151
|
Importance of PIKKs in NF-κB activation by genotoxic stress. Biochem Pharmacol 2011; 82:1371-83. [PMID: 21872579 DOI: 10.1016/j.bcp.2011.07.105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/26/2011] [Accepted: 07/29/2011] [Indexed: 01/11/2023]
Abstract
Alteration of the genome integrity leads to the activation of a vast network of cellular responses named "DNA damage response". Three kinases from the phosphoinositide 3-kinase-like protein kinase family regulate this network; ATM and DNA-PK both activated by DNA double-strand breaks and ATR activated by replication blocks. "DNA damage response" pathway coordinates cell cycle arrest, DNA repair, and the activation of transcription factors such as p53 and NF-κB. It controls senescence/apoptosis/survival of the damaged cells. Cell death or survival result from a tightly regulated balance between antagonist pro- and anti-apoptotic signals. NF-κB is a key transcription factor involved in immunity, inflammation and cell transformation. When activated by DNA double-strand breaks, NF-κB has most often a pro-survival effect and thereof interferes with chemotherapy treatments that often rely on DNA damage to induce tumor cell death (i.e. topoisomerase inhibitors and ionizing radiation). NF-κB is thus an important pharmaceutical target. Agents leading to replication stress induce a pro-apoptotic NF-κB. The molecular mechanisms initiated by DNA lesions leading to NF-κB nuclear translocation have been extensively studied these last years. In this review, we will focus on ATM, ATR and DNA-PK functions both in the IKKα/IKKβ/NEMO-dependent or -independent signaling pathways and on the regulation they can exercise at the promoter level of NF-κB regulated genes.
Collapse
|
152
|
Helleday T. The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol Oncol 2011; 5:387-93. [PMID: 21821475 DOI: 10.1016/j.molonc.2011.07.001] [Citation(s) in RCA: 626] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/03/2011] [Accepted: 07/04/2011] [Indexed: 12/17/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors effectively kill tumours defective in the BRCA1 or BRCA2 genes through the concept of synthetic lethality. It is suggested that PARP inhibitors cause an increase in DNA single-strand breaks (SSBs), which are converted during replication to irreparable toxic DNA double-strand breaks (DSBs) in BRCA1/2 defective cells. There are a number of recent reports challenging this model. Here, alternative models that are not mutually exclusive are presented to explain the synthetic lethality between BRCA1/2 and PARP inhibitors. One such model proposes that PARP inhibition causes PARP-1 to be trapped onto DNA repair intermediates, especially during base excision repair. This may in turn cause obstruction to replication forks, which require BRCA-dependent homologous recombination to be resolved. In another model, PARP is directly involved in catalysing replication repair in a distinct pathway from homologous recombination. Experimental evidence supporting these novel models to explain the PARP-BRCA synthetic lethality are discussed.
Collapse
Affiliation(s)
- Thomas Helleday
- Gray Institute for Radiation Oncology & Biology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
153
|
Abstract
Deficiencies in DNA damage response and repair not only can result in genome instability and cancer predisposition, but also can render the cancer cells intrinsically more vulnerable to certain types of DNA damage insults. Particularly, replication stress is both a hallmark of human cancers and a common instigator for genome instability and cell death. Here, we review our work based on the genetic knockout studies on Blm and Recql5, two members of the mammalian RecQ helicase family. These studies have uncovered a unique partnership between these two helicases in the implementation of proper mitigation strategies under different circumstances to promote DNA replication and cell survival and suppress genome instability and cancer. In particular, current studies have revealed the presence of a novel Recql5/RECQL5-dependent mechanism for suppressing replication fork collapse in response to global replication fork stalling following exposure to camptothecin (CPT), a topoisomerase I inhibitor, and a potent inhibitor of DNA replication. The unique partnership between Blm and Recql5 in coping with the challenge imposed by replication stress is discussed. In addition, given that irinotecan and topotecan, two CPT derivatives, are currently used in clinic for treating human cancer patients with very promising results, the potential implication of the new findings from these studies in anticancer treatments is also discussed.
Collapse
Affiliation(s)
- Xincheng Lu
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou 325027, China
| | | | | |
Collapse
|
154
|
Palle K, Vaziri C. Rad18 E3 ubiquitin ligase activity mediates Fanconi anemia pathway activation and cell survival following DNA Topoisomerase 1 inhibition. Cell Cycle 2011; 10:1625-38. [PMID: 21478670 DOI: 10.4161/cc.10.10.15617] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Camptothecin (CPT) and related chemotherapeutic drugs induce formation of DNA Topoisomerase I (Top1) covalent or cleavage complexes (Top1ccs) that block leading-strand DNA synthesis and elicit DNA Double Stranded Breaks (DSB) during S phase. The Fanconi Anemia (FA) pathway is implicated in tolerance of CPT-induced DNA damage yet the mechanism of FA pathway activation by Top1 poisons has not been studied. We show here that the FA core complex protein FANCA and monoubiquitinated FANCD2 (an effector of the FA pathway) are rapidly mobilized to chromatin in response to CPT treatment in several human cancer cell lines and untransformed primary human dermal fibroblasts. FANCD2 depletion using siRNA leads to impaired recovery from CPT-induced inhibition or DNA synthesis, persistence of γH2AX (a DSB marker) and reduced cell survival following CPT treatment. The E3 ubiquitin ligase Rad18 is necessary for CPT-induced recruitment of FANCA and FANCD2 to chromatin. Moreover, Rad18-depletion recapitulates the DNA synthesis and survival defects of FANCD2-deficiency in CPT-treated cells. It is well-established that Rad18 promotes FA pathway activation and DNA damage tolerance in response to bulky DNA lesions via a mechanism involving PCNA monoubiquitination. In contrast, PCNA monoubiquitination is not involved in Rad18-mediated FA pathway activation or cell survival following acquisition of CPT-induced DSB. Moreover, while Rad18 is implicated in recombinational repair of DSB via an E3 ligase-independent mechanism, we demonstrate that Rad18 E3 ligase activity is essential for appropriate FA pathway activation and DNA damage tolerance after CPT treatment. Taken together, our results define a novel pathway of Rad18-dependent DSB repair that is dissociable from known Rad18-mediated DNA repair mechanisms based on its independence from PCNA ubiquitination and requirement for E3 ligase activity.
Collapse
|
155
|
Activation of protein kinase Tel1 through recognition of protein-bound DNA ends. Mol Cell Biol 2011; 31:1959-71. [PMID: 21402778 DOI: 10.1128/mcb.05157-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Double-strand breaks (DSBs) in chromosomal DNA elicit a rapid signaling response through the ATM protein kinase. ATM corresponds to Tel1 in budding yeast. Here we show that the catalytic activity of Tel1 is altered by protein binding at DNA ends via the Mre11-Rad50-Xrs2 (MRX) complex. Like ATM, Tel1 is activated through interaction with the MRX complex and DNA ends. In vivo, Tel1 activation is enhanced in sae2Δ or mre11-3 mutants after camptothecin treatment; both of these mutants are defective in the removal of topoisomerase I from DNA. In contrast, an sae2Δ mutation does not stimulate Tel1 activation after expression of the EcoRI endonuclease, which generates "clean" DNA ends. In an in vitro system, tethering of Fab fragments to DNA ends inhibits MRX-mediated DNA end processing but enhances Tel1 activation. The mre11-3 mutation abolishes DNA end-processing activity but does not affect the ability to enhance Tel1 activation. These results support a model in which MRX controls Tel1 activation by recognizing protein-bound DNA ends.
Collapse
|
156
|
Zhu F, Zykova TA, Peng C, Zhang J, Cho YY, Zheng D, Yao K, Ma WY, Lau ATY, Bode AM, Dong Z. Phosphorylation of H2AX at Ser139 and a new phosphorylation site Ser16 by RSK2 decreases H2AX ubiquitination and inhibits cell transformation. Cancer Res 2011; 71:393-403. [PMID: 21224359 DOI: 10.1158/0008-5472.can-10-2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Histone H2AX is a histone H2A variant that is ubiquitously expressed throughout the genome. It plays a key role in the cellular response to DNA damage and has been designated as the histone guardian of the genome. Histone H2AX deficiency decreases genomic stability and increases tumor susceptibility of normal cells and tissues. However, the role of histone H2AX phosphorylation in malignant transformation and cancer development is not totally clear. Herein, we found that ribosomal S6 kinase 2 (RSK2) directly phosphorylates histone H2AX at Ser139 and also at a newly discovered site, Ser16. Epidermal growth factor (EGF)-induced phosphorylation of histone H2AX at both sites was decreased in RSK2 knockout cells. Phosphorylated RSK2 and histone H2AX colocalized in the nucleus following EGF treatment, and the phosphorylation of histone H2AX by RSK2 enhanced the stability of histone H2AX and prevented cell transformation induced by EGF. RSK2 and DNA-PK, but not ATM or ATR, are required for EGF-induced phosphorylation of H2AX at Ser139; however, only RSK2 is required for phosphorylation of H2AX at Ser16. Phosphorylation of histone H3 was suppressed in cells expressing wild-type H2AX compared with H2AX knockout (H2AX-/-) cells. EGF-associated AP-1 transactivation activity was dramatically lower in H2AX-/- cells overexpressing wild-type H2AX than H2AX-/- cells expressing mutant H2AX-AA. Thus, the RSK2/H2AX signaling pathway negatively regulates the RSK2/histone H3 pathway and therefore maintains normal cell proliferation.
Collapse
Affiliation(s)
- Feng Zhu
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Zhang YW, Regairaz M, Seiler JA, Agama KK, Doroshow JH, Pommier Y. Poly(ADP-ribose) polymerase and XPF-ERCC1 participate in distinct pathways for the repair of topoisomerase I-induced DNA damage in mammalian cells. Nucleic Acids Res 2011; 39:3607-20. [PMID: 21227924 PMCID: PMC3089458 DOI: 10.1093/nar/gkq1304] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Poly(ADP-Ribose) (PAR) polymerase (PARP) inhibitors represent a promising class of novel anticancer agents. The present study explores the molecular rationale for combining veliparib (ABT-888) with camptothecin (CPT) and its clinical derivatives, topotecan and irinotecan. ABT-888 inhibited PAR induction by CPT and increased CPT-induced cell killing and histone γH2AX. Increased DNA breaks by ABT-888 were not associated with a corresponding increase of topoisomerase I cleavage complexes and were further increased by inactivation of tyrosyl-DNA phosphodiesterase 1. SiRNA knockdown for the endonuclease XPF-ERCC1 reduced the ABT-888-induced γH2AX response in non-replicating and replicating cells but enhanced the antiproliferative effect of ABT-888 in CPT-treated cells. Our findings indicate the involvement of XPF-ERCC1 in inducing γH2AX response and repairing topoisomerase I-induced DNA damage as an alternative pathway from PARP and tyrosyl-DNA phosphodiesterase 1.
