151
|
González E, Punzón C, González M, Fresno M. HIV-1 Tat inhibits IL-2 gene transcription through qualitative and quantitative alterations of the cooperative Rel/AP1 complex bound to the CD28RE/AP1 composite element of the IL-2 promoter. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4560-9. [PMID: 11254713 DOI: 10.4049/jimmunol.166.7.4560] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dysregulation of cytokine secretion plays an important role in AIDS pathogenesis. Here, we demonstrate that expression of HIV-1 Tat protein in Jurkat cells induces a severe impairment of IL-2 but not TNF gene transcription. Interestingly, this inhibition correlates with the effect of the viral protein on the transactivation of the CD28RE/AP1 composite element (-164/-154), but not with that observed on the NFAT/AP1 site of the IL-2 gene promoter, neither with the effect on NF-kappa B- nor AP1-independent binding sites. Endogenous expression of Tat induced a decrease in the amount of the specific protein complex bound to the CD28RE/AP1 probe after PMA plus calcium ionophore stimulation. This effect was accompanied by qualitative alterations of the AP1 complex. Thus, in wild-type Jurkat cells, c-jun was absent from the complex, whereas in Tat-expressing cells, c-jun was increasingly recruited overtime. By contrast, similar amounts of c-rel and a small amount of NFAT1 were detected both in wild type and in Jurkat Tat(+) cells. Furthermore, Tat not only induced the participation of c-jun in the cooperative complex but also a decrease in its transactivation activity alone or in combination with c-rel. Thus, the interaction of Tat with the components of this rel/AP1 cooperative complex seems to induce quantitative and qualitative alterations of this complex as activation progresses, resulting in a decrease of IL-2 gene transcription. Altogether our results suggest the existence of tuned mechanisms that allow the viral protein to specifically affect cooperative interactions between transcription factors.
Collapse
Affiliation(s)
- E González
- Centro de Biología Molecular Severo Ochoa Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
152
|
Bounou S, Dumais N, Tremblay MJ. Attachment of human immunodeficiency virus-1 (HIV-1) particles bearing host-encoded B7-2 proteins leads to nuclear factor-kappa B- and nuclear factor of activated T cells-dependent activation of HIV-1 long terminal repeat transcription. J Biol Chem 2001; 276:6359-69. [PMID: 11096063 DOI: 10.1074/jbc.m002198200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that human immunodeficiency virus type-1 (HIV-1) can incorporate several surface proteins of host origin. Recent findings indicate that host-encoded cell surface constituents retain their functionality when found embedded into the viral envelope. The primary objective of the current study was to define whether interaction between some specific virion-bound host proteins with their natural cognate ligands present on target cells could mediate intracellular signaling cascade(s). For this purpose, we have generated a whole series of isogenic virus stocks (NL4-3 backbone) bearing or not bearing on their surface foreign CD28, CD54 (ICAM-1), CD80 (B7-1) or CD86 (B7-2) proteins. Our results indicate that incubation of human T lymphoid cells with virions bearing host-derived B7-2 proteins and anti-CD3 antibody can potently activate HIV-1 long terminal repeat-driven gene expression. This up-regulating effect necessitates the involvement of nuclear factor-kappa B (NF-kappa B) and nuclear factor of activated T cells (NFAT) as revealed by the use of vectors coding for dominant negative versions of both transcription factors (i.e. I kappa B alpha S32A/36A and dnNFAT) and band shift assays. The increase of NF-kappa B activity was abolished when infection with B7-2-bearing HIV-1 particles was performed in the presence of the fusion protein CTLA-4 Ig suggesting that the interaction between virally embedded B7-2 and CD28 on the target cell is responsible for the observed NF-kappa B induction. The findings presented here provide the first demonstration that host-encoded proteins acquired by HIV-1 can mediate signal transduction events.
