatin structure is manipulated in vivo to confront activators with nucleosomal binding sites, and the roles of nucleosome dynamics and activation domains in facilitating access to such sites. Finally, the role of activators in facilitating access of the general transcriptional machinery to sites in chromatin is discussed.
Collapse
Affiliation(s)
- Randall H Morse
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, University at Albany School of Public Health, 12201-2002, USA.
| |
Collapse
|
157
|
Mizutani A, Tanaka M. Regions of GAL4 critical for binding to a promoter in vivo revealed by a visual DNA-binding analysis. EMBO J 2003; 22:2178-87. [PMID: 12727884 PMCID: PMC156092 DOI: 10.1093/emboj/cdg220] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Binding of transcriptional activators to specific sites on DNA, mediated by their DNA-binding domain, is a key regulatory point in transcriptional regulation. With a GFP-based microscopic assay, we investigated how the prototypical activator GAL4 effectively binds to a promoter in living yeast cells. We show that GAL4 relies on a previously unrevealed mechanism involving 'DNA-binding enhancers' (DBEs), the regions of GAL4 that assist DNA-binding domain association with DNA. GAL4 contains two DBEs, one, but not the other, physically overlapping the principal transcriptional activation domain. Either of the DBEs, however, can function independently of transcriptional activation, indicating a discrete mechanism responsible for DNA-binding enhancement. The effect of DBEs, while not limited to natural target promoters, is still not universal and can be profoundly affected by the binding-site context. The GAL4 DBEs can also enhance promoter binding of an unrelated DNA-binding domain, and possibly represent a new modular functional unit responsible for effective binding of diverse regulatory factors to DNA in vivo.
Collapse
Affiliation(s)
- Akiko Mizutani
- Unit Process and Combined Circuit, PRESTO, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 332-0012, Japan
| | | |
Collapse
|
158
|
Angelov D, Molla A, Perche PY, Hans F, Côté J, Khochbin S, Bouvet P, Dimitrov S. The histone variant macroH2A interferes with transcription factor binding and SWI/SNF nucleosome remodeling. Mol Cell 2003; 11:1033-41. [PMID: 12718888 DOI: 10.1016/s1097-2765(03)00100-x] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The unusual histone variant macroH2A (mH2A) has been associated with repression of transcription, but the molecular mechanisms by which it exerts this function are unknown. Here we have identified a mechanism by which the different domains of mH2A may be involved in the repression of transcription. Evidence is presented that the presence of mH2A in a positioned nucleosome interferes with the binding of the transcription factor NF-kappaB. The nonhistone region of mH2A was identified to be associated with this interference. Importantly, the presence of macroH2A was found to severely impede SWI/SNF nucleosome remodeling and movement to neighboring DNA segments. This property of mH2A was demonstrated to reside only in its H2A-like domain. A hypothesis explaining the role of histone variants in transcriptional regulation is proposed.
Collapse
Affiliation(s)
- Dimitar Angelov
- Ecole Normale Supérieure de Lyon, CNRS-UMR 5665, 46 Allée d'Italie, France
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Braastad CD, Han Z, Hendrickson EA. Constitutive DNase I hypersensitivity of p53-regulated promoters. J Biol Chem 2003; 278:8261-8. [PMID: 12475992 DOI: 10.1074/jbc.m204256200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of p53 to alter, at the transcriptional level, the gene expression of downstream targets is critical for its role as a tumor suppressor. Most models of p53 activation postulate the stepwise recruitment by p53 of coactivators, histone acetyltransferases, and/or chromatin remodeling factors to a promoter region to facilitate the subsequent access of the general transcriptional machinery required for transcriptional induction. We demonstrate here, however, that the promoter regions for the p53 target genes, p21, 14-3-3sigma, and KARP-1, exist in a constitutively open conformation that is readily accessible to DNase I. This conformation was not altered by DNA damage or by whether p53 was present or absent in the cell. In contrast, p53 response elements, which resided outside the immediate promoter regions, existed within DNase I-resistant chromatin domains. Thus, p53 activation of downstream target genes occurs without p53 inducing chromatin alterations detectable by DNase I accessibility at either the promoter or the response element. As such, these data support models of p53 activation that do not require extensive chromatin alterations to support cognate gene expression.
Collapse
Affiliation(s)
- Corey D Braastad
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
160
|
Abstract
The mechanism by which gene regulatory proteins gain access to their DNA target sites is not known. In vitro, binding is inherently cooperative between arbitrary DNA binding proteins whose target sites are located within the same nucleosome. We refer to such competition-based cooperativity as collaborative competition. Here we show that arbitrarily chosen foreign DNA binding proteins, LexA and Tet repressor, cooperate with an adjacently binding endogenous activator protein, Gcn4, to coactivate expression of chromosomal reporter genes in Saccharomyces cerevisiae. Coactivation requires that the cooperating target sites be within a nucleosome-length distance; it leads to increased occupancy by Gcn4 at its binding site; and it requires both Gcn5 and Swi/Snf which, at an endogenous Gcn4-dependent promoter, act subsequent to Gcn4 binding. These results imply that collaborative competition contributes to gene regulation in vivo. They further imply that, even in the presence of the cell's full wild-type complement of chromatin remodeling factors, competition of regulatory proteins with histone octamer for access to regulatory target sites remains a quantitative determinant of gene expression levels. We speculate that initial target site recognition and binding may occur via spontaneous nucleosomal site exposure, with remodeling factor action required downstream to lock in higher levels of regulatory protein occupancy.
Collapse
Affiliation(s)
- Joanna A Miller
- Department of Biochemistry, Molecular Biology and Cellular Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | |
Collapse
|
161
|
Urnov FD. A feel for the template: zinc finger protein transcription factors and chromatin. Biochem Cell Biol 2003; 80:321-33. [PMID: 12123285 DOI: 10.1139/o02-084] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transcription factors and chromatin collaborate in bringing the eukaryotic genome to life. An important, and poorly understood, aspect of this collaboration involves targeting the regulators to correct binding sites in vivo. An implicit and insufficiently tested assumption in the field has been that chromatin simply obstructs most sites and leaves only a few functionally relevant ones accessible. The major class of transcription factors in all metazoa, zinc finger proteins (ZFPs), can bind to chromatin in vitro (as clearly shown for Spl, GATA-1 and -4, and the nuclear hormone receptors, for example). Data on the accessibility of DNA within heterochromatin to nonhistone regulators (E.A. Sekinger and D.S. Gross. 2001. Mol. Cell 105: 403-414; C. Jolly et al. 2002. J. Cell. Biol. 156: 775-781) and the ability of the basal transcription machinery to reside within highly condensed chromatin (most recently, R. Christova and T. Oelgeschlaeger. 2002. Nat. Cell Biol. 4: 79-82) further weaken the argument that chromatin acts as an across-the-board deterrent to ZFP binding. These proteins, however, do not bind promiscuously in vivo, and recent data on human cells (C.E. Horak et al. 2002. Proc. Natl. Acad. Sci. U.S.A. 99: 2924-2929) confirm earlier data on budding yeast (B. Ren et al. 2000. Science (Washington, D.C.), 290: 2306-2309) that primary DNA sequence, i.e., density of binding sites per unit DNA length, is not the primary determinant of where a ZFP transcription factor will bind in vivo. This article reviews these data and uses ZFP transcription factors as a model system to compare in vitro binding to chromatin by transcription factors with their in vivo behavior in gene regulation. DNA binding domain structure, nonrandom nucleoprotein organization of chromatin at target promoters, and cooperativity of regulator action may all contribute to target site selection in vivo.