Collapse
Affiliation(s)
- Yong-Wei Zhang
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
158
|
Katsube T, Mori M, Tsuji H, Shiomi T, Shiomi N, Onoda M. Differences in sensitivity to DNA-damaging Agents between XRCC4- and Artemis-deficient human cells. JOURNAL OF RADIATION RESEARCH 2011; 52:415-424. [PMID: 21785230 DOI: 10.1269/jrr.10168] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Non-homologous end-joining (NHEJ) is the predominant pathway for the repair of DNA double-strand breaks (DSBs) in human cells. XRCC4 is indispensable to NHEJ and functions together with DNA ligase IV in the rejoining of broken DNA ends. Artemis is a nuclease required for trimming of some, but not all, types of broken DNA ends prior to rejoining by the DNA ligase IV/XRCC4 complex. To better understand the roles of these factors, we generated XRCC4- and Artemis-deficient cells from the human colon adenocarcinoma cell line HCT116 by gene targeting and examined their cellular responses to several DNA-damaging agents including X-rays. As anticipated, kinetic analyses of γ-H2AX foci and chromosomal aberrations after ionizing radiation (IR) demonstrated a serious incompetence of DSB repair in the XRCC4-deficient cells, and relatively moderate impairment in the Artemis-deficient cells. The XRCC4-deficient cells were highly sensitive to etoposide and 5-fluoro-2'-deoxyuridine as well as IR, and moderately sensitive to camptothecin, methyl methanesulfonate, cisplatin, mitomycin C, aphidicolin and hydroxyurea, compared to the parental HCT116 cells. The Artemis-deficient cells were not as sensitive as the XRCC4-deficient cells, except to cisplatin and mitomycin C. By contrast, the Artemis-deficient cells were significantly more resistant to hydroxyurea than the parental cells. These observations suggest that Artemis also functions in some DNA damage response pathways other than NHEJ in human cells.
Collapse
Affiliation(s)
- Takanori Katsube
- Radiation Effect Mechanisms Research Group, Research Center for Radiation Protection, International Open laboratory, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba-shi, Japan
| | | | | | | | | | | |
Collapse
|
159
|
Rastogi RP, Richa, Kumar A, Tyagi MB, Sinha RP. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010; 2010:592980. [PMID: 21209706 PMCID: PMC3010660 DOI: 10.4061/2010/592980] [Citation(s) in RCA: 669] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/15/2010] [Accepted: 09/28/2010] [Indexed: 11/20/2022] Open
Abstract
DNA is one of the prime molecules, and its stability is of utmost importance for proper functioning and existence of all living systems. Genotoxic chemicals and radiations exert adverse effects on genome stability. Ultraviolet radiation (UVR) (mainly UV-B: 280-315 nm) is one of the powerful agents that can alter the normal state of life by inducing a variety of mutagenic and cytotoxic DNA lesions such as cyclobutane-pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and their Dewar valence isomers as well as DNA strand breaks by interfering the genome integrity. To counteract these lesions, organisms have developed a number of highly conserved repair mechanisms such as photoreactivation, base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Additionally, double-strand break repair (by homologous recombination and nonhomologous end joining), SOS response, cell-cycle checkpoints, and programmed cell death (apoptosis) are also operative in various organisms with the expense of specific gene products. This review deals with UV-induced alterations in DNA and its maintenance by various repair mechanisms.
Collapse
Affiliation(s)
- Rajesh P Rastogi
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | | | | | | | | |
Collapse
|
160
|
Akamatsu Y, Jasin M. Role for the mammalian Swi5-Sfr1 complex in DNA strand break repair through homologous recombination. PLoS Genet 2010; 6:e1001160. [PMID: 20976249 PMCID: PMC2954829 DOI: 10.1371/journal.pgen.1001160] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 09/15/2010] [Indexed: 01/08/2023] Open
Abstract
In fission yeast, the Swi5-Sfr1 complex plays an important role in homologous recombination (HR), a pathway crucial for the maintenance of genomic integrity. Here we identify and characterize mammalian Swi5 and Sfr1 homologues. Mouse Swi5 and Sfr1 are nuclear proteins that form a complex in vivo and in vitro. Swi5 interacts in vitro with Rad51, the DNA strand-exchange protein which functions during HR. By generating Swi5−/− and Sfr1−/− embryonic stem cell lines, we found that both proteins are mutually interdependent for their stability. Importantly, the Swi5-Sfr1 complex plays a role in HR when Rad51 function is perturbed in vivo by expression of a BRC peptide from BRCA2. Swi5−/− and Sfr1−/− cells are selectively sensitive to agents that cause DNA strand breaks, in particular ionizing radiation, camptothecin, and the Parp inhibitor olaparib. Consistent with a role in HR, sister chromatid exchange induced by Parp inhibition is attenuated in Swi5−/− and Sfr1−/− cells, and chromosome aberrations are increased. Thus, Swi5-Sfr1 is a newly identified complex required for genomic integrity in mammalian cells with a specific role in the repair of DNA strand breaks. Our genome constantly undergoes DNA damage as a result of agents in the environment, as well as from metabolic processes. One method of repairing DNA damage is homologous recombination (HR), in which genetic information from a duplicate sequence (the sister chromatid) is copied into the damaged site in DNA. In model organisms (the yeasts), a protein complex termed Swi5-Sfr1 functions in DNA damage repair by HR. In this study, we characterize mouse homologues of this complex. We find that mouse cells lacking this complex are sensitive to DNA damaging agents, in particular, those that cause breaks in DNA strands and that serve as cancer chemotherapeutics. These cells also have increased numbers of chromosome aberrations when exposed to DNA damaging agents. Moreover, HR is decreased in Swi5 and Sfr1 mutant cells under conditions where the cell is challenged. Together, these results demonstrate a requirement for the Swi5-Sfr1 protein complex in maintaining genomic integrity in mammalian cells.
Collapse
Affiliation(s)
- Yufuko Akamatsu
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
161
|
Groth P, Ausländer S, Majumder MM, Schultz N, Johansson F, Petermann E, Helleday T. Methylated DNA causes a physical block to replication forks independently of damage signalling, O(6)-methylguanine or DNA single-strand breaks and results in DNA damage. J Mol Biol 2010; 402:70-82. [PMID: 20643142 DOI: 10.1016/j.jmb.2010.07.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/01/2010] [Accepted: 07/12/2010] [Indexed: 11/27/2022]
Abstract
Even though DNA alkylating agents have been used for many decades in the treatment of cancer, it remains unclear what happens when replication forks encounter alkylated DNA. Here, we used the DNA fibre assay to study the impact of alkylating agents on replication fork progression. We found that the alkylator methyl methanesulfonate (MMS) inhibits replication elongation in a manner that is dose dependent and related to the overall alkylation grade. Replication forks seem to be completely blocked as no nucleotide incorporation can be detected following 1 h of MMS treatment. A high dose of 5 mM caffeine, inhibiting most DNA damage signalling, decreases replication rates overall but does not reverse MMS-induced replication inhibition, showing that the replication block is independent of DNA damage signalling. Furthermore, the block of replication fork progression does not correlate with the level of DNA single-strand breaks. Overexpression of O(6)-methylguanine (O6meG)-DNA methyltransferase protein, responsible for removing the most toxic alkylation, O6meG, did not affect replication elongation following exposure to N-methyl-N'-nitro-N-nitrosoguanidine. This demonstrates that O6meG lesions are efficiently bypassed in mammalian cells. In addition, we find that MMS-induced gammaH2AX foci co-localise with 53BP1 foci and newly replicated areas, suggesting that DNA double-strand breaks are formed at MMS-blocked replication forks. Altogether, our data suggest that N-alkylations formed during exposure to alkylating agents physically block replication fork elongation in mammalian cells, causing formation of replication-associated DNA lesions, likely double-strand breaks.
Collapse
Affiliation(s)
- Petra Groth
- Department of Genetics, Microbiology and Toxicology, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
162
|
Heacock ML, Stefanick DF, Horton JK, Wilson SH. Alkylation DNA damage in combination with PARP inhibition results in formation of S-phase-dependent double-strand breaks. DNA Repair (Amst) 2010; 9:929-36. [PMID: 20573551 PMCID: PMC2914189 DOI: 10.1016/j.dnarep.2010.05.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 05/05/2010] [Accepted: 05/24/2010] [Indexed: 02/06/2023]
Abstract
The combination of poly(ADP-ribose)polymerase (PARP) inhibitors and alkylating agents is currently being investigated in cancer therapy clinical trials. However, the DNA lesions producing the synergistic cell killing effect in tumors are not fully understood. Treatment of human and mouse fibroblasts with the monofunctional DNA methylating agent methyl methanesulfonate (MMS) in the presence of a PARP inhibitor has been shown to trigger a cell cycle checkpoint response. Among other changes, this DNA damage response to combination treatment includes activation of ATM/Chk2 and phosphorylation of histone H2A.X. These changes are consistent with DNA double-strand break (DSB) formation during the response, but the measurement of DSBs has not been addressed. Such DSB evaluation is important in understanding this DNA damage response because events other than DSB formation are known to lead to ATM/Chk2 activation and H2A.X phosphorylation. Here, we examined the structural integrity of genomic DNA after the combined treatment of cells with MMS and a PARP inhibitor, i.e., exposure to a sub-lethal dose of MMS in the presence of the PARP inhibitor 4-amino-1,8-napthalimide (4-AN). We used pulsed field gel electrophoresis (PFGE) for measurement of DSBs in both human and mouse embryonic fibroblasts, and flow cytometry to follow the phosphorylated form of H2A.X (gamma-H2A.X). The results indicate that DSBs are formed with the combination treatment, but not following treatment with either agent alone. Our data also show that formation of gamma-H2A.X correlates with PARP-1-expressing cells in S-phase of the cell cycle. The observations support the model that persistence of PARP-1 at base excision repair intermediates, as cells move into S-phase, leads to DSBs and the attendant checkpoint responses.