Collapse
Affiliation(s)
- S Bounou
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, Ste-Foy, Québec G1V 4G2, Canada
| | | | | |
Collapse
|
153
|
Behrens A, Sabapathy K, Graef I, Cleary M, Crabtree GR, Wagner EF. Jun N-terminal kinase 2 modulates thymocyte apoptosis and T cell activation through c-Jun and nuclear factor of activated T cell (NF-AT). Proc Natl Acad Sci U S A 2001; 98:1769-74. [PMID: 11172026 PMCID: PMC29332 DOI: 10.1073/pnas.98.4.1769] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2000] [Indexed: 12/22/2022] Open
Abstract
The Jun N-terminal kinases (JNKs) recently have been shown to be required for thymocyte apoptosis and T cell differentiation and/or proliferation. To investigate the molecular targets of JNK signaling in lymphoid cells, we used mice in which the serines phosphorylated by JNK in c-Jun were replaced by homologous recombination with alanines (junAA mice). Lymphocytes from these mice showed no phosphorylation of c-Jun in response to activation stimuli, whereas c-Jun was rapidly phosphorylated in wild-type cells. Despite the fact that c-jun is essential for early development, junAA mice develop normally; however, c-Jun N-terminal phosphorylation was required for efficient T cell receptor-induced and tumor necrosis factor-alpha-induced thymocyte apoptosis. In contrast, c-Jun phosphorylation by JNK is not required for T cell proliferation or differentiation. Because jnk2-/- T cells display a proliferation defect, we concluded that JNK2 must have other substrates required for lymphocyte function. Surprisingly, jnk2-/- T cells showed reduced NF-AT DNA-binding activity after activation. Furthermore, overexpression of JNK2 in Jurkat T cells strongly enhanced NF-AT-dependent transcription. These results demonstrate that JNK signaling differentially uses c-Jun and NF-AT as molecular effectors during thymocyte apoptosis and T cell proliferation.
Collapse
Affiliation(s)
- A Behrens
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
154
|
Sabapathy K, Kallunki T, David JP, Graef I, Karin M, Wagner EF. c-Jun NH2-terminal kinase (JNK)1 and JNK2 have similar and stage-dependent roles in regulating T cell apoptosis and proliferation. J Exp Med 2001; 193:317-28. [PMID: 11157052 PMCID: PMC2195924 DOI: 10.1084/jem.193.3.317] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Apoptotic and mitogenic stimuli activate c-Jun NH2-terminal kinases (JNKs) in T cells. Although T cells express both JNK1 and JNK2 isozymes, the absence of JNK2 alone can result in resistance to anti-CD3-induced thymocyte apoptosis and defective mature T cell proliferation. Similar defects in thymocyte apoptosis and mature T cell proliferation, the latter due to reduced interleukin 2 production, are also caused by JNK1 deficiency. Importantly, T cell function was compromised in Jnk1(+/-)Jnk2(+/-) double heterozygous mice, indicating that JNK1 and JNK2 play similar roles in regulating T cell function. The reduced JNK dose results in defective c-Jun NH2-terminal phosphorylation in thymocytes but not in peripheral T cells, in which nuclear factors of activated T cells (NK-ATs)-DNA binding activity is affected. Thus, JNK1 and JNK2 control similar functions during T cell maturation through differential targeting of distinct substrates.