Collapse
Affiliation(s)
- Fyodor D Urnov
- Sangamo Biosciences, Pt Richmond Tech Centre, Richmond, CA 94804, USA.
| |
Collapse
|
162
|
Galea AM, Murray V. The interaction of cisplatin and analogues with DNA in reconstituted chromatin. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1579:142-52. [PMID: 12427549 DOI: 10.1016/s0167-4781(02)00535-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The influence of chromatin structure on cis-diamminedichloroplatinum(II) (cisplatin) DNA damage was investigated in a reconstituted nucleosome system. Nucleosomes were reconstituted on the somatic 5S rRNA gene from Xenopus borealis using the octamer transfer method of reconstitution. Footprinting techniques, utilising bleomycin and DNase I as the damaging agents, were employed to establish the precise location of positioned nucleosomes with respect to the DNA sequence. Reconstituted nucleosomal DNA was treated with cisplatin and drug-induced DNA adduct formation was quantitatively analysed with a polymerase stop assay using Taq DNA polymerase. A densitometric comparison of the relative damage band intensities between purified and reconstituted DNA revealed regions of relative protection corresponding to the sites of the positioned nucleosome cores. This indicated that the preferred site of cisplatin DNA binding was in the linker region of the nucleosome. Statistical analysis showed significant protection from cisplatin DNA damage in the core region of the nucleosome. Three cisplatin analogues were also investigated in this reconstituted nucleosome system. These analogues, cis-diammine(1,1-cyclobutanedicarboxylato)platinum(II) (carboplatin), cis-dichlorobis(cyclohexylamine)platinum(II) (cis-[PtCl(2)(C(6)H(11)NH(2))(2)]) and dichloro(N-[3-[(2-aminoethyl)-amino]propyl]acridine-4-carboxamide)platinum(II) (ac-PtenCl(2)(n3)), were also found to target the linker region of the nucleosome. The latter DNA-targeted acridine-platinum complex gave rise to the most predominant footprints of all the Pt compounds tested.
Collapse
Affiliation(s)
- Anne M Galea
- School of Biochemistry and Molecular Genetics, University of New South Wales, NSW 2052, Sydney, Australia
| | | |
Collapse
|
163
|
Hernández-Munain C, Krangel MS. Distinct roles for c-Myb and core binding factor/polyoma enhancer-binding protein 2 in the assembly and function of a multiprotein complex on the TCR delta enhancer in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4362-9. [PMID: 12370369 DOI: 10.4049/jimmunol.169.8.4362] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Enhancers and promoters within TCR loci functionally collaborate to modify chromatin structure and to confer accessibility to the transcription and V(D)J recombination machineries during T cell development in the thymus. Two enhancers at the TCRalphadelta locus, the TCR alpha enhancer and the TCR delta enhancer (Edelta), are responsible for orchestrating the distinct developmental programs for V(D)J recombination and transcription of the TCR alpha and delta genes, respectively. Edelta function depends critically on transcription factors core binding factor (CBF)/polyoma enhancer-binding protein 2 (PEBP2) and c-Myb as measured by transcriptional activation of transiently transfected substrates in Jurkat cells, and by activation of V(D)J recombination within chromatin-integrated substrates in transgenic mice. To understand the molecular mechanisms for synergy between these transcription factors in the context of chromatin, we used in vivo footprinting to study the requirements for protein binding to Edelta within wild-type and mutant versions of a human TCR delta minilocus in stably transfected Jurkat cells. Our data indicate that CBF/PEBP2 plays primarily a structural role as it induces a conformational change in the enhanceosome that is associated with augmented binding of c-Myb. In contrast, c-Myb has no apparent affect on CBF/PEBP2 binding, but is critical for transcriptional activation. Thus, our data reveal distinct functions for c-Myb and CBF/PEBP2 in the assembly and function of an Edelta enhanceosome in the context of chromatin in vivo.
Collapse
MESH Headings
- Base Sequence
- Binding Sites/genetics
- Binding Sites/immunology
- Core Binding Factor Alpha 1 Subunit
- Core Binding Factor beta Subunit
- Core Binding Factors
- DNA Footprinting
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Enhancer Elements, Genetic/immunology
- Humans
- Jurkat Cells
- Molecular Sequence Data
- Neoplasm Proteins
- Protein Conformation
- Proto-Oncogene Proteins c-myb/metabolism
- Proto-Oncogene Proteins c-myb/physiology
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Transcription Factor AP-2
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcriptional Activation/immunology
- Transfection
- Tumor Cells, Cultured
Collapse
|
164
|
Abstract
Transcriptional regulation is mediated by a battery of transcription factor (TF) proteins, that form complexes involving protein-protein and protein-DNA interactions. Individual TFs bind to their cognate cis-elements or transcription factor-binding sites (TFBS). TFBS are organized on the DNA proximal to the gene in groups confined to a few hundred base pair regions. These groups are referred to as modules. Various modules work together to provide the combinatorial regulation of gene transcription in response to various developmental and environmental conditions. The sets of modules constitute a promoter model. Determining the TFs that preferentially work in concert as part of a module is an essential component of understanding transcriptional regulation. The TFs that act synergistically in such a fashion are likely to have their cis-elements co-localized on the genome at specific distances apart. We exploit this notion to predict TF pairs that are likely to be part of a transcriptional module on the human genome sequence. The computational method is validated statistically, using known interacting pairs extracted from the literature. There are 251 TFBS pairs up to 50 bp apart and 70 TFBS pairs up to 200 bp apart that score higher than any of the known synergistic pairs. Further investigation of 50 pairs randomly selected from each of these two sets using PubMed queries provided additional supporting evidence from the existing biological literature suggesting TF synergism for these novel pairs.
Collapse
Affiliation(s)
- Sridhar Hannenhalli
- Informatics Research, Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA.
| | | |
Collapse
|
165
|
Attema JL, Reeves R, Murray V, Levichkin I, Temple MD, Tremethick DJ, Shannon MF. The human IL-2 gene promoter can assemble a positioned nucleosome that becomes remodeled upon T cell activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2466-76. [PMID: 12193716 DOI: 10.4049/jimmunol.169.5.2466] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Controlled production of the cytokine IL-2 plays a key role in the mammalian immune system. Expression from the gene is tightly regulated with no detectable expression in resting T cells and a strong induction following T cell activation. The IL-2 proximal promoter (+1 to -300) contains many well-defined transcriptional activation elements that respond to T cell stimulation. To determine the role of chromatin structure in the regulation of interleukin-2 gene transcription, nucleosome assembly across the IL-2 promoter region was examined using in vitro chromatin reconstitution assays. The IL-2 promoter assembles a nucleosome that is both translationally and rotationally positioned, spanning some of the major functional control elements. The binding of transcription factors to these elements, with the exception of the architectural protein HMGA1, was occluded by the presence of the nucleosome. Analysis of the chromatin architecture of the IL-2 gene in Jurkat T cells provided evidence for the presence of a similarly positioned nucleosome in vivo. The region encompassed by this nucleosome becomes remodeled following activation of Jurkat T cells. These observations suggest that the presence of a positioned nucleosome across the IL-2 proximal promoter may play an important role in maintaining an inactive gene in resting T cells and that remodeling of this nucleosome is important for gene activation.
Collapse
Affiliation(s)
- Joanne L Attema
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | | | | | | | | |
Collapse
|
166
|
Kuang PP, Berk JL, Rishikof DC, Foster JA, Humphries DE, Ricupero DA, Goldstein RH. NF-kappaB induced by IL-1beta inhibits elastin transcription and myofibroblast phenotype. Am J Physiol Cell Physiol 2002; 283:C58-65. [PMID: 12055073 DOI: 10.1152/ajpcell.00314.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin (IL)-1beta released after lung injury regulates the production of extracellular matrix components. We found that IL-1beta treatment reduced the rate of elastin gene transcription by 74% in neonatal rat lung fibroblasts. Deletion analysis of the rat elastin promoter detected a cis-acting element located at -118 to -102 bp that strongly bound Sp1 and Sp3 but not nuclear factor (NF)-kappaB. This element mediated IL-1beta-induced inhibition of the elastin promoter. IL-1beta treatment did not affect the level of Sp1 but did induce translocation of the p65 subunit of NF-kappaB. Overexpression of p65 decreased elastin promoter activity and markedly reduced elastin mRNA. Immunoprecipitation studies indicated an interaction between the p65 subunit and Sp1 protein. Microarray analysis of mRNA isolated after overexpression of p65 or treatment with IL-1beta revealed downregulation of alpha-smooth muscle actin and calponin mRNAs. Expression of these genes is associated with the myofibroblast phenotype. These results indicate that IL-1beta activates the nuclear localization of NF-kappaB that subsequently interacts with Sp1 to downregulate elastin transcription and expression of the myofibroblast phenotype.