Collapse
Affiliation(s)
| | | | | | - Samuel H. Wilson
- Corresponding author at: Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA. Tel.: +1 919 541 4701; fax +1 919 541 4724
| |
Collapse
|
163
|
Arlt MF, Glover TW. Inhibition of topoisomerase I prevents chromosome breakage at common fragile sites. DNA Repair (Amst) 2010; 9:678-89. [PMID: 20413351 PMCID: PMC2896008 DOI: 10.1016/j.dnarep.2010.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 03/18/2010] [Accepted: 03/22/2010] [Indexed: 01/22/2023]
Abstract
Common fragile sites are loci that preferentially form gaps and breaks on metaphase chromosomes when DNA synthesis is perturbed, particularly after treatment with the DNA polymerase inhibitor, aphidicolin. We and others have identified several cell cycle checkpoint and DNA repair proteins that influence common fragile site stability. However, the initial events underlying fragile site breakage remain poorly understood. We demonstrate here that aphidicolin-induced gaps and breaks at fragile sites are prevented when cells are co-treated with low concentrations of the topoisomerase I inhibitor, camptothecin. This reduction in breakage is accompanied by a reduction in aphidicolin-induced RPA foci, CHK1 and RPA2 phosphorylation, and PCNA monoubiquitination, indicative of reduced levels of single stranded DNA. Furthermore, camptothecin reduces spontaneous fragile site breakage seen in cells lacking ATR, even in the absence of aphidicolin. These data from cultured human cells demonstrate that topoisomerase I activity is required for DNA common fragile site breaks and suggest that polymerase-helicase uncoupling is a key initial event in this process.
Collapse
Affiliation(s)
- Martin F Arlt
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
164
|
Homologous recombination as a resistance mechanism to replication-induced double-strand breaks caused by the antileukemia agent CNDAC. Blood 2010; 116:1737-46. [PMID: 20479284 DOI: 10.1182/blood-2009-05-220376] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The nucleoside analog 2'-C-cyano-2'-deoxy-1-β-D-arabino-pentofuranosyl-cytosine (CNDAC), currently in clinical trials for hematologic malignancies, has a novel action mechanism of causing a single-strand break after its incorporation into DNA. Double-strand breaks (DSBs) are generated thereafter in vivo and, if not repaired, pose lethal impact on cell survival. This study sought to define the mechanisms by which CNDAC-induced DSBs are formed and repaired. We demonstrated that single-strand breaks induced by CNDAC incorporation into DNA were converted to DSBs when cells progressed into the subsequent S-phase. CNDAC-induced DSBs were products of replication, rather than a consequence of apoptosis. ATM, the activator of homologous recombination (HR), was essential for cell survival after CNDAC treatment in cell lines and in primary acute myeloid leukemia samples, as were the HR components, Rad51, Xrcc3, and Brca2. Furthermore, formation of sister chromatid exchanges, a hallmark of HR, increased significantly after CNDAC-treated cells had progressed into a second replication cycle. In contrast, neither the replication stress sensor ATR nor DNA-PK, the initiator of nonhomologous end-joining of DSB, was involved in repair of CNDAC-induced damage. Together, these results indicate that HR, but not nonhomologous end-joining, is the major repair or survival mechanism for DNA damage caused by CNDAC.
Collapse
|
165
|
Helleday T. Homologous recombination in cancer development, treatment and development of drug resistance. Carcinogenesis 2010; 31:955-60. [PMID: 20351092 DOI: 10.1093/carcin/bgq064] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although DNA double-strand breaks (DSBs) are substrates for homologous recombination (HR) repair, it is becoming apparent that DNA lesions produced at replication forks, for instance by many anticancer drugs, are more significant substrates for HR repair. Cells defective in HR are hypersensitive to a wide variety of anticancer drugs, including those that do not produce DSBs. Several cancers have mutations in or epigenetically silenced HR genes, which explain the genetic instability that drives cancer development. There are an increasing number of reports suggesting that mutation or epigenetic silencing of HR genes explains the sensitivity of cancers to current chemotherapy treatments. Furthermore, there are also many examples of re-expression of HR genes in tumours to explain drug resistance. Emerging data suggest that there are several different subpathways of HR, which can compensate for each other. Unravelling the overlapping pathways in HR showed that BRCA1- and BRCA2-defective cells rely on the PARP protein for survival. This synthetic lethal interaction is now being exploited for selective treatment of BRCA1- and BRCA2-defective cancers with PARP inhibitors. Here, I discuss the diversity of HR and how it impacts on cancer with a particular focus on how HR can be exploited in future anticancer strategies.
Collapse
Affiliation(s)
- Thomas Helleday
- Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
166
|
Panico ER, Ede C, Schildmann M, Schürer KA, Kramer W. Genetic evidence for a role of Saccharomyces cerevisiae Mph1 in recombinational DNA repair under replicative stress. Yeast 2010; 27:11-27. [PMID: 19918932 DOI: 10.1002/yea.1727] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In yeast as in human, DNA helicases play critical roles in assisting replication fork progression. The Saccharomyces cerevisiae MPH1 gene, homologue of human FANCM, has been involved in homologous recombination and DNA repair. We describe a synthetic growth defect of an mph1 deletion if combined with an srs2 deletion that can result-depending on the genetic background-in synthetic lethality. The lethality is suppressed by mutations in homologous recombination (rad51, rad52, rad55, rad57) and in the DNA damage checkpoint (rad9, rad24, rad17). Importantly, rad54 and mph1, epistatic for damage sensitivity, are subadditive for spontaneous mutator phenotype. Therefore, Mph1 could be placed at the Rad51-mediated strand invasion process, with a function distinct from Rad54. Moreover, siz1 mutation is viable with mph1 and additive for DNA damage sensitivity. mph1 srs2 double mutants, isolated in a background where they are viable, are synergistically sensitive to DNA damage. Moderate overexpression of SGS1 partially suppresses this sensitivity. Finally, we observe an epistatic relationship in terms of sensitivity to camptothecin of mms4 or mus81 to mph1. Overall, our results support a role of Mph1 in assisting replication progression. We propose two models for the resumption of DNA synthesis under replicative stress where Mph1 is placed at the sister chromatid interaction step.
Collapse
Affiliation(s)
- Evandro Rocco Panico
- Department of Molecular Genetics and Preparative Molecular Biology, Institute for Microbiology and Genetics, University of Göttingen, D-37077 Göttingen, Germany.
| | | | | | | | | |
Collapse
|
167
|
Dziegielewski J, Goetz W, Murley JS, Grdina DJ, Morgan WF, Baulch JE. Amifostine metabolite WR-1065 disrupts homologous recombination in mammalian cells. Radiat Res 2010; 173:175-83. [PMID: 20095849 DOI: 10.1667/rr1982.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Repair of DNA damage through homologous recombination (HR) pathways plays a crucial role in maintaining genome stability. However, overstimulation of HR pathways in response to genotoxic stress may abnormally elevate recombination frequencies, leading to increased mutation rates and delayed genomic instability. Radiation-induced genomic instability has been detected after exposure to both low- and high-linear energy transfer (LET) radiations, but the mechanisms responsible for initiating or propagating genomic instability are not known. We have demonstrated that WR-1065, the active metabolite of amifostine, protects against radiation-induced cell killing and delayed genomic instability. We hypothesize that hyperstimulation of HR pathways plays a mechanistic role in radiation-induced genomic instability and that, in part, WR-1065 exerts it radioprotective effect through suppression of the HR pathway. Results of this study demonstrate that WR-1065 treatment selectively protected against radiation-induced cell killing in HR-proficient cell lines compared to an HR-deficient cell line. Further, WR-1065 treatment decreases HR in response to DNA damage using two different mammalian cell systems. This suppression of hyper-recombination is a previously unrecognized mechanism by which WR-1065 effects radioprotection in mammalian cells.
Collapse
Affiliation(s)
- Jaroslaw Dziegielewski
- Department of Radiation Oncology, Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
168
|
Wang LH, Pfister TD, Parchment RE, Kummar S, Rubinstein L, Evrard YA, Gutierrez ME, Murgo AJ, Tomaszewski JE, Doroshow JH, Kinders RJ. Monitoring drug-induced gammaH2AX as a pharmacodynamic biomarker in individual circulating tumor cells. Clin Cancer Res 2010; 16:1073-84. [PMID: 20103672 DOI: 10.1158/1078-0432.ccr-09-2799] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Circulating tumor cells (CTC) in peripheral blood of patients potentially represent a fraction of solid tumor cells available for more frequent pharmacodynamic assessment of drug action than is possible using tumor biopsy. However, currently available CTC assays are limited to cell membrane antigens. Here, we describe an assay that directly examines changes in levels of the nuclear DNA damage marker gammaH2AX in individual CTCs of patients treated with chemotherapeutic agents. EXPERIMENTAL DESIGN An Alexa Fluor 488-conjugated monoclonal gammaH2AX antibody and epithelial cancer cell lines treated with topotecan and spiked into whole blood were used to measure DNA damage-dependent nuclear gammaH2AX signals in individual CTCs. Time-course changes in both CTC number and gammaH2AX levels in CTCs were also evaluated in blood samples from patients undergoing treatment. RESULTS The percentage of gammaH2AX-positive CTCs increased in a concentration-dependent manner in cells treated with therapeutically relevant concentrations of topotecan ex vivo. In samples from five patients, percent gammaH2AX-positive cells increased post-treatment from a mean of 2% at baseline (range, 0-6%) to a mean of 38% (range, 22-64%) after a single day of drug administration; this increase was irrespective of increases or decreases in the total CTC count. CONCLUSIONS These data show promise for monitoring dynamic changes in nuclear biomarkers in CTCs (in addition to CTC count) for rapidly assessing drug activity in clinical trials of molecularly targeted anticancer therapeutics as well as for translational research.