Collapse
Affiliation(s)
- Kanaga Sabapathy
- Research Institute of Molecular Pathology, Vienna A 1030, Austria
| | - Tuula Kallunki
- Department of Pharmacology, School of Medicine, Cancer Center, University of California at San Diego, La Jolla, California 92093
| | | | - Isabella Graef
- Department of Pathology, Stanford Medical School, Stanford, California 94305
| | - Michael Karin
- Department of Pharmacology, School of Medicine, Cancer Center, University of California at San Diego, La Jolla, California 92093
| | - Erwin F. Wagner
- Research Institute of Molecular Pathology, Vienna A 1030, Austria
| |
Collapse
|
155
|
Peng SL, Gerth AJ, Ranger AM, Glimcher LH. NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity 2001; 14:13-20. [PMID: 11163226 DOI: 10.1016/s1074-7613(01)00085-1] [Citation(s) in RCA: 303] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
NFAT transcription factors play critical roles in gene transcription during immune responses. To investigate further the two most prominent NFAT family members, NFATc1 and NFATc2, we generated mice bearing lymphoid systems devoid of both. Doubly deficient T cells displayed cell surface markers of activation yet were significantly deficient in the development of multiple effector functions, including Th cytokine production, surface effector molecule expression, and cytolytic activity. Nevertheless, doubly deficient B cells were hyperactivated, as evidenced by extremely elevated serum IgG1 and IgE, as well as plasma cell expansion and infiltration of end organs. Thus, in T cells, NFATc1 and NFATc2 are dispensable for inflammatory reactivity but are required for effector differentiation, while in B cells, NFATs regulate both normal homeostasis and differentiation.
Collapse
Affiliation(s)
- S L Peng
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
156
|
Ferrari D, Stroh C, Wesselborg S, Di Virgilio F, Schulze-Osthoff K. Extracellular ATP activates transcription factor NFAT in mouse microglial cells. Drug Dev Res 2001. [DOI: 10.1002/ddr.1118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
157
|
Yang WC, Ghiotto M, Castellano R, Collette Y, Auphan N, Nunès JA, Olive D. Role of Tec kinase in nuclear factor of activated T cells signaling. Int Immunol 2000; 12:1547-52. [PMID: 11058574 DOI: 10.1093/intimm/12.11.1547] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Tec protein kinase family includes Btk, Itk, Tec, Rlk and Bmx, which are critically involved in signals mediated by various cytokines and antigen receptors. Btk mutations cause severe immunodeficiencies, with defective B cell function. In T cells, Tec regulates cytokine production. However, the downstream targets of these Tec kinases are poorly defined. Here we report that overexpression of Tec in T cells can regulate gene transcription through the nuclear factor of activated T cells (NF-AT). Using different reporter gene constructs, we establish that Tec in transfected T cells dramatically induced NF-AT-dependent gene transcription, which was prevented by a dominant-negative mutant of NF-AT or by the immunosuppressive drug cyclosporin A. Tec appears to regulate NF-AT nuclear import. In addition, Tec influences cytoplasmic free calcium increase. Taken together, our results identify NF-AT as a major downstream target of Tec kinases that is critically involved in transcriptional gene regulation. These observations highlight signaling pathways regulated by Tec kinases and provide new pharmacological targets to regulate immune functions.
Collapse
Affiliation(s)
- W C Yang
- INSERM U119, Institut d'Immunologie et de Cancérologie de Marseille, Université de la Méditerranée, 27 Bd Leï Roure, 13009 Marseille, France
| | | | | | | | | | | | | |
Collapse
|
158
|
Serfling E, Berberich-Siebelt F, Chuvpilo S, Jankevics E, Klein-Hessling S, Twardzik T, Avots A. The role of NF-AT transcription factors in T cell activation and differentiation. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1498:1-18. [PMID: 11042346 DOI: 10.1016/s0167-4889(00)00082-3] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The family of genuine NF-AT transcription factors consists of four members (NF-AT1 [or NF-ATp], NF-AT2 [or NF-ATc], NF-AT3 and NF-AT4 [or NF-ATx]) which are characterized by a highly conserved DNA binding domain (is designated as Rel similarity domain) and a calcineurin binding domain. The binding of the Ca(2+)-dependent phosphatase calcineurin to this region controls the nuclear import and exit of NF-ATs. This review deals (1) with the structure of NF-AT proteins, (2) the DNA binding of NF-AT factors and their interaction with AP-1, (3) NF-AT target genes, (4) signalling pathways leading to NF-AT activation: the role of protein kinases and calcineurin, (5) the nuclear entry and exit of NF-AT factors, (6) transcriptional transactivation by NF-AT factors, (7) the structure and expression of the chromosomal NF-AT2 gene, and (8) NF-AT factors in Th cell differentiation. The experimental data presented and discussed in the review show that NF-AT factors are major players in the control of T cell activation and differentiation and, in all likelihood, also of the cell cycle and apoptosis of T lymphocytes.