Collapse
Affiliation(s)
- Ping-Ping Kuang
- Pulmonary Center and Department of Biochemistry, Boston University School of Medicine, and Boston Department of Veterans Affairs Medical Center, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
167
|
Paredes R, Gutiérrez J, Gutierrez S, Allison L, Puchi M, Imschenetzky M, van Wijnen A, Lian J, Stein G, Stein J, Montecino M. Interaction of the 1alpha,25-dihydroxyvitamin D3 receptor at the distal promoter region of the bone-specific osteocalcin gene requires nucleosomal remodelling. Biochem J 2002; 363:667-76. [PMID: 11964167 PMCID: PMC1222519 DOI: 10.1042/0264-6021:3630667] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
1alpha,25-Dihydroxyvitamin D3-mediated transcriptional control of the bone-specific osteocalcin (OC) gene requires the integration of regulatory signals at the vitamin D-responsive element (VDRE) and flanking tissue-specific sequences. The 1alpha,25-dihydroxyvitamin D3 receptor (VDR) is a member of the nuclear receptor superfamily and forms a heterodimeric complex with the receptor for 9-cis retinoic acid (RXR) that binds to the VDRE sequence. We have demonstrated previously that changes in chromatin structure at the VDRE region of the rat OC gene promoter accompany transcriptional enhancement in vivo, suggesting a requirement for chromatin remodelling. Here we show that the VDRE in the distal region of the OC gene promoter is refractory to binding of the VDR-RXR complex when organized in a nucleosomal context. Addition of the ligand 1alpha,25-dihydroxyvitamin D3 or the presence of other transcription factors, such as YY1 and Runx/Cbfa (core-binding factor alpha), which also bind to sequences partially overlapping or near the VDRE, is not sufficient to render the VDRE accessible. Thus the VDR-RXR, unlike other steroid receptors, such as glucocorticoid receptor, progesterone receptor and thyroid receptor, is unable to bind its target sequence within a nucleosomal context. Taken together these results demonstrate that nucleosomal remodelling is required for in vivo occupancy of binding sites in the distal region of the OC gene promoter by the regulatory factors responsible for 1alpha,25-dihydroxyvitamin D3-dependent enhancement of transcription.
Collapse
Affiliation(s)
- Roberto Paredes
- Departamento de Biologia Molecular, Facultad de Ciencias Biologicas, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Abstract
The regulated production of several terminally differentiated cell types of the blood and immune systems (haematopoiesis) has been the focus of many studies on cell-fate determination. Chromatin and the control of its structure have been implicated in the regulation of cell-fate decisions and in the maintenance of the determined states. Here, I review advances in the field, emphasizing the potential role of chromatin in lineage commitment and differentiation. In this context, I discuss Ikaros, an essential regulator of lymphocyte development and an integral component of a functionally diverse chromatin remodelling network that operates from the early stages of haematopoiesis to the mature lymphocytes.
Collapse
|
169
|
Tomschik M, Karymov MA, Zlatanova J, Leuba SH. The archaeal histone-fold protein HMf organizes DNA into bona fide chromatin fibers. Structure 2001; 9:1201-11. [PMID: 11738046 DOI: 10.1016/s0969-2126(01)00682-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The discovery of histone-like proteins in Archaea urged studies into the possible organization of archaeal genomes in chromatin. Despite recent advances, a variety of structural questions remain unanswered. RESULTS We have used the atomic force microscope (AFM) with traditional nuclease digestion assays to compare the structure of nucleoprotein complexes reconstituted from tandemly repeated eukaryal nucleosome-positioning sequences and histone octamers, H3/H4 tetramers, and the histone-fold archaeal protein HMf. The data unequivocally show that HMf reconstitutes are indeed organized as chromatin fibers, morphologically indistinguishable from their eukaryal counterparts. The nuclease digestion patterns revealed a clear pattern of protection at regular intervals, again similar to the patterns observed with eukaryal chromatin fibers. In addition, we studied HMf reconstitutes on mononucleosome-sized DNA fragments and observed a great degree of similarity in the internal organization of these particles and those organized by H3/H4 tetramers. A difference in stability was observed at the level of mono-, di-, and triparticles between the HMf particles and canonical octamer-containing nucleosomes. CONCLUSIONS The in vitro reconstituted HMf-nucleoprotein complexes can be considered as bona fide chromatin structures. The differences in stability at the monoparticle level should be due to structural differences between HMf and core histone H3/H4 tetramers, i.e., to the complete absence in HMf of histone tails beyond the histone fold. We speculate that the existence of core histone tails in eukaryotes may provide a greater stability to nucleosomal particles and also provide the additional ability of chromatin structure to regulate DNA function in eukaryotic cells by posttranslational histone tail modifications.
Collapse
Affiliation(s)
- M Tomschik
- Physical Molecular Biology, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, 41 Library Drive, Room B507, MSC 5055, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
170
|
Rao S, Procko E, Shannon MF. Chromatin remodeling, measured by a novel real-time polymerase chain reaction assay, across the proximal promoter region of the IL-2 gene. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4494-503. [PMID: 11591776 DOI: 10.4049/jimmunol.167.8.4494] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The structure of chromatin and its remodeling following activation are important aspects of the control of inducible gene transcription. The IL-2 gene is induced in a cell specific-manner in T cells following an antigenic stimulus. We show, using a novel real-time PCR assay, that significant chromatin remodeling of the IL-2 proximal promoter region occurred upon stimulation of both the murine EL-4 T cell line and primary CD4(+) T cells. Chromatin remodeling appears to be limited to the first 300 bp of the proximal promoter region as measured by micrococcal nuclease and restriction enzyme accessibility. Time course studies indicated that chromatin remodeling was observed at 1.5 h postinduction and was maintained for up to 16 h. The remodeling is reversible upon removal of the stimulus. The region immediately upstream from the transcription start site, however, remains accessible for up to 16 h. Upon restimulation, remodeling occurs much more rapidly, consistent with a more rapid rise in IL-2 mRNA levels. Using a number of pharmacological inhibitors we show that remodeling is dependent on the presence of specific transcription factors, but not on the modification of histones. The development of this novel chromatin accessibility assay based on real-time PCR has allowed rapid, sensitive, and quantitative measurements on the IL-2 gene following cellular activation in both T cell lines and primary cells.
Collapse
Affiliation(s)
- S Rao
- Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Canberra, Australia
| | | | | |
Collapse
|
171
|
McArthur M, Gerum S, Stamatoyannopoulos G. Quantification of DNaseI-sensitivity by real-time PCR: quantitative analysis of DNaseI-hypersensitivity of the mouse beta-globin LCR. J Mol Biol 2001; 313:27-34. [PMID: 11601844 PMCID: PMC2819987 DOI: 10.1006/jmbi.2001.4969] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We employ real-time PCR to allow us to quantify the sensitivity of chromatin to digestion by DNaseI. This approach has three clear advantages over the more conventional use of the Southern hybridization assay: the accuracy of quantification is improved; the resolution of the assay is enhanced, by designing primers to amplify small amplicons it is possible to analyze sequences both co-incident and proximal to sites of DNaseI-hypersensitivity; less material is needed, as little as 5 ng of treated genomic DNA. We applied this method in an analysis of the chromatin structure of the previously described mouse beta-globin locus control region (LCR) using fetal liver cells. The four hypersensitive sites of the canonical mouse LCR, HS1 to HS4, are shown to have kinetics of digestion consistent with these sequences being nucleosome-free in vivo. A different pattern was seen for HS6, a recently described "weak" hypersensitive site. The site was also rapidly lost but more of the sites proved resistant, we interpreted this to show that this hypersensitive was only forming in a portion of the erythroid cells. This finding implies that in vivo the LCR is structurally heterogeneous. Sequences proximal to the hypersensitive sites show a third pattern of intermediate sensitivity, consistent with the chromatin being unfolded but the sites still bound by a continual nucleosomal array. Our results demonstrate that this method has the potential to achieve accurate and detailed mapping of chromatin structure from small amounts of tissue samples.