Collapse
Affiliation(s)
- Lihua H Wang
- Laboratory of Human Toxicology and Pharmacology, Science Applications International Corporation, Frederick, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
SUMO modification regulates BLM and RAD51 interaction at damaged replication forks. PLoS Biol 2009; 7:e1000252. [PMID: 19956565 PMCID: PMC2779653 DOI: 10.1371/journal.pbio.1000252] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 10/16/2009] [Indexed: 11/25/2022] Open
Abstract
SUMO modification of BLM controls the switch between BLM's pro- and anti-recombinogenic roles in homologous recombination following DNA damage during replication. The gene mutated in Bloom's syndrome, BLM, is important in the repair of damaged replication forks, and it has both pro- and anti-recombinogenic roles in homologous recombination (HR). At damaged forks, BLM interacts with RAD51 recombinase, the essential enzyme in HR that catalyzes homology-dependent strand invasion. We have previously shown that defects in BLM modification by the small ubiquitin-related modifier (SUMO) cause increased γ-H2AX foci. Because the increased γ-H2AX could result from defective repair of spontaneous DNA damage, we hypothesized that SUMO modification regulates BLM's function in HR repair at damaged forks. To test this hypothesis, we treated cells that stably expressed a normal BLM (BLM+) or a SUMO-mutant BLM (SM-BLM) with hydroxyurea (HU) and examined the effects of stalled replication forks on RAD51 and its DNA repair functions. HU treatment generated excess γ-H2AX in SM-BLM compared to BLM+ cells, consistent with a defect in replication-fork repair. SM-BLM cells accumulated increased numbers of DNA breaks and were hypersensitive to DNA damage. Importantly, HU treatment failed to induce sister-chromatid exchanges in SM-BLM cells compared to BLM+ cells, indicating a specific defect in HR repair and suggesting that RAD51 function could be compromised. Consistent with this hypothesis, RAD51 localization to HU-induced repair foci was impaired in SM-BLM cells. These data suggested that RAD51 might interact noncovalently with SUMO. We found that in vitro RAD51 interacts noncovalently with SUMO and that it interacts more efficiently with SUMO-modified BLM compared to unmodified BLM. These data suggest that SUMOylation controls the switch between BLM's pro- and anti-recombinogenic roles in HR. In the absence of BLM SUMOylation, BLM perturbs RAD51 localization at damaged replication forks and inhibits fork repair by HR. Conversely, BLM SUMOylation relieves its inhibitory effects on HR, and it promotes RAD51 function. Replication is the process in which cellular DNA is duplicated. DNA damage incurred during replication is detrimental to the cell. Homologous recombination, in which DNA sequences are exchanged between two similar or identical strands of DNA, plays a pivotal role in correcting replication processes that have failed due to DNA breakage and is tightly regulated, because deficient or excess recombination results in genomic instability. Previous studies have implicated the DNA-processing enzyme BLM in the regulation of homologous recombination; BLM is defective in Bloom's syndrome, which is characterized by excess recombination and cancer susceptibility. Here, we show that modification of BLM by the small protein SUMO controls BLM's function in regulating homologous recombination at sites where DNA replication failed. We showed that cells expressing a SUMO-deficient mutant of BLM accumulated more DNA damage and displayed defects in repair by homologous recombination. An enzyme involved in homologous recombination, RAD51, displayed a defect in localization to sites where DNA replication failed. Our data support a model in which SUMO modification regulates BLM's function in homologous recombination by controlling the localization of RAD51 to failed replication sites.
Collapse
|
170
|
MacLaren A, Slavin D, McGowan CH. Chk2 protects against radiation-induced genomic instability. Radiat Res 2009; 172:463-72. [PMID: 19772467 DOI: 10.1667/rr1603.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The murine Chk2 kinase is activated after exposure to ionizing radiation and is necessary for p53-dependent apoptosis, but the role Chk2 plays in determining genomic stability is poorly understood. By analyzing the sensitivity of Chk2-deficient murine and human cells to a range of DNA-damaging agents, we show that Chk2 deficiency results in resistance to agents that generate double-strand breaks but not to other forms of damage. Surprisingly, the absence of Chk2 results in increased sensitivity to UV-radiation-induced DNA damage. Defective apoptosis after radiation-induced DNA damage may result in genomic instability; therefore, the consequences of Chk2 deficiency on genomic instability were assayed using an in vitro screen. Gene amplification was not detected in untreated Chk2(-/-) cells, but the rate of gene amplification after irradiation was elevated and was similar to that found in p53 compromised cells. A synergistic increase in genomic instability was seen after disruption of both Chk2 and p53 function, indicating that the two proteins have non-redundant roles in regulating genome stability after irradiation. The data demonstrate that Chk2 functions to maintain genome integrity after radiation-induced damage and has important implications for the use of Chk2 inhibitors as adjuvant cancer therapy.
Collapse
Affiliation(s)
- Ann MacLaren
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
171
|
Optimal function of the DNA repair enzyme TDP1 requires its phosphorylation by ATM and/or DNA-PK. EMBO J 2009; 28:3667-80. [PMID: 19851285 DOI: 10.1038/emboj.2009.302] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 09/10/2009] [Indexed: 12/31/2022] Open
Abstract
Human tyrosyl-DNA phosphodiesterase (TDP1) hydrolyzes the phosphodiester bond at a DNA 3' end linked to a tyrosyl moiety. This type of linkage is found at stalled topoisomerase I (Top1)-DNA covalent complexes, and TDP1 has been implicated in the repair of such complexes. Here we show that Top1-associated DNA double-stranded breaks (DSBs) induce the phosphorylation of TDP1 at S81. This phosphorylation is mediated by the protein kinases: ataxia-telangiectasia-mutated (ATM) and DNA-dependent protein kinase (DNA-PK). Phosphorylated TDP1 forms nuclear foci that co-localize with those of phosphorylated histone H2AX (gammaH2AX). Both Top1-induced replication- and transcription-mediated DNA damages induce TDP1 phosphorylation. Furthermore, we show that S81 phosphorylation stabilizes TDP1, induces the formation of XRCC1 (X-ray cross-complementing group 1)-TDP1 complexes and enhances the mobilization of TDP1 to DNA damage sites. Finally, we provide evidence that TDP1-S81 phosphorylation promotes cell survival and DNA repair in response to CPT-induced DSBs. Together; our findings provide a new mechanism for TDP1 post-translational regulation by ATM and DNA-PK.
Collapse
|
172
|
Al-Minawi AZ, Lee YF, Håkansson D, Johansson F, Lundin C, Saleh-Gohari N, Schultz N, Jenssen D, Bryant HE, Meuth M, Hinz JM, Helleday T. The ERCC1/XPF endonuclease is required for completion of homologous recombination at DNA replication forks stalled by inter-strand cross-links. Nucleic Acids Res 2009; 37:6400-13. [PMID: 19713438 PMCID: PMC2770670 DOI: 10.1093/nar/gkp705] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 08/06/2009] [Accepted: 08/09/2009] [Indexed: 12/27/2022] Open
Abstract
Both the ERCC1-XPF complex and the proteins involved in homoIogous recombination (HR) have critical roles in inter-strand cross-link (ICL) repair. Here, we report that mitomycin C-induced lesions inhibit replication fork elongation. Furthermore, mitomycin C-induced DNA double-strand breaks (DSBs) are the result of the collapse of ICL-stalled replication forks. These are not formed through replication run off, as we show that mitomycin C or cisplatin-induced DNA lesions are not incised by global genome nucleotide excision repair (GGR). We also suggest that ICL-lesion repair is initiated either by replication or transcription, as the GGR does not incise ICL-lesions. Furthermore, we report that RAD51 foci are induced by cisplatin or mitomycin C independently of ERCC1, but that mitomycin C-induced HR measured in a reporter construct is impaired in ERCC1-defective cells. These data suggest that ERCC1-XPF plays a role in completion of HR in ICL repair. We also find no additional sensitivity to cisplatin by siRNA co-depletion of XRCC3 and ERCC1, showing that the two proteins act on the same pathway to promote survival.
Collapse
Affiliation(s)
- Ali Z. Al-Minawi
- The Institute for Cancer Studies, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK, Department of Genetics Microbiology and Toxicology, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, Gray Institute for Radiation Oncology & Biology, University of Oxford, Oxford, OX3 7DQ, UK and Genetic Department, Kerman University of Medical Sciences, Medical school, Bozorgrah Emam, Kerman, 76169-14111, Iran and School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Yin-Fai Lee
- The Institute for Cancer Studies, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK, Department of Genetics Microbiology and Toxicology, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, Gray Institute for Radiation Oncology & Biology, University of Oxford, Oxford, OX3 7DQ, UK and Genetic Department, Kerman University of Medical Sciences, Medical school, Bozorgrah Emam, Kerman, 76169-14111, Iran and School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Daniel Håkansson
- The Institute for Cancer Studies, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK, Department of Genetics Microbiology and Toxicology, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, Gray Institute for Radiation Oncology & Biology, University of Oxford, Oxford, OX3 7DQ, UK and Genetic Department, Kerman University of Medical Sciences, Medical school, Bozorgrah Emam, Kerman, 76169-14111, Iran and School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Fredrik Johansson
- The Institute for Cancer Studies, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK, Department of Genetics Microbiology and Toxicology, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, Gray Institute for Radiation Oncology & Biology, University of Oxford, Oxford, OX3 7DQ, UK and Genetic Department, Kerman University of Medical Sciences, Medical school, Bozorgrah Emam, Kerman, 76169-14111, Iran and School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Cecilia Lundin
- The Institute for Cancer Studies, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK, Department of Genetics Microbiology and Toxicology, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, Gray Institute for Radiation Oncology & Biology, University of Oxford, Oxford, OX3 7DQ, UK and Genetic Department, Kerman University of Medical Sciences, Medical school, Bozorgrah Emam, Kerman, 76169-14111, Iran and School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Nasrollah Saleh-Gohari
- The Institute for Cancer Studies, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK, Department of Genetics Microbiology and Toxicology, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, Gray Institute for Radiation Oncology & Biology, University of Oxford, Oxford, OX3 7DQ, UK and Genetic Department, Kerman University of Medical Sciences, Medical school, Bozorgrah Emam, Kerman, 76169-14111, Iran and School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Niklas Schultz
- The Institute for Cancer Studies, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK, Department of Genetics Microbiology and Toxicology, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, Gray Institute for Radiation Oncology & Biology, University of Oxford, Oxford, OX3 7DQ, UK and Genetic Department, Kerman University of Medical Sciences, Medical school, Bozorgrah Emam, Kerman, 76169-14111, Iran and School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Dag Jenssen
- The Institute for Cancer Studies, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK, Department of Genetics Microbiology and Toxicology, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, Gray Institute for Radiation Oncology & Biology, University of Oxford, Oxford, OX3 7DQ, UK and Genetic Department, Kerman University of Medical Sciences, Medical school, Bozorgrah Emam, Kerman, 76169-14111, Iran and School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Helen E. Bryant
- The Institute for Cancer Studies, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK, Department of Genetics Microbiology and Toxicology, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, Gray Institute for Radiation Oncology & Biology, University of Oxford, Oxford, OX3 7DQ, UK and Genetic Department, Kerman University of Medical Sciences, Medical school, Bozorgrah Emam, Kerman, 76169-14111, Iran and School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Mark Meuth
- The Institute for Cancer Studies, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK, Department of Genetics Microbiology and Toxicology, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, Gray Institute for Radiation Oncology & Biology, University of Oxford, Oxford, OX3 7DQ, UK and Genetic Department, Kerman University of Medical Sciences, Medical school, Bozorgrah Emam, Kerman, 76169-14111, Iran and School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - John M. Hinz
- The Institute for Cancer Studies, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK, Department of Genetics Microbiology and Toxicology, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, Gray Institute for Radiation Oncology & Biology, University of Oxford, Oxford, OX3 7DQ, UK and Genetic Department, Kerman University of Medical Sciences, Medical school, Bozorgrah Emam, Kerman, 76169-14111, Iran and School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Thomas Helleday
- The Institute for Cancer Studies, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK, Department of Genetics Microbiology and Toxicology, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, Gray Institute for Radiation Oncology & Biology, University of Oxford, Oxford, OX3 7DQ, UK and Genetic Department, Kerman University of Medical Sciences, Medical school, Bozorgrah Emam, Kerman, 76169-14111, Iran and School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
173
|
Lin CP, Ban Y, Lyu YL, Liu LF. Proteasome-dependent processing of topoisomerase I-DNA adducts into DNA double strand breaks at arrested replication forks. J Biol Chem 2009; 284:28084-28092. [PMID: 19666469 DOI: 10.1074/jbc.m109.030601] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Reversible topoisomerase I (Top1)-DNA cleavage complexes are the key DNA lesion induced by anticancer camptothecins (CPTs) (e.g. topotecan and irinotecan) as well as structurally perturbed DNAs (e.g. oxidatively damaged, UV-irradiated, or alkylated DNA). It has been proposed that Top1 cleavage complexes arrest advancing replication forks, triggering the formation of DNA double strand breaks (DSBs) because of replication fork runoff at the Top1 cleavage complex sites on the leading strand. In this study, we show that the formation of replication-dependent DSBs requires the ubiquitin-proteasome pathway in CPT-treated cells. First, the proteasome inhibitor MG-132 specifically inhibited CPT-induced but not ionizing radiation- or hydroxyurea-induced DSBs as revealed by both the neutral comet assay and measurements of the specific DNA damage signals (e.g. gamma-H2AX, phosphorylated ataxia telangiectasia mutated (Ser-1981), and phosphorylated Chk2 (Ser-33/35)) that are characteristic for DSBs. Knocking down the 20 S proteasome maturation protein also supported the requirement of the proteasome activity for CPT-induced DSBs. Second, CPT-induced DSB signals were shown to require ubiquitin, ubiquitin-activating enzyme (E1), a CUL-3-based ubiquitin ligase (E3), and the formation of Lys-48-linked polyubiquitin chains on Top1. Third, immunocytochemical studies revealed that the CPT-induced formation of gamma-H2AX foci occurred at the replication forks and was attenuated by co-treatment with the proteasome inhibitor MG-132. In the aggregate, these results support a replication fork collision model in which Top1 cleavage complexes at the arrested replication forks are degraded by proteasome prior to replication fork runoff on the leading strand to generate DSBs.