Collapse
Affiliation(s)
- E Serfling
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str. 2, D-97080 Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
159
|
Chow CW, Dong C, Flavell RA, Davis RJ. c-Jun NH(2)-terminal kinase inhibits targeting of the protein phosphatase calcineurin to NFATc1. Mol Cell Biol 2000; 20:5227-34. [PMID: 10866678 PMCID: PMC85971 DOI: 10.1128/mcb.20.14.5227-5234.2000] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2000] [Accepted: 04/12/2000] [Indexed: 11/20/2022] Open
Abstract
The protein phosphatase calcineurin is a critical mediator of calcium signals during T-cell activation. One substrate of calcineurin is the transcription factor NFATc1, which is retained in the cytoplasm of quiescent cells. NFATc1 activation requires the translocation of the transcription factor into the nucleus, a process that is mediated by calcineurin. This interaction with calcineurin requires a targeting domain (PxIxIT motif) located in the NH(2)-terminal region of NFATc1. Here we demonstrate that the calcineurin targeting domain of NFATc1 is phosphorylated and inactivated by the c-Jun NH(2)-terminal kinase (JNK). This disruption of calcineurin targeting inhibits the nuclear accumulation and transcription activity of NFATc1 and accounts for the observation that Jnk1(-/-) T cells exhibit greatly increased NFATc1-dependent nuclear responses.
Collapse
Affiliation(s)
- C W Chow
- Howard Hughes Medical Institute, Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
160
|
Kiani A, Rao A, Aramburu J. Manipulating immune responses with immunosuppressive agents that target NFAT. Immunity 2000; 12:359-72. [PMID: 10795734 DOI: 10.1016/s1074-7613(00)80188-0] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- A Kiani
- Medizinische Klinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Germany
| | | | | |
Collapse
|
161
|
Chow CW, Davis RJ. Integration of calcium and cyclic AMP signaling pathways by 14-3-3. Mol Cell Biol 2000; 20:702-12. [PMID: 10611249 PMCID: PMC85175 DOI: 10.1128/mcb.20.2.702-712.2000] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/1999] [Accepted: 10/13/1999] [Indexed: 02/08/2023] Open
Abstract
Calcium-stimulated nuclear factor of activated T cells (NFAT) transcription activity at the interleukin-2 promoter is negatively regulated by cyclic AMP (cAMP). This effect of cAMP is mediated, in part, by protein kinase A phosphorylation of NFAT. The mechanism of regulation involves the creation of a phosphorylation-dependent binding site for 14-3-3. Decreased NFAT phosphorylation caused by the calcium-stimulated phosphatase calcineurin, or mutation of the PKA phosphorylation sites, disrupted 14-3-3 binding and increased NFAT transcription activity. In contrast, NFAT phosphorylation caused by cAMP increased 14-3-3 binding and reduced NFAT transcription activity. The regulated interaction between NFAT and 14-3-3 provides a mechanism for the integration of calcium and cAMP signaling pathways.
Collapse
Affiliation(s)
- C W Chow
- Howard Hughes Medical Institute, Program in Molecular Medicine, Department of Biochemistry, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
162
|
Kono DH, Balomenos D, Park MS, Theofilopoulos AN. Development of lupus in BXSB mice is independent of IL-4. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:38-42. [PMID: 10604990 DOI: 10.4049/jimmunol.164.1.38] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although systemic lupus erythematosus appears to be a humorally mediated disease, both Th1 and Th2 type responses have been implicated in its pathogenesis. The Th1 response, as exemplified by IFN-gamma production, has been uniformly shown in mouse lupus models to be critical for disease induction. The role of Th2 type responses, however, is more complicated, with some studies showing detrimental and others beneficial effects of IL-4 in these models. To further address this issue, we generated and analyzed IL-4 gene-deficient BXSB mice. Mice homozygous for this deletion had significantly lower serum levels of total IgG1 compared with wild-type BXSB, consistent with the lack of IL-4. However, no significant differences were observed in mortality, spleen weight, severity of glomerulonephritis, levels of anti-chromatin and anti-ssDNA Abs, or frequency of activated (CD44high) CD4+ T cells. The anti-chromatin Ab isotype response was virtually all Th1 type in both the knockout and wild-type BXSB. These findings directly demonstrate that IL-4 and, by inference, Th2 cells are not obligatory participants in the induction and maintenance of lupus in this strain.