Collapse
|
172
|
Idrissi FZ, Garcia-Reyero N, Fernandez-Larrea JB, Piña B. Alternative Mechanisms of Transcriptional Activation by Rap1p. J Biol Chem 2001; 276:26090-8. [PMID: 11358963 DOI: 10.1074/jbc.m101746200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Single Rap1p DNA-binding sites are poor activators of transcription of yeast minimal promoters, even when fully occupied in vivo. This low efficiency is due to two independent repression mechanisms as follows: one that requires the presence of histones, and one that requires Hrs1p, a component of the RNA polymerase II mediator complex. Both repression mechanisms were greatly reduced for constructs with tandemly arranged sites. In these constructs, UASrpg sequences (ACACCCATACATTT) activated better than telomere-like sequences (ACACCCACACACCC) in an orientation-dependent manner. Both mutations in the SWI/SNF complex and a deletion of amino acids 597--629 of Rap1p (Tox domain) decreased synergistic effects of contiguous telomeric sites. Conversely, deletion of amino acids 700--798 of Rap1p (Sil domain) made UASrpg and telomeric sites functionally indistinguishable. We propose that the Sil domain masks the main transactivation domain of Rap1p in Rap1p-telomere complexes, where the Tox domain behaves as a secondary activation domain, probably by interacting with chromatin-remodeling complexes. Rap1p DNA-binding sites in ribosomal protein gene promoters are mainly UASrpg-like; their replacement by telomeric sequences in one of these promoters (RPS17B) decreased transcription by two-thirds. The functional differences between UASrpgs and telomeric sequences may thus contribute to the differential expression of Rap1p-regulated promoters in vivo.
Collapse
Affiliation(s)
- F Z Idrissi
- Departament de Biologia Molecular i Cellular, Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Cientificas, Jordi Girona, 18.08034 Barcelona, Spain
| | | | | | | |
Collapse
|
173
|
Barton MC, Crowe AJ. Chromatin alteration, transcription and replication: What's the opening line to the story? Oncogene 2001; 20:3094-9. [PMID: 11420725 DOI: 10.1038/sj.onc.1204334] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Polymerase accessibility to chromatin is a limiting step in both RNA and DNA synthesis. Unwinding DNA and nucleosomes during polymerase complex binding and processing likely requires priming by chromatin restructuring. The initiating step in these processes remains an area of speculation. This review focuses on the physical handling of chromatin during transcription and replication, the fate of nucleosomes assembled on DNA during unwinding and processing the chromatin substrate, and how these alterations in chromatin structure may affect gene expression. Transcription or replication may alter chromatin structure during synthesis, enabling regulatory factor binding and, potentially, future rounds of transcription. As chromatin remodeling and transcription factor binding augment transcription and replication, and are themselves increased by these processes, a temporal model of structural alterations and gene activation is built that may be more circular than linear.
Collapse
Affiliation(s)
- M C Barton
- Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas, TX 77030, USA
| | | |
Collapse
|
174
|
Xing W, Sairam MR. Characterization of regulatory elements of ovine follicle-stimulating hormone (FSH) receptor gene: the role of E-box in the regulation of ovine FSHreceptor expression. Biol Reprod 2001; 64:579-89. [PMID: 11159361 DOI: 10.1095/biolreprod64.2.579] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Expression and activation of follicle-stimulating hormone receptor (FSHR) in the granulosa and Sertoli cells are required for normal development of the ovarian follicles and germ cells. However, little is known regarding the mechanisms by which FSHR expression is regulated. We fused an ovine FSHR promoter to a luciferase gene to understand the promoter regulation in two gonadal cell lines. Deletion studies revealed that the strongest promoter was at -200 to +163 relative to the transcription start site. One of cis-elements protected from DNase I digestion was mapped to between +32 and +54 of the 174-base pair (bp) minimal promoter. Electrophoretic mobility shift assay with a 26-bp probe (+32 to +57) and nuclear extracts from Sertoli (15P1) and granulosa (JC-410) cell lines demonstrated a sequence-specific DNA-protein complex. Southwestern analysis detected a 43-kDa protein bound to the 26-bp probe. Gel supershift with upstream stimulatory factor 1 and 2 (USF-1/2) antibodies revealed that the DNA-protein complex contained these two transcription factors. Mutation within the E-box of the promoter abolished the sequence-specific binding and the minimal promoter activity but also greatly reduced the transcription of the proximal promoters by 49%-70%. These data suggest that the USF-1/2 binding to the promoter is required for the expression of the ovine FSHR in the gonadal cells.
Collapse
Affiliation(s)
- W Xing
- Molecular Reproduction Research Laboratory, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7
| | | |
Collapse
|
175
|
Lymar ES, Clark AM, Reeves R, Griswold MD. Clusterin gene in rat sertoli cells is regulated by a core-enhancer element. Biol Reprod 2000; 63:1341-51. [PMID: 11058537 DOI: 10.1095/biolreprod63.5.1341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Clusterin is a ubiquitous glycoprotein that is promiscuously expressed at a low basal level but can be highly induced by a variety of stress conditions. In contrast, in some secretory cells associated with tissue-fluid interfaces such as the Sertoli cells in the testis, clusterin demonstrates high constitutive expression. In this study, we address the mechanisms that regulate the constitutive expression of the clusterin gene by using primary cultures of immature rat Sertoli cells. We have identified a region of the rat clusterin gene promoter that activated transcription only in Sertoli cells and that mapped between positions -426 and -311. Sequence analysis of this region revealed a high concentration of potential regulatory elements. Using gel-shift assays combined with hydroxyl radical footprinting, we identified the elements recognized by the Sertoli cell nuclear factors. Comparison of the interactions with this region of the nuclear factors from different cell types demonstrated that recognition of the core-enhancer element is specific for the Sertoli cells, and in vitro, the core region was recognized by the transcription factor CBF. Transient transfections showed that a core enhancer is responsible for more than a half of the total promoter activity and is an essential element for the cell-specific activity of the Sertoli-specific region. In addition to the core enhancer, tandem Sp1 sites are also required for maximal activity of this region.
Collapse
Affiliation(s)
- E S Lymar
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4660, USA
| | | | | | | |
Collapse
|
176
|
Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood 2000. [DOI: 10.1182/blood.v96.7.2323.h8002323_2323_2328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phenotype of individual hematopoietic cells, like all other differentiated mammalian cells, is determined by selective transcription of a subset of the genes encoded within the genome. This overview summarizes the recent evidence that transcriptional regulation at the level of individual cells is best described in terms of the regulation of the probability of transcription rather than the rate. In this model, heterogeneous gene expression among populations of cells arises by chance, and the degree of heterogeneity is a function of the stability of the mRNA and protein products of individual genes. The probabilistic nature of transcriptional regulation provides one explanation for stochastic phenomena, such as stem cell lineage commitment, and monoallelic expression of inducible genes, such as lymphokines and cytokines.
Collapse
|
177
|
Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood 2000. [DOI: 10.1182/blood.v96.7.2323] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe phenotype of individual hematopoietic cells, like all other differentiated mammalian cells, is determined by selective transcription of a subset of the genes encoded within the genome. This overview summarizes the recent evidence that transcriptional regulation at the level of individual cells is best described in terms of the regulation of the probability of transcription rather than the rate. In this model, heterogeneous gene expression among populations of cells arises by chance, and the degree of heterogeneity is a function of the stability of the mRNA and protein products of individual genes. The probabilistic nature of transcriptional regulation provides one explanation for stochastic phenomena, such as stem cell lineage commitment, and monoallelic expression of inducible genes, such as lymphokines and cytokines.