Collapse
Affiliation(s)
- Chao-Po Lin
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635
| | - Yi Ban
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635
| | - Yi Lisa Lyu
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635
| | - Leroy F Liu
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635.
| |
Collapse
|
174
|
Ying S, Myers K, Bottomley S, Helleday T, Bryant HE. BRCA2-dependent homologous recombination is required for repair of Arsenite-induced replication lesions in mammalian cells. Nucleic Acids Res 2009; 37:5105-13. [PMID: 19553191 PMCID: PMC2731915 DOI: 10.1093/nar/gkp538] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 01/01/2023] Open
Abstract
Arsenic exposure constitutes one of the most widespread environmental carcinogens, and is associated with increased risk of many different types of cancers. Here we report that arsenite (As[III]) can induce both replication-dependent DNA double-strand breaks (DSB) and homologous recombination (HR) at doses as low as 5 microM (0.65 mg/l), which are within the typical doses often found in drinking water in contaminated areas. We show that the production of DSBs is dependent on active replication and is likely to be the result of conversion of a DNA single-strand break (SSB) into a toxic DSB when encountered by a replication fork. We demonstrate that HR is required for the repair of these breaks and show that a functional HR pathway protects against As[III]-induced cytotoxicity. In addition, BRCA2-deficient cells are sensitive to As[III] and we suggest that As[III] could be exploited as a therapy for HR-deficient tumours such as BRCA1 and BRCA2 mutated breast and ovarian cancers.
Collapse
Affiliation(s)
- Songmin Ying
- The Institute for Cancer Studies, University of Sheffield, Sheffield S10 2RX and Gray Institute for Radiation Oncology & Biology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Katie Myers
- The Institute for Cancer Studies, University of Sheffield, Sheffield S10 2RX and Gray Institute for Radiation Oncology & Biology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Sarah Bottomley
- The Institute for Cancer Studies, University of Sheffield, Sheffield S10 2RX and Gray Institute for Radiation Oncology & Biology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Thomas Helleday
- The Institute for Cancer Studies, University of Sheffield, Sheffield S10 2RX and Gray Institute for Radiation Oncology & Biology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Helen E. Bryant
- The Institute for Cancer Studies, University of Sheffield, Sheffield S10 2RX and Gray Institute for Radiation Oncology & Biology, University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
175
|
Zhu Y, Hu J, Hu Y, Liu W. Targeting DNA repair pathways: a novel approach to reduce cancer therapeutic resistance. Cancer Treat Rev 2009; 35:590-6. [PMID: 19635647 DOI: 10.1016/j.ctrv.2009.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 06/16/2009] [Accepted: 06/22/2009] [Indexed: 01/04/2023]
Abstract
Increased chemo-resistance and radio-resistance of cancer cells is a major obstacle in the treatment and management of malignant cancers. An important mechanism that underlies the development of such therapeutic resistance is that cancer cells recognize DNA lesions induced by DNA-damaging agents and by ionizing radiation, and repair these lesions by activating various DNA repair pathways. Therefore, Use of pharmacological agents that can inhibit certain DNA repair pathways in cancer cells has the potential for enhancing the targeted cytotoxicity of anticancer treatments and reversing the associated therapeutic resistance associated with DNA repair; such agents, offering a promising opportunity to achieve better therapeutic efficacy. Here we review the major DNA repair pathways and discuss recent advances in the development of novel inhibitors of DNA repair pathways; many of these agents are under preclinical/clinical investigation.
Collapse
Affiliation(s)
- Yongjian Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| | | | | | | |
Collapse
|
176
|
Guirouilh-Barbat J, Zhang YW, Pommier Y. Induction of glutathione-dependent DNA double-strand breaks by the novel anticancer drug brostallicin. Mol Cancer Ther 2009; 8:1985-94. [PMID: 19584235 PMCID: PMC2760303 DOI: 10.1158/1535-7163.mct-09-0320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Brostallicin is a DNA minor groove binder in phase II clinical trials. Here, we show that brostallicin induces gamma-H2AX nuclear foci that colocalize with 53BP1 and are dependent on glutathione, as shown by inhibition of those gamma-H2AX foci by l-buthionine sulfoximine. To differentiate brostallicin from the clinically approved minor groove binder trabectedin (ecteinascidin 743), we tested whether the brostallicin-induced gamma-H2AX and antiproliferative responses were dependent on nucleotide excision repair and found that, unlike trabectedin, they are not. Additionally, brostallicin retained activity in the trabectedin-resistant HCT116-ER5 cell line. Induction of gamma-H2AX foci by brostallicin was partially dependent on the repair nuclease Mre11. Pretreatment with aphidicolin partially reduced brostallicin-induced gamma-H2AX foci, suggesting that brostallicin induces both replication-associated and replication-independent DNA damage. Replication-associated DNA damage was further shown by the colocalization of gamma-H2AX foci with replication foci and by the rapid inhibition of DNA synthesis and accumulation of cells in S phase in response to brostallicin. In addition, brostallicin was able to induce lower intensity gamma-H2AX foci in human circulating lymphocytes. Together, our results indicate that brostallicin induces DNA double-strand breaks and suggest gamma-H2AX as a pharmacodynamic biomarker for brostallicin.
Collapse
Affiliation(s)
- Josée Guirouilh-Barbat
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255
| | - Yong-Wei Zhang
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255
| |
Collapse
|
177
|
Ohnishi T, Mori E, Takahashi A. DNA double-strand breaks: their production, recognition, and repair in eukaryotes. Mutat Res 2009; 669:8-12. [PMID: 19576233 DOI: 10.1016/j.mrfmmm.2009.06.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 06/20/2009] [Accepted: 06/23/2009] [Indexed: 01/13/2023]
Abstract
Human cells accumulate at least 10,000 DNA lesions every day. Failure to repair such lesions can lead to mutations, genomic instability, or cell death. Among the various types of damage which can be expressed in a cell, DNA double-strand breaks (DSBs) represent the most serious threat. Different kinds of physical, chemical, and biological factors have been reported to induce DNA lesions, including DSBs. The aim of this review is to provide a basic understanding and overview of how DSBs are produced, recognized and repaired, and to describe the role of some of the genes and proteins involved in DSB repair.
Collapse
Affiliation(s)
- Takeo Ohnishi
- Department of Biology, School of Medicine, Nara Medical University, Kashihara, Nara, Japan.
| | | | | |
Collapse
|
178
|
Affiliation(s)
- Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA.
| |
Collapse
|
179
|
El-Khamisy SF, Katyal S, Patel P, Ju L, McKinnon PJ, Caldecott KW. Synergistic decrease of DNA single-strand break repair rates in mouse neural cells lacking both Tdp1 and aprataxin. DNA Repair (Amst) 2009; 8:760-6. [PMID: 19303373 PMCID: PMC2693503 DOI: 10.1016/j.dnarep.2009.02.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 02/06/2009] [Accepted: 02/06/2009] [Indexed: 11/16/2022]
Abstract
Ataxia oculomotor apraxia-1 (AOA1) is an autosomal recessive neurodegenerative disease that results from mutations of aprataxin (APTX). APTX associates with the DNA single- and double-strand break repair machinery and is able to remove AMP from 5'-termini at DNA strand breaks in vitro. However, attempts to establish a DNA strand break repair defect in APTX-defective cells have proved conflicting and unclear. We reasoned that this may reflect that DNA strand breaks with 5'-AMP represent only a minor subset of breaks induced in cells, and/or the availability of alternative mechanisms for removing AMP from 5'-termini. Here, we have attempted to increase the dependency of chromosomal single- and double-strand break repair on aprataxin activity by slowing the rate of repair of 3'-termini in aprataxin-defective neural cells, thereby increasing the likelihood that the 5'-termini at such breaks become adenylated and/or block alternative repair mechanisms. To do this, we generated a mouse model in which APTX is deleted together with tyrosyl DNA phosphodiesterase (TDP1), an enzyme that repairs 3'-termini at a subset of single-strand breaks (SSBs), including those with 3'-topoisomerase-1 (Top1) peptide. Notably, the global rate of repair of oxidative and alkylation-induced SSBs was significantly slower in Tdp1(-/-)/Aptx(-/-) double knockout quiescent mouse astrocytes compared with Tdp1(-/-) or Aptx(-/-) single knockouts. In contrast, camptothecin-induced Top1-SSBs accumulated to similar levels in Tdp1(-/-) and Tdp1(-/-)/Aptx(-/-) double knockout astrocytes. Finally, we failed to identify a measurable defect in double-strand break repair in Tdp1(-/-), Aptx(-/-) or Tdp1(-/-)/Aptx(-/-) astrocytes. These data provide direct evidence for a requirement for aprataxin during chromosomal single-strand break repair in primary neural cells lacking Tdp1.