Collapse
Affiliation(s)
- D H Kono
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
163
|
Thomis DC, Aramburu J, Berg LJ. The Jak Family Tyrosine Kinase Jak3 Is Required for IL-2 Synthesis by Naive/Resting CD4+ T Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.10.5411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The Jak family tyrosine kinase, Jak3, is involved in signaling through cytokine receptors using the common γ-chain. Mice deficient in Jak3 have mature T cells, all of which have an activated/memory cell phenotype but are unresponsive to in vitro stimulation. Due to this activated phenotype, it has been impossible to determine whether Jak3 plays a role in the responsiveness of naive/resting T cells. To circumvent this difficulty, we generated naive/resting Jak3-negative T cells by two genetic approaches. After stimulation, these cells failed to produce significant amounts of IL-2. Although no signaling defect could be detected, we did find that naive/resting Jak3-negative T cells have substantially reduced levels of the transcription factor NF-AT1 and moderately reduced levels of c-Jun and c-Fos. On the basis of these data, we propose that Jak3-dependent cytokine signals may be required to maintain the normal levels of basal transcription factors required for immediate responsiveness to Ag activation.
Collapse
Affiliation(s)
- Daniel C. Thomis
- *Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | | | - Leslie J. Berg
- *Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| |
Collapse
|
164
|
Theofilopoulos AN, Lawson BR. Tumour necrosis factor and other cytokines in murine lupus. Ann Rheum Dis 1999; 58 Suppl 1:I49-55. [PMID: 10577973 PMCID: PMC1766580 DOI: 10.1136/ard.58.2008.i49] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
165
|
Tsuji-Takayama K, Aizawa Y, Okamoto I, Kojima H, Koide K, Takeuchi M, Ikegami H, Ohta T, Kurimoto M. Interleukin-18 induces interferon-gamma production through NF-kappaB and NFAT activation in murine T helper type 1 cells. Cell Immunol 1999; 196:41-50. [PMID: 10486154 DOI: 10.1006/cimm.1999.1542] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin-18 (IL-18) combined with anti-CD3 monoclonal antibody (mAb) induced interferon-gamma (IFN-gamma) production by T helper type 1 (Th1) cells. Neither IL-18 nor anti-CD3 mAb alone induced production of IFN-gamma. Although treatment with IL-18 alone induced full activation of NF-kappaB in Th1 cells, it was not sufficient for the production of IFN-gamma. To examine the importance of NF-kappaB activation in IFN-gamma production, we established Th1 cells which expressed a transdominant IkappaBalpha mutant. In these cells, activation of NF-kappaB and production of IFN-gamma by IL-18 were suppressed. On the other hand, we examined the T cell receptor (TCR)/CD3-mediated signaling pathway. FK506, an inhibitor of NFAT activation, inhibited IFN-gamma production by IL-18 without any effect on the NF-kappaB activation. We conclude that dual signaling consisting of IL-18-induced NF-kappaB activation and TCR/CD3-mediated NFAT activation is crucial for IFN-gamma production by IL-18 in murine Th1 cells.
Collapse
Affiliation(s)
- K Tsuji-Takayama
- Fujisaki Institute, Hayashibara Biochemical Laboratories, Inc., 675-1 Fujisaki, Okayama, 702-8006, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|