Collapse
|
178
|
Angelov D, Charra M, Seve M, Côté J, Khochbin S, Dimitrov S. Differential remodeling of the HIV-1 nucleosome upon transcription activators and SWI/SNF complex binding. J Mol Biol 2000; 302:315-26. [PMID: 10970736 DOI: 10.1006/jmbi.2000.4069] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we have examined HIV-1 nucleosome remodeling upon the binding of transcription factors and the SWI/SNF complex using a novel approach. The approach combines UV laser protein-DNA crosslinking, electrophoretic mobility-shift analysis and DNase I protection analysis with immunochemical techniques. It was found that single activator-bound HIV-1 nucleosomes exhibit very weak perturbation in histone NH(2) tail-DNA interactions. However, the simultaneous binding of the transcription activators Sp1, NF-kB1, LEF-1 and USF synergistically increased the release of histone NH(2) tails from nucleosomal DNA. In contrast, the binding of SWI/SNF complex to HIV-1 nucleosome disrupted structured histone domain-DNA contacts, but not histone NH(2) tail-DNA interactions. Stable remodeled nucleosomes, (obtained after detachment of SWI/SNF), displayed identical structural alterations with those bound to SWI/SNF. These results demonstrate a different in vitro remodeling of the HIV-1 nucleosome upon the binding of multiple transcription activators and of SWI/SNF complex.
Collapse
Affiliation(s)
- D Angelov
- Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation, équipe Mécanismes d'Assemblage du Matériel Génétique, INSERM U 309, France
| | | | | | | | | | | |
Collapse
|
179
|
Reeves R, Leonard WJ, Nissen MS. Binding of HMG-I(Y) imparts architectural specificity to a positioned nucleosome on the promoter of the human interleukin-2 receptor alpha gene. Mol Cell Biol 2000; 20:4666-79. [PMID: 10848593 PMCID: PMC85880 DOI: 10.1128/mcb.20.13.4666-4679.2000] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional induction of the interleukin-2 receptor alpha-chain (IL-2Ralpha) gene is a key event regulating T-cell-mediated immunity in mammals. In vivo, the T-cell-restricted protein Elf-1 and the general architectural transcription factor HMG-I(Y) cooperate in transcriptional regulation of the human IL-2Ralpha gene by binding to a specific positive regulatory region (PRRII) in its proximal promoter. Employing chromatin reconstitution analyses, we demonstrate that the binding sites for both HMG-I(Y) and Elf-1 in the PRRII element are incorporated into a strongly positioned nucleosome in vitro. A variety of analytical techniques was used to determine that a stable core particle is positioned over most of the PRRII element and that this nucleosome exhibits only a limited amount of lateral translational mobility. Regardless of its translational setting, the in vitro position of the nucleosome is such that DNA recognition sequences for both HMG-I(Y) and Elf-1 are located on the surface of the core particle. Restriction nuclease accessibility analyses indicate that a similarly positioned nucleosome also exists on the PRRII element in unstimulated lymphocytes when the IL-2Ralpha gene is silent and suggest that this core particle is remodeled following transcriptional activation of the gene in vivo. In vitro experiments employing the chemical cleavage reagent 1,10-phenanthroline copper (II) covalently attached to its C-terminal end demonstrate that HMG-I(Y) protein binds to the positioned PRRII nucleosome in a direction-specific manner, thus imparting a distinct architectural configuration to the core particle. Together, these findings suggest a role for the HMG-I(Y) protein in assisting the remodeling of a critically positioned nucleosome on the PRRII promoter element during IL-2Ralpha transcriptional activation in lymphocytes in vivo.
Collapse
Affiliation(s)
- R Reeves
- Biochemistry/Biophysics, School of Molecular Biosciences, Washington State University, Pullman 99164, USA.
| | | | | |
Collapse
|
180
|
Gu W, Szauter P, Lucchesi JC. Targeting of MOF, a putative histone acetyl transferase, to the X chromosome of Drosophila melanogaster. DEVELOPMENTAL GENETICS 2000; 22:56-64. [PMID: 9499580 DOI: 10.1002/(sici)1520-6408(1998)22:1<56::aid-dvg6>3.0.co;2-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dosage compensation ensures that males with a single X chromosome have the same amount of most X-linked gene products as females with two X chromosomes. In Drosophila, this equalization is achieved by a twofold enhancement of the level of transcription of the X in males relative to each X chromosome in females. The products of at least five genes, maleless (mle), male-specific lethal 1, 2, and 3 (msl-1, msl-2, msl-3) and males absent on the first (mof), are necessary for dosage compensation. The proteins produced by these genes form a complex that is preferentially associated with numerous sites on the X chromosome in somatic cells of males but not of females. Binding of the dosage compensation complex to the X chromosome is correlated with a significant increase in the presence of a specific histone isoform, histone 4 acetylated at lysine 16, on this chromosome. Experimental results and sequence analysis suggest that the mof gene encodes an acetyl transferase that plays a direct role in the specific histone acetylation associated with dosage compensation. Recently, RNA transcripts encoded by at least two different genes have also been found associated with the X chromosome in males. We have studied the role played by the various components of the complex in the targeting of MOF to the X chromosome. To this end, we have used indirect cytoimmunofluorescence to monitor the binding of these components in males carrying complete or partial loss-of-function mutations as well as in XX individuals in which formation of the dosage compensation complex has been induced by genetic means.
Collapse
Affiliation(s)
- W Gu
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
181
|
Ishii H. A statistical-mechanical model for regulation of long-range chromatin structure and gene expression. J Theor Biol 2000; 203:215-28. [PMID: 10716906 DOI: 10.1006/jtbi.2000.1081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In eukaryotic organisms, organization of chromatin is considered to play a role in transcriptional regulation by limiting the accessibility of a gene to the transcription machinery. It is not fully understood, however, how chromatin around a particular locus can be specifically altered to allow transcription. This paper introduces a statistical-mechanical model of chromatin to illustrate a potential mechanism. The model, which is mathematically equivalent to the one-dimensional Ising model of magnetic systems, explains how gene regulatory DNA sequences can affect the chromatin structure over a long distance in cis. The main assumption of the model is cooperativity of histone H1 in binding to the nucleosome array. This cooperativity results in a long-range correlation of histone H1 distribution along the chromatin. Due to this long-range correlation, a gene regulatory element, such as a transcriptional enhancer, may lead to depletion of histone H1 over a large region of chromatin thereby increasing the accessibility of the gene. The model provides a mechanism for a sensitive genetic switch and explains several aspects of gene regulation and chromatin structure.
Collapse
Affiliation(s)
- H Ishii
- Graduate Program in Biophysics and Structural Biology, MS 008, Brandeis University, 415 South St., Waltham, MA 02454-9110, USA
| |
Collapse
|
182
|
Abstract
Induction of transcription from the human immunodeficiency virus 1 long terminal repeat by the RelA (p65) NF-kappaB subunit has been shown to be dependent upon an interaction with the zinc finger DNA-binding domain of Sp1. It was unknown, however, whether NF-kappaB could also interact with other zinc finger-containing transcription factors. In this study we demonstrate that the early growth response transcription factor Egr-1, whose DNA-binding domain shares a high degree of homology with that of Sp1, can also interact with RelA in vitro and regulate NF-kappaB transcriptional activity in vivo. Similar to the interaction with Sp1, the Rel homology domain of RelA interacts with the zinc finger domain of Egr-1. Surprisingly, and in contrast to Sp1, Egr-1 specifically represses RelA transcriptional activity through its zinc finger domain. Moreover, the interaction between RelA and the Egr-1 zinc fingers is mutually exclusive with DNA binding suggesting a model in which Egr-1 directly sequesters NF-kappaB from its target promoters. Because Egr-1 is induced by many of the same stimuli that activate NF-kappaB, this novel transcriptional regulatory mechanism has many implications for the involvement of both factors in cellular processes such as apoptosis and the response to stress and infection.