Collapse
Affiliation(s)
- Sherif F. El-Khamisy
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sachin Katyal
- Department of Genetics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Poorvi Patel
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Limei Ju
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Peter J. McKinnon
- Department of Genetics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Keith W. Caldecott
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| |
Collapse
|
180
|
Toyoda E, Kurosawa A, Fujii M, Adachi N. Heterozygous disruption of the DNA topoisomerase I gene confers cellular resistance to camptothecin in human cells. Biol Pharm Bull 2009; 32:724-7. [PMID: 19336913 DOI: 10.1248/bpb.32.724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DNA topoisomerase I (Top1) is a ubiquitous nuclear enzyme that plays essential roles in various cellular processes, such as transcription or replication. Agents that target Top1, involving camptothecin and its derivatives, are among the most effective anticancer drugs used in the clinic. Previous work has suggested that the level of Top1 expression correlates with the cytotoxicity of camptothecin, but no direct evidence has been provided thus far in the context of human cells with a strictly isogenic genetic background. In this study, we perform heterozygous disruption of the Top1 gene (TOP1) by gene targeting in a human pre-B cell line, Nalm-6, which is karyotypically stable and normal for p53 status. We show that the heterozygous loss of the TOP1 gene does confer cellular resistance to camptothecin, to an extent comparable to that observed in the absence of functional p53 protein. Such a tolerance was not observed with other agents that target DNA topoisomerase II. Our results provide direct evidence that human cells with decreased Top1 levels are significantly more resistant to killing by camptothecin than are otherwise isogenic cells.
Collapse
Affiliation(s)
- Eriko Toyoda
- International Graduate School of Arts and Sciences, Yokohama City University, Japan
| | | | | | | |
Collapse
|
181
|
Kumamoto-Yonezawa Y, Sasaki R, Ota Y, Suzuki Y, Fukushima S, Hada T, Uryu K, Sugimura K, Yoshida H, Mizushina Y. Cell cycle arrest triggered by conjugated eicosapentaenoic acid occurs through several mechanisms including G1 checkpoint activation by induced RPA and ATR expression. Biochim Biophys Acta Gen Subj 2009; 1790:339-46. [DOI: 10.1016/j.bbagen.2009.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 02/02/2009] [Accepted: 02/02/2009] [Indexed: 01/03/2023]
|
182
|
Goel A, Jhurani S, Aggarwal BB. Multi-targeted therapy by curcumin: how spicy is it? Mol Nutr Food Res 2009; 52:1010-30. [PMID: 18384098 DOI: 10.1002/mnfr.200700354] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although traditional medicines have been used for thousands of years, for most such medicines neither the active component nor their molecular targets have been very well identified. Curcumin, a yellow component of turmeric or curry powder, however, is an exception. Although inhibitors of cyclooxygenase-2, HER2, tumor necrosis factor, EGFR, Bcr-abl, proteosome, and vascular endothelial cell growth factor have been approved for human use by the United States Food and Drug Administration (FDA), curcumin as a single agent can down-regulate all these targets. Curcumin can also activate apoptosis, down-regulate cell survival gene products, and up-regulate p53, p21, and p27. Although curcumin is poorly absorbed after ingestion, multiple studies have suggested that even low levels of physiologically achievable concentrations of curcumin may be sufficient for its chemopreventive and chemotherapeutic activity. Thus, curcumin regulates multiple targets (multitargeted therapy), which is needed for treatment of most diseases, and it is inexpensive and has been found to be safe in human clinical trials. The present article reviews the key molecular mechanisms of curcumin action and compares this to some of the single-targeted therapies currently available for human cancer.
Collapse
Affiliation(s)
- Ajay Goel
- Gastrointestinal Cancer Research Laboratory, Department of Internal Medicine, Charles A Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
183
|
Tdp1 protects against oxidative DNA damage in non-dividing fission yeast. EMBO J 2009; 28:632-40. [PMID: 19197239 DOI: 10.1038/emboj.2009.9] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 01/02/2009] [Indexed: 11/08/2022] Open
Abstract
In humans, a mutation in the tyrosyl-DNA phosphodiesterase (Tdp1) is responsible for the recessively inherited syndrome spinocerebellar ataxia with axonal neuropathy (SCAN1). Tdp1 is a well-conserved DNA repair enzyme, which processes modified 3' phospho-DNA adducts in vitro. Here, we report that in the yeast Schizosaccharomyces pombe, tdp1 mutant cells progressively accumulate DNA damage and rapidly lose viability in a physiological G0/quiescent state. Remarkably, this effect is independent of topoisomerase I function. Moreover, we provide evidence that Tdp1, with the polynucleotide kinase (Pnk1), processes the same naturally occurring 3'-ends, produced from oxidative DNA damage in G0. We also found that one half of the dead cells lose their nuclear DNA. Nuclear DNA degradation is genetically programmed and mainly depends on the two DNA damage checkpoint responses, ATM/Tel1 and ATR/Rad3, reminiscent to programmed cell death. Diminishing the respiration rate or treating cells with a low concentration of antioxidants rescues the quiescent tdp1 mutant cells. These findings suggest that mitochondrial respiration causes neuronal cell death in the SCAN1 syndrome and in other neurological disorders.
Collapse
|
184
|
Abstract
The interaction of DNA topology modifying enzymes with eukaryotic DNA replication origins can be detected with nucleotide precision exploiting the action of enzyme poisons specific for type I or type II DNA topoisomerases. Using the topoisomerase I poison camptothecin and the topoisomerase II poison VP16, the precise sites of interaction of these enzymes around the lamin B2 origin have been identified at different points in the cell cycle. The procedure can be applied to any origin for which the sequence has been identified within approximately 1 kb.
Collapse
Affiliation(s)
- Arturo Falaschi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
185
|
Smart DJ. Genotoxicity of topoisomerase II inhibitors: An anti-infective perspective. Toxicology 2008; 254:192-8. [DOI: 10.1016/j.tox.2008.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 08/19/2008] [Accepted: 08/29/2008] [Indexed: 11/17/2022]
|
186
|
Hu Y, Lu X, Zhou G, Barnes EL, Luo G. Recql5 plays an important role in DNA replication and cell survival after camptothecin treatment. Mol Biol Cell 2008; 20:114-23. [PMID: 18987339 DOI: 10.1091/mbc.e08-06-0565] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Disruption of replication can lead to loss of genome integrity and increase of cancer susceptibility in mammals. Thus, a replication impediment constitutes a formidable challenge to these organisms. Recent studies indicate that homologous recombination (HR) plays an important role in suppressing genome instability and promoting cell survival after exposure to various replication inhibitors, including a topoisomerase I inhibitor, camptothecin (CPT). Here, we report that the deletion of RecQ helicase Recql5 in mouse ES cells and embryonic fibroblast (MEF) cells resulted in a significant increase in CPT sensitivity and a profound reduction in DNA replication after the treatment with CPT, but not other DNA-damaging agents. This CPT-induced cell death is replication dependent and occurs primarily after the cells had exited the first cell cycle after CPT treatment. Furthermore, we show that Recql5 functions nonredundantly with Rad51, a key factor for HR to protect mouse ES cells from CPT-induced cytotoxicity. These new findings strongly suggest that Recql5 plays an important role in maintaining active DNA replication to prevent the collapse of replication forks and the accumulation of DSBs in order to preserve genome integrity and to prevent cell death after replication stress as a result of topoisomerase I poisoning.
Collapse
Affiliation(s)
- Yiduo Hu
- Department of Genetics, Case Comprehensive Cancer Center, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
187
|
Zhang H, Pommier Y. Mitochondrial topoisomerase I sites in the regulatory D-loop region of mitochondrial DNA. Biochemistry 2008; 47:11196-203. [PMID: 18826252 PMCID: PMC2597090 DOI: 10.1021/bi800774b] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mitochondrial DNA (mtDNA) is required for mitochondrial activities because it encodes key proteins for oxidative phosphorylation and the production of cellular ATP. We previously reported the existence of a specific mitochondrial topoisomerase gene, Top1mt, in all vertebrates. The corresponding polypeptide contains an N-terminal mitochondrial targeting sequence and is otherwise highly homologous to the nuclear topoisomerase I (Top1). In this study, we provide biochemical evidence of the presence of an endogenous Top1mt polypeptide in human mitochondria. Using novel antibodies against Top1mt, we detected the corresponding 70 kDa polypeptide in mitochondria but not in nuclear fractions. This polypeptide could be trapped to form covalent complexes with mtDNA when mitochondria from human cells were treated with camptothecin. Mapping of Top1mt sites in the regulatory D-loop region of mtDNA in mitochondria revealed the presence of an asymmetric cluster of Top1mt sites confined to a 150 bp segment downstream from, and adjacent to, the site at which replication is prematurely terminated, generating an approximately 650-base (7S DNA) product that forms the mitochondrial D-loop. Moreover, we show that inhibition of Top1mt by camptothecin reduces the level of formation of the 7S DNA. These results suggest novel roles for Top1mt in regulating mtDNA replication.