Collapse
Affiliation(s)
- N R Chapman
- Department of Biochemistry, Division of Gene Expression and Regulation, MSI/WTB Complex, Dow Street, University of Dundee, Dundee, DD1 5EH Scotland, United Kingdom
| | | |
Collapse
|
183
|
Scott KC, Taubman AD, Geyer PK. Enhancer blocking by the Drosophila gypsy insulator depends upon insulator anatomy and enhancer strength. Genetics 1999; 153:787-98. [PMID: 10511558 PMCID: PMC1460797 DOI: 10.1093/genetics/153.2.787] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insulators are specialized DNA sequences that prevent enhancer-activated transcription only when interposed between an enhancer and its target promoter. The Drosophila gypsy retrotransposon contains an insulator composed of 12 degenerate binding sites for the Suppressor of Hairy-wing [Su(Hw)] protein that are separated by AT-rich DNA possessing sequence motifs common to matrix/scaffold attachment regions (MARs/SARs). To further understand mechanisms of insulator function, the parameters required for the gypsy insulator to prevent enhancer-activated transcription were examined. Synthetic binding regions were created by reiteration of a single Su(Hw) binding site that lacked the MAR/SAR motifs. These synthetic binding regions reconstituted insulator activity, suggesting that the property of enhancer blocking may be distinct from matrix association. We found that the number and spacing of Su(Hw) binding sites within the gypsy insulator, as well as the strength of the enhancer to be blocked, were important determinants of insulator function. These results provide a link between transcription and insulation, suggesting that these processes may be mechanistically interconnected.
Collapse
Affiliation(s)
- K C Scott
- Department of Biochemistry, University of Iowa, College of Medicine, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
184
|
Crowe AJ, Sang L, Li KK, Lee KC, Spear BT, Barton MC. Hepatocyte nuclear factor 3 relieves chromatin-mediated repression of the alpha-fetoprotein gene. J Biol Chem 1999; 274:25113-20. [PMID: 10455192 DOI: 10.1074/jbc.274.35.25113] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The alpha-fetoprotein gene (AFP) is tightly regulated at the tissue-specific level, with expression confined to endoderm-derived cells. We have reconstituted AFP transcription on chromatin-assembled DNA templates in vitro. Our studies show that chromatin assembly is essential for hepatic-specific expression of the AFP gene. While nucleosome-free AFP DNA is robustly transcribed in vitro by both cervical (HeLa) and hepatocellular (HepG2) carcinoma extracts, the general transcription factors and transactivators present in HeLa extract cannot relieve chromatin-mediated repression of AFP. In contrast, preincubation with either HepG2 extract or HeLa extract supplemented with recombinant hepatocyte nuclear factor 3 alpha (HNF3alpha), a hepatic-enriched factor expressed very early during liver development, is sufficient to confer transcriptional activation on a chromatin-repressed AFP template. Transient transfection studies illustrate that HNF3alpha can activate AFP expression in a non-liver cellular environment, confirming a pivotal role for HNF3alpha in establishing hepatic-specific gene expression. Restriction enzyme accessibility assays reveal that HNF3alpha promotes the assembly of an open chromatin structure at the AFP promoter. Combined, these functional and structural data suggest that chromatin assembly establishes a barrier to block inappropriate expression of AFP in non-hepatic tissues and that tissue-specific factors, such as HNF3alpha, are required to alleviate the chromatin-mediated repression.
Collapse
Affiliation(s)
- A J Crowe
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio 45267-0524, USA
| | | | | | | | | | | |
Collapse
|
185
|
Yu L, Morse RH. Chromatin opening and transactivator potentiation by RAP1 in Saccharomyces cerevisiae. Mol Cell Biol 1999; 19:5279-88. [PMID: 10409719 PMCID: PMC84371 DOI: 10.1128/mcb.19.8.5279] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Transcriptional activators function in vivo via binding sites that may be packaged into chromatin. Here we show that whereas the transcriptional activator GAL4 is strongly able to perturb chromatin structure via a nucleosomal binding site in yeast, GCN4 does so poorly. Correspondingly, GCN4 requires assistance from an accessory protein, RAP1, for activation of the HIS4 promoter, whereas GAL4 does not. The requirement for RAP1 for GCN4-mediated HIS4 activation is dictated by the DNA-binding domain of GCN4 and not the activation domain, suggesting that RAP1 assists GCN4 in gaining access to its binding site. Consistent with this, overexpression of GCN4 partially alleviates the requirement for RAP1, whereas HIS4 activation via a weak GAL4 binding site requires RAP1. RAP1 is extremely effective at interfering with positioning of a nucleosome containing its binding site, consistent with a role in opening chromatin at the HIS4 promoter. Furthermore, increasing the spacing between binding sites for RAP1 and GCN4 by 5 or 10 bp does not impair HIS4 activation, indicating that cooperative protein-protein interactions are not involved in transcriptional facilitation by RAP1. We conclude that an important role of RAP1 is to assist activator binding by opening chromatin.
Collapse
Affiliation(s)
- L Yu
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, and State University of New York School of Public Health, Albany, New York 12201-2002, USA
| | | |
Collapse
|
186
|
Last TJ, van Wijnen AJ, de Ridder MC, Stein GS, Stein JL. The homeodomain transcription factor CDP/cut interacts with the cell cycle regulatory element of histone H4 genes packaged into nucleosomes. Mol Biol Rep 1999; 26:185-94. [PMID: 10532314 DOI: 10.1023/a:1007058123699] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The homeodomain transcription factor CDP/cut contains four separate DNA binding domains and interacts with large segments of DNA. Thus, CDP/cut has the potential to function as an architectural protein and perhaps to support modifications in chromatin structure and nucleosomal organization. To begin to examine the ability of CDP/cut to interact with chromatin, we analyzed binding of CDP/cut to the histone H4 gene promoter (-90 to +75) reconstituted into nucleosome cores. The -90 to +75 region encompasses the cell cycle regulatory element (Site II) that controls histone H4 gene transcription, a CDP/cut binding site and a nuclease hypersensitive region. Using electrophoretic mobility shift assays and DNase I footprinting experiments, we show that CDP/cut specifically interacts with its recognition motif in a nucleosomal context without displacing the nucleosome core. The competency of CDP/cut to interact with nucleosomes suggests that this transcription factor may facilitate chromatin remodeling in response to cell cycle regulatory and/or developmental cues.
Collapse
Affiliation(s)
- T J Last
- Department of Cell Biology, University of Massachusetts Medical School, Worcester 01655, USA
| | | | | | | | | |
Collapse
|
187
|
An W, Zlatanova J, Leuba SH, van Holde K. The site of binding of linker histone to the nucleosome does not depend upon the amino termini of core histones. Biochimie 1999; 81:727-32. [PMID: 10492019 DOI: 10.1016/s0300-9084(99)80130-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using nucleosomes reconstituted on a defined sequence of DNA, we have investigated the question as to whether the N-terminal tails of core histones play a role in determining the site of binding of a linker histone. Reconstitutes used histone cores of three types: intact, lacking the N-terminal H3 tails, or lacking all tails. In each case the same, single defined position for the histone core was observed, using high-resolution mapping. The affinity for binding of linker histone H1(o) was highest for the intact cores, lowest for the tailless cores. However, the location of the linker histone, as judged by micrococcal nuclease protection, was exactly the same in each case, an asymmetric site of about 17 bp to one side of the core particle DNA.
Collapse
Affiliation(s)
- W An
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis 97331-7305, USA
| | | | | | | |
Collapse
|
188
|
Di Croce L, Koop R, Venditti P, Westphal HM, Nightingale KP, Corona DF, Becker PB, Beato M. Two-step synergism between the progesterone receptor and the DNA-binding domain of nuclear factor 1 on MMTV minichromosomes. Mol Cell 1999; 4:45-54. [PMID: 10445026 DOI: 10.1016/s1097-2765(00)80186-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In contrast to its behavior as naked DNA, the MMTV promoter assembled in minichromosomes can be activated synergistically by the progesterone receptor and NF1 in a process involving ATP-dependent chromatin remodeling. The DNA-binding domain of NF1 is required and sufficient for stable occupancy of all receptor-binding sites and for functional synergism. Activation of purified minichromosomes is observed in the absence of SWI/SNF and can be enhanced by recombinant ISWI. Receptor binding to minichromosomes recruits ISWI and NURF38, but not brahma. We propose a two-step synergism in which the receptor triggers a chromatin remodeling event that facilitates access of NF1, which in turn stabilizes an open nucleosomal conformation required for efficient binding of further receptor molecules and full transactivation.
Collapse
Affiliation(s)
- L Di Croce
- IMT, Institut für Molekularbiologie und Tumorforschung Philipps-Universität Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Steger DJ, Utley RT, Grant PA, John S, Eberharter A, Côté J, Owen-Hughes T, Ikeda K, Workman JL. Regulation of transcription by multisubunit complexes that alter nucleosome structure. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:483-91. [PMID: 10384312 DOI: 10.1101/sqb.1998.63.483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- D J Steger
- Howard Hughes Medical Institute, Pennsylvania State University, University Park 16802, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Christoffels VM, Sassi H, Ruijter JM, Moorman AF, Grange T, Lamers WH. A mechanistic model for the development and maintenance of portocentral gradients in gene expression in the liver. Hepatology 1999; 29:1180-92. [PMID: 10094963 DOI: 10.1002/hep.510290413] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the liver, genes are expressed along a portocentral gradient. Based on their adaptive behavior, a gradient versus compartment type, and a dynamic versus stable type of gradient have been recognized. To understand at least in principle the development and maintenance of these gradients in gene expression in relation to the limited number of signal gradients, we propose a simple and testable model. The model uses portocentral gradients of signal molecules as input, while the output depends on two gene-specific variables, viz., the affinity of the gene for its regulatory factors and the degree of cooperativity that determines the response in the signal-transduction pathways. As a preliminary validity test for its performance, the model was tested on control and hormonally induced expression patterns of phosphoenolpyruvate carboxykinase (PCK), carbamoylphosphate synthetase I (CPS), and glutamine synthetase (GS). Affinity was found to determine the overall steepness of the gradient, whereas cooperativity causes these gradients to steepen locally, as is necessary for a compartment-like expression pattern. Interaction between two or more different signal gradients is necessary to ensure a stable expression pattern under different conditions. The diversity in sequence and arrangement of related DNA-response elements of genes appears to account for the gene-specific shape of the portocentral gradients in expression. The feasibility of testing the function of hepatocyte-specific DNA-response units in vivo is demonstrated by integrating such units into a ubiquitously active promoter/enhancer and analyzing the pattern of expression of these constructs in transgenic mice.
Collapse
Affiliation(s)
- V M Christoffels
- Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
191
|
Motta MC, Caretti G, Badaracco GF, Mantovani R. Interactions of the CCAAT-binding trimer NF-Y with nucleosomes. J Biol Chem 1999; 274:1326-33. [PMID: 9880503 DOI: 10.1074/jbc.274.3.1326] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NF-Y is a sequence-specific evolutionary conserved activator binding to CCAAT boxes with high affinity and specificity. It is a trimer formed by NF-YA and two putative histone-like subunits, NF-YB and NF-YC, showing similarity to histones H2B and H2A, respectively. We investigated the relationships between NF-Y and chromatin using an Artemia franciscana chromatin assembly system with plasmids containing the Major HistoCompatibility complex class II Ea promoter. The NF-Y trimer, but not single subunits, protects the Y box in the presence of reconstituted chromatin, and it can bind the target sequence during and after assembly. Using reconstitution assays with purified chicken histones, we show that NF-Y associates with preformed nucleosomes. Translational analysis of various Ea fragments of identical length in which the CCAAT box is at different positions indicated that the lateral fragment was slightly more prone to NF-Y binding. In competition experiments, NF-Y is able to prevent formation of nucleosomes significantly. These data support the idea that NF-Y is a gene-specific activator with a built-in capacity to interface with chromatin structures.
Collapse
Affiliation(s)
- M C Motta
- Dipartimento di Genetica e Biologia dei Microrganismi, Università di Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | |
Collapse
|
192
|
Ikeda K, Steger DJ, Eberharter A, Workman JL. Activation domain-specific and general transcription stimulation by native histone acetyltransferase complexes. Mol Cell Biol 1999; 19:855-63. [PMID: 9858608 PMCID: PMC83942 DOI: 10.1128/mcb.19.1.855] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/1998] [Accepted: 09/23/1998] [Indexed: 11/20/2022] Open
Abstract
Recent progress in identifying the catalytic subunits of histone acetyltransferase (HAT) complexes has implicated histone acetylation in the regulation of transcription. Here, we have analyzed the function of two native yeast HAT complexes, SAGA (Spt-Ada-Gcn5 Acetyltransferase) and NuA4 (nucleosome acetyltransferase of H4), in activating transcription from preassembled nucleosomal array templates in vitro. Each complex was tested for the ability to enhance transcription driven by GAL4 derivatives containing either acidic, glutamine-rich, or proline-rich activation domains. On nucleosomal array templates, the SAGA complex selectively stimulates transcription driven by the VP16 acidic activation domain in an acetyl coenzyme A-dependent manner. In contrast, the NuA4 complex facilitates transcription mediated by any of the activation domains tested if allowed to preacetylate the nucleosomal template, indicating a general stimulatory effect of histone H4 acetylation. However, when the extent of acetylation by NuA4 is limited, the complex also preferentially stimulates VP16-driven transcription. SAGA and NuA4 interact directly with the VP16 activation domain but not with a glutamine-rich or proline-rich activation domain. These data suggest that recruitment of the SAGA and NuA4 HAT complexes by the VP16 activation domain contributes to HAT-dependent activation. In addition, extensive H4/H2B acetylation by NuA4 leads to a general activation of transcription, which is independent of activator-NuA4 interactions.
Collapse
Affiliation(s)
- K Ikeda
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802-4500, USA
| | | | | | | |
Collapse
|
193
|
Gao J, Benyajati C. Specific local histone-DNA sequence contacts facilitate high-affinity, non-cooperative nucleosome binding of both adf-1 and GAGA factor. Nucleic Acids Res 1998; 26:5394-401. [PMID: 9826764 PMCID: PMC147982 DOI: 10.1093/nar/26.23.5394] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sequence-specific transcription factors need to gain access to regulatory sequences in chromatin. Previous studies utilizing model systems have suggested many mechanisms involved in this process. It is unclear however how these findings relate to natural promoters. The Drosophila alcohol dehydrogenase ( Adh ) gene distal promoter is organized into an ordered nucleosome array before multiple transcription factors recognize their sites within this nucleosomal context and activate transcription. Here we used a purified in vitro system to study the binding of the ubiquitous Drosophila transcription factors Adf-1 and GAGA factor to the Adh distal promoter in chromatin. Several nucleosome core particles were assembled on 150 bp DNA fragments containing the Adh distal cis -acting elements in the natural promoter context but different DNA-histone environments. We found that the Adh distal promoter regulatory sequences can position nucleosomes in the same rotational setting as observed in vivo. In one particular nucleosome position, the wrapping of the Adf-1 and adjacent GAGA factor binding sitesaround the histone octamer creates a unique local DNA conformation. High-affinity but non-cooperative nucleosome binding of Adf-1 and GAGA factortherefore occurs, in contrast to the inhibition of Adf-1 and GAGA factor binding in other nucleosome positions. Thus, local histone-DNA sequence contact giving rise to a specific asymmetric nucleosome structure may play important roles in modulating the affinities of transcription factors for their nucleosomal sites.