Collapse
Affiliation(s)
- Hongliang Zhang
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | |
Collapse
|
188
|
Rodriguez R, Hansen LT, Phear G, Scorah J, Spang-Thomsen M, Cox A, Helleday T, Meuth M. Thymidine selectively enhances growth suppressive effects of camptothecin/irinotecan in MSI+ cells and tumors containing a mutation of MRE11. Clin Cancer Res 2008; 14:5476-83. [PMID: 18765539 DOI: 10.1158/1078-0432.ccr-08-0274] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE DNA synthesis inhibitors and damaging agents are widely used in cancer therapy; however, sensitivity of tumors to such agents is highly variable. The response of tumor cells in culture to these agents is strongly influenced by the status of DNA damage response pathways. Here, we attempt to exploit the altered response of mismatch repair (MMR)-deficient colon cancer cells and tumors to camptothecin or irinotecan and thymidine by combining them to improve therapeutic response. EXPERIMENTAL DESIGN A panel of colon cancer cell lines was assayed for response to camptothecin-thymidine combinations by measuring colony formation, cell cycle distribution, and senescence. Cell strains defective in p53, p21, or Mre11 were used in these assays to investigate the role of these cell cycle regulators. The in vivo antitumor response of xenografts to irinotecan and thymidine combinations was assessed in nude mice. RESULTS Camptothecin-thymidine combinations suppress colony formation of MMR-deficient tumor cells 10- to 3,000-fold relative to that obtained with camptothecin alone and significantly reduce the concentrations of the agents required to induce late S/G(2) arrest and senescence. Sensitivity is not a direct result of MMR, p53, or p21 status. However MMR-deficient cell lines containing an intronic frameshift mutation of MRE11 show greatest sensitivity to these agents. Increased sensitivity to this combination is also evident in vivo as thymidine enhances irinotecan-induced growth suppression of MMR-deficient tumors carrying the MRE11 mutation in mouse xenografts. CONCLUSION Irinotecan-thymidine combinations may be particularly effective when targeted to MSI+ tumors containing this readily detectable MRE11 mutation.
Collapse
Affiliation(s)
- Rene Rodriguez
- Institute for Cancer Studies, University of Sheffield, School of Medicine and Biomedical Sciences, Sheffield, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Qin XJ, Hudson LG, Liu W, Timmins GS, Liu KJ. Low concentration of arsenite exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity. Toxicol Appl Pharmacol 2008; 232:41-50. [PMID: 18619636 PMCID: PMC2584354 DOI: 10.1016/j.taap.2008.05.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/15/2008] [Accepted: 05/16/2008] [Indexed: 11/23/2022]
Abstract
Epidemiological studies have associated arsenic exposure with many types of human cancers. Arsenic has also been shown to act as a co-carcinogen even at low concentrations. However, the precise mechanism of its co-carcinogenic action is unknown. Recent studies indicate that arsenic can interfere with DNA-repair processes. Poly(ADP-ribose) polymerase (PARP)-1 is a zinc-finger DNA-repair protein, which can promptly sense DNA strand breaks and initiate DNA-repair pathways. In the present study, we tested the hypothesis that low concentrations of arsenic could inhibit PAPR-1 activity and so exacerbate levels of ultraviolet radiation (UVR)-induced DNA strand breaks. HaCat cells were treated with arsenite and/or UVR, and then DNA strand breaks were assessed by comet assay. Low concentrations of arsenite (
Collapse
Affiliation(s)
- Xu-Jun Qin
- Program of Toxicology, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA
| | | | | | | | | |
Collapse
|
190
|
Sordet O, Larochelle S, Nicolas E, Stevens EV, Zhang C, Shokat KM, Fisher RP, Pommier Y. Hyperphosphorylation of RNA polymerase II in response to topoisomerase I cleavage complexes and its association with transcription- and BRCA1-dependent degradation of topoisomerase I. J Mol Biol 2008; 381:540-9. [PMID: 18588899 PMCID: PMC2754794 DOI: 10.1016/j.jmb.2008.06.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 06/05/2008] [Accepted: 06/11/2008] [Indexed: 02/06/2023]
Abstract
The progression of RNA polymerase II can be blocked by lesions on the DNA template. In this study, we focused on the modifications of the largest subunit of RNA polymerase II, Rpb1, in response to stabilized topoisomerase I (Top1)-DNA cleavage complexes. In addition to DNA modifications (base damages and strand breaks), Top1 cleavage complexes can be trapped by camptothecin (CPT) and its derivatives used in cancer treatment. We found that, within a few minutes, CPT produces the complete hyperphosphorylation of Rpb1 in both primary and transformed cancer cells. Hyperphosphorylation is rapidly reversible following CPT removal. Hyperphosphorylation occurs selectively on the serine 5 residue of the conserved heptapeptide repeats in the Rpb1 carboxy-terminal domain and is mediated principally by the transcription factor IIH-associated cyclin-dependent kinase Cdk7. Hyperphosphorylated Rpb1 is not primarily targeted for proteosomal degradation and instead is subjected to cycles of phosphorylation and dephosphorylation as long as Top1 cleavage complexes are trapped by CPT. Finally, we show that transcription-induced degradation of Top1 is Brca1 dependent, suggesting a role for Brca1 in the repair or removal of transcription-blocking Top1-DNA cleavage complexes.
Collapse
Affiliation(s)
- Olivier Sordet
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD 20892-4255, USA
| | - Stéphane Larochelle
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Estelle Nicolas
- LBCMCP, UMR5088 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | - Ellen V. Stevens
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD 20892-4255, USA
| | - Chao Zhang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA
| | - Kevan M. Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA
| | - Robert P. Fisher
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD 20892-4255, USA
| |
Collapse
|
191
|
Guirouilh-Barbat J, Redon C, Pommier Y. Transcription-coupled DNA double-strand breaks are mediated via the nucleotide excision repair and the Mre11-Rad50-Nbs1 complex. Mol Biol Cell 2008; 19:3969-81. [PMID: 18632984 PMCID: PMC2526702 DOI: 10.1091/mbc.e08-02-0215] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 06/20/2008] [Accepted: 06/29/2008] [Indexed: 11/11/2022] Open
Abstract
The cellular activity of Yondelis (trabectedin, Ecteinascidin 743, Et743) is known to depend on transcription-coupled nucleotide excision repair (TCR). However, the subsequent cellular effects of Et743 are not fully understood. Here we show that Et743 induces both transcription- and replication-coupled DNA double-strand breaks (DSBs) that are detectible by neutral COMET assay and as gamma-H2AX foci that colocalize with 53BP1, Mre11, Ser(1981)-pATM, and Thr(68)-pChk2. The transcription coupled-DSBs (TC-DSBs) induced by Et743 depended both on TCR and Mre11-Rad50-Nbs1 (MRN) and were associated with DNA-PK-dependent gamma-H2AX foci. In contrast to DNA-PK, ATM phosphorylated H2AX both in NER-proficient and -deficient cells, but its full activation was dependent on H2AX as well as DNA-PK, suggesting a positive feedback loop: DNA-PK-gamma-H2AX-ATM. Knocking-out H2AX or inactivating DNA-PK reduced Et743's antiproliferative activity, whereas ATM and MRN tended to act as survival factors. Our results highlight the interplays between ATM and DNA-PK and their impacts on H2AX phosphorylation and cell survival. They also suggest that gamma-H2AX may serve as a biomarker in patients treated with Et743 and that molecular profiling of tumors for TCR, MRN, ATM, and DNA-PK might be useful to anticipate tumor response to Et743 treatment.
Collapse
Affiliation(s)
- Josée Guirouilh-Barbat
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255
| | - Christophe Redon
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255
| |
Collapse
|
192
|
Wiktor-Brown DM, Olipitz W, Hendricks CA, Rugo RE, Engelward BP. Tissue-specific differences in the accumulation of sequence rearrangements with age. DNA Repair (Amst) 2008; 7:694-703. [PMID: 18358792 PMCID: PMC3014828 DOI: 10.1016/j.dnarep.2008.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Revised: 12/12/2007] [Accepted: 01/15/2008] [Indexed: 01/31/2023]
Abstract
Mitotic homologous recombination (HR) is a critical pathway for the accurate repair of DNA double strand breaks (DSBs) and broken replication forks. While generally error-free, HR can occur between misaligned sequences, resulting in deleterious sequence rearrangements that can contribute to cancer and aging. To learn more about the extent to which HR occurs in different tissues during the aging process, we used Fluorescent Yellow Direct Repeat (FYDR) mice in which an HR event in a transgene yields a fluorescent phenotype. Here, we show tissue-specific differences in the accumulation of recombinant cells with age. Unlike pancreas, which shows a dramatic 23-fold increase in recombinant cell frequency with age, skin shows no increase in vivo. In vitro studies indicate that juvenile and aged primary fibroblasts are similarly able to undergo HR in response to endogenous and exogenous DNA damage. Therefore, the lack of recombinant cell accumulation in the skin is most likely not due to an inability to undergo de novo HR events. We propose that tissue-specific differences in the accumulation of recombinant cells with age result from differences in the ability of recombinant cells to persist and clonally expand within tissues.
Collapse
Affiliation(s)
| | - Werner Olipitz
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Carrie A. Hendricks
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rebecca E. Rugo
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bevin P. Engelward
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
193
|
Dexheimer TS, Antony S, Marchand C, Pommier Y. Tyrosyl-DNA phosphodiesterase as a target for anticancer therapy. Anticancer Agents Med Chem 2008; 8:381-9. [PMID: 18473723 PMCID: PMC2443942 DOI: 10.2174/187152008784220357] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a recently discovered enzyme that catalyzes the hydrolysis of 3'-phosphotyrosyl bonds. Such linkages form in vivo following the DNA processing activity of topoisomerase I (Top1). For this reason, Tdp1 has been implicated in the repair of irreversible Top1-DNA covalent complexes, which can be generated by either exogenous or endogenous factors. Tdp1 has been regarded as a potential therapeutic co-target of Top1 in that it seemingly counteracts the effects of Top1 inhibitors, such as camptothecin and its clinically used derivatives. Thus, by reducing the repair of Top1-DNA lesions, Tdp1 inhibitors have the potential to augment the anticancer activity of Top1 inhibitors provided there is a presence of genetic abnormalities related to DNA checkpoint and repair pathways. Human Tdp1 can also hydrolyze other 3'-end DNA alterations including 3'-phosphoglycolates and 3'-abasic sites indicating it may function as a general 3'-DNA phosphodiesterase and repair enzyme. The importance of Tdp1 in humans is highlighted by the observation that a recessive mutation in the human TDP1 gene is responsible for the inherited disorder, spinocerebellar ataxia with axonal neuropathy (SCAN1). This review provides a summary of the biochemical and cellular processes performed by Tdp1 as well as the rationale behind the development of Tdp1 inhibitors for anticancer therapy.
Collapse
Affiliation(s)
- Thomas S Dexheimer
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892-4255, USA
| | | | | | | |
Collapse
|
194
|
Derijck A, van der Heijden G, Giele M, Philippens M, de Boer P. DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation. Hum Mol Genet 2008; 17:1922-37. [PMID: 18353795 DOI: 10.1093/hmg/ddn090] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In the human, the contribution of the sexes to the genetic load is dissimilar. Especially for point mutations, expanded simple tandem repeats and structural chromosome mutations, the contribution of the male germline is dominant. Far less is known about the male germ cell stage(s) that are most vulnerable to mutation contraction. For the understanding of de novo mutation induction in the germline, mechanistic insight of DNA repair in the zygote is mandatory. At the onset of embryonic development, the parental chromatin sets occupy one pronucleus (PN) each and DNA repair can be regarded as a maternal trait, depending on proteins and mRNAs provided by the oocyte. Repair of DNA double-strand breaks (DSBs) is executed by non-homologous end joining (NHEJ) and homologous recombination (HR). Differentiated somatic cells often resolve DSBs by NHEJ, whereas embryonic stem cells preferably use HR. We show NHEJ and HR to be both functional during the zygotic cell cycle. NHEJ is already active during replacement of sperm protamines by nucleosomes. The kinetics of G1 repair is influenced by DNA-PK(cs) hypomorphic activity. Both HR and NHEJ are operative in S-phase, HR being more active in the male PN. DNA-PK(cs) deficiency upregulates the HR activity. Both after sperm remodeling and at first mitosis, spontaneous levels of gammaH2AX foci (marker for DSBs) are high. All immunoflurescent indices of DNA damage and DNA repair point at greater spontaneous damage and induced repair activity in paternal chromatin in the zygote.
Collapse
Affiliation(s)
- Alwin Derijck
- Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
195
|
Kouzminova EA, Kuzminov A. Patterns of chromosomal fragmentation due to uracil-DNA incorporation reveal a novel mechanism of replication-dependent double-stranded breaks. Mol Microbiol 2008; 68:202-15. [PMID: 18312272 DOI: 10.1111/j.1365-2958.2008.06149.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is growing evidence that spontaneous chromosomal fragmentation, one of the main contributors to genetic instability, is intimately linked to DNA replication. In particular, we proposed before that uracil incorporation in DNA triggers chromosomal fragmentation due to replication fork collapse at uracil-excision intermediates. We tested predictions of this model at the chromosomal level in the dut mutants of Escherichia coli, by determining the relationship between DNA replication and patterns of fragmentation in defined chromosomal segments. Here we show that the uracil-DNA-triggered chromosomal fragmentation: (i) has a gradient that parallels the replication gradient, (ii) shows polarity within defined segments pointing towards replication origins and (iii) reorganizes to match induced replication gradients, confirming its dynamic pattern. Unexpectedly, these fragmentation patterns not only support the replication fork collapse model, but also reveal another mechanism of the replication-dependent chromosomal fragmentation triggered by uracil excision.
Collapse
Affiliation(s)
- Elena A Kouzminova
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | | |
Collapse
|
196
|
Abstract
The inhibition of DNA topoisomerase I (Top1) has proven to be a successful approach in the design of anticancer agents. However, despite the clinical successes of the camptothecin derivatives, a significant need for less toxic and more chemically stable Top1 inhibitors still persists. Here, we describe one of the most frequently used protocols to identify novel Top1 inhibitors. These methods use uniquely 3'-radiolabeled DNA substrates and denaturing polyacrylamide gel electrophoresis to provide evidence for the Top1-mediated DNA cleaving activity of potential Top1 inhibitors. These assays allow comparison of the effectiveness of different drugs in stabilizing the Top1-DNA intermediate or cleavage (cleavable) complex. A variation on these assays is also presented, which provides a suitable system for determining whether the inhibitor blocks the forward cleavage or religation reactions by measuring the reversibility of the drug-induced Top1-DNA cleavage complexes. This entire protocol can be completed in approximately 2 d.
Collapse
Affiliation(s)
- Thomas S Dexheimer
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
197
|
Horton JK, Watson M, Stefanick DF, Shaughnessy DT, Taylor JA, Wilson SH. XRCC1 and DNA polymerase beta in cellular protection against cytotoxic DNA single-strand breaks. Cell Res 2008; 18:48-63. [PMID: 18166976 PMCID: PMC2366203 DOI: 10.1038/cr.2008.7] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Single-strand breaks (SSBs) can occur in cells either directly, or indirectly following initiation of base excision repair (BER). SSBs generally have blocked termini lacking the conventional 5'-phosphate and 3'-hydroxyl groups and require further processing prior to DNA synthesis and ligation. XRCC1 is devoid of any known enzymatic activity, but it can physically interact with other proteins involved in all stages of the overlapping SSB repair and BER pathways, including those that conduct the rate-limiting end-tailoring, and in many cases can stimulate their enzymatic activities. XRCC1(-/-) mouse fibroblasts are most hypersensitive to agents that produce DNA lesions repaired by monofunctional glycosylase-initiated BER and that result in formation of indirect SSBs. A requirement for the deoxyribose phosphate lyase activity of DNA polymerase beta (pol beta) is specific to this pathway, whereas pol beta is implicated in gap-filling during repair of many types of SSBs. Elevated levels of strand breaks, and diminished repair, have been demonstrated in MMS-treated XRCC1(-/-), and to a lesser extent in pol beta(-/-) cell lines, compared with wild-type cells. Thus a strong correlation is observed between cellular sensitivity to MMS and the ability of cells to repair MMS-induced damage. Exposure of wild-type and pol beta(-/-) cells to an inhibitor of PARP activity dramatically potentiates MMS-induced cytotoxicity. XRCC1(-/-) cells are also sensitized by PARP inhibition demonstrating that PARP-mediated poly(ADP-ribosyl)ation plays a role in modulation of cytotoxicity beyond recruitment of XRCC1 to sites of DNA damage.
Collapse
Affiliation(s)
- Julie K Horton
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Mary Watson
- Laboratory of Molecular Carcinogenesis, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Donna F Stefanick
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Daniel T Shaughnessy
- Laboratory of Molecular Carcinogenesis, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jack A Taylor
- Laboratory of Molecular Carcinogenesis, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Samuel H Wilson
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
198
|
Ismail IH, Hendzel MJ. The gamma-H2A.X: is it just a surrogate marker of double-strand breaks or much more? ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:73-82. [PMID: 18095327 DOI: 10.1002/em.20358] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In recent years, several histone modifications have been implicated in the cellular response to DNA double-strand breaks (DSBs). One of the best characterized histone modifications important in DSB repair is the phosphorylation of histone H2A variant, H2A.X. In response to DSBs, H2A.X is phosphorylated and this phosphorylation is required for DSB signaling and the retention of repair proteins at the break site. Despite the existing picture that the function of H2A.X is to promote DNA repair, very recent data suggest that the phosphorylation of histone H2A.X has additional functions. This is analogous to histone H3 phosphorylation on serine 10, which participates in seemingly incompatible functions--transcriptional activation and mitosis. In this review, we discuss the role of histone H2A.X in maintaining genomic stability and review emerging evidence that histone H2A.X is multifunctional.
Collapse
Affiliation(s)
- Ismail Hassan Ismail
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
199
|
Nomura Y, Adachi N, Koyama H. Human Mus81 and FANCB independently contribute to repair of DNA damage during replication. Genes Cells 2007; 12:1111-22. [PMID: 17903171 DOI: 10.1111/j.1365-2443.2007.01124.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recent studies suggest a crucial role for homologous recombination (HR) in repairing replication-associated DNA lesions. In mammals, the Mus81 endonuclease and the Fanconi anemia (FA) pathway have been implicated in HR repair; however, their functional relationship has remained unexplored. Here, we knockout the genes for Mus81 and FANCB, a component of the FA core complex, in the human Nalm-6 cell line. We show that Mus81 plays an important role in cell proliferation to suppress cell death when FANCB is missing, indicating a functional linkage between Mus81 and the FA pathway. In DNA cross-link repair, roles for Mus81 and the FA pathway appear to have an overlapping function. Intriguingly, Mus81 and FANCB act independently in surviving exposure to camptothecin (CPT). Although CPT-induced FANCD2 and Mus81 foci co-localize with Rad51, loss of Mus81, but not FANCB, results in significantly decreased levels of spontaneous and CPT-induced sister chromatid exchanges (SCEs). In addition, Mus81, unlike FANCB, has no significant role in gene targeting as well as in repairing hydroxyurea (HU)-induced stalls of replication forks. Collectively, our results provide the first evidence for differential functions of Mus81 and the FA pathway in repair of DNA damage during replication in human cells.
Collapse
Affiliation(s)
- Yuji Nomura
- Kihara Institute for Biological Research, Graduate School of Integrated Science, Yokohama City University, Yokohama 244-0813, Japan
| | | | | |
Collapse
|
200
|
Katyal S, El-Khamisy SF, Russell HR, Li Y, Ju L, Caldecott KW, McKinnon PJ. TDP1 facilitates chromosomal single-strand break repair in neurons and is neuroprotective in vivo. EMBO J 2007; 26:4720-31. [PMID: 17914460 PMCID: PMC2080805 DOI: 10.1038/sj.emboj.7601869] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 09/05/2007] [Indexed: 11/08/2022] Open
Abstract
Defective Tyrosyl-DNA phosphodiesterase 1 (TDP1) can cause spinocerebellar ataxia with axonal neuropathy (SCAN1), a neurodegenerative syndrome associated with marked cerebellar atrophy and peripheral neuropathy. Although SCAN1 lymphoblastoid cells show pronounced defects in the repair of chromosomal single-strand breaks (SSBs), it is unknown if this DNA repair activity is important for neurons or for preventing neurodegeneration. Therefore, we generated Tdp1-/- mice to assess the role of Tdp1 in the nervous system. Using both in vitro and in vivo assays, we found that cerebellar neurons or primary astrocytes derived from Tdp1-/- mice display an inability to rapidly repair DNA SSBs associated with Top1-DNA complexes or oxidative damage. Moreover, loss of Tdp1 resulted in age-dependent and progressive cerebellar atrophy. Tdp1-/- mice treated with topotecan, a drug that increases levels of Top1-DNA complexes, also demonstrated significant loss of intestinal and hematopoietic progenitor cells. These data indicate that TDP1 is required for neural homeostasis, and reveal a widespread requisite for TDP1 function in response to acutely elevated levels of Top1-associated DNA strand breaks.
Collapse
Affiliation(s)
- Sachin Katyal
- Department Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Sherif F El-Khamisy
- Genome Damage and Stability Center, University of Sussex, Falmer, Brighton, UK
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Helen R Russell
- Department Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Yang Li
- Department Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Limei Ju
- Genome Damage and Stability Center, University of Sussex, Falmer, Brighton, UK
| | - Keith W Caldecott
- Genome Damage and Stability Center, University of Sussex, Falmer, Brighton, UK
| | - Peter J McKinnon
- Department Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|