Collapse
Affiliation(s)
- J Gao
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
194
|
An W, van Holde K, Zlatanova J. The non-histone chromatin protein HMG1 protects linker DNA on the side opposite to that protected by linker histones. J Biol Chem 1998; 273:26289-91. [PMID: 9756855 DOI: 10.1074/jbc.273.41.26289] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Linker histones and HMG1/2 constitute the two major proteins that bind to linker DNA in chromatin. While the location of linker histones on the nucleosome has attracted considerable research effort, only a few studies have addressed the location of HMG1 in the particles. In this study, we use a procedure based on micrococcal nuclease digestion of reconstituted nucleosomal particles to which HMG1 has been bound, followed by analysis of the protected DNA by restriction nuclease digestion, to locate the HMG1 binding site. Nucleosomal particles were reconstituted on a 235-base pair DNA fragment, which is known to be a strong nucleosome positioning sequence. The results unequivocally show that HMG1 protects linker DNA on one side of the core particle. Importantly, and possibly of physiological relevance, the linker DNA site protected by HMG1 was located on the side opposite to that already shown to be protected by linker histone binding.
Collapse
Affiliation(s)
- W An
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7305, USA
| | | | | |
Collapse
|
195
|
Workman JL, Kingston RE. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 1998; 67:545-79. [PMID: 9759497 DOI: 10.1146/annurev.biochem.67.1.545] [Citation(s) in RCA: 883] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nucleosome, which is the primary building block of chromatin, is not a static structure: It can adopt alternative conformations. Changes in solution conditions or changes in histone acetylation state cause nucleosomes and nucleosomal arrays to behave with altered biophysical properties. Distinct subpopulations of nucleosomes isolated from cells have chromatographic properties and nuclease sensitivity different from those of bulk nucleosomes. Recently, proteins that were initially identified as necessary for transcriptional regulation have been shown to alter nucleosomal structure. These proteins are found in three types of multiprotein complexes that can acetylate nucleosomes, deacetylate nucleosomes, or alter nucleosome structure in an ATP-dependent manner. The direct modification of nucleosome structure by these complexes is likely to play a central role in appropriate regulation of eukaryotic genes.
Collapse
Affiliation(s)
- J L Workman
- Howard Hughes Medical Institute, Pennsylvania State University, University Park 16802, USA.
| | | |
Collapse
|
196
|
Widom J. Structure, dynamics, and function of chromatin in vitro. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1998; 27:285-327. [PMID: 9646870 DOI: 10.1146/annurev.biophys.27.1.285] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The substrates for the essential biological processes of transcription, replication, recombination, DNA repair, and cell division are not naked DNA; rather, they are protein-DNA complexes known as chromatin, in one or another stage of a hierarchical series of compactions. These are exciting times for students of chromatin. New studies provide incontrovertible evidence linking chromatin structure to function. Exceptional progress has been made in studies of the structure of chromatin subunits. Surprising new dynamic properties have been discovered. And, much progress has been made in dissecting the functional roles of specific chromatin proteins and domains. This review focuses on in vitro studies of chromatin structure, dynamics, and function.
Collapse
Affiliation(s)
- J Widom
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
197
|
Vashee S, Willie J, Kodadek T. Synergistic activation of transcription by physiologically unrelated transcription factors through cooperative DNA-binding. Biochem Biophys Res Commun 1998; 247:530-5. [PMID: 9642164 DOI: 10.1006/bbrc.1998.8820] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most eukaryotic promoters contain binding sites for several different transcription factors, which often act synergistically. Mechanistically, synergy is ascribed either to cooperative DNA-binding of the factors to the promoter or to some type of "multiple contact" mechanism in which each activator performs a different task in stimulating the transcription machinery. Here, it is shown that the yeast activators Gal4 and Put3 bind to DNA cooperatively in vivo and can activate transcription synergistically from certain synthetic promoters. Normally, Gal4 and Put3 bind to completely different promoters and activate physiologically unrelated sets of genes and it is extremely unlikely that they have evolved direct protein-protein contacts. These studies add to a growing body of evidence that binding of proteins to nearby sites in chromatin is intrinsically cooperative and suggest that many examples of synergy ascribed to multiple contact mechanisms may instead involve non-traditional cooperative DNA-binding.
Collapse
Affiliation(s)
- S Vashee
- Department of Chemistry and Biochemistry and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, 78712-1096, USA
| | | | | |
Collapse
|
198
|
Boyes J, Omichinski J, Clark D, Pikaart M, Felsenfeld G. Perturbation of nucleosome structure by the erythroid transcription factor GATA-1. J Mol Biol 1998; 279:529-44. [PMID: 9641976 DOI: 10.1006/jmbi.1998.1783] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ability of transcription factors to gain access to their sites in chromatin requires the disruption or displacement of nucleosomes covering the promoter, signalled by the generation of a nuclease hypersensitive site. We characterise here the alterations in nucleosome structure caused by binding of the erythroid factor GATA-1 to a nucleosome carrying GATA-1 sites. DNase I and micrococcal nuclease probes show that GATA-1 binding causes extensive, cooperative breakage of the histone/DNA contacts to generate a complex very similar to that formed by the factor with free DNA. The only region which differs is confined to about 50 bp surrounding the nucleosome dyad axis which appears to be the domain of residual contact between the DNA and histone octamer. Despite considerable breakage of the histone/DNA contacts, the complex is completely stable in solution, and disruption of the nucleosome is entirely reversible: it is regenerated quantitatively upon removal of the transcription factor. Moreover, the histone 2A/2B component of the octamer does not exchange to external competitor. We suggest that formation of this complex may be a step in the generation of a fully hypersensitive site in vivo over regulatory elements containing GATA family binding sites.
Collapse
Affiliation(s)
- J Boyes
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
199
|
Vashee S, Melcher K, Ding WV, Johnston SA, Kodadek T. Evidence for two modes of cooperative DNA binding in vivo that do not involve direct protein-protein interactions. Curr Biol 1998; 8:452-8. [PMID: 9550700 DOI: 10.1016/s0960-9822(98)70179-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The promoter regions of most eukaryotic genes contain binding sites for more than one transcriptional activator and these activators often bind cooperatively to promoters. The most common type of cooperativity is supported by direct protein-protein interactions. Recent studies have shown that proteins that do not specifically interact with one another can bind cooperatively to chromatin in vitro. probably by the localized destabilization of nucleosome structure by one factor, facilitating binding of another to a nearby site. This mechanism does not require that the transcription factors have activation domains. We have examined whether this phenomenon occurs in vivo. RESULTS Unrelated non-interacting proteins can bind DNA cooperatively in yeast cells; this cooperative binding can contribute significantly to transcriptional activation, does not require that both factors have activation domains and is only operative over relatively short distances. In addition to this 'short-range' mechanism, unrelated non-interacting proteins can bind cooperatively to sites separated by hundreds of base pairs, so long as both have potent activation domains. CONCLUSION Cooperative binding of transcription factors in vivo can occur by several mechanisms, some of which do not require direct protein-protein interactions and which cannot be detected in vitro using naked DNA templates. These findings must be taken into account when evaluating mechanisms for synergistic transcriptional activation.
Collapse
Affiliation(s)
- S Vashee
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712-1096, USA
| | | | | | | | | |
Collapse
|
200
|
An W, Leuba SH, van Holde K, Zlatanova J. Linker histone protects linker DNA on only one side of the core particle and in a sequence-dependent manner. Proc Natl Acad Sci U S A 1998; 95:3396-401. [PMID: 9520377 PMCID: PMC19847 DOI: 10.1073/pnas.95.7.3396] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The protection against micrococcal nuclease digestion afforded to chromatosomal DNA by the presence of a linker histone (H1(o)) has been quantitatively measured in two reconstituted systems. We have used chromatosomes reconstituted at two distinct positions on a DNA fragment containing the 5S rRNA gene from Lytechinus variegatus and at a specific position on a sequence containing Gal4- and USF-binding sites. In all cases, we find asymmetric protection, with approximately 20 bp protected on one side of the core particle and no protection on the other. We demonstrated through crosslinking experiments that the result is not due to any sliding of the histone core caused by either linker histone addition or micrococcal nuclease cleavage. Because the core particle is itself a symmetric object, the preferred asymmetric location of a linker histone must be dictated by unknown elements in the DNA sequence.
Collapse
Affiliation(s)
- W An
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331-7305, USA
| | | | | | | |
Collapse